
Theory Comput Syst (2016) 59:323–376
DOI 10.1007/s00224-015-9653-1

Complexity of Fixed-Size Bit-Vector Logics

Gergely Kovásznai1 ·Andreas Fröhlich1 ·
Armin Biere1

Published online: 7 September 2015
© Springer Science+Business Media New York 2015

Abstract Bit-precise reasoning is important for many practical applications of Sat-
isfiability Modulo Theories (SMT). In recent years, efficient approaches for solving
fixed-size bit-vector formulas have been developed. From the theoretical point of
view, only few results on the complexity of fixed-size bit-vector logics have been
published. Some of these results only hold if unary encoding on the bit-width of
bit-vectors is used. In our previous work (Kovásznai et al. 2012), we have already
shown that binary encoding adds more expressiveness to various fixed-size bit-vector
logics with and without quantification. In a follow-up work (Fröhlich et al. 2013),
we then gave additional complexity results for several fragments of the quantifier-
free case. In this paper, we revisit our complexity results from (Fröhlich et al. 2013;
Kovásznai et al. 2012) and go into more detail when specifying the underlying logics
and presenting the proofs. We give a better insight in where the additional expres-
siveness of binary encoding comes from. In order to do this, we bring together
our previous work and propose several new complexity results for new fragments
and extensions of earlier bit-vector logics. We also discuss the expressiveness of
various bit-vector operations in more detail. Altogether, we provide the currently
most complete overview on the complexity of common bit-vector logics.

This work is partially supported by FWF, NFN Grant S11408-N23 (RiSE)

� Andreas Fröhlich
andreas.froehlich@jku.at

Gergely Kovásznai
gergely.kovasznai@jku.at

Armin Biere
biere@jku.at

1 Institute for Formal Models and Verification, Johannes Kepler University, Linz, Austria

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s00224-015-9653-1-x&domain=pdf
mailto:andreas.froehlich@jku.at
mailto:gergely.kovasznai@jku.at
mailto:biere@jku.at
mailto:

324 Theory Comput Syst (2016) 59:323–376

Keywords SMT · Satisfiability Modulo Theories · Bit-vectors · Bit-vector logics ·
Binary encoding · Logarithmic encoding · Unary encoding · Complexity ·
NEXPTIME · PSPACE · NP · SAT

1 Introduction

Bit-precise reasoning over bit-vector logics is important for many practical appli-
cations of Satisfiability Modulo Theories (SMT), particularly for hardware and
software verification. Examples of state-of-the-art SMT solvers with support for
bit-precise reasoning are Boolector [9], MathSAT [12], STP [31], Z3 [22], and
Yices [25].

The theory of fixed-size bit-vector logics is investigated in several scientific works
[4, 5, 13, 21, 27], and even concrete formats for specifying such bit-vector problems
exist, e.g., the SMT-LIB format [3] or the BTOR format [10]. Working with non-
fixed-size bit-vectors has been considered for instance in [1, 5], and more recently in
[55, 56], but is not further discussed in this paper. Most industrial applications (and
examples in the SMT-LIB 1) have fixed bit-width.

We investigate the complexity of solving fixed-size bit-vector formulas. Some
papers propose such complexity results, e.g., in [4], the authors consider the common
quantifier-free bit-vector logic and give an argument for NP-hardness of its satisfia-
bility problem. In [13], a sublogic of the previous one is claimed to be NP-complete.
Interestingly, in [14], there is a claim about the full quantifier-free logic being NP-
complete, however the proposed decision procedure justifies this claim only if the
bit-widths of the bit-vectors in the input formula are written/encoded in unary for-
mat. In [59, 60], the quantified case is addressed, and the satisfiability problem for
this logic with uninterpreted functions is proved to be NEXPTIME-complete. How-
ever, the proof, similarly to the decision procedure in [14], only holds if we assume
unary encoded bit-widths.

Parts of our paper already appeared as previous work [30, 41]. Apart from this,
we are not aware of any work that investigates how the encoding of the bit-widths
in the input affects complexity (as an exception, see [19, Page 239, Footnote 3]).
In practice, the more natural and exponentially more succinct logarithmic encoding
is used, such as in the SMT-LIB [3] or the BTOR [10] format. We investigate how
complexity varies if we consider either a unary or a binary encoding. Note that binary
encoding, throughout the whole paper, can be replaced with any other logarithmic
encoding.

The present paper extends our previous work in several ways. After giving a
motivation for the use of binary encoded bit-vector logics in Section 2, we specify
various fixed-size bit-vector logics in detail (Section 3). While our previous papers
were referring to the common syntax and semantics used in other works, e.g., [4,
5, 10, 13, 21, 27], but was never fully specified from the theoretical point of view,

1http://www.smtlib.org/

http://www.smtlib.org/

Theory Comput Syst (2016) 59:323–376 325

we now want to provide self-contained descriptions for the bit-vector logics that we
are considering. Therefore, we introduce syntax and semantics for fixed-size bit-
vector logics containing all common bit-vector operations as used in the SMT-LIB
format.

After these preliminary definitions, we give a short overview of the existing
complexity results for bit-vector logics with unary encoding in Section 4. We
then introduce the concept of scalar-boundedness for bit-vector logics with binary
encoding in Section 5 and give improved versions of our complexity proofs for
quantifier-free bit-vector logics in Section 6. Although our previous proofs from
[30, 41] are still valid, we modified and restructured our work to present those proofs
in a clearer, easier-to-read, way. In Section 7, we look at the expressiveness of var-
ious bit-vector operations and analyze whether they can be used to extend some of
the previously defined fragments or to give an alternative characterization of a given
class.

We then revisit the quantified case in Section 8 and give new complexity results
for fragments with restrictions on operations and the bit-widths of universal vari-
ables. Also, we provide a new complexity result for quantifier-free logics extended
with non-recursive macros, which are allowed, for example, in the SMT-LIB for-
mat. Finally, we discuss practical considerations of our results in Section 9. A brief
overview of related work is presented in [29, 42]. We then explain how our theoretic
contributions can help to improve practical SMT solving.

The Appendix contains examples that make some definitions and proofs easier to
understand.

2 Motivation

In practice, state-of-the-art bit-vector solvers rely on rewriting and bit-blasting. The
latter is defined as the process of translating a bit-vector description (also called
word-level description) into a combinatorial circuit, as in hardware synthesis. The
result can then be checked by a (propositional) SAT solver.

Usually, numbers contained in a bit-vector description (e.g. the bit-widths of bit-
vector variables) are encoded in a logarithmic way. When translating the original
description into a circuit, all numbers are effectively replaced by their unary encod-
ing. Bit-blasting can therefore lead to an exponential growth, if the numbers are not
logarithmic in the original description size.

To illustrate this effect on a practical example, consider the following bit-vector
formula in SMT-LIB syntax [3]:
(set-logic QF_BV)

(declare-fun x () (_ BitVec 1000000))

(declare-fun y () (_ BitVec 1000000))

(declare-fun z () (_ BitVec 1000000))

(assert (= z (bvadd x y)))

(assert (= z (bvshl x (_ bv1 1000000))))

(assert (distinct x y))

326 Theory Comput Syst (2016) 59:323–376

The first line defines the logic to be the one of quantifier-free bit-vectors. The fol-
lowing three lines introduce bit-vector variables x, y, and z of bit-width one million.
The last three lines enforce some constraints between the variables. Basically, the for-
mula verifies that, for an arbitrary bit-vector x of bit-width one million, there exists
no bit-vector y �= x with x + y = x � 1.

Written to a file, this formula can be encoded with 217 bytes. Using the SMT
solver Boolector (even with all rewritings switched on), bit-blasting produces a cir-
cuit of size 129 MB encoded in the actually rather compact AIGER format. Tseitin
transformation results in a CNF in DIMACS format of size 843 MB. A bit-width of
10 million bits can be represented by four more bytes in the original SMT-LIB input,
but could not be bit-blasted anymore with our tool-flow (due to integer overflow).
As this example illustrates, checking satisfiability of bit-vector formulas through bit-
blasting can suffer dramatically from the exponential growth caused by the implicit
unary re-encoding of the numbers.

Obviously, its exponential nature also disqualifies bit-blasting as a sound way
to prove that the satisfiability problem for (quantifier-free) bit-vector logics is in
NP. In [41], we showed that deciding bit-vector logics, even without quantifiers,
is much harder. It turned out to be NEXPTIME-complete. Informally speaking, we
showed that moving from unary to binary encoding for bit-widths increases com-
plexity exponentially and that binary encoding has at least as much expressive power
as quantification. However, in [30, 41], we also proposed certain restrictions for bit-
vector problems to remain in a “lower” complexity class, when moving from unary
to binary encoding.

These theoretical insights as well as later practical results from [29, 42] give reason
to look into bit-vector logics more closely and to provide a comprehensive framework
for dealing with complexity of bit-vector logics, particularly combined with the use
of a binary encoding.

3 Preliminaries

N denotes the set of natural numbers {0, 1, 2, . . . }, while N
+ denotes N\{0}. B :=

{0, 1} is the Boolean domain, thus truth values false and true are represented by 0
and 1, respectively.

Given n ∈ N
+, let Ln denote the ceiling of the logarithm of n base 2: Ln :=

�log2 n�.

3.1 SAT, QBF, and DQBF

Let V be a set of Boolean variables. Boolean formulas over V are defined inductively
as follows: (i) x is a Boolean formula where x ∈ V ; (ii) ¬φ0, (φ0 ∧ φ1), (φ0 ∨
φ1), (φ0 ⇒ φ1), and (φ0 ⇔ φ1) are Boolean formulas where φ0, φ1 are Boolean
formulas. A Boolean formula φ is satisfiable iff there exists an assignment α : V �→
B to the variables, such that φ evaluates to 1 under α. The Boolean satisfiability
problem (SAT) is NP-complete.

Theory Comput Syst (2016) 59:323–376 327

The class ofQuantified Boolean Formulas (QBF) is obtained by adding quantifiers
to Boolean formulas. Each QBF ψ can be written in prenex normal form, i.e., as a
closed formula Q.φ where Q is a quantifier prefix ∃V0∀V1∃V2∀V3 . . .∀Vm−1∃Vm,
the Vis are pairwise disjoint sets of variables, and φ is a Boolean formula, which is
called the matrix of ψ . A variable v ∈ Vi depends on a variable v′ ∈ Vj iff i > j .
This defines a total order on the variables of ψ . A QBF is satisfiable iff there exist
Skolem functions for its existential variables to make the formula evaluate to 1. The
satisfiability problem for QBF is PSPACE-complete [48, 57].

Instead of using totally ordered quantifiers, it is also possible to extend Boolean
formulas with Henkin quantifiers [34]. Henkin quantifiers specify variable depen-
dencies explicitly instead of using implicit dependencies defined by the quantifier
order. This allows to define more general dependency constraints only requiring a
partial order. Adding Henkin quantifiers to Boolean formulas results in the class of
Dependency Quantified Boolean Formulas (DQBF), as first defined in [50]. Again,
a DQBF can always be expressed in prenex normal form, i.e., as a closed formula
Q′.φ, where Q′ is a quantifier prefix

∀u1, . . . , um∃e1(u1,1, . . . , u1,m1), . . . , en(un,1, . . . , un,mn)

where each ui,j is a universally quantified variable, mi ∈ N, and the matrix φ is
a Boolean formula. In DQBF, existential variables can always be placed after all
universal variables in the quantifier prefix, since the dependencies of a certain vari-
able are explicitly given and not implicitly defined by the order of the prefix (in
contrast to QBF). The more general quantifier order makes DQBF more powerful
than QBF and allows more succinct encodings. A DQBF is satisfiable iff there exist
Skolem functions for its existential variables to make the formula evaluate to 1. In
DQBF, the arguments for Skolem functions of an existential variable are exactly the
universal variables that are explicitly specified in its Henkin quantifier. The satisfi-
ability problem for DQBF is NEXPTIME-complete [49, 50]. Although we did not
formally specify the dependencies of universal variables, this can be done by the use
of Herbrand functions [2].

Throughout our paper, we use SAT, QBF, and DQBF to give reductions from
or to certain bit-vector logics, showing inclusion or hardness for the correspond-
ing complexity class, respectively. While SAT and QBF are considered to be
prototypical complete problems for their complexity classes, DQBF is used less fre-
quently. Another NEXPTIME-complete logic used in reductions in the context of
unary encoded bit-vector logics [59] is Effectively Propositional Logic (EPR) [45].
However, due to its simplicity, we consider DQBF to be a better choice for our
purposes.

3.2 Circuits

We distinguish between two kind of circuits: combinatorial circuits and sequential
circuits. For both kinds of circuits, we stick closely to the definitions in [55]:

A combinatorial circuit with ni inputs and no outputs is a finite acyclic directed
graph with exactly ni vertices of in-degree zero and no vertices of out-degree

328 Theory Comput Syst (2016) 59:323–376

zero. All vertices of a non-zero in-degree have a logical function assigned to
them and are called gates. All vertices of in-degree one represent a NOT-gate and
vertices of greater in-degrees are either AND- or OR-gates. Given boolean values
for the inputs, each gate can be evaluated in the natural way according to the logical
function it represents. As already noted in the introduction, this kind of representa-
tion of a bit-vector formula is created during bit-blasting. For every combinatorial
circuit, a corresponding set of no SAT formulas with ni variables can be constructed
naturally.

A (clocked) sequential circuit SC consists of a combinatorial circuit C and a set
of D-type flip-flops. The data input of each flip-flop is connected to a unique output
of C and the Q-output of each flip-flop is connected to a unique input of C. Such a
backward-connected output-input pair will be denoted as a state variable. The circuit
is assumed to work in clock pulses. In every clock pulse, it takes the values of its
inputs and computes the output values. Via the flip-flops these values are routed back
to the inputs for the use in the next clock cycle. Inputs of C that do not receive their
value from an output through a flip-flop will be called the inputs of the sequential
circuit SC and outputs of C that do not pass their value to an input of a flip-flop will
be called the outputs of the sequential circuit SC.

All the state variables are assumed to be provided with initial values stored in the
flip-flops before the first clock cycle. The input variables need to be provided values
from outside the system at every clock cycle and the output variables produce a new
output at every clock cycle. A sequential circuit can be used to recognize languages.
A word w ∈ ({0, 1}ni)+ is said to be accepted by a sequential circuit SC with one
output o, iff the value of o is 1 after the last clock cycle when w is given as input, one
letter each clock cycle.

Symbolic model checking for sequential circuits refers to the problem of check-
ing whether the language for a given sequential circuit is empty. It is known to be
PSPACE-complete [51, 52, 54].

3.3 Fixed-Size Bit-Vector Logics

A bit-vector, or word, is a sequence of bits, i.e., Boolean values. Such a sequence
may be either infinite or of a fixed size n ∈ N

+, where n is called the bit-width of
the bit-vector. While non-fixed-size bit-vectors have been considered for example in
[1, 5, 55, 56], working with fixed-size bit-vectors is the focus of this paper.

Let Dn denote the set of all bit-vectors of bit-width n. Given d ∈ Dn, the ith bit of
d is denoted by d[i], where i ∈ N and i < n. Using vector notation, d is written as
(d[n − 1], . . . , d[1], d[0]), i.e., the most significant bit standing on the left-hand side
and the least significant bit on the right-hand side. Sometimes we omit parentheses
and commas.

Syntax and semantics of fixed-size bit-vector logics do not differ much in the
literature [4, 5, 13, 21, 27]. Concrete formats for specifying bit-vector problems also
exist, e.g., the SMT-LIB format [3] or the BTOR format [10]. In the subsequent
sections, we give the necessary definitions, in a more general way than in the works
cited above, in order to propose a uniform and general framework using any set of
bit-vector operations.

Theory Comput Syst (2016) 59:323–376 329

3.3.1 Syntax

The main objective of this section is to define bit-vector formulas. As it turns out
in Definition 2 and 3, such a formula, informally speaking, is a combination of bit-
vector operations on some atomic elements, each of which can be represented either
as a bit-vector or an integer, which we call a scalar. Let us emphasize that scalars in
formulas are not represented as bit-vectors. Note that the bit-width of a bit-vector is
also a scalar.

A bit-vector operator symbol (or operator for short) represents an operation that
takes some bit-vector operands and scalar operands, and computes a single bit-vector.
Given an arbitrary operator set, one has to specify syntactic rules for using the opera-
tors. Definition 1 of a signature captures these rules by providing three properties for
each operator: (1) An operator is given an arity, which is a pair of numbers that spec-
ify the number of bit-vector operands and the number of scalar operands, respectively.
For instance, the arithmetic operator addition has 2 bit-vector and 0 scalar operands,
while extraction has 1 bit-vector and 2 scalar operands. (2) Since there usually exist
restrictions on what kind of operands are legal to use with an operator, a signa-
ture has to specify a condition on the bit-widths and scalar values of operands. For
instance, the operands of addition must be of the same bit-width; the scalar operands
i, j of extraction must be less than the bit-width of the bit-vector operand and i ≥ j .
(3) A bit-width of the resulting bit-vector is assigned to each legal combination of
bit-widths and scalar values of operands.

Definition 1 (Signature) A signature for an operator set Op is defined as a set
�Op := {〈arityo, condo, wido〉 | o ∈ Op}, where
– arityo ∈ N × N;
– condo : (N+)k × N

l �→ B where 〈k, l〉 := arityo;
– wido : Paro �→ N

+ where

Paro :=
{
p ∈ (N+)k × N

l | 〈k, l〉 := arityo, condo(p)
}

.

Table 1 shows the set of the most common operators provided by the SMT-LIB
format [3] and the literature [4, 5, 13, 21, 27], such as bitwise operators (nega-
tion, and, or, xor, etc.), relational operators (equality, unsigned/signed less than,
unsigned/signed less than or equal, etc.), arithmetic operators (addition, subtraction,
multiplication, unsigned/signed division, unsigned/signed remainder, etc.), shifts
(left shift, logical/arithmetic right shift), extraction, concatenation, zero/sign exten-
sion, etc. Let Op denote the common operator set given in Table 1. Op includes all
bit-vector operators used in the SMT-LIB providing a collection of the most common
bit-vector operators in software and hardware verification; other frameworks, like
Boolector and Z3, provide additional useful operators, e.g., reduction operators and
overflow operators. Let �Op denote the common signature for Op. Note that Table 1
specifies some of the syntactic properties provided by �Op in an implicit way: the
arity is completely, the condition is partly implicit.

330 Theory Comput Syst (2016) 59:323–376

The simplest bit-vector expressions, or terms, are the variables and constants,
as Definition 2 shows. Operators can be applied to bit-vector terms which obey
the syntactic rules given by the signature of the operator set. While operators
have a priori fixed syntax and semantics, uninterpreted functions can be introduced
on demand.

Definition 2 (Term) A bit-vector term t of bit-width n ∈ N
+ is denoted by t [n]. A

term over a signature �Op is defined inductively as follows:

term condition bit-width

constant: c[n] c ∈ N, 0 ≤ c < 2n n

variable: x[n] x is an identifier n

operation:

o ∈ Op, 〈k, l〉 := arityo

o(t1
[n1], . . . , t1

[n1], . . . , tk[nk] are terms wido(n1,

tk
[nk], i1, . . . , il) i1, . . . , il ∈ N . . . , il)

condo(n1, . . . , nk, i1, . . . , il)

uninterpreted f [n](t1[n1], . . . , f is an identifier, k ∈ N
n

function: tk
[nk]) t1

[n1], . . . , tk[nk] are terms

Let us emphasize that, in a term, bit-widths are specified explicitly only for con-
stants, variables, and uninterpreted functions. In all other cases, the bit-width is
implicit, i.e., it can be derived from the bit-widths of the operands of operations. In the
following, we may omit explicit bit-widths and parentheses if they can be concluded
from the context.

Definition 3 (Formula) A bit-vector formula is an expression Q.t [1], where t [1] is a
bit-vector term, Q is a quantifier prefix Q0x0

[n0]Q1 . . . Qkxk
[nk], each Qi ∈ {∀, ∃},

and each x
[ni]
i is a bit-vector variable. We call t the matrix of the formula.

If only existential quantifiers appear in a formula, we may omit the quantifier
prefix and refer to this kind of formula as a quantifier-free one. In the same way, we
refer to a formula as being quantified, if it contains universal quantifiers.

Without loss of generality, we can assume that variables and uninterpreted func-
tions are identified by their unique names. In a formula, therefore, each variable and
each uninterpreted function must be used in a consistent way, regarding its bit-width
and the bit-widths of its arguments.

In the literature, most of the approaches distinguish between a bit-vector
level and a Boolean level within a bit-vector formula, by allowing only rela-
tional operators (i.e., operators with result of bit-width 1) at the Boolean level
[4, 11, 13, 21, 27]. Note that, in our definitions, there is no such explicit distinction.
Therefore, for example, relational operators are allowed to be embedded in concate-
nations or arithmetic operations. However, by introducing the so-called flat form in
Definition 8, the same separation of a Boolean level and a bit-vector level can be
made in any bit-vector formula over �Op, assuming the common interpretation of
�Op, defined in Section 3.3.2.

Theory Comput Syst (2016) 59:323–376 331

Table 1 Syntax (signature) for common bit-vector operators

Operation Condition Bit-width Alternative syntax

negation: bvnot(t [n]) n ∼ t [n]

and: bvand
(
t1

[n], t2[n]) n
(
t1

[n]&t2
[n])

or: bvor
(
t1

[n], t2[n]) n
(
t1

[n] | t2
[n])

xor: bvxor
(
t1

[n], t2[n]) n
(
t1

[n] ⊕ t2
[n])

nand: bvnand
(
t1

[n], t2[n]) n

nor: bvnor
(
t1

[n], t2[n]) n

xnor: bvxnor
(
t1

[n], t2[n]) n

if-then-else: ite
(
t1

[1], t2[n], t3[n]) n

equality: bvcomp
(
t1

[n], t2[n]) 1
(
t1

[n] = t2
[n])

unsigned (u.) less than: bvult
(
t1

[n], t2[n]) 1
(
t1

[n] <u t2
[n])

u. less than or equal: bvule
(
t1

[n], t2[n]) 1

u. greater than: bvugt
(
t1

[n], t2[n]) 1

u. greater than or equal: bvuge
(
t1

[n], t2[n]) 1

signed (s.) less than: bvslt
(
t1

[n], t2[n]) 1

s. less than or equal: bvsle
(
t1

[n], t2[n]) 1

s. greater than: bvsgt
(
t1

[n], t2[n]) 1

s. greater than or equal: bvsge
(
t1

[n], t2[n]) 1

shift left: bvshl
(
t1

[n], t2[n]) n
(
t1

[n] � t2
[n])

logical shift right: bvlshr
(
t1

[n], t2[n]) n
(
t1

[n] �u t2
[n])

arithmetic shift right: bvashr
(
t1

[n], t2[n]) n
(
t1

[n] �s t2
[n])

extraction: extract
(
t [n], i, j

)
n > i ≥ j i − j + 1 t [n] [i : j]

concatenation: concat
(
t1

[m], t2[n]) m + n
(
t1

[m] ◦ t2
[n])

zero extend: zero extend
(
t [n], i

)
n + i extu

(
t [n], i

)

sign extend: sign extend
(
t [n], i

)
n + i

rotate left: rotate left
(
t [n], i

)
n > i ≥ 0 n

rotate right: rotate right
(
t [n], i

)
n > i ≥ 0 n

repeat: repeat
(
t [n], i

)
i > 0 n · i

unary minus: bvneg
(
t [n]) n −t [n]

addition: bvadd
(
t1

[n], t2[n]) n
(
t1

[n] + t2
[n])

subtraction: bvsub
(
t1

[n], t2[n]) n
(
t1

[n] − t2
[n])

multiplication: bvmul
(
t1

[n], t2[n]) n
(
t1

[n] · t2
[n])

unsigned division: bvudiv
(
t1

[n], t2[n]) n
(
t1

[n]/ut2[n])

u. remainder: bvurem
(
t1

[n], t2[n]) n

signed division: bvsdiv
(
t1

[n], t2[n]) n

s. remainder

with rounding to 0: bvsrem
(
t1

[n], t2[n]) n

s. remainder

with rounding to −∞: bvsmod
(
t1

[n], t2[n]) n

332 Theory Comput Syst (2016) 59:323–376

3.3.2 Semantics

Given a signature �Op and an operator o ∈ Op where 〈k, l〉 := arityo, each p :=
(n1, . . . , nk, i1, . . . , il) ∈ Paro can be mapped to a set of possible operands (bit-
vectors and scalars) and also to a set of possible results (bit-vectors). These two sets,
called the domain and the range of p, are defined as follows:

Domo(p) := Dn1 × · · · × Dnk
× {i1} × · · · × {il}

Rangeo(p) := Dwido(p)

In order to evaluate a term or formula, it is first necessary to interpret all the operators
we use (Definition 4), and then to assign domain elements to free variables and to
interpret uninterpreted functions (Definition 5).

Definition 4 (Interpretation) An interpretation of a signature �Op is defined as a set
Ôp of functions, consisting of an ô for each o ∈ Op, such that

ô :
⋃

p∈Paro

Domo(p) �→
⋃

p∈Paro

Rangeo(p)

where

∀p ∈ Paro, d ∈ Domo(p) . ô(d) ∈ Rangeo(p)

Let Ôp denote the common interpretation of �Op, detailed in Table 2, based on
[13, 16, 27] and the SMT-LIB. Note that Table 2 uses a notation that is introduced by
the following definitions.

Definition 5 (Model) M := 〈α, F̂ 〉 is a model for a formula � where

– α is an assignment, i.e., it assigns an element of Dn to each free variable x[n] in
�;

– F̂ is a set of interpretations f̂ : Dn1 × · · · × Dnk
�→ Dn of all uninterpreted

functions f [n] (t1[n1], . . . , tk[nk]) in �.

To facilitate the presentation, similar to [13, 27], we define an auxiliary bijective
meta-function natn : Dn �→ [0, 2n − 1]. Given a bit-vector d ∈ Dn, natn(d) :=∑n−1

i=0 2id[i]. We also introduce the inverse meta-function bvn := nat−1
n .

Definition 6 (Evaluation) Given a signature �Op, a formula � over �Op, an inter-
pretation Ôp of �Op, and a model M := 〈α, F̂ 〉 for �, � can be evaluated to either

0 or 1, by using the inductive definition of the evaluation function �·�Ôp
M , as follows:

Theory Comput Syst (2016) 59:323–376 333

constant:
�
c[n]�Ôp

M
:= bvn(c)

variable:
�
x[n]�Ôp

M
:= α(x)

operation:

�
o
(
t1

[n1], . . . , tk[nk], i1, . . . , il
)�Ôp

M
:=

ô

(
�
t1

[n1]�Ôp

M
, . . . ,

�
tk

[nk]�Ôp

M
, i1, . . . , il

)

uninterpreted �
f [n] (t1[n1], . . . , tk[nk])�Ôp

M
:= f̂

(
�
t1

[n1]�Ôp

M
, . . . ,

�
tk

[nk]�Ôp

M

)
function:

quantifiers:

�∀x[n].�
�Ôp

M
:=

∧
d∈Dn

���
Ôp〈
α∪{x[n] �→d},F̂ 〉

�∃x[n].�
�Ôp

M
:=

∨
d∈Dn

���
Ôp〈
α∪{x[n] �→d},F̂ 〉

As mentioned before, the common interpretation Ôp is given in Table 2. In the
table, we omit the interpretation and the model for evaluation. Furthermore, we use
two abbreviations:

msb
(
t [n]) := �t�[n − 1]

abs
(
t [n]) :=

{ −t if msb(t)

t otherwise

In the Appendix, we use the notation t [n] d, where d ∈ Dn, as an alternative for�
t [n]� = d, assuming an appropriate model for t , implied by the context.
A formula � (over �Op) is satisfiable over an interpretation Ôp (of �Op) iff there

exists a model M for � such that ���
Ôp
M = 1. M is called a satisfying model for �

over Ôp.

Definition 7 (Bit-blasting) Bit-blasting, or flattening [44], a bit-vector formula �

means to construct an equisatisfiable Boolean formula φ. � and φ are equisatisfiable
over an interpretation Ôp iff the following condition holds: there exists a satisfying
model for � over Ôp iff there exists a satisfying assignment for φ.

Bit-blasting techniques represent bit-vector variables as strings of Boolean vari-
ables and encode bit-vector operations as corresponding Boolean circuits. It is a
well-known fact that for all common operations, interpreted by Ôp, a corresponding
polynomial-size (in the bit-widths of operands) Boolean circuit can be constructed.
This fact plays an important role in several of our proofs.

3.3.3 Logics and Encodings

For the rest of this paper, we fix the operator set we use toOp with the signature �Op

(Table 1) and the interpretation Ôp (Table 2), and we refer to this framework as the
Common Operator Framework.

334 Theory Comput Syst (2016) 59:323–376

Table 2 Semantics (interpretation) for common bit-vector operators

bvnot:
�∼ t [n]� := bvn

(∑n−1
i=0 2i

(¬ �t�[i]
))

bvand:
�
t1

[n] & t2
[n]� := bvn

(∑n−1
i=0 2i

(
�t1�[i] ∧ �t2�[i]

))

bvor:
�
t1

[n] | t2
[n]� := bvn

(∑n−1
i=0 2i

(
�t1�[i] ∨ �t2�[i]

))

bvxor:
�
t1

[n] ⊕ t2
[n]� := bvn

(∑n−1
i=0 2i

(¬ �t1�[i] ⇔ �t2�[i]
))

bvnand:
�
bvnand

(
t1

[n], t2[n])� := �∼(t1
[n] & t2

[n])
�

bvnor:
�
bvnor

(
t1

[n], t2[n])� := �∼(t1
[n] | t2

[n])
�

bvxnor:
�
bvxnor

(
t1

[n], t2[n])� := �∼(t1
[n] ⊕ t2

[n])
�

ite:
�
ite

(
t1

[1], t2[n], t3[n])� :=
{

�t2� if �t1�

�t3� otherwise

bvcomp:
�
t1

[n] = t2
[n]� := bv1

(
natn

(
�t1�

) = natn
(
�t2�

))

bvult:
�
t1

[n] <u t2
[n]� := bv1

(
natn

(
�t1�

)
< natn

(
�t2�

))

bvule:
�
bvule

(
t1

[n], t2[n])� := �∼(t2 <u t1)�

bvugt:
�
bvugt

(
t1

[n], t2[n])� := �t2 <u t1�

bvuge:
�
bvuge

(
t1

[n], t2[n])� := �bvule (t2, t1)�

bvslt:
�
bvslt

(
t1

[n], t2[n])� := bv1

(
(msb(t1) ∧ ¬msb(t2))∨
((msb(t1) ⇔ msb(t2)) ∧ �t1 <u t2�)

)

bvsle:
�
bvsle

(
t1

[n], t2[n])� := �∼bvslt (t2, t1)�

bvsgt:
�
bvsgt

(
t1

[n], t2[n])� := �bvslt (t2, t1)�

bvsge:
�
bvsge

(
t1

[n], t2[n])� := �bvsle (t2, t1)�

bvshl:
�
t1

[n] � t2
[n]� := bvn

(
natn

(
�t1�

) · 2k mod 2n
)
where k := natn

(
�t2�

)

bvlshr:
�
t1

[n] �u t2
[n]� := bvn

(⌊
natn

(
�t1�

)
/2k

⌋)
where k := natn

(
�t2�

)

bvashr:
�
t1

[n] �s t2
[n]� :=

{
�∼(∼ t1 �u t2)� if msb(t1)

�t1 �u t2� otherwise

extract:
�
t [n] [i : j]

� := bvi−j+1
(⌊

natn
(
�t�

)
/2j

⌋
mod 2i

)

concat:
�
t1

[m] ◦ t2
[n]� := bvm+n

(
2nnatm

(
�t1�

) + natn
(
�t2�

))

zero extend:
�
extu

(
t [n], i

)� := bvn+i

(
natn

(
�t�

))

sign extend:
�
sign extend

(
t [n], i

)� :=
{

bvn+i

(
2n+i − 2n + natn

(
�t�

))
ifmsb(t)

�
extu

(
t [n], i

)�
otherwise

rotate left:
�
rotate left

(
t [n], i

)� :=
{

�t� if n=1 ∨ i =0

�t [n−i−1 : 0] ◦ t [n−1 : n−i]� otherwise

rotate right:
�
rotate right

(
t [n], i

)� :=
{

�t� if n = 1 ∨ i = 0

�t [i − 1 : 0] ◦ t [n − 1 : i]� otherwise

repeat:
�
repeat

(
t [n], i

)� :=
{

�t� if i = 1

�t ◦ repeat (t, i − 1)� otherwise

bvneg:
�−t [n]� := bvn

(
2n − natn

(
�t�

))

bvadd:
�
t1

[n] + t2
[n]� := bvn

(
natn

(
�t1�

) + natn
(
�t2�

)
mod 2n

)

bvsub:
�
t1

[n] − t2
[n]� := �t1 + (−t2)�

bvmul:
�
t1

[n] · t2
[n]� := bvn

(
natn

(
�t1�

) · natn
(
�t2�

)
mod 2n

)

bvudiv:
�
t1

[n] /u t2
[n]� := bvn

(⌊
natn

(
�t1�

)
/natn

(
�t2�

)⌋)

bvurem:
�
bvurem

(
t1

[n], t2[n])� := �t1 − (t1 /u t2) · t2�

Theory Comput Syst (2016) 59:323–376 335

Table 2 (continued)

bvsdiv:
�
bvsdiv

(
t1

[n], t2[n])� :=
{

�abs(t1) /u abs(t2)� if msb(t1) = msb(t2)

�−(abs(t1) /u abs(t2))� otherwise

bvsrem:
�
bvsrem

(
t1

[n], t2[n])� :=
{

�−bvurem (abs(t1), abs(t2))� if msb(t1)

�bvurem (abs(t1), abs(t2))� otherwise

bvsmod:
�
bvsmod

(
t1

[n], t2[n])� :=

⎧
⎪⎪⎨
⎪⎪⎩

�bvsrem (t1, t2)� if �bvsrem (t1, t2)�=0

∨msb(t1)=msb(t2)

�bvsrem (t1, t2) + t2� otherwise

By considering bitwise operators in the Boolean case (i.e., for bit-width 1) as
logical connectives, the same separation of a Boolean level and a bit-vector level can
be made in any bit-vector formula as in most approaches in the literature [4, 11, 13,
21, 27]. Notice, however, that relational operations can occur not only at the Boolean
level, but even below that, due to Definition 2, which allows any operations to be
nested. In order to be compatible with the above-mentioned two-level approaches,
we introduce a normal form for bit-vector formulas as follows:

Definition 8 (Flat Form) A bit-vector formula � is in flat form iff it does not contain
any nested relational operations.

It is easy to see that any bit-vector formula � can be translated into flat form
with only linear growth in formula size. For each nested relational operation in �,
iteratively replace the innermost one o(t1

[n1], . . . , tk[nk], i1, . . . , il) by introducing a
new (Tseitin) variable ts[1] existentially quantified at the innermost prefix position
and adding the constraint ts[1] ⇔ o(t1

[n1], . . . , tk[nk], i1, . . . , il) to the formula (i.e.,
conjuncting it with the matrix).

In this paper, we investigate the following four common bit-vector logics, as well
as fragments and extensions thereof:

QF BV: quantifier-free bit-vector formulas without uninterpreted functions;
QF UFBV: quantifier-free formulas allowing uninterpreted functions;
BV: formulas allowing quantification, but no uninterpreted functions;
UFBV: formulas allowing quantification and uninterpreted functions.

We distinguish between logics that use a unary or a binary encoding on scalars
appearing in formulas. Recall that binary encoding can be replaced with any other
logarithmic encoding. Note that a scalar can appear either as a bit-width or a scalar
operand. The value c of a bit-vector constant c[n] is always encoded in binary format,
since it represents a bit-vector.

Definition 9 (Logic with Unary and Binary Encoding) Given a bit-vector logic L,
let L1 and L2 denote the logic L using unary and binary encoding on all the scalars
in formulas, respectively.

336 Theory Comput Syst (2016) 59:323–376

In the rest of this paper, we investigate the complexity of the satisfiability problem
for QF BV1, QF UFBV1, BV1, UFBV1, QF BV2, QF UFBV2, BV2, and UFBV2.
For this, we define the size of a formula.

Definition 10 (Formula Size) Suppose we are given a bit-vector logic L and a for-
mula � ∈ L, with � := Q0x0

[n0]Q1x1
[n1] . . . Qkxk

[nk].t [1]. The size of � is defined
as |�| := ∣∣x0[n0]

∣∣ + · · · + ∣∣xk
[nk]∣∣ + ∣∣t [1]∣∣.

The expression |t [n]| denotes the size of a term t [n] and is defined as follows:
expression size

constant:
∣∣c[n]∣∣ 1 + L(c + 1) + encL(n)

variable:
∣∣v[n]∣∣ 1 + encL(n)

operation:

∣∣o (
t1

[n1], . . . , 1 + ∣∣t1[n1]
∣∣ + · · · + ∣∣tk[nk]∣∣

tk
[nk], i1, . . . , il

)∣∣ +
encL(i1) + · · · + encL(il)

uninterpreted ∣∣f [n] (t1[n1], . . . , tk[nk])∣∣
1 + encL(n)

function: +∣∣t1[n1]
∣∣ + · · · + ∣∣tk[nk]∣∣

scalar: encL(n)

1 + n, ifL uses unary
encoding

1 + L(n + 1), ifL uses binary
encoding

4 Logics With Unary Encoding

First, we consider bit-vector logics with unary encoding. The results of this section
can also be found in our previous work [41].

Without uninterpreted functions nor quantification, i.e., for QF BV1, the follow-
ing complexity result can be shown (for partial results and related work see also
[4] and [13]):

Proposition 1 QF BV1 is NP-complete.2

Proof Recall that QF BV1 uses the Common Operator Framework. Therefore, by
bit-blasting, QF BV1 can be (polynomially) reduced to Boolean formulas, for which
the satisfiability problem (SAT) is NP-complete. The other direction follows from the
fact that Boolean formulas are actually QF BV1 formulas with terms of bit-width 1.
i.e., the class of Boolean formulas is a subset of QF BV1.

Adding uninterpreted functions to QF BV1 does not increase complexity:

Proposition 2 QF UFBV1 is NP-complete.

2This kind of result is often called unary NP-completeness [32].

Theory Comput Syst (2016) 59:323–376 337

Proof In a quantifier-free formula, uninterpreted functions can be eliminated by
replacing each occurrence with a new bit-vector variable and adding (at most
quadratic many) Ackermann constraints (see, e.g., [44, Chapter 3.3.1]). Therefore,
QF UFBV1 can be polynomially translated into QF BV1. The other direction follows
from the fact that QF BV1 ⊂ QF UFBV1.

Adding quantifiers to QF BV1 yields the following complexity (see also [19]):

Proposition 3 BV1 is PSPACE-complete.

Proof By bit-blasting, BV1 can be reduced to Quantified Boolean Formulas (QBF),
which is PSPACE-complete. Hardness follows from the fact that QBF ⊂ BV1
(following the same argument as in Proposition 1).

Adding quantifiers to QF UFBV1 increases complexity exponentially:

Proposition 4 UFBV1 is NEXPT IME-complete (see [59]).

Proof The Effectively Propositional Logic (EPR), is a common NEXPTIME-
complete [45] logic, and can be reduced to UFBV1 [59, Theorem 7]. For completing
the other direction, apply the reduction in [59, Theorem 7] combined with bit-blasting
of the bit-vector operations.

5 Scalar-Bounded Problems

For some of our remaining complexity results, we apply the concept of re-encoding
scalars from binary to unary format. Due to the nature of these encodings, this process
can lead to an exponential growth in formula size for the general case. However, this
exponential growth can be avoided sometimes.

In [41], we introduced the concept of bit-width bounded bit-vector problems.
In this section, we generalize this concept by introducing the concept of scalar-
boundedness, a sufficient condition for bit-vector problems to remain in the “lower”
complexity class, when re-encoding scalars from binary to unary format. This
condition tries to capture the bounded nature of scalars in certain problems.

Note that, in any bit-vector formula, there has to be at least one scalar, due to the
fact that there has to be at least one term with explicit specification of its bit-width
(as a scalar).3 Given a formula �, let maxscl(�) denote the maximal scalar in � and,
furthermore, let cntscl(�) denote the number of scalars in �.

Definition 11 (Scalar-Bounded Formula Set) An infinite set S of bit-vector formulas
is (polynomially) scalar-bounded, iff there exists a polynomial function p : N �→ N

such that ∀� ∈ S. maxscl(�) ≤ p(cntscl(�)).

3Recall that only a variable, a constant, or an uninterpreted function can have explicit bit-width.

338 Theory Comput Syst (2016) 59:323–376

Proposition 5 Given a scalar-bounded set S of formulas with binary encoded
scalars, any � ∈ S grows polynomially when re-encoding the scalars to unary
format.

Proof Let �′ denote the formula obtained through re-encoding scalars in � to unary
format. For the size of �′, the following upper bound holds: |�′| ≤ cntscl(�) ·
maxscl(�) + |�|. Note that cntscl(�) · maxscl(�) is an upper bound on the sum over
the sizes of all the scalars in �′. The second term, |�|, represents an upper bound for
the part of � that does not contain any scalars. Since S is scalar-bounded, it holds
that

|�′| ≤ cntscl (�) · maxscl (�) + |�|
≤ cntscl (�) · p(cntscl (�)) + |�| ≤ |�| · p(|�|) + |�|

where p is a polynomial function. Therefore, the size of �′ is polynomial in the size
of �.

By applying this proposition to the logics of Section 3.3.3 together with the results
from Section 4, we get:

Corollary 1 Suppose we are given a scalar-bounded set S of bit-vector formulas. If
S ⊆ QF BV2 (and even if S ⊆ QF UFBV2), then S ∈ NP. If S ⊆ BV2, then S ∈
PSPACE. If S ⊆ UFBV2, then S ∈ NEXPT IME.

6 Quantifier-Free Logics with Binary Encoding

Our main contribution in [30, 41] was to give complexity results for bit-vector logics
with the more common binary encoding in the general case (i.e., for sets of formulas
that are not scalar-bounded). In this section, we present modified versions of our
proofs for the quantifier-free logics and restructured our results in order to give a
better overall picture.

First we introduce our main complexity results as theorems, starting with the full
logic of QF BV2 in Theorem 1, and continuing with three fragments of QF BV2 in
Theorem 2, 3, 4. All these theorems reference separate lemmas, which we introduce
afterwards.

Theorem 1 QF BV2 is NEXPT IME-complete [41].

Proof It is easy to see that QF BV2 ∈ NEXPT IME, since a QF BV2 formula can
be translated exponentially to QF BV1 ∈ NP (Proposition 1), by applying a simple
unary re-encoding to all the scalars in the formula. NEXPTIME-hardness of QF BV2
is a direct consequence of Lemma 1, in which a fragment of QF BV2 is proved to be
NEXPTIME-hard.

Theory Comput Syst (2016) 59:323–376 339

Note that UFBV1 and QF BV2 have the same complexity. This shows that,
informally speaking, binary encoding on scalars has the same expressive power as
quantification and uninterpreted functions altogether.

In [30], we investigated the complexity of the satisfiability problem for the fol-
lowing three fragments of QF BV2, which only allow a restricted set of bit-vector
operations in formulas:

QF BV2�c: only bitwise operations, equality, and left shift by constant, i.e., t [n] �
c[n] where c is a constant, are allowed.

QF BV2�1: only bitwise operations, equality, and left shift by 1, i.e.,
t [n] � 1[n], are allowed.

QF BV2bw: only bitwise operations and equality are allowed.

Theorem 2 QF BV2�c is NEXPT IME-complete [30].

Proof In Lemma 1, we give a reduction from DQBF (which is NEXPTIME-
complete) to QF BV2�c. This shows the NEXPTIME-hardness of QF BV2�c. The
fact that QF BV2�c ∈ NEXPT IME directly follows from Theorem 1.

Theorem 3 QF BV2�1 is PSPACE-complete [30].

Proof In Lemma 2, we give a reduction from QBF (which is PSPACE-complete) to
QF BV2�1. This shows the PSPACE-hardness of QF BV2�1. In Lemma 3, we then
prove PSPACE-inclusion by giving a reduction from satisfiability for QF BV2�1 to
the model checking problem for sequential circuits. Symbolic model checking for
sequential circuits is PSPACE-complete as well [51, 52, 54].

Also note that this theorem has an important practical aspect. It allows us to use
symbolic model checkers (see the hardware model checking competition) for solving
these restricted bit-vector problems instead of using SAT solvers after an exponential
explosion through bit-blasting. This is further discussed in Section 9.

Theorem 4 QF BV2bw is NP-complete [30].

Proof Since Boolean formulas are a subset of QF BV2bw, NP-hardness follows
directly. To show that QF BV2bw ∈ NP, we give a reduction from QF BV2bw to a
scalar-bounded set of formulas S ⊂ QF BV2 in Lemma 4. The claim then follows
from Corollary 1.

As already hinted in Proposition 2, adding uninterpreted functions to all quantifier-
free logics we discussed so far does not affect complexity. We formalize this in the
following proposition:

Proposition 6 QF UFBV2 and QF UFBV2�c are NEXPT IME-complete,
QF UFBV2�1 is PSPACE-complete, and QF UFBV2bw is NP-complete [30, 41].

340 Theory Comput Syst (2016) 59:323–376

Proof Apply the same arguments as were used in Proposition 2.

As we outlined above, now we propose our main lemmas, referenced in the
previous theorems.

Lemma 1 DQBF can be reduced to QF BV2�c [30, 41].

Proof The basic idea is to use bit-vector expressions to encode function tables in an
exponentially more succinct way, which then allows us to characterize independence
of an existential variable from a particular universal variable in a polynomial way.

In the proof, we apply bit masks of the form

binmagic
(
2m, 2n

) :=
2n︷ ︸︸ ︷

0 . . . 0︸ ︷︷ ︸
2m

1 . . . 1︸ ︷︷ ︸
2m

. . . 0 . . . 0︸ ︷︷ ︸
2m

1 . . . 1︸ ︷︷ ︸
2m

Note that these bit masks correspond to the so-called binary magic numbers (or magic
masks in [39, p. 141]), and can arithmetically be calculated in the following way
(actually as the result of a geometric sum):

binmagic
(
2m, 2n

) := 2(2n) − 1

2(2m) + 1
In order to reformulate this definition in terms of bit-vectors, (i) the numerator can be
written as ∼ 0[2n], (ii) 2(2m) as 1 � 2m, and (iii) the resulting binary magic number
as a bit-vector variable b[2n]:

b[2n] = ∼0[2n] /u
(
(1 � 2m) + 1

)

b · ((1 � 2m) + 1
) = ∼0[2n]

(b � 2m) + b = ∼0[2n]

Addition can be eliminated easily as follows, by using two’s complement representa-
tion for −1 and −b:

(b � 2m) + b = −1

b � 2m = −1 − b

b � 2m = −1+ ∼b + 1

b � 2m = ∼b

We now use the binary magic numbers to create a certain set of fully-specified
exponential-size bit-vectors by using a polynomial expression, due to binary encod-
ing on scalars. Afterwards, we then formally point out the well-known fact that
those bit-vectors correspond exactly to the set of all assignments. By adding con-
straints on those bit-vectors, we can then use a polynomial-size bit-vector formula
for cofactoring Skolem-functions in order to express independency constraints.

First, we describe the reduction, then we show that the reduction is polynomial,
and, finally, that it is correct. An example can be found in Appendix A.

Theory Comput Syst (2016) 59:323–376 341

The reduction Let ψ := Q.φ denote a DQBF with quantifier prefix Q and matrix
φ. Further, let u0, . . . , un−1 and e0, . . . , en′−1 denote all the universal and existential
variables that occur in Q, respectively. Translate ψ to a QF BV2�c formula � by
eliminating the quantifier prefix and translating the matrix φ as follows:

Step 1. Replace all Boolean constants 0 and 1 with 0[2n] and ∼ 0[2n], all Boolean
universal variables um and existential variables em′ with bit-vector variablesUm

[2n]
andEm′[2n], and all logical connectives with corresponding bitwise bit-vector oper-
ators (e.g.,∧with &). Let t [2n] denote the bit-vector term generated so far. Extend
it to the formula t = ∼0[2n]. We refer to this as �0.

Step 2. We now construct �1 by adding new constraints to �0. For each um ∈
{u0, . . . , un−1}, in order to assign a binary magic number to Um, add the following
equality (i.e., conjunct it with the current formula):

Um � 2m = ∼Um

Step 3. Next, we construct �2 by adding another set of constraints to �1. For each
existential variable em′ ∈ {e0, . . . , en′−1}, depending on the universal variables
Deps(em′) ⊆ {u0, . . . , un−1}, and for each um /∈ Deps(em′), add the following
equality:

Em′ & ∼Um = (Em′ � 2m) & ∼Um (1)

Finally, we define � := �2.

Polynomiality Note that all the scalars and constants in � are encoded in binary
form. Therefore, exponential bit-widths and constants (2n and 2m) are encoded into
linear many (n and m) binary digits. We now show that each reduction step results
only in polynomial growth of the formula size.

Step 1 may introduce additional bit-vector constants to the formula and adds vari-
ables U

[2n]
m , E

[2n]
m′ . The total number of elements is bounded by the size of the input.

All bit-widths are 2n and, therefore, the resulting formula is bounded quadratically
in the input size. Step 2 adds n equalities as constraints. Again, all bit-widths are
2n. Thus, the size of the added constraints is bounded quadratically in the input size.
Step 3 adds at most n constraints for each existential variable. All bit-widths are 2n.
Therefore, the size is bounded cubically in the input size.

Correctness In order to show that the original DQBF ψ and the resulting bit-vector
formula � are equisatisfiable we consider the individual steps separately.

In Step 1, we used the matrix φ of ψ to create a bit-vector formula with the same
underlying structure which is true iff each row evaluates to 1. Since all the bits of bit-
vectors in �0 are independent of each other and there are no additional constraints
on the bit-vector variables, �0 is satisfiable iff the Boolean formula φ is satisfiable.

Now consider the bit-vector variables Um after constructing �1 by adding the
constraints of Step 2. In the following, we formalize the well-known fact that the
combination of all the Ums corresponds exactly to all possible assignments to the
universal variables of ψ . By construction, all bits of Um are fixed to some constant

342 Theory Comput Syst (2016) 59:323–376

value. Additionally, for every bit-index bi ∈ [0, 2n − 1], there exists a bit-index
bj ∈ [0, 2n − 1] such that

�Um�[bi] �= �Um�
[
bj

]
and (2a)

�Uk�[bi] = �Uk�
[
bj

]
, ∀k �= m. (2b)

Actually, we can define bj in the following way (considering the 0th bit the
least significant):

bj :=
{

bi − 2m if �Um�[bi] = 0
bi + 2m if �Um�[bi] = 1

By defining bj this way, (2a) and (2b) both hold, which can be seen as follows.
Let R(c, l) be the bit-vector of length l with each bit set to the Boolean constant c.
Equation (2a) holds, since, due to construction, Um consists of 2n−1−m concatenated
bit-vector fragments 0 . . . 01 . . . 1 = R(0, 2m)R(1, 2m) (with both 2m zeros and 2m

ones). Therefore, it is easy to see that

�Um�[bi] �= �Um�
[
bi − 2m

]
and �Um�[bi] �= �Um�

[
bi + 2m

]
holds if

�Um�[bi] = 0 and �Um�[bi] = 1, respectively.

With a similar argument, we can show that (2b) holds:

�Uk�[bi] = �Uk�
[
bi − 2m

]
and �Uk�[bi] = �Uk�

[
bi + 2m

]
holds if

�Uk�[bi] = 0 and �Uk�[bi] = 1, respectively,

since bi − 2m and bi + 2m are located either still in the same half or already in a
concatenated copy of a R(0, 2k)R(1, 2k) fragment, if k �= m.

Now, consider all possible assignments to the universal variables of our original
DQBF ψ . For a given assignment α ∈ {0, 1}n, the existence of such a previ-
ously defined bj for every Um and bi allows us to iteratively find a bα such that(
�U0�[bα] , . . . , �Un−1�[bα]

) = α. Thus, we have a bijective mapping from the uni-
versal assignments α for ψ to the bit-indices bα for �1. Up to this point, each
bit-vector Em′ can basically still take 2(2n) different values in �1. The value of each
individual bit �Em′�[bα] corresponds to the value that em′ takes under a given uni-
versal assignment α ∈ {0, 1}n. Note that, without any further restriction, there is
no connection between the different bits of Em′ and, therefore, the bit-vector rep-
resents an arbitrary Skolem-function for em′ . It may have different values for all
universal assignments and thus would allow em′ to depend on all universal vari-
ables. Consequently, �1 is satisfiable iff the QBF ∀u1, . . . , un−1∃e1, . . . , en′−1.φ is
satisfiable.

In Step 3, we rule out all those assignments to the Em′s that correspond to Skolem-
functions which do not respect the dependency scheme of ψ . Whenever em′ does not
depend on a universal variable um, we add the constraint of (1). In DQBF, indepen-
dence can be formalized in the following way: em′ does not depend on um if em′ has
to take the same value in the case of all pairs of universal assignments α, β ∈ {0, 1}n
where α[k] = β[k] for all k �= m. Exactly this is enforced by our constraint. Looking
at the corresponding bit-indices bα and bβ for α and β, respectively, our constraint
for independence ensures that �E�[bα] = �E�

[
bβ

]
. More precisely, (1) ensures that

the positive and negative cofactors of the Skolem-function for em′ with respect to an

Theory Comput Syst (2016) 59:323–376 343

independent variable um have the same value. Having added those constraints, �2 is
now respecting the dependency scheme and therefore � is satisfiable iff the original
DQBF ψ is satisfiable.

Lemma 2 QBF can be reduced to QF BV2�1 [30].

Proof To show the PSPACE-hardness of QF BV2�1, we give a reduction from QBF,
similar to the one from DQBF to QF BV2�c that we used in Lemma 1.

For our reduction, we again use the binary magic numbers. Note that, in Lemma
1, we used left shift by constant to construct the binary magic numbers. This is not
permitted in QF BV2�1. We therefore give an alternative construction of the binary
magic numbers using only bitwise operations, equality, and left shift by 1.

Let b0[2
n], . . . , bn−1

[2n] be n initially unconstrained bit-vector variables. By adding
certain constraints, we want to ensure that the only possible value the variables can
take are those of the binary magic numbers. For the following argument, consider the
bit-vector variables b0

[2n], . . . , bn−1
[2n] as column vectors in a matrix B[2n×n]. Writ-

ten next to each other in this way, the matrix formed by the binary magic numbers
would be uniquely determined by the following property: If each row of B is inter-
preted as a number 0 ≤ c < 2n in binary representation, the next row is equal to
c + 1. The rows of B therefore represent a counter from 0 to 2n−1. We can capture
this fact by adding the following n constraints, with m ∈ {0, . . . , n − 1}:

⎛
⎝ ∧

0≤i<m

bi

⎞
⎠ ⊕ bm = bm � 1

The left side of each constraint considers one specific column of B (i.e. one index of
the counter) and the value of each position will change iff all columns to the right are
equal to 1 (i.e. the lower indices of the counter generate an overflow). In this sense,
the left sides of all constraints increment the counter value corresponding to a row
of B. The right sides of all constraints ensure that the incremented counter value is
placed in the next row of B.

As already mentioned, we now give the reduction which is similiar to the one in
Lemma 1. An example can be found in Appendix B.

The reduction Let ψ := Q.φ denote a QBF with quantifier prefix Q and matrix
φ. Since ψ is a QBF (in contrast to DQBF in Lemma 1), we know that Q defines a
total order on the universal variables. We assume the universal variables u0, . . . , un−1
of φ are ordered according to their appearance in Q, with u0 and un−1 being the
innermost and outermost variable, respectively. Translate ψ to a QF BV2�1 formula
� by eliminating the quantifier prefix and translating the matrix as follows:

Step 1. Replace all Boolean constants 0 and 1 with 0[2n] and ∼ 0[2n], all Boolean
universal variables um and existential variables em′ with bit-vector variablesUm

[2n]

344 Theory Comput Syst (2016) 59:323–376

andEm′[2n], and all logical connectives with corresponding bitwise bit-vector oper-
ators (e.g., ∧ with &). Let t [2n] denote the bit-vector term generated so far. Extend
it to the formula t = ∼0[2n]. We refer to this as �0.

Step 2. We now construct �1 by adding new constraints to �0. For each universal
variable um ∈ {u0, . . . , un−1}, in order to assign a binary magic number to Um

[2n],
add the following equality (i.e., conjunct it with the current formula):

⎛
⎝ ∧

0≤i<m

Ui

⎞
⎠ ⊕ Um = Um � 1

Step 3. Next, we construct �2 by adding another set of constraints to �1. For each
existential variable em′ ∈ {e0, . . . , en′−1} depending on the universal variables
Deps(em′) = {um, . . . , un−1}, with um being the innermost universal variable that
em′ depends on, check the following conditions:
if Deps(em′) = ∅, add the equality:

Em′ & ∼1 = Em′ � 1 (3)

otherwise, if m �= 0, add the two equalities:

U ′
m = ∼((Um � 1) ⊕ Um) (4)

Em′ & U ′
m = (Em′ � 1) & U ′

m (5)

Finally, we define � := �2.

Step 1 and Step 2 are equal to those of Lemma 1 apart from the fact that a different
construction for the binary magic numbers is used.

Again, each bit-index of � corresponds to the evaluation of ψ under a spe-
cific assignment to the universal variables u0, . . . , un−1, and, by construction of
U0

[2n], . . . , Un−1
[2n], all possible assignments are considered. Equation (4) creates

a bit-vector U ′
m
[2n] for which each bit equals to 1 iff the corresponding universal

variable changes its value from one universal assignment to the next. In contrast to
Lemma 1, this can now only be done for neighbouring bit-indices since we are only
allowed to use left shift by 1 instead of arbitrary constants in Step 3. For QBF, this is
sufficient because Q defines a total order on the universal variables.

Of course, (4) does not have to be added multiple times, if several existential vari-
ables depend on the same universal variable. Equations (5) and (3) ensure that the
corresponding bits of Em′[2n] satisfy the dependency scheme of ψ by only allowing
the value of em′ to change if an outer universal variable takes a different value. If
Deps(em′) = {u0, . . . , un−1}, i.e., if em′ depends on all universal variables, (4) eval-
uates to U ′

0 = 0[2n], and, as a consequence, (5) simplifies to true. Because of this,
no constraints need to be added for m = 0.

A similar approach used for translating QBF to Symbolic Model Verification
(SMV) can be found in [23]. See also [51] for a translation from QBF to sequential
circuits.

Lemma 3 QF BV2�1 can be reduced to sequential circuits [30].

Theory Comput Syst (2016) 59:323–376 345

Proof In [55, 56], the authors give a polynomial translation from quantifier-free
Presburger arithmetic with bitwise operations (QFPABIT [53]) to sequential circuits.
While they deal with non-fixed-size bit-vectors, we focus on fixed-size bit-vectors but
share the goal of avoiding the exponential explosion due to explicit state represen-
tation as for example used in MONA [38]. We can adopt their approach in order to
construct a translation for QF BV2�1. Related work, introducing an automata-based
representation for Presburger Arithmetic (without bitwise operations), can be found
in [61].

For the most part, the basic structure as well as the arguments used throughout the
reduction are the same as in [55, 56]. To keep the proof compact, we therefore focus
on pointing out the changes compared to their earlier work and regularly refer to
[55, 56] for the technical details.

As mentioned, the main difference between QFPABIT and QF BV2�1 is the fact
that bit-vectors of arbitrary, non-fixed, size are allowed in QFPABIT while all bit-
vectors contained in QF BV2�1 have a fixed bit-width. We now give the reduction.

Given � ∈ QF BV2�1 in flat form, let x
[n], y[n] denote bit-vector variables, c[n] a

bit-vector constant, and t1
[n], t2[n] bit-vector terms only containing bit-vector variables

and bitwise operations. Following [55, 56], we further assume w.l.o.g that � only
consists of logical combinations of three types of atomic expressions: t1

[n] = t2
[n],

x[n] = c[n], and x[n] = y[n] � 1[n]. Similar to generating a formula in flat form
(Definition 8), it is easy to see that any QF BV2�1 formula can be written like this
with only linear growth in size by introducing Tseitin variables.

We then encode each equality in � into an individual sequential circuit separately.
In the following, those are referred to as atomic sequentical circuits. Compared to
[55, 56], two modifications for the construction of an atomic sequential circuits are
needed. First, we need to give a translation of x = y � 1 to sequential circuits. This
can be done, for example, by using the sequential circuit for x = 2 · y in QFPABIT.
The second modification relates to dealing with fixed-size bit-vectors. Let n be the
bit-width of all bit-vectors in a given atomic expression. We extend each atomic
sequential circuit to include a counter (circuit). The counter initially is set to 0 and is
incremented by 1 in each clock cycle up to a value of n. When the counter reaches
a value of n, the counter as well as the original atomic sequential circuit keep their
value during all remaining cycles. In this way, their output also remains the same
during all following cycles.

Using D-type flip-flops, as in the definition of sequential circuits in Section 3.2,
this can be easily realized by adding a combinatorial part: Assume that the counter
consists of k bits, represented by flip-flops c0, . . . , ck−1 with outputs o0, . . . , ok−1,
respectively. Checking whether the counter has reached a value of n can be realized
by a Boolean function f (o0, . . . , ok−1), represented as a combinatorial circuit. Fur-
ther, let c denote the flip-flop of the original atomic sequential circuit and let o and i

(which again can be an arbitrary function) denote its output and its input, respectively.
We now replace the input i by a combinatorial circuit realizing the function

(f (o0, . . . , ok−1) ∧ o) ∨ (¬f (o0, . . . , ok−1) ∧ i)

This forces c to use its own output as its input if the counter has reached a value
of n, and use its regular input otherwise. The counter flip-flops c1, . . . , ck will be

346 Theory Comput Syst (2016) 59:323–376

forced to stabilize after n has been reached in the same way. Note that a counter
like this can be realized with Ln gates, i.e., polynomially in the size of �. For a
practical implementation, it is of course not necessary to introduce separate counters
for each atomic sequential circuit. Instead, one counter can be used to address all
atomic sequential circuits. However, concerning our complexity result, this obviously
makes no difference.

In contrast to the implementation described in [55], we further assume that the
input streams for all variables start with the least significant bit. As already pointed
out by the authors in [55], their choice was arbitrary and it is no more complicated to
construct the circuits the other way around.

Finally, after constructing all atomic sequential circuits, their outputs are com-
bined by logical gates following the Boolean structure of �, in the same way as for
non-fixed bit-width in [55, 56]. Due to the counters being part of the atomic sequen-
tial circuits, we ensure that for every input stream xi , that represents a bit-vector
variable of bit-width ni , only the first ni bits of xi influence the result of the whole
circuit.

Lemma 4 QF BV2bw ∈ NP [30].

Proof To show that QF BV2bw ∈ NP, we give a reduction from QF BV2bw to a
scalar-bounded set of formulas S. With S ⊂ QF BV2, the claim then follows from
Corollary 1. An example, that combines further results from Section 7.2, can be found
in Appendix C.

Suppose we are given a formula � ∈ QF BV2bw in flat form (Definition 8). We
assume that any inequality t1

[n] �= t2
[n] in � is expressed by ∼ (

t1
[n] = t2

[n]). If �

contains any constants c[m] where c �= 0, we remove those constants in a (polyno-
mial) pre-processing step. Let cmax

[m] := bk−1 . . . b1b0 be the largest constant in �

denoted in binary representation with bk−1 = 1 and arbitrary bits bk−2, . . . , b0. We
now replace each equality t1

[n] = t2
[n], in � with

t1,0
[1] = t2,0

[1] ∧ . . . ∧ t1,n−1
[1] = t2,n−1

[1],

if n ≤ k. Otherwise, if n > k, we instead replace t1
[n] = t2

[n] with

t1,0
[1] = t2,0

[1] ∧ . . . ∧ t1,k−1
[1] = t2,k−1

[1] ∧ tHI1
[n−k] = tHI2

[n−k].

For 0 ≤ i < min{n, k}, we use t1,i
[1] = t2,i

[1] to express the ith row of the original
equality. For constructing the terms t1,i

[1] and t2,i
[1], (i) replace each occurrence of a

variable x[n] with the variable xi
[1], and (ii) replace each constant c[n] with 0[1] if the

ith bit of c is 0, and with ∼0[1] otherwise.
In a similar way, if n > k, tHI1

[n−k] = tHI2
[n−k] represents the remaining n − k

rows of the original equality corresponding to the most significant bits. For construct-
ing tHI1

[n−k] and tHI2
[n−k], (i) replace each occurrence of a variable x[n] with the

variable xHI[n−k], and (ii) replace each constant c[n] with 0[n−k].
Since this pre-processing step is logarithmic in the value of cmax, it is polynomial

in |�|. Without loss of generality, we now assume that � does not contain any bit-
vector constants different from 0[n].

Theory Comput Syst (2016) 59:323–376 347

We now construct a formula �′ by reducing the bit-widths of all bit-vector terms
in �. We use cnteq (�) to denote the number of equalities in �. Each term t [n] in �

is then replaced with a term t [n′], with n′ := min{n, cnteq (�)} ≤ |�|. Apart from
this, �′ is exactly the same as �. As a consequence, maxscl

(
�′) ≤ |�|. The set of

formulas constructed in this way is scalar-bounded according to Definition 11.
To complete our proof, we now have to show that the proposed reduction is sound,

i.e., out of every satisfying assignment to the bit-vector variables x1
[n1], . . . , xk

[nk] for
� we can also construct a satisfying assignment to x1

[n′
1], . . . , xk

[n′
k] for �′ and vice

versa.
It is easy to see that whenever we have a satisfying assignment α′ for �′, we can

construct a satisfying assignment α for �. This can be done by simply setting all
additional bits of all bit-vector variables to the same value as the most significant bit
of the corresponding original vector, i.e., by performing a signed extension. Since all
equalities still evaluate to the same value under the extended assignment, α(F) =
α′(F ′) for all equalities F and F ′ of � and �′, respectively. As a direct consequence,
α(�) = α′(�′) = 1.

The other direction needs slightly more reasoning. Given α, with α(�) = 1, we
need to construct α′, with α′(�′) = 1. Again, we want to ensure that α′(F ′) = α(F)

for all equalities F and F ′ in � and �′, respectively.
In each variable x

[ni]
i , i ∈ {1, . . . , k}, we select some of the bits. For each equality

F with α(F) = 0, we select a bit-index as a witness for its evaluation. If α(F) =
1, we select an arbitrary bit-index. We then mark the selected bit-index in all bit-
vector variables contained in F , as well as in all other bit-vector variables of the same
bit-width. Having done this for all equalities, we end up with sets Mi of selected
bit-indices, for all i ∈ {1, . . . , k}, where

|Mi | ≤ min{ni, cnteq (�)}
Mi = Mj ∀j ∈ {1, . . . , k} with ni = nj

The selected indices contain a witness for the evaluation of each equality. We now add
arbitrary further bit-indices, again selecting the same indices in bit-vector variables
of the same bit-width, until |Mi | = min{ni, cnteq(�)} ∀i ∈ {1, . . . , k}.

Finally, we can directly construct α′ using the selected indices and get α′(�′) =
α(�) = 1 because of the fact that we included a witness for every equality in our
index-selection process. Note that we only had to choose a specific witness for the
case that α(F) = 0. For α(F) = 1, we were able to choose an arbitrary bit-index
because every satisfied equality is obviously still satisfied when only a subset of all
bit-indices is considered.

Remark 1 A similar proof can be found in [35, 36]. While the focus of [35, 36] lies
on improving the practical efficiency of SMT-solvers by reducing the bit-width of
a given formula before bit-blasting, the author does not investigate its influence on
the complexity of a given problem class. In fact, the author claims that bit-vector
theories with common operations are NP-complete. As we have already shown, this
only holds if unary encoding on scalars is used. However, unary encoding leads to the
fact that the given class of formulas remains NP-complete, independent of whether

348 Theory Comput Syst (2016) 59:323–376

a reduction of the bit-width is possible. While the arguments on bit-width reduction
given in [35, 36] still hold for binary encoded bit-vector formulas when only bitwise
operations are used, our proof considers the effect on the complexity of the problem
class.

7 Fragment Extensions and Alternative Characterizations

In this section, we investigate possible extensions to the fragments we have been
dealing with so far and give alternative characterizations of specific logics. We use
the term base operations to refer to the operations that we previously selected to
define a certain class of bit-vector problems. Considering the complexity results from
the previous section, we know that the specific sets of base operations are sufficient
to guarantee certain completeness results. This leads towards two potential directions
of analysis.

On the one hand, it is interesting to see which common operations could be added
to a fragment without increasing the complexity of the satisfiability problem. With
QF BV2�c being NEXPTIME-complete, any common operation can extend this frag-
ment without increasing complexity; the full extension is exactly the definition of
QF BV2. It is more interesting to investigate which operations can be added to
QF BV2bw and QF BV2�1 while still remaining in NP and PSPACE, respectively.
In order to check this, we present several reductions of additional operations to base
operations.

On the other hand, it is also interesting to explore possible reductions of base oper-
ations to additional ones. We showed that the satisfiability problem for QF BV2bw,
i.e., when bitwise operations and equality are used as base operations, is NP-
complete. Using left shift by 1 or left shift by constant as an additional base
operation makes the satisfiability problem PSPACE-hard (Lemma 2) or NEXPTIME-
hard (Lemma 1), respectively. If it is possible to show that any of these two base
operations can be reduced to another operation o (together with bitwise operations
and equality), then o can be considered as an alternative base operation, ensuring the
satisfiability problem to remain hard for the specific complexity class.

7.1 Notation

Note that, since binary encoding is used on scalars, all the translations of operations
must be logarithmic in the bit-widths of operands, in order to ensure that a reduction
is polynomial in the formula size.

For describing our reductions, we often use the following form:

Theory Comput Syst (2016) 59:323–376 349

By this description, we want to express that we replace a term term1 in a formula
� with term2, and simultaneously add all the quantifier-free formulas formula1, . . . ,
formulak to � (i.e., conjunct each of them with the matrix of �). We call formula1,
. . . , formulak the assertions in the definition. All the variables that do not occur in
term1, but do occur in any of the expressions term2, formula1, . . . , formulak are con-
sidered as Tseitin variables, i.e., they are assumed to be added to � as new existential
variables at the innermost prefix position.

Let us note that, in our fragments, it is sufficient to use a minimal functionally
complete set of bitwise operations, e.g., bvnand alone.

By bitwise operations and equality, functional if-then-else (ite) can be expressed
easily, as follows. Note that, in order to avoid exponential blowup, a Tseitin variable
x is introduced for the Boolean condition:

7.2 QF BV2bw

Let us introduce the operation indexing t [n][i], which is defined as t [i : i], i.e., a
special case of extraction. Although, in Section 7.4, we show that adding extrac-
tionmakes the fragment NEXPTIME-hard, QF BV2bw can be extended with indexing
without growth in complexity.

Theorem 5 QF BV2bw extended by indexing is in NP.

Proof To show this, we extend the proof of Lemma 4 by an additional pre-processing
step even before removing the non-zero constants. Suppose we are given a formula
� ∈ QF BV2bw, also containing expressions t [n][i]. Let

I := {i | t [n][i] appears in �}
be the set of all indices that appear explicitly in the formula. Assume I = {i1, . . . , im}
with il < il+1, ∀l ∈ {1, . . . , m − 1}. After extracting those bit-indices from �, we
explicitly encode the corresponding bits into Boolean variables, by translating � in a
similar way as in Lemma 4. Consider three different kinds of terms in the following
order:

1. Terms t [n][i] are replaced by ti
[1].

2. Terms t [1] remain in the formula as they are.
3. Any other term has a bit-width n > 1. Therefore, we know that it can only occur

as part of an equality t1
[n] = t2

[n]. We define

l′ := |{l ∈ {1, . . . , m} | il < n}|

350 Theory Comput Syst (2016) 59:323–376

as the number of explicitly specified indices smaller than n. Now, similar to
Lemma 4, replace each equality t1

[n] = t2
[n] with

(t1,0
[1] = t2,0

[1]) ∧ . . . ∧ (t1,n−1
[1] = t2,n−1

[1]),

if n = l′. Otherwise, if n > l′, replace t1
[n] = t2

[n] with
⎛
⎝ ∧

l∈{1,...,l′}
(t1,il

[1] = t2,il
[1])

⎞
⎠ ∧ tREM1

[n−l′] = tREM2
[n−l′].

As in Lemma 4, we use t1,i
[1] = t2,i

[1] to express the ith row of the original equality.
In the same way, ti

[1], being introduced for an indexing, represents the ith bit of t .
The new terms t1,i , t2,i , and ti are constructed in the same way as in Lemma 4.

Similarly, if n > l′, the expression tREM1
[n−l′] = tREM2

[n−l′] represents the
remaining n − l′ rows of the original equality corresponding to the indices that have
not been extracted explicitly. Those terms are again constructed in the same way as in
Lemma 4, except for the construction of new constants: each constant c[n] is replaced
with a new constant cREM[n−l′] by setting the j th bit of cREM to the value of the kth
bit of c, for k := min

{
k′ | ∣∣{1, . . . , k′} \I ∣∣ = j

}
.

After this translation, the resulting formula �′ does not contain indexing opera-
tions anymore and is equisatisfiable to the original one. Also, |�′| ≤ p(|�|) for some
polynomial p, since the growth in size is bounded by the number of occurrences of
the indexing operation in �. Note that this reduction is only possible because there
is no interaction between different bit-indices, i.e., because � only contains bitwise
operations and equality, apart from indexing.

Similarly, extending QF BV2bw with additional relational operations from Table 1
does not increase complexity, either.

Theorem 6 QF BV2bw extended by relational operations from Table 1 is in NP.

Proof We give a reduction for the relational operation unsx‘igned less than (bvult).
The remaining relational operations in Table 1 can be reduced in a similar way. Given
� ∈ QF BV2bw (without indexing), additionally containing expressions t1

[n] <u
t2

[n], we adopt the proof of Lemma 4 in three ways.
First, the elimination of constants has to be modified. Again, let cmax :=

bk−1 . . . b1b0 be the largest constant in � denoted in binary representation with
bk−1 = 1 and arbitrary bits bk−2, . . . , b0. Without loss of generality, assume n > k.
We now replace each relation t1

[n] <u t2
[n] in � with

(
tHI1

[n−k] <u tHI2
[n−k])

∨ (
tHI1

[n−k] = tHI2
[n−k]) ∧ (¬t1,k−1

[1] ∧ t2,k−1
[1])

∨ . . .

∨ (
tHI1

[n−k] = tHI2
[n−k]) ∧ (

t1,k−1
[1] ⇔ t2,k−1

[1]) ∧ · · · ∧ (¬t1,0
[1] ∧ t2,0

[1]v
)

Theory Comput Syst (2016) 59:323–376 351

All expressions t1,i
[1], t2,i

[1], tHI1
[n−k], and tHI2

[n−k] are defined in the same way as
it was done in Lemma 4.

Second, we need to use the number of all the relational operations cntrel(�), when
reducing the bit-widths in �.

The third modification is needed for constructing a satisfying assignment α′ for
the bit-width reduced formula �′ out of the satisfying assignment α for �. When
selecting the bit-index which is used as a witness for the evaluation of a given expres-
sion t1

[n] <u t2
[n], we choose the index of the most significant bit which is assigned

to a different value in the two terms. As in Lemma 4, an arbitrary bit-index can be
chosen if both terms are assigned to the same value.

Again, the reduction is only possible because there is no interaction between dif-
ferent bit-indices. While we only considered t1

[n] <u t2
[n] in our proof, it is easy to

see that it holds for all relational operations from Table 1. All unsigned operations
can be replaced by t1

[n] <u t2
[n] as in the definition of Table 1. For signed operations,

an additional if-then-else constraint on the most significant bit is needed.

So far, we only discussed extensions by indexing and relational operations sepa-
rately. However, using the same principles, it is indeed possible to show that we can
add both kind of operations at the same time without growth in complexity. We only
sketch the argument: As in the original proof for indexing, we first remove all occur-
rences of the indexing operation from the formula. This time, it is not sufficient to
extract those bit-indices from the bit-vectors. Instead, we have to split all bit-vectors
at the corresponding bit-index. Let i with 0 < i < n be an index that explicitly occurs
at some point in the formula. Replace t1

[n] <u t2
[n] with
(
tHI1

[n−i−1] <u tHI2
[n−i−1])

∨ (
tHI1

[n−i−1] = tHI2
[n−i−1]) ∧ (¬t1,i

[1] ∧ t2,i
[1])

∨ (
tHI1

[n−i−1] = tHI2
[n−i−1]) ∧ (

t1,i
[1] ⇔ t2,i

[1]) ∧ (
tLO1

[i] <u tLO2
[i])

For the more general case, with indices I = {i1, . . . , im}, the bit-vectors need to be
split analogously at all bit-indices il . Apart from this, the reduction works as already
described. This leads to the following corollary:

Corollary 2 QF BV2bw extended by indexing together with relational operations
from Table 1 is in NP.

See Appendix C for an example.

7.3 QF BV2�1

Figure 1 depicts our forthcoming results on extending QF BV2�1 with operations.
An edge (o1, o2) means that o1 can be reduced to o2, together with bitwise opera-
tions and equality. The vertex bvshl 1 represents left shift by 1, and plays a central
role as being a base operation in QF BV2�1. The vertex bvmul c represents multipli-
cation by constant, and the four vertices to the right correspond to different kinds of
unsigned and signed relational operations. All the other vertices are self-explanatory.

352 Theory Comput Syst (2016) 59:323–376

Note that each operation which is mutually reachable with bvshl 1, namely bvlshr 1,
bvadd, bvsub, and bvmul c, can be used as an alternative base operation instead of
bvshl 1.

First, we show that QF BV2�1 can be extended with indexing. Although a similar
result was proposed for QF BV2bw, the reduction we used there is not appropriate
for QF BV2�1, because of the presence of shifts in the formulas.

Theorem 7 QF BV2�1 extended by indexing is in PSPACE.

Proof The counter we introduced in our translation from QF BV2�1 to sequential
circuits (Lemma 3) can be used to return the value at a specific bit-index of a bit-
vector.

Instead of left shift by 1, we could also have used logical right shift by 1 to define
QF BV2�1.

Theorem 8 left shift by 1 and logical right shift by 1 can be reduced to each other.

Proof We give a direct translation:

Further, it is well-known that any arithmetic right shift t1[n] �s t2
[n] can be reduced

to logical right shift, as follows: ite (t1[n − 1] , ∼(∼ t1 �u t2) , t1 �u t2).

Fig. 1 Extending QF BV2�1 with operations

Theory Comput Syst (2016) 59:323–376 353

We now look at arithmetic operations:

Theorem 9 QF BV2�1 extended with linear modular arithmetic is in PSPACE.

Proof Addition can be expressed as follows:

Multiplication by constant can be splitted into several multiplications by 2, i.e.,
left shift by 1, and addition, similar to [55, 56]. Given such a multiplication t [n] · c[n],
we introduce two sets of variables, si and xi , 0 ≤ i ≤ Lc. Each si represents t � i,
and calculated by shifting si−1 by 1. Note that only logarithmic many steps need to
be performed. Each xi represents the subresult in the ith step. By considering the
individual bits of c, si either is or is not added to the previous subresult xi−1. Finally,
xLc provides the required product.

Considering the opposite direction, t � 1 can easily be expressed as t · 2. Con-
sequently, it can also be expressed as ts + ts where ts[n] is a Tseitin variable for
t . This shows we could also have used addition instead of left shift by 1 to define
QF BV2�1.

Unary minus (bvneg) and subtraction (bvsub) can obviously be added to
QF BV2�1 by using two’s complement representation. Furthermore, it is easy to see
that addition and subtraction can be reduced to each other. Extending QF BV2�1
with additional relational operations, such as unsigned less than (bvult), does not
increase complexity either. A term t1

[n] <u t2
[n] is the same as checking whether

t1−t2 <u 0 holds, which can be replaced by constructing an adder for t1+(∼ t2)+1,
analogously to the one above, and then check whether overflow occurs, i.e., ts2 �=

354 Theory Comput Syst (2016) 59:323–376

0 & ¬cout [n − 1]. Obviously, the common unsigned or signed relational operations
less than, greater than, less than or equal, and greater than or equal are equally
powerful.

7.4 QF BV2�c

Figure 2 depicts our forthcoming results on extending QF BV2�c with operations.
The vertex bvshl c represents left shift by constant, which is a base operation. Since
bvshl 1 is a special case of bvshl c, all the operations that can extend QF BV2�1 (cf.
the previous section), represented by the dashed segment in the upper left corner, can
obviously be reduced to bvshl c. Actually, as we have already mentioned before, any
common operation can extend this fragment, with QF BV2�c being NEXPTIME-
complete. This explains why bvshl c is reachable from all the vertices. We only give
the most interesting explicit reductions in this direction.

The other direction, i.e., presenting operations being reachable from bvshl c, is
more important from the theoretical point of view, since those ones can be used as
alternative base operations instead of bvshl c. These operations are extract, concat,
bvmul, bvshl, bvlshr c, and bvlshr.

Theorem 10 bvshl c and bvlshr c can be reduced to each other.

Proof Given a term t [n] � c[n] or t [n] �u c[n], there are two boundary cases:
if c = 0 then rewrite the term to t ; if c ≥ n then to 0[n]. Otherwise, i.e., when
0 < c < n, the following reductions can be applied:

Each kind of shift by constant is a special case of the respective general shift.4

As mentioned in the previous section, arithmetic shift can be expressed by logical
shift.

Theorem 11 extraction, concatenation, and bvshl c can be reduced to each other.

4Although we do not intend the present a reduction of a general shift to the respective shift by constant, it
is worth to mention that a common approach for such a reduction is the barrel shifter.

Theory Comput Syst (2016) 59:323–376 355

Fig. 2 Extending QF BV2�c with operations

Proof First, consider extraction and concatenation:

The base operation bvshl c can then easily be expressed by extraction and
concatenation (and also by any of them alone, since they can be reduced to
each other). The boundary cases for bvshl c can be handled in the same way
as above, therefore we now assume that 0 < c < n, and rewrite the term
t [n] � c[n] to t[n − c − 1 : 0] ◦ 0[c].

The reduction in the other way around, i.e., extraction (or concatenation) to
bvshl c and bvlshr c, takes a special role. Given a term t [n][i : j], extraction pro-
duces a new term of bit-width i − j + 1. This change in bit-width (which also
occurs for concatenation) cannot be captured by only applying rewriting rules using
shifts. However, we can find a reduction from bit-vector formulas using only extrac-
tion, bitwise operations, and equality to ones using only shifts by constant, bitwise
operations, and equality, as follows.

Given a formula � with bit-vector variables x1
[n1], . . . , xl

[nl], let us calculate the
maximal bit-width nmax := maxk{nk}. First, replace each extraction t [m][i : j] in �

with

(t � (nmax − 1 − i)) �u (nmax − 1 − i + j)

356 Theory Comput Syst (2016) 59:323–376

Then, replace each bit-vector variable xk
[nk] with a new bit-vector variable x′

k
[nmax].

Finally, for each x′
k , add the following assertion to the formula:

x′
k
[nmax] = (

x′
k � (nmax − nk)

) �u (nmax − nk)

In the resulting formula, all bit-vectors have the same bit-width, and each bit-vector
and each result of an extraction can take exactly those values it could take in the
original formula, apart from leading zeros.

We now take a closer look at multiplication:

Theorem 12 multiplication and bvshl c can be reduced to each other.

Proof First, we show how bvshl c can be expressed by bvmul. Again, assume
that 0 < c < n. In this case, t [n] � c[n] can be expressed as t · 2c.
We can construct 2c, being an exponential number, as a bit-vector in Lc steps
using exponentiation by squaring. We introduce two sets of variables, pi and
xi , 0 ≤ i ≤ Lc. Each pi represents the number 2(2i), and each xi the
subresult in the ith step. By considering the individual bits of c, the previ-
ous subresult xi−1 either is or is not multiplied by pi . Finally, xLc provides
the value 2c.

Although we know, based on the complexity results, that even general multipli-
cation can be expressed in this fragment, it is still a non-trivial task to give an
explicit reduction.While everal polynomial multiplication algorithms in the bit-width
of operands exist, we cannot directly apply them since we now need a logarithmic
translation in the bit-width. Before showing how to simulate the common “shift and
add” algorithm, we first introduce four bit-vector helper operations to make the pre-
sentation as transparent as possible: binmagic, selfconcat, halfshuffle, and expand.
Furthermore, let us introduce the notation Pn for the nearest power of 2, and define
it as follows: Pn := 2Ln.

For the helper operation binmagic, which is in fact about constructing a binary
magic number, we use the same notation and approach as in Lemma 1, where m < n:

Theory Comput Syst (2016) 59:323–376 357

Halfshuffle applies a logarithmic translation, which is based on the generalization
of a bit-vector operation called half-shuffle [58, Chpt. 7]. This generalized variant
receives a bit-vector t [2m] and produces the following bit-vector of bit-width 2n:

0 . . . 0︸ ︷︷ ︸
2n−m−1

t[2m − 1] 0 . . . 0︸ ︷︷ ︸
2n−m−1

t[2m − 2] . . . 0 . . . 0︸ ︷︷ ︸
2n−m−1

t[0]

In the initialization step, we apply zero extension to t . Then, in m steps, we shuf-
fle smaller and smaller bit groups in our bit-vector. In the 1st step, the two halves
(i.e., 2m−1-bit groups) are shuffled. In the 2nd step, the halves of all the previously
shuffled halves (i.e., 2m−2-bit groups), and so on. In the last step, we shuffle single
bits, and this is how to put each bit at its destination. Assume again that m ≤ n.

As it can be seen above, in the ith step we (i) shift our current bit-vector left by the
constant 2n−i − 2m−i , (ii) merge it with the original bit-vector, by using bitwise or,
(iii) and we mask some unnecessary bit groups out, by using a binary magic number.

For an example, see Appendix D.
Expand “multiplies” each bit of t [2m] into a bit group of size 2n−m. The resulting

bit-vector can be visualized as follows:

t[2m − 1] . . . t[2m − 1]︸ ︷︷ ︸
2n−m

t[2m − 2] . . . t[2m − 2]︸ ︷︷ ︸
2n−m

. . . t[0] . . . t[0]︸ ︷︷ ︸
2n−m

In the initial step, we use halfshuffle. In the next n−m steps, we copy larger and larger
non-zero bit groups, by using left shift and bitwise or. Assume again that m ≤ n.

358 Theory Comput Syst (2016) 59:323–376

Now we are ready to propose how to express multiplication by simulating the
common “shift and add” algorithm for integers. In a first step, one of the operands is
multiplied independently by each digit of the other operand. Using base 2, this mul-
tiplication by a single digit can be expressed by a logical and-operation. Afterwards
the results of the single-digit multiplications are shifted by the offset of the corre-
sponding digit and finally added to give the result of the full multiplication. While
this approach is straightforward in a naive implementation, we have to ensure only
logarithmic many operations in the bit-width are used in our encoding. To achieve
this, we generate bit-vectors of quadratic bit-width (Pn)2 out of our original operands
of bit-width n, by applying selfconcat to the first one and expand to the second one.
Using bitwise and on the two new bit-vectors, we directly get the results of all single-
digit multiplications in one step. More precisely, the resulting bit-vector consists of
Pn groups of Pn bits, each group representing the result of one single-digit multipli-
cation. To add all Pn partial results, a binary addition algorithm is used. Iteratively
pairs of neighbouring groups are shifted relative to each others’ offsets and then
added to form one new group. The number of groups therefore is halved in each step,
resulting in the final sum after log2(Pn) = Ln steps. For a detailed example, see also
Appendix E.

8 Logics with Quantifiers and Binary Encoding

In this section, we look into the complexity of quantified bit-vector logics with binary
encoding. While we already gave some results for BV2 and UFBV2 in [41], we now
extend our previous work by discussing some fragments of those logics. Additionally,
we also take a look at non-recursive macros (as allowed, e.g., in the SMT-LIB format)
for quantifier-free logics, which have a very similar effect to restricting the bit-width
of universal variables in quantified logics. We give new complexity results for all
fragments and extensions.

Theory Comput Syst (2016) 59:323–376 359

8.1 General Quantification

By allowing quantification and uninterpreted functions, and using binary encoding,
we obtain UFBV2, the most expressive bit-vector logic considered in this paper.

Theorem 13 UFBV2 is 2-NEXPT IME-complete [41].

Proof It is straightforward to see that UFBV2 ∈ 2-NEXPTIME, since every UFBV2
formula can be translated exponentially to a formula in UFBV1 ∈ NEXPTIME

(Proposition 4), by applying a simple unary re-encoding to all the scalars in the
formula. 2-NEXPTIME-hardness directly follows from Lemma 5.

To prove that UFBV2 is 2-NEXPTIME-hard, we pick a 2-NEXPTIME-hard prob-
lem and then reduce it to UFBV2.We can find a suitable problem among the so-called
Domino Tiling problems [17]. First, we give a definition of a domino system and then
specify a 2-NEXPTIME-hard problem on this kind of systems.

Definition 12 (Domino System) A domino system is a tuple 〈T , H, V, n〉, where
– T is a finite set of tile types, in our case, T = [0, k − 1], where k ≥ 1;
– H,V ⊆ T ×T are the horizontal and vertical matching conditions, respectively;
– n ≥ 1, encoded in unary format.

Note that the above definition differs (but not substantially) from the classical
one in [17]. Without loss of generality, we use sub-sequential natural numbers for
identifying tiles. Similarly to [46, 47], the size factor n, encoded in unary form, is
part of the input. However, while a start tile α and a terminal tile ω is usually used, in
our case the starting tile is denoted by 0 and the terminal tile by k − 1, without loss
of generality.

There are different Domino Tiling problems examined in the literature. In [17], a
classical tiling problem is introduced, namely the Square Tiling problem, which can
be defined as follows:

Definition 13 (Square Tiling) Given a domino system 〈T , H, V, n〉, an f (n)-square
tiling is a mapping λ : [0, f (n) − 1] × [0, f (n) − 1] �→ T such that

– the first row starts with the start tile: λ(0, 0) = 0
– the last row ends with the terminal tile: λ(f (n) − 1, f (n) − 1) = k − 1
– all horizontal matching conditions hold:

(λ(i, j), λ(i, j + 1)) ∈ H ∀i ≤ f (n), j < f (n) − 1

– all vertical matching conditions hold:

(λ(i, j), λ(i + 1, j)) ∈ V ∀i < f (n) − 1, j ≤ f (n)

In [17], a general theorem on the complexity of Domino Tiling problems
is proved. More precisely, the f (n)-square tiling problem can be shown to be

360 Theory Comput Syst (2016) 59:323–376

NTIME(f (n))-complete. In particular, this implies that the 2(2n)-square tiling prob-
lem is 2-NEXPTIME-complete.

Lemma 5 The 2(2n)-square tiling problem can be reduced to UFBV2.

Proof Given a domino system 〈T = [0, k − 1], H, V, n〉, let us introduce the
following notations which we intend to use in the resulting UFBV2 formula.

– Represent each tile in T with the corresponding bit-vector constant of bit-width
Lk.

– Represent the horizontal and vertical matching conditions with the uninter-
preted functions (actually predicates) h[1](t1[Lk], t2[Lk]) and v[1](t1[Lk], t2[Lk]),
respectively.

– Represent the tiling with an uninterpreted function λ[Lk](i[2n], j [2n]). λ returns
the tile in the cell at the row index i and column index j . Notice that the bit-width
of i and j is exponential in the size of the domino system, but due to binary
encoding it can represented polynomially.

The resulting UFBV2 formula is as follows:

∀i[2n], j [2n].
λ(0, 0) = 0 ∧ λ

(
2(2n) − 1, 2(2n) − 1

) = k − 1
∧∧

(t1,t2)∈H h(t1, t2) ∧ ∧
(t1,t2)∈V v(t1, t2)

∧ (
j �= 2(2n) − 1 ⇒ h (λ(i, j), λ(i, j + 1))

)
∧ (

i �= 2(2n) − 1 ⇒ v (λ(i, j), λ(i + 1, j))
)

This formula contains four kinds of constants. Three can be encoded directly (0[2n],
0[Lk], and (k − 1)[Lk]). The constant 2(2n) − 1 has to be encoded as ∼0[2n] in order to
avoid an exponential representation. The size of the resulting formula, due to binary
encoding on bit-widths, is polynomial in the size of the domino system.

Similar to Section 6 and to our work in [30], we can now restrict the set of oper-
ations in UFBV2 to allow only bitwise operations, equality and left shift by constant
(or left shift by 1). We refer to this logic as UFBV2�c (or UFBV2�1, in the case of
left shift by 1). From a different point of view, it is also possible to consider this as an
extension of QF BV2�c and QF BV2�1 by quantifiers and uninterpreted functions.

Since we can use bitwise operations, equality and left shift by constant to express
all common operations, UFBV2�c remains 2-NEXPTIME-complete. However, in
contrast to quantifier-free logics, we do not lose any expressiveness in UFBV2�1,
either. We can see this already from the fact that we only used bitwise operations,
equality and addition in Lemma 5. Since, as we pointed out in Section 7.3, addition
can be reduced to bitwise operations, equality and left shift by 1, the following result
follows immediately:

Corollary 3 UFBV2�1 is 2-NEXPT IME-complete.

Theory Comput Syst (2016) 59:323–376 361

Nevertheless, we want to formalize this in a proposition and give a constructive
proof by showing how UFBV2�c can be reduced to UFBV2�1.

Proposition 7 UFBV2�c can be reduced to UFBV2�1.

Proof Let � denote a bit-vector formula, x[n], y[n] fresh bit-vector variables, and
fn

[n] (·, ·) a fresh uninterpreted function of arity 2, taking arguments of bit-width n.
Replace each expression t [n] � c[n] in � with fn

[n] (t [n], c[n]), extend the quantifier
prefix of � with ∀x[n], y[n], and add the following two constraints to the matrix of �:

fn
[n](x, 0) = x

fn
[n](x, y + 1) = fn

[n](x, y) � 1

While the second constraint still contains addition to improve readability, this can be
replaced by using left shift by 1, as described in Section 7.3.

Remark 2 This result is not very surprising if we consider the alternative characteri-
zations of QF BV2�1 and QF BV2�c as given in Section 7.We showed that addition
is equally expressive as left shift by 1 and multiplication is equally expressive as left
shift by constant. In Peano arithmetic, multiplication is defined by using addition,
uninterpreted functions, and quantification. In the context of bit-vectors, this defini-
tion of multiplication can be expressed by introducing ∀x[n], y[n] to the quantifier
prefix and adding the following constraints:

fn
[n] (x, 0) = 0

fn
[n] (x, y + 1) = fn

[n] (x, y) + x

With these two axioms, the multiplication t1
[n] · t2

[n] of two elements in Peano
arithmetic is uniquely defined by the instance fn

[n] (t1[n], t2[n]) of the uninterpreted
function fn.

While we were also able to give some complexity results for BV2 in [41], it
remains unclear whether BV2 is complete for any complexity class.

Proposition 8 BV2 ∈ EXPSPACE and BV2 is NEXPT IME-hard [41].

Proof Given a BV2 formula, a simple unary re-encoding can be used to give an expo-
nential translation to BV1 ∈ PSPACE (Proposition 3). Therefore, BV2 ∈ EXPSPACE.
Because of QF BV2 ⊂ BV2, NEXPTIME-hardness follows trivially.

8.2 Restricting the Bit-Width of Universal Variables

We now show that a completeness result can be obtained when a certain restriction to
the bit-width of the universal variables is applied. For a given formula � ∈ BV2, let
maxbw(∃) (�) and maxbw(∀) (�) denote the maximal bit-width of all the existentially
and universally quantified variables, respectively. (We define maxbw(∃) (�) := 0
and maxbw(∀) (�) := 0 if � does not contain any existential or universal variables

362 Theory Comput Syst (2016) 59:323–376

respectively.) Now we give a definition, similar to the one of scalar-boundedness in
Definition 11:

Definition 14 (Universally Bit-Width Bounded Formula Set) An infinite set S

of quantified bit-vector formulas is universally bit-width bounded, iff there exists
a polynomial function p : N �→ N such that ∀� ∈ S. maxbw(∀) (�) ≤
p
(
Lmaxbw(∃) (�)

)
.

Theorem 14 If S ⊂ UFBV2 (or S ⊂ BV2) is universally bit-width bounded, then
S ∈ NEXPT IME.

Proof Let S ⊂ UFBV2 be universally bit-width bounded and let p0 be the polyno-
mial function that exists according to Definition 14. For any �0 ∈ S, let n := |�0|.
We can assume that �0 contains at most k ≤ n universal variables. Also, let
maxscl (�0) and cntscl (�0) be defined in the same way as it was done in Section 5.
This implies maxbw(∃) (�0) ≤ maxscl (�0) ≤ 2n and cntscl (�0) ≤ n.

In order to prove that S ∈ NEXPT IME, we now give a translation into QF BV1 ∈
NP which is only single-exponential in n = |�0| for any �0 ∈ S. First, all univer-
sal variables are eliminated by universal expansion. This produces a quantifier-free
formula �1 ∈ QF UFBV2 with

maxscl (�1) = maxscl (�0) ≤ 2n

cntscl (�1) ≤ cntscl (�0) · 2k·maxbw(∀)(�0)

≤ cntscl (�0) · 2n·p0(Lmaxbw(∃)(�0))

≤ cntscl (�0) · 2p1(n)

for some polynomial function p1. Since �1 does not contain any (universal) quan-
tifiers, it can be polynomially translated to some �2 ∈ QF BV2, by replacing all
uninterpreted functions of �1 with bit-vector variables and adding at most quadratic
many Ackermann constraints (as in Proposition 2). Therefore,

maxscl (�2) = maxscl (�1) ≤ 2n

cntscl (�2) ≤ p2 (cntscl (�1)) ≤ p2

(
cntscl (�0) · 2p1(n)

)

for some polynomial function p2. In a last step, a unary re-encoding is applied to �2
(similar to Proposition 1), resulting in �3 ∈ QF BV1. The size of �3 is bounded by

|�3| ≤ maxscl (�2) · cntscl (�2) + c

≤ 2n · p2

(
cntscl (�0) · 2p1(n)

)
+ c ≤ 2p3(n) + c

for some polynomial function p3. Therefore, �3 ∈ QF BV1 is only single-
exponential in the size of �0. Together with QF BV1 ∈ NP (Proposition 1), this
shows that S ∈ NEXPT IME.

We now define BVlog ⊂ BV2 and UFBVlog ⊂ UFBV2 as the set of all � ∈ BV2
and � ∈ UFBV2 with maxbw(∀) (�) ≤ Lmaxbw(∃) (�) + 1, respectively. These
fragments are of special practical interest, because they can be used to express

Theory Comput Syst (2016) 59:323–376 363

quantification over array indices if arrays are represented as bit-vectors. Arrays
play an important role in automated Software Model Checking as, for example,
done in the SAGE project by Microsoft [33]. Quantification over array indices
is also discussed in [7], where the so-called bounded array property fragment is
addressed.

Theorem 15 BVlog and UFBVlog are NEXPT IME-complete.

Proof It is easy to see that BVlog and UFBVlog are NEXPTIME-hard since both
logics are an extension of QF BV2, which is already NEXPTIME-hard (Proposition
6). The other direction is a consequence of Theorem 14, since BVlog and UFBVlog
are universally bit-width bounded by definition.

Note that this kind of proof only holds for bit-vector logics with binary encoding.
When a unary encoding is used, restricting the bit-width of universal variables does
not have any effect on the complexity of the given problem class.

8.3 Non-Recursive Macros

A very similar effect occurs when non-recursive macros are added to our logics.
For example, SMT-LIB allows the usage of non-recursive macros via the keywords
define-fun and let. In the general case, allowing macros can increase the com-
plexity of a given class. For instance, Boolean formulas extended by non-recursive
macros equal to the class of Boolean Programs or Nested Boolean Functions (NBF),
which is known to be PSPACE-complete [15, 20]. The same obviously holds for
QF BV1.

However, as shown in Theorem 16, extending QF UFBV2 (and even QF BV2)
with non-recursive macros does not give additional expressiveness, in terms of com-
plexity. Let the subscript M denote the fact that, additionally, non-recursive macros
can be used in our logic.

Definition 15 (Logic with Non-Recursive Macros) Given a bit-vector logic L, let
LM denote the set of all bit-vector formulas in the following form:

Q ∀u0
[n0], . . . , uk

[nk] . t [1]

∧ f0
[w0](u0, . . . , uk0) = d0

[w0]

∧ . . .

∧ fm
[wm](u0, . . . , ukm) = dm

[wm]

where (i) Q.t [1] ∈ L, (ii) the universal variables ui
[ni] do not appear in

Q.t [1], (iii) the uninterpreted functions fi are called macros, (iv) the terms
di

[wi] are called macro definitions, and (v) di contains no occurrence of
fj if i ≤ j .

Note that t might contain occurrences of any fi . Expanding a macro fi means to
replace all occurrences fi(s0, . . . , ski

) in t with diσ , where s0, . . . , ski
are terms and

σ := {u0 �→ s0, . . . , uki
�→ ski

} is a term substitution.

364 Theory Comput Syst (2016) 59:323–376

We now introduce a normal form, similar to the flat form in Definition 16, in
order to obtain an upper bound for the growth in formula size when applying macro
expansion.

Definition 16 (Functional Flat Form) A bit-vector formula � is in function flat form
iff every uninterpreted function in � has only variables as arguments.

It is easy to see that any � can be translated into functional flat form with only
linear growth in formula size. Given a term f (t1

[n1], . . . , tk[nk]) in �, where f is an
uninterpreted function, check if ti is a variable: if it is, then xi := ti ; otherwise let x

[ni]
i

be a new Tseitin variable existentially quantified at the innermost prefix position,
and add the constraint xi = ti to the formula. Then, replace the original term with
f (x1, . . . , xk).

Theorem 16 QF UFBV2M is NEXPT IME-complete.

Proof NEXPTIME-hardness is obvious, since QF UFBV2 ⊂ QF UFBV2M. Inclu-
sion can be shown in a similar way as it is done in Theorem 14.

Let �0 := ∀u0
[n0], . . . , uk

[nk] . t ∧ tM be a QF UFBV2M formula of size n :=
|�0|, where t ∈ QF UFBV2 and tM consists of all the macro definitions. Assume that
t is in functional flat form. We now inductively expand all macros in t , in the order
of fm, fm−1, . . . , f0, and also, after each expansion step, we translate the resulting
formula into functional flat form again.

First, each macro occurrence fm(x0, . . . , xkm) in t is replaced by an instance
dmσ of the macro definition. Since each xi is a variable, we know that |dmσ | =
|dm| ≤ n. Because fm has at most n occurrences in t , expanding fm results
in a formula of size bounded by n2. Recall that we also translate the result-
ing formula into functional flat form, resulting in formula size bounded linearly
in n2.

Then, we expand fm−1, which now has at most n2 occurrences. The resulting
formula is of size bounded linearly in n3. By continuing the expansion process with
fm−2, . . . , f0, we finally obtain from t a formula �1 ∈ QF UFBV2 that contains no
more macros. It holds that

maxscl (�1) = maxscl (�0) ≤ 2n

cntscl (�1) ≤ l
(
nm+1

)
≤ l

(
nn

) ≤ l
(
2n·Ln)

for some linear function l. We now apply a unary re-encoding to �1, yielding �2 ∈
QF UFBV1. The size of �2 is bounded by

|�2| ≤ maxscl (�1) · cntscl (�1) + c ≤ 2n · l
(
2n·Ln) + c

which is only single exponential in the size of �0. This gives QF UFBV2M ∈
NEXPT IME.

Theory Comput Syst (2016) 59:323–376 365

9 Practical Considerations

As mentioned in Section 2, our original motivation for considering the complexity
of bit-vector logics comes from the fact that state-of-the-art SMT solvers usually
rely on bit-blasting when dealing with bit-vector formulas. Our introductory example
shows the effect that the exponential explosion caused by bit-blasting can have on
a bit-vector formula and, therefore, current SMT solvers often are not able to deal
efficiently with bit-vector formulas that are not scalar-bounded.

While our complexity results in Section 6 explain why this is the case from a
complexity-theoretic point of view, it is of high practical interest if and how state-of-
the-art SMT solvers can profit from this knowledge.

9.1 Alternative Approaches

Instead of using bit-blasting, we can try to find alternative approaches for solving
bit-vector formulas.

One possible approach is to polynomially translate bit-vector formulas to some
other logic in the same complexity class. For example, target logics for QF BV2�c

(or general QF BV2) are DQBF or EPR, which are both NEXPTIME-complete
[45, 49, 50]. For QF BV2�1, a translation to model checking for sequential circuits
as given in Lemma 3 can be used instead. In both cases, we can profit from the
performance of existing techniques for other problem classes. While DQBF solvers
have not been considered at all until our recent work in [28], their performance
does not nearly reach the one of current EPR solvers as, e.g., iProver [40]. On the
other hand, many efficient model checkers for sequential circuits in SMV or AIGER
format exist.

In [42], we therefore gave a polynomial translation from QF BV2 to EPR (this is
in contrast to existing translations in [26, 37], which are not guaranteed to be poly-
nomial in the general case), and then did an experimental evaluation using iProver
to solve the resulting EPR formulas. The overall results were rather mixed. While
we were able to solve some formulas faster, SMT solvers performed better by orders
of magnitude on most other problems considering runtime. Looking at the space
requirements, iProver performed better in general. However, the gain was less sig-
nificant than expected. An explanation for this can be found in the way iProver
deals with EPR formulas. By solving propositional overapproximations and itera-
tively applying instantiations of predicates (the underlying concept is known as the
Inst-Gen calculus), the formula can also grow exponentially. Of course this is no
flaw in iProver but a direct consequence of the NEXPTIME-completeness of EPR
and QF BV2.

A different situation occurs when we look at QF BV2�1. As seen in our
introductory example, bit-blasting can still be exponential for formulas of this
class. However, we know that it is possible to solve this kind of formulas in
polynomial space, since QF BV2�1 ∈ PSPACE. In [29], we therefore presented
a polynomial translation from QF BV2�1 to SMV. Since current model check-
ers usually expect input in AIGER format, we then also translated our outputs
to AIGER format using smv2aig, which is part of the AIGER library. Our

366 Theory Comput Syst (2016) 59:323–376

experiments showed that, with growing bit-width, BDD-based model checkers (e.g.,
NuSMV [18] and IImc5, using techniques described in [6, 8], with BDD-engine
enabled) outperformed state-of-the-art SMT solvers on almost all of our bench-
marks by orders of magnitude in runtime. Considering space requirements, the gain
was even more significant. On the other hand, model checkers based on unrolling
performed worse and comparable to SMT solvers on most benchmarks. This is
not surprising, since unrolling to the full bit-width turns out to be the same as
bit-blasting.

Altogether, our experiments show that the theoretical results given in [30, 41]
and Section 6 can practically lead to improvements in state-of-the-art SMT solv-
ing. It is an interesting open problem to look at these results more closely and
to integrate those concepts into SMT solvers in order to to increase their overall
performance.

9.2 Benchmark Problems

Another practical outcome of our theoretical work was the creation of several
different benchmark sets.

In [42], we proposed two new sets of QF BV2 benchmarks for our experiments
on evaluating the performance of EPR solvers for quantifier-free bit-vector formulas.
In connection with our experiments on using model checkers for efficiently solving
restricted bit-vector formulas, we generated six more benchmark sets for QF BV2�1
in [29].

Another family of benchmarks was directly derived from the discussion on the
expressiveness of bit-vector operations in this paper. As we know from Section 6,
all common bit-vector operations can be logarithmically expressed (in bit-width)
by bitwise operations and equality in combination with shift by constant, mul-
tiplication, concatenation, or slicing. While we did not give direct translations
for all common bit-vector operations in this work, we encoded most of them
into SMT-LIB instances and used Boolector to verify their correctness for various
bit-widths.

These benchmarks, together with those from [29, 42], can be found on our
webpage6 and will be submitted to the SMT-LIB. All of our benchmark sets are
challenging for state-of-the-art SMT solvers (as well as for EPR solvers and model
checkers) due to the fact that they are not scalar-bounded. For better solvers and
future challenges, the difficulty of a problem can be adjusted by simply increasing
the bit-widths in the original SMT-LIB instance. Bit-blasted versions of our bench-
marks also turned out to be challenging for state-of-the-art SAT solvers in the SAT
Competition 20137 [43].

5http://ecee.colorado.edu/wpmu/iimc/
6http://fmv.jku.at/
7http://www.satcompetition.org/

http://ecee.colorado.edu/wpmu/iimc/
http://fmv.jku.at/
http://www.satcompetition.org/

Theory Comput Syst (2016) 59:323–376 367

10 Conclusion

We discussed the complexity of deciding various quantified and quantifier-free
fixed-size bit-vector logics. In contrast to existing literature, where usually it is not
distinguished between unary and binary encoding on scalars in formulas, we argued
that it is important to make this distinction. Most of our results apply to the actually
much more natural binary encoding as it is also used in standard formats, e.g., in the
SMT-LIB format. For this kind of logics, already the quantifier-free fragment without
uninterpreted functions (QF BV2) turned out to be NEXPTIME-complete [41].

In this paper, we extended our previous work from [30, 41]. We first gave a
detailed formal framework for fixed-size bit-vector logics including definitions for
syntax and semantics. Our self-contained formalization is the first to consider differ-
ent encodings and to provide a concrete measure for the size of bit-vector formulas
as well as to provide the possibility to include arbitrary bit-vector operations.

Regarding the Common Operator Framework, as used, e.g., in the SMT-LIB for-
mat, we then revisited our previous complexity results from [30, 41] and extended
those results in several ways. For quantifier-free logics, we combined our earlier work
and restructured it to present several of our proofs in a clearer, easier-to-read way,
with some small modifications in the proofs.

We then looked at several bit-vector operations and discussed their expressive-
ness, and checked if these operations can be logarithmically translated to each other
(in bit-width). This kind of analysis helps to understand the complexity that is inher-
ent in certain classes of bit-vector formulas and its relation to the kind of encoding
used for bit-widths. While this allows us to check what kind of properties can be
expressed in a given fragment, it also enables us to identify easier subclasses of for-
mulas, which then can be solved more efficiently in practice by applying specialized
algorithms.

Considering quantified logics, it is still an open question whether BV2 is complete
for any complexity class. However, we could give some new results for quanti-
fied logics with a restriction on the bit-width of universal variables. We introduced
the notion of universally bit-width bounded problems and showed that this kind of
problems are in NEXPTIME. This then allowed us to prove that BV2log is NEXPTIME-
complete. Since bit-vector logics with arrays represented by bit-vectors are in this set
if quantification is only allowed on array indices, this class is of particular practical
interest.

For a last complexity theoretical result, we looked into QF BV2M, the class of
quantifier-free bit-vector logics extended with non-recursive macros, as allowed,
e.g., in the SMT-LIB format. Again, we showed that this logic remains NEXPTIME-
complete. Altogether, we provide the currently most complete overview on the
complexity of common bit-vector logics.

To point out that our theoretical insights are also interesting from a practical point
of view, we briefly discussed two approaches of solving bit-vector formulas not by
bit-blasting but by using translations based on our complexity results. While bit-
blasting is exponential in general, we proposed polynomial translations into EPR and
SMV in recent practical work [29, 42], to show that bit-vector solvers can indeed
profit from our techniques. Several QF BV2 benchmark families that we created

368 Theory Comput Syst (2016) 59:323–376

throughout our work turned out to be challenging for state-of-the-art SMT and SAT
solvers

For future work, it is still an interesting topic to consider our results in the
context of parametrized complexity [24]. In particular, our definitions of (polyno-
mially) scalar-bounded and universally bit-width bounded problem sets might be
of relevance in this context. So far, mainly problems in NP are considered in
parametrized complexity. This is another reason why extending our work in this
direction is of special interest. Also, as already mentioned, the complexity of BV2 is
still another open problem. Finally, from the practical side, it would be interesting to
investigate how state-of-the-art SMT solvers can profit most from our insights and
techniques.

Appendix A: Example: A Reduction of a DQBF to QF BV2�c

Consider the following DQBF:

∀u0, u1, u2∃x(u0), y(u1, u2) . (x ∨ y ∨ ¬u0 ∨ ¬u1) ∧
(x ∨ ¬y ∨ u0 ∨ ¬u1 ∨ ¬u2) ∧
(x ∨ ¬y ∨ ¬u0 ∨ ¬u1 ∨ u2) ∧
(¬x ∨ y ∨ ¬u0 ∨ ¬u2) ∧
(¬x ∨ ¬y ∨ u0 ∨ u1 ∨ ¬u2)

This DQBF is unsatisfiable.
Using the reduction given in Lemma 1, this formula is translated to the following

QF BV2�c formula:

((X | Y |∼U0 |∼U1) & (X |∼Y | U0 |∼U1 |∼U2) & (X |∼Y |∼U0 |∼U1 | U2) &
(∼X | Y |∼U0 |∼U2) & (∼X |∼Y | U0 | U1 |∼U2)) = ∼0[8] ∧∧

m∈{0,1,2} Um � 2m = ∼Um ∧
X & ∼U1 = (X � 21) & ∼U1 ∧
X & ∼U2 = (X � 22) & ∼U2 ∧
Y & ∼U0 = (Y � 20) & ∼U0

(6)
In the following, let us show that this formula is also unsatisfiable.

Recall that the notation t [n] d is an alternative for
�
t [n]� = d, assuming

an appropriate model for t . By construction, U0 01010101, U1 00110011, and
U2 00001111.

First, we show how the bits ofX get restricted by the constraints introduced above.
Let us denote the originally unrestricted bits of X with x7, x6, . . . , x0. Since the bit-
vectors

are forced to be equal, some bits of X should coincide, as follows:

Theory Comput Syst (2016) 59:323–376 369

Furthermore, considering also the equality

results in

In a similar fashion, the bits of Y are constrained as follows:

In order to show that the formula (6) is unsatisfiable, let us evaluate the “clauses” in
the formula:

By applying bitwise and to them, we get the bit-vector constrained by the formula
(6):

In order to check if t =∼ 0[8] is satisfiable, it is sufficient to try to satisfy the set
of the above Boolean clauses. It is easy to see that this clause set is unsatisfiable,
since, by unit propagation, x1 and y2 must be assigned to 1, which contradicts with
the clause ¬x1 ∨ ¬y2.

Appendix B: Example: A Reduction of a QBF to QF BV2�1

Consider the following QBF:

∃x∀u2∃y∀u1u0∃z . (u2 ∨ u1 ∨ ¬z) ∧
(u2 ∨ ¬x ∨ y) ∧
(u0 ∨ ¬x ∨ ¬z) ∧
(u1 ∨ ¬y ∨ z) ∧
(u0 ∨ ¬u1 ∨ z)

This QBF is satisfiable.

370 Theory Comput Syst (2016) 59:323–376

Using the reduction given in Lemma 2, this formula is translated to the following
QF BV2�1 formula:

((U2 | U1 |∼Z) & (U2 |∼X | Y) & (U0 |∼X |∼Z) &
(U1 |∼Y | Z) & (U0 |∼U1 | Z)) = ∼0[8] ∧∧

m∈{0,1,2}
(∧

0≤i<m Ui

) ⊕ Um = Um � 1 ∧
X & ∼1 = X � 1 ∧(
U ′
2 = ∼((U2 � 1) ⊕ U2)

) ∧ (
Y & U ′

2 = (Y � 1) & U ′
2

)
(7)

In the following, let us show that this formula is also satisfiable. As in the previous
example, we have U0 01010101, U1 00110011, and U2 00001111. However, this
time the binary magic numbers were created in a different way to ensure that only
addition and bitwise operations are used.

First, we show how the bits ofX get restricted by the constraints introduced above.
Let us denote the originally unrestricted bits of X with x7, x6, . . . , x0. Since the bit-
vectors

must be equal, all bits of X are forced to be equal:

Similarly, we get some constraints on Y . By using the mask

the following bit-vectors

are forced to be equal, putting restrictions on the individual bits of Y :

Finally, Z is not restricted in any way since u0 is the innermost universal variable
that z depends on, i.e., z depends on all universal variables.

In order to show that the formula (7) is satisfiable, let us evaluate the “clauses” in
the formula:

By applying bitwise and to them, we get the bit-vector constrained by the formula
(7):

Theory Comput Syst (2016) 59:323–376 371

t =∼0[8] can easily be satisfied, e.g., by setting

z7 = z6 = y4 = y0 = x0 = 0
z5 = z1 = 1

Therefore,

is a possible satisfying assignment for the bit-vector formula.

C Example: Bit-Width Reduction of a QF BV2bw Formula with Indexing and
Relational Operations

Let

�0 :=
(
x[100] <u y[100]) ∧

(
z[50] = w[50]) ∧

(
w[100][38] = y[100][72]

)

be a bit-vector formula with maximal bit-width 100. Note that we now use decimal
encoding on the scalars. The set of explicit indices in the formula is given by I :=
{38, 72}. We now generate �1 by splitting all bit-vectors at the corresponding bit-
indices. First, x[100] <u y[100] is therefore replaced by

(
x′
99:73[27] <u y′

99:73[27]
)

∨ (
x′
99:73[27] = y′

99:73[27]
) ∧ (¬x′

72
[1] ∧ y′

72
[1])

∨ (
x′
99:73[27] = y′

99:73[27]
) ∧ (

x′
72

[1] ⇔ y′
72

[1]) ∧ (
x ′
71:39[33] <u y′

71:39[33]
)

∨ (
x′
99:73[27] = y′

99:73[27]
) ∧ (

x ′
72

[1] ⇔ y′
72

[1])
∧ (

x′
71:39[33] = y′

71:39[33]
) ∧ (¬x′

38
[1] ∧ y′

38
[1])

∨ (
x′
99:73[27] = y′

99:73[27]
) ∧ (

x ′
72

[1] ⇔ y′
72

[1])
∧ (

x′
71:39[33] = y′

71:39[33]
) ∧ (

x ′
38

[1] ⇔ y′
38

[1]) ∧ (
x′
37:0[38] <u y′

37:0[38]
)

Next, z[50] = w[50] is replaced by
(
z′
49:39[11] = w′

49:39[11]
)

∧
(
z′
38

[1] ⇔ w′
38

[1]) ∧
(
z′
37:0[38] = w′

37:0[38]
)

Finally, w[100][38] = y[100][72] is replaced by

w′
38

[1] ⇔ y′
72

[1]

Since we only have 11 relational operations in �1, we can generate a bit-width
reduced formula�2 by replacing all bit-widths n in�1 with min{11, n}. We therefore
replace the variables

372 Theory Comput Syst (2016) 59:323–376

x′
99:73[27], y′

99:73[27], x′
71:39[33], y′

71:39[33],
x′
37:0[38], y′

37:0[38], z′
37:0[38], w′

37:0[38],

by

x′′
99:73[11], y′′

99:73[11], x′′
71:39[11], y′′

71:39[11],
x′′
37:0[11], y′′

37:0[11], z′′
37:0[11], w′′

37:0[11]

respectively.

D Example: Half-Shuffle and Expand Applied to a Bit-Vector

halfshuffle(

t [4]︷︸︸︷
1101, 16) can be replaced with x2

[16], by adding the following assertions.
First, zero extension is applied to the original vector:

Now, in two iterations, the bits of t [4] are separated and moved to the distinct
partitions of the extended vector:

The result now can be used for example in expand: expand(

t [4]︷︸︸︷
1101, 16) can be

expressed as x′
2
[16], by adding the following assertions:

E Example: Multiplication of Two Bit-Vectors

The multiplication

t1
[4]

︷︸︸︷
0011 ·

t2
[4]

︷︸︸︷
0101 can be expressed as x2

[16][3 : 0], by adding the fol-
lowing assertions. First, both bit-vectors are transformed by selfconcat and expand

Theory Comput Syst (2016) 59:323–376 373

to quadratic size in order to generate all single-digit multiplications in one step by
using bitwise and:

g3
[4], g2[4], g1[4], and g0

[4] are the bit groups representing the bit-vector which is the
result of single-digit multiplication of t1[4] = 0011 with the single bits of t2[4] = 0101.
Now, the neighbouring groups have to be shifted to their relative offsets and are
added:

g32
[8] and g10

[8] are the bit groups representing the bit-vectors which would be
obtained by adding the bit-vectors represented by g3

[4], g2
[4] and g1

[4], g0
[4], respec-

tively. This involves respecting their relative offsets, i.e., g32 = (g3 � 1) + g2 and
g10 = (g1 � 1) + g0.

Since we still have several partial results, we have to continue adding neighbouring
groups:

After the last step, there is only one bit group left and the least significant bits
of the bit-vector x2

[16] 0000 0000 0000 1111 correspond to the solution of the
multiplication, i.e., 0011 · 0101 = x2

[16][3 : 0] 1111.
Further examples for multiplication or for other operations can easily be generated

by feeding our benchmark family of bit-vector operations encoded in the SMT-LIB
format into an SMT solver.

References

1. Ayari, A., Basin, D.A., Klaedtke, F.: Decision procedures for inductive boolean functions based on
alternating automata. In: CAV, volume 1855 of LNCS. Springer (2000)

2. Balabanov, V., Chiang, H.-J.K., Jiang, J.-H.R.: Henkin quantifiers and boolean formulae. In: Proceed-
ings of the SAT’12 (2012)

3. Barrett, C., Stump, A., Tinelli, C.: The smt-lib standard: Version 2.0. In: Proceedings of the 8th
International Workshop on Satisfiability Modulo Theories (Edinburgh, UK) (2010)

4. Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for bit-vector arithmetic. In: Proceedings
of the 35th Design Automation Conference, pp. 522–527 (1998)

374 Theory Comput Syst (2016) 59:323–376

5. Bjørner, N., Pichora, M.C.: Deciding fixed and non-fixed size bit-vectors. In: TACAS, volume 1384
of LNCS, pages 376–392. Springer (1998)

6. Bradley, A.R.: Sat-based model checking without unrolling. In: Proceedings of the VMCAI’11, pp.
70–87 (2011)

7. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emerson, E.A., Namjoshi,
K.S. (eds.) VMCAI, volume 3855 of Lecture Notes in Computer Science, pp. 427–442. Springer
(2006)

8. Bradley, A.R., Somenzi, F., Hassan, Z., Zhang, Y.: An incremental approach to model checking
progress properties. In: Proceedings of the FMCAD’11, pp. 144–153 (2011)

9. Brummayer, R., Boolector, A.B.: An efficient smt solver for bit-vectors and arrays. Springer
(2009)

10. Brummayer, R., Biere, A., Florian, L.: BTOR: bit-precise modelling of word-level problems for model
checking. In: Proceedings of the 1st International Workshop on Bit-Precise Reasoning, pp. 33–38.
ACM, New York (2008)

11. Bruttomesso, R.: RTL Verification: From SAT to SMT(BV). PhD thesis, University of Trento (2008)
12. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The MathSAT SMT solver. In:

CAV, volume 5123 of LNCS, pp. 299–303. Springer (2008)
13. Bruttomesso, R., Sharygina, N.: A scalable decision procedure for fixed-width bit-vectors. In: ICCAD,

pp. 13–20. IEEE (2009)
14. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.: Deciding bit-

vector arithmetic with abstraction. In: Proceedings of the 13th international conference on Tools and
algorithms for the construction and analysis of systems, TACAS’07, pp. 358–372. Springer, Berlin
(2007)

15. Bubeck, U., Büning, H.K.: Encoding nested boolean functions as quantified boolean formulas. JSAT
8(1/2), 101–116 (2012)

16. Butler, R.W., Miner, P.S., Srivas, M.K., Greve, D.A., Miller, S.P.: A bitvectors library for pvs.
Technical report. NASA Langley Research Center, Hampton (1996)

17. Chlebus, B.S.: From domino tilings to a new model of computation. In: Symposium on Computation
Theory, vol. 208 of LNCS. Springer (1984)

18. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tac-
chella, A.: Nusmv version 2: An opensource tool for symbolic model checking. In: Proceedings of the
CAV02 (2002)

19. Cook, B., Kroening, D., Rümmer, P., Wintersteiger, C.M.: Ranking function synthesis for bit-vector
relations. In: TACAS, vol. 6015 of LNCS. Springer (2010)

20. Cook, S., Soltys, M.: Boolean programs and quantified propositional proof systems. Bulletin of the
Section of Logic (1999)

21. Cyrluk, D., Oliver, M., Harald, R.: An efficient decision procedure for a theory of fixed-sized bitvec-
tors with composition and extraction. In: Computer-Aided Verification (CAV 97), pp. 60–71. Springer
(1997)

22. De Moura, L., Bjørner, N.: Z3: an efficient smt solver. Springer, Berlin (2008)
23. Donini, F.M., Liberatore, P., Massacci, F., Schaerf, M.: Solving QBF with SMV. In: Proceedings of

the KR’02, pp. 578–589 (2002)
24. Downey, R.G., Fellows, M.R.: Parameterized Complexity, p. 530. Springer (1999)
25. Dutertre, B., de Moura, L.: The Yices SMT solver. Tool paper at http://yices.csl.sri.com/tool-paper.

pdf (2006)
26. Emmer, M., Khasidashvili, Z., Korovin, K., Voronkov, A.: Encoding industrial hardware verification

problems into effectively propositional logic. In: FMCAD’10, pp. 137–144 (2010)
27. Franzén, A.: Efficient Solving of the Satisfiability Modulo Bit-Vectors Problem and Some Extensions

to SMT. PhD thesis, University of Trento (2010)
28. Fröhlich, A., Kovásznai, G., Biere, A.: A DPLL algorithm for solving DQBF. In: Proceedings of the

POS’12 (2012)
29. Fröhlich, A., Kovásznai, G., Biere, A.: Efficiently solving bit-vector problems using model checkers.

In: Proceedings of the SMT’13 (2013)
30. Fröhlich, A., Kovásznai, G., Biere, A.: More on the complexity of quantifier-free fixed-size bit-vector

logics with binary encoding. In: Proceedings of the CSR’13 (2013)
31. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Computer Aided

Verification (CAV ’07). Springer, Berlin (2007)

http://yices.csl.sri.com/tool-paper.pdf
http://yices.csl.sri.com/tool-paper.pdf

Theory Comput Syst (2016) 59:323–376 375

32. Garey, M.R., Johnson, D.S.: NP-completeness results: Motivation, examples, and implications. J.
ACM 25(3), 499–508 (1978)

33. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In: Network Distributed
Security Symposium (NDSS). Internet Society (2008)

34. Henkin, L.: Some remarks on infinitely long formulas. In: Infinistic Methods, pp. 167–183. Pergamon
Press (1961)

35. Johannsen, P.: Reducing bitvector satisfiability problems to scale down design sizes for RTL prop-
erty checking. In: Proceedings of the High-Level Design Validation and Test Workshop, vol. 2001,
pp. 123–128 (2001)

36. Johannsen, P.: Speeding Up Hardware Verification by Automated Data Path Scaling. PhD thesis. CAU
Kiel, Germany (2002)

37. Khasidashvili, Z., Kinanah, M., Voronkov, A.: Verifying equivalence of memories using a first order
logic theorem prover. In: FMCAD’09, pp. 128–135 (2009)

38. Klarlund, N., Anders, M., Schwartzbach, M.I.: Mona implementation secrets. In: Proceedings of the
CIAA’00, pp. 182–194 (2000)

39. Knuth, D.E.: The Art of Computer Programming, Volume 4A: Combinatorial Algorithms. Addison-
Wesley (2011)

40. Korovin, K.: iProver — an instantiation-based theorem prover for first-order logic (system descrip-
tion). In: Proceedings of the IJCAR’08, IJCAR ’08. Springer (2008)

41. Kovásznai, G., Fröhlich, A., Biere, A.: On the complexity of fixed-size bit-vector logics with binary
encoded bit-width. In: Proceedings of the SMT’12, pp. 44–55 (2012)

42. Kovásznai, G., Fröhlich, A., Biere, A.: bv2epr: A tool for polynomially translating quantifier-free
bit-vector formulas into epr. In: Proceedings of the CADE’13 (2013)

43. Kovásznai, G., Fröhlich, A., Biere, A.: Quantifier-free bit-vector formulas with binary encoding:
Benchmark description. In: Balint, A., Belov, A., Heule, M., Järvisalo, M. (eds.) Proceedings of the
SAT Competition 2013, vol. B-2013-1 of Department of Computer Science Series of Publications B,
pp. 107–108. University of Helsinki (2013)

44. Kroening, D., Strichman, O.:Decision Procedures: An Algorithmic Point of View. Texts in Theoretical
Computer Science. Springer (2008)

45. Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput. Syst. Sci. 21(3),
317–353 (1980)

46. Marx, M.: Complexity of modal logic. In: Handbook of Modal Logic, volume 3 of Studies in Logic
and Practical Reasoning, pp. 139–179. Elsevier (2007)

47. Niewerth, M., Schwentick, T.: Two-variable logic and key constraints on data words. In: ICDT, pp.
138–149 (2011)

48. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)
49. Peterson, G., Reif, J., Azhar, S.: Lower bounds for multiplayer noncooperative games of incomplete

information (2001)
50. Peterson, G.L., Reif, J.H.: Multiple-person alternation. In: FOCS, pp. 348–363. IEEE Computer

Society (1979)
51. Prasad, M.R., Biere, A., Gupta, A.: A survey of recent advances in SAT-based formal verification.

STTT 7(2), 156–173 (2005)
52. Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Com-

put. Syst. Sci. 4(2), 177–192 (1970)
53. Schuele, T., Schneider, K.: Verification of data paths using unbounded integers: automata strike back.

In: Proceedings of the 2nd international Haifa verification conference on Hardware and software,
verification and testing, HVC’06, pp. 65–80. Springer-Verlag, Berlin (2007)

54. Prasad Sistla, A., Clarke, E.M.: The complexity of propositional linear temporal logics. J. ACM 32(3),
733–749 (1985)

55. Spielmann, A., Kuncak, V.: On synthesis for unbounded bit-vector arithmetic. Technical report, EPFL,
Lausanne, Switzerland (2012)

56. Spielmann, A., Kuncak, V.: Synthesis for unbounded bitvector arithmetic. In: International Joint
Conference on Automated Reasoning (IJCAR), LNAI. Springer (2012)

57. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Preliminary report. In:
Aho, A.V., Borodin, A., Constable, R.L., Floyd, R.W., Harrison, M.A., Karp, R.M., Raymond Strong,
H. (eds.) STOC, pp. 1–9. ACM (1973)

58. Warren, H.S.: Hacker’s Delight. Addison-Wesley Longman (2002)

376 Theory Comput Syst (2016) 59:323–376

59. Wintersteiger, C.M.: Termination Analysis for Bit-Vector Programs. PhD thesis. ETH Zurich,
Switzerland (2011)

60. Wintersteiger, C.M., Hamadi, Y., de Moura, M.L.: Efficiently solving quantified bit-vector formulas.
In: Proceedings of the FMCAD, pp. 239–246. IEEE (2010)

61. Wolper, P., Boigelot, B.: An automata-theoretic approach to presburger arithmetic constraints
(extended abstract). In: Procedings of the Static Analysis Symposium, LNCS 983, pp. 21–32. Springer
LNCS (1995)

	Complexity of Fixed-Size Bit-Vector Logics
	Abstract
	Introduction
	Motivation
	Preliminaries
	SAT, QBF, and DQBF
	Circuits
	Fixed-Size Bit-Vector Logics
	Syntax
	Semantics
	Logics and Encodings

	Logics With Unary Encoding
	Scalar-Bounded Problems
	Quantifier-Free Logics with Binary Encoding
	The reduction
	Polynomiality
	Correctness
	The reduction

	Fragment Extensions and Alternative Characterizations
	Notation
	QF_BV2bw
	QF_BV21
	QF_BV2c

	Logics with Quantifiers and Binary Encoding
	General Quantification
	Restricting the Bit-Width of Universal Variables
	Non-Recursive Macros

	Practical Considerations
	Alternative Approaches
	Benchmark Problems

	Conclusion
	Appendix A A: Example: A Reduction of a DQBF to QF_BV2c
	Appendix B: Example: A Reduction of a QBF to QF_BV21
	C Example: Bit-Width Reduction of a QF_BV2bw Formula with Indexing and Relational Operations
	D Example: Half-Shuffle and Expand Applied to a Bit-Vector
	E Example: Multiplication of Two Bit-Vectors
	References

