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Abstract We consider the problem of managing a bounded size First-In-First-Out
(FIFO) queue buffer, where each incoming unit-sized packet requires several rounds
of processing before it can be transmitted out. Our objective is to maximize the
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total number of successfully transmitted packets. We consider both push-out (when
a policy is permitted to drop already admitted packets) and non-push-out cases. We
provide worst-case guarantees for the throughput performance of our algorithms,
proving both lower and upper bounds on their competitive ratio against the opti-
mal algorithm, and conduct a comprehensive simulation study that experimentally
validates predicted theoretical behavior.

Keywords Scheduling · Buffer management · First-in-first-out queueing ·
Switches · Online algorithms · Competitive analysis

1 Introduction

Modern day computing faces increasingly heterogeneous tasks, varying in impor-
tance, size, processing requirements, and other characteristics. Such scenarios are
encountered, for example, in OS caching environments, job-shop scheduling, and,
most notably, network processors dealing with packet-switched traffic. In many of
these environments the queue might be constrained to use a limited size buffer,
which further restricts the ability to provide performance adequate to the underlying
computing tasks.

In this work we consider the problem of scheduling packets with heterogeneous
required processing in case when admission control and push out may be allowed and
the queue is bounded, i.e. no more than B unit-sized packets can be waiting at any
given time. This scenario is motivated by real life applications in buffers on network
processors (NP).

In what follows we adopt the terminology used to describe buffer management
problems and focus our attention on the general model where we are required to
manage admission control and scheduling units of a single bounded size queue that
processes and transmits packets in First-In-First-Out (FIFO) order. Because it is sim-
ple and does not require packet reordering at the final destination, FIFO processing
has become a de facto standard in modern packet processors [7, 9, 12]. We con-
sider a model where arriving traffic consists of unit-sized packets, and each packet
has a processing requirement (at most k in processor cycles). Per-packet processing
requirements are often highly regular and predictable for a fixed configuration of
network elements and well-defined as a function of the features associated with the
“flow” and the network element configuration [34]. A packet is successfully trans-
mitted only after the scheduling unit has scheduled the packet for processing for at
least its required number of cycles. If a packet is dropped upon arrival or pushed out
from the queue after being admitted due to admission control policy considerations
(if push-out is allowed), the packet is lost without gain to the algorithm’s throughput.
Our objective is to maximize the total number of successfully transmitted packets.

1.1 Our Contributions

For online settings, we propose algorithms with provable performance guarantees.
We consider both push-out (when the algorithm can drop a packet from the queue)
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and non-push-out cases. We show that the competitive ratio obtained by our algo-
rithms depends on the maximum number k of processing cycles required by a packet,
but none of our algorithms need to know the maximum number of processing cycles
k in advance.

We discuss the non-push-out case in Section 2 and show that the on-line non-
push-out greedy algorithm NPO (Algorithm 1) is k-competitive, and that this bound
is tight.

For the push-out case, we consider a simple greedy algorithm PO (Algorithm 2),
which in the case of congestion pushes out the first packet with maximal required
processing, and introduce the Lazy-Push-Out algorithm (LPO, Algorithm 3). LPO
works similar to PO in push-out decisions but does not transmit packets if there still
exist packets in the queue that still have to be processed (i.e., LPO waits until all pack-
ets in the buffer have zero cycles left and then sends C “fully processed” packets per
time slot, where C is the number of cores). Note that LPO preserves FIFO processing
order and postpones transmission of “fully processed” packets only for simplicity of
description. In practice, we can define a new online algorithm with the same perfor-
mance that will emulate the buffer occupancy of LPO and will not artificially delay
the transmission of “fully processed” packets.

Intuitively, it seems that PO should outperform LPO since PO tends to empty
its buffer faster but we demonstrate that these algorithms are “incomparable” in the
worst case. Although we provide a lower bound for PO, the main result of this work is
an upper bound on the competitiveness of LPO. Namely, we demonstrate that LPO is
at most (max{1, ln k} + 2 + o(1))-competitive. We also prove several lower bounds
on the competitiveness of both PO and LPO for different values of B and k. For a
special case of systems with only two different required processing values, 1 and k

(this is a special case that often occurs in practice), our bound improves to
(

2 + 1
B

)
.

These results are presented in Section 3.
The competitiveness result for LPO is interesting in itself since “lazy” algorithms

provide a well-defined accounting infrastructure; we hope that a similar approach can
be applied to other systems in similar settings. In Section 4, we conduct a compre-
hensive simulation study to experimentally verify the performance of the proposed
algorithms. Section 5 concludes the paper.

1.2 Related Work

Keslassy et al. [15] and later [8, 11, 20, 22, 23] considered buffer management
for packets with heterogeneous processing requirements in various settings. They
study both SRPT (shortest remaining processing time) and FIFO (first-in-first-out)
schedulers with recycles, in both push-out and non-push-out buffer management
cases, where a packet is recycled after processing according to the priority pol-
icy (FIFO or SRPT). They showed competitive algorithms and worst-case lower
bounds.

Our present work, can be viewed as part of a larger research effort concentrated
on studying competitive algorithms with buffer management for bounded buffers
(see, e.g., a recent survey by Goldwasser [13] and later Nikolenko et al. [29] provide
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an excellent overview of this field). This line of research, initiated in [19, 26], has
received tremendous attention in the past decade.

Various models have been proposed and studied, including, among others, QoS-
oriented models where packets have weights [1, 10, 14, 18, 19, 26]. A related field
that has received much attention in recent years focuses on various switch architec-
tures and aims at designing approximation algorithms for such scenarios; see, e.g., [2,
3, 16, 17, 24].

There is a long history of OS scheduling for multithreaded processors which is
relevant to our research. For instance, the SRPT algorithm has been studied exten-
sively in such systems, and it is well known to be optimal with respect to the
mean response [32]. Additional objectives, models, and algorithms have been studied
extensively in this context [25, 27, 28]. For a comprehensive overview of competitive
online scheduling for server systems, see a survey by Pruhs [30]. When comparing
this body of research with our proposed framework, one should note that OS schedul-
ing is mostly concerned with average response time, but we focus on estimation of the
throughput. Furthermore, OS scheduling does not allow jobs to be dropped, which is
an inherent aspect of our proposed model since we have a limited-size buffer.

The model considered in our work is also closely related to job-shop schedul-
ing problems [5], most notably hybrid flow-shop scheduling [31] in scenarios where
machines have bounded buffers and cannot drop or push out packets.

1.3 Model Description

We consider a buffer with bounded capacity B that handles the arrival of a sequence
of unit-sized packets. Each arriving packet p is branded with the number of required
processing cycles r(p) ∈ {1, . . . , k}. This number is known for every arriving packet;
for a motivation of why such information may be available see [34]. Although the
value of k will play a fundamental role in our analysis, we note that our algorithms
need not know k in advance. Note that for k = 1 the model trivializes to a single
queue of uniform packets.

In what follows, we adopt the terminology used in [23]. The queue performs
two main tasks, namely buffer management, which handles admission control of
newly arrived packets and push-out of currently stored packets, and scheduling,
which decides which of the currently stored packets will be scheduled for process-
ing. The scheduling will be determined by the FIFO order employed by the queue.
Our framework assumes a multi-core environment, where we have C processors,
and at most C packets may be chosen for processing at any given time.1 This sim-
ple setting suffices to show both the difficulties of the model and our algorithmic
scheme.

We assume discrete slotted time. Each time slot t consists of three phases:

(i) arrival: new packets arrive, and the buffer management unit performs admis-
sion control and, possibly, push-out;

1Note that two cores are not allowed to process the same packet simultaneously.
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(ii) processing: C packets (if exist) are selected for processing by the scheduling
module; the packets remain at their places after processing and are not recycled
to the back of the queue;

(iii) transmission: C packets (if exist) with zero remaining processing can be
transmitted and leave the queue.

In the remainder of this paper we assume the system selects a single packet for
processing at any given time (i.e., C = 1) in the theorems; however, variable C will
resurface in the simulations (Section 4).

If a packet is dropped prior to being transmitted (i.e., while it still has a positive
number of required processing cycles), it is lost. Note that a packet may be dropped
either upon arrival or due to a push-out decision while it is stored in the buffer.
A packet contributes one unit to the objective function only upon being success-
fully transmitted. The goal is to devise buffer management algorithms that maximize
the overall throughput, i.e., the overall number of packets transmitted from the
queue.

For lazy algorithms, packets with zero remaining processing cycles can be
delayed. But even in this case processing and transmission order follows arrival
order, so the FIFO property among all processed and transmitted packets is
satisfied.

The FIFO property is important in many networking applications. However, the
term “FIFO” has been slightly ambiguous in our model so far; it can be understood
to mean either

(i) “transmission order coincides with arrival order” or
(ii) “both transmission and processing order coincide with arrival order”.

The difference is that in the former case, a policy is free to choose any packet it
wishes for processing and only has to transmit the processed packets in the arrival
order; in [20], such policies are called semi-FIFO, and a comprehensive treat-
ment of such policies is presented. In this work, all considered policies conform to
the latter, more strict understanding, so processing order also must follow arrival
order.

We define a greedy buffer management policy as a policy that accepts all arrivals
if there is available buffer space in the queue. A policy is work-conserving if it always
processes whenever its buffer is nonempty. We say that an arriving packet p pushes
out a packet q that has already been accepted into the buffer when q is dropped in
order to free buffer space for p, and p is admitted to the buffer instead in FIFO order.
A buffer management policy is called a push-out policy whenever it allows packets
to push out currently stored packets. Figure 1 shows a sample time slot in our model
(for the greedy push-out case). For an algorithm ALG and time slot t , we denote by
IBALG

t the set of packets stored in ALG’s buffer at time slot t after arrival but before
transmission (see Fig. 1).

The number of processing cycles of a packet is key to our algorithms. Formally,
for every time slot t and every packet p currently stored in the queue, its number of
residual processing cycles, denoted rt (p), is defined to be the number of processing
cycles it requires before it can be successfully transmitted.
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Fig. 1 Zoom in on a single
time slot for a greedy push-out
work-conserving algorithm.
In this slot,

IBALG =

In this work we do not assume any specific traffic distribution but rather analyze
our switching policies against adversarial traffic using competitive analysis [4, 33],
which provides a uniform throughput guarantee for all traffic patterns. An online
algorithm A is said to be α − competitive (for some α ≥ 1) if for any arrival
sequence σ the number of packets successfully transmitted by A is at least 1/α times
the number of packets successfully transmitted by an optimal solution (denoted OPT)
obtained by an offline clairvoyant algorithm. Also two algorithms ALG1 and ALG2
are incomparable in the worst case if there are two inputs I1 and I2, such that ALG1
outperforms ALG2 on the input I1 and ALG2 outperforms ALG1 on the input I2;
otherwise, ALG1 and ALG2 are comparable in the worst case.

1.4 Proposed Algorithms

In this work, we study both push-out and non-push-out algorithms. The Non-Push-
Out Algorithm (NPO) is a simple greedy work-conserving policy that accepts a
packet if there is enough available buffer space. Already admitted packets are
processed in First-In-First-Out order (head of line packet is always selected for pro-
cessing). If during arrivals NPO’s buffer is full then any arriving packet is dropped
even if it has less processing required than a packet already admitted to NPO’s buffer
(see Algorithm 1).

Next we introduce two push-out algorithms. The Push-Out Algorithm (PO) is also
greedy and work-conserving, but now, when an arriving packet p requires less pro-
cessing cycles than at least one packet in its buffer, PO pushes out the first packet
with the maximal number of processing cycles in its buffer and accepts p according
to FIFO order (see Algorithm 2). For processing, PO always selects the first packet
in the queue.
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The second algorithm is a new Lazy-Push-Out algorithm LPO that mimics the
behaviour of PO with two important differences (see Algorithm 3):

(i) LPO does not transmit a head of line packet with zero processing cycles left
if still has packets with residual processing left in the buffer, until the buffer
contains only packets with zero residual processing cycles;

(ii) once all packets in LPO’s buffer (say there are m packets there) have zero
processing cycles remaining, LPO transmits them over the next m processing
cycles.2

LPO has push-out similar to PO: if an arriving packet p requires less processing
than the first packet q with maximal number of processing cycles in LPO’s buffer, p

pushes out q. Note that processing order does follow arrival order for LPO, it is only
that we sometimes forgo the possibility to transmit an already processed packet.

Intuitively, LPO is a weakened version of PO since PO tends to empty its buffer
faster. Simulations also support this view (see Section 4). However, the follow-

2Here, again, there is room for different possible interpretations of LPO; we might assume that packets
with zero processing left can be transmitted all at once. This would make LPO better and improve the upper
bound in Theorem 5 by 1. Since our main results deal with upper bounds, we make the least favourable
choice and assume that only one packet per time slot can be transmitted (C packets in the multicore case).
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ing theorem shows that LPO and PO are incomparable in the worst case, i.e.,
none of them dominates the other on all inputs. To illustrate the proposed algo-
rithms once again, hard examples in the proof of Theorem 1 are also illustrated on
Fig. 2.

Theorem 1 (1) There exists a sequence of inputs on which PO processes ≥ 2 times
more packets than LPO.

(2) There exists a sequence of inputs on which LPO processes ≥ 3
2+3/k

times more
packets than PO.

Proof To see (1), consider two bursts of B packets:

(i) a burst of B packets with required processing 1 arriving at time slot t = 1 and
(ii) a burst of B packets with required processing 1 arriving at time slot t = B.

By the time the second burst arrives, LPO has processed no packets and has B packets
with required processing 0 in its buffer, while PO has processed B packets. Then both
algorithms transmit B packets over the next B time slots. Since we have arrived at a
state where both algorithms have empty buffers, we can repeat the procedure, getting
an asymptotic bound.

Fig. 2 Two packet processing examples from Theorem 1. Time flows from top to bottom, buffer states for
each timeslot are shown after the transmission phase. Packets that will be transmitted out on the next time
slot are shown in grey. Up: case (1), PO processes more packets than LPO. Right: case (2), LPO processes
more packets than PO
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To prove (2), suppose that k < B
3 . The following table demonstrates the sequence

of arrivals and the execution of both algorithms (#ALG denotes the number of pack-
ets processed by ALG up to this time; no packets arrive during time slots not shown
in the table).

Similar to (1), we can repeat this sequence.

LPO is an online push-out algorithm that obeys the FIFO ordering model, so its
competitiveness is an interesting result by itself. But we believe this type of algo-
rithms to be a rather promising direction for further study since they provide a
well-defined accounting infrastructure that can be used for system analysis in dif-
ferent settings. From an implementation point of view we can define a new on-line
algorithm that will emulate the behaviour of LPO but will not delay the transmission
of processed packets. Observe that such an algorithm is not greedy. Although we
will briefly discuss the competitiveness of an NPO policy and lower bounds for PO,
in what follows NPO and PO will be mostly used as a reference for the simulation
study.

2 Competitiveness of the Non-Push-Out Policy

The following theorem provides a tight bound on the worst-case performance of
NPO.

Theorem 2

(1) For a sufficiently long arrival sequence, the competitiveness of NPO is at least
k.

(2) For a sufficiently long arrival sequence, the competitiveness of NPO is at most
k.
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Proof

(1) Lower bound. Consider the following set of arrivals: during the first time slot,

there arrive B× thus, over the next k time slots the buffer of NPO is full.

During this time interval, there arrives a on each time slot, then 1× and

then again every turn for the next k slots, and so on. During each iteration,
OPT transmits k packets while NPO transmits only one packet.

(2) Upper bound. Observe that NPO must fill up its buffer before it drops any
packets. Moreover, as long as NPO’s buffer is not empty after at most k time
steps NPO must transmit its HOL packet. This means that NPO is transmit-
ting at a rate of at least one packet every k time steps, while OPT in the same
time interval transmits at most k packets. Hence, the number of transmitted
packets at time t for NPO is at least �t/k� while OPT transmits at most t

packets for a competitive ratio of k over the period when NPO has nonempty
buffer.

If, on the other hand, NPO empties its buffer first, it means that there were no packet
arrivals since the NPO buffer went below the B − 1 threshold at a time t . From that
moment on NPO empties its buffer transmitting thus at least B − 1 packets, while
OPT transmits at most B packets.

So in total the number of packets transmitted by NPO is at least
⌊

t
k

⌋+B −1 while
the total number of packets transmitted by OPT is t + B. Thus, for sufficiently long
input sequences NPO is k-competitive.

As demonstrated by the above results, the simplicity of non-push-out greedy
policies does have its price. In the following sections we explore the benefits of
introducing push-out policies and provide an analysis of their performance.

3 Competitiveness of Push-Out Policies

In this section, we show lower bounds on the competitive ratio of PO and LPO algo-
rithms (Section 3.1) and prove an upper bound for LPO (Section 3.2); in Section 3.3,
we consider a special case of packets of two sizes (a special case important in
practice) and prove a tight pair of lower and upper bounds for this case.

3.1 Lower bounds

In this part we consider lower bounds on the competitive ratio of PO and LPO for
different values of k and B.

Theorem 3 For k ≥ B, the competitive ratio of PO is at least 2
(

1 − 1
B

)
, and the

competitive ratio of LPO is at least 3
(

1 − 1
B

)
. For k < B, the competitive ratio is

at least 2k
k+1 for PO and at least 2k−1

k
for LPO.
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Proof (Case 1. k ≥ B.) In this case, the same hard instance works for both PO and
LPO with a minor modification. Consider the following sequence of arriving packets:
on step 1, there arrives a packet with B required work followed by a packet with a
single required cycle; on steps 2..B − 2, B − 2 more packets with a single required
processing cycle; on step B − 1, B packets with a single processing cycle, and then
no packets until step 2B − 1, when the sequence is repeated. Under this sequence
of inputs, the queues will work as follows (#ALG denotes the number of packets
processed by ALG).

Thus, at the end of this sequence PO has processed B packets, while OPT has
processed 2B − 2, and the sequence repeats itself, making this ratio asymptotic. For
the LPO case, there is a possibility for OPT to process B more packets: at time

moment 2B − 1, when IBLPO = B× there arrive B× and LPO has to drop
them.

Case 2.1 k < B, algorithm PO. In this case, we need to refine the previous construc-
tion; for simplicity, we assume that k � B → ∞, and B divides everything it has to
divide.

1. On step 1, there arrive (1 − α)B packets of required work k followed by αB

packets with required work 1 (α is a constant to be determined later). PO accepts
all packets, while OPT rejects packets with required work k and only accepts
packets with required work 1.

2. On step αB, OPT’s queue becomes empty, while PO has processed αB
k

packets,
so it has αB

k
free spaces in the queue. Thus, there arrive αB

k
new packets of

required work 1.

3. On step αB
(

1 + 1
k

)
, OPT’s queue is empty again, and there arrive αB

k2 new

packets of required work 1.
4. ...
5. When PO is out of packets with k processing cycles, its queue is full of packets

with 1 processing cycle, and OPT’s queue is empty. At this point, there arrive
B new packets with a single processing cycle, they are processed, and the entire
sequence is repeated.
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In order for this sequence to work, we need to have

αB

(
1 + 1

k
+ 1

k2
+ . . .

)
= k (1 − α) B.

Solving for α, we get α = 1 − 1
k

. During the sequence, OPT has processed

αB
(

1 + 1
k

+ 1
k2 + . . .

)
+ B = 2B packets, while PO has processed (1 − α)

B + B =
(

1 + 1
k

)
B packets, so the competitive ratio is 2

1+ 1
k

. Note that the two

competitive ratios, 2
1+ 1

k

and 2
(

1 − 1
B

)
, match when k = B − 1.

Case 2.2 k < B, algorithm LPO. In this case, we can use an example similar to the
previous one, but simpler since there is no extra profit to be had from an iterative
construction.

1. On step 1, there arrive (1−α)B packets with k processing cycles followed by αB

packets with a single processing cycle (α is a constant to be determined later).
LPO accepts all packets, while OPT rejects packets with required work of k and
only accepts packets with a single processing cycle.

2. On step αB, OPT’s queue becomes empty, and there arrive βB new packets of
required work 1.

3. On step (α + β)B, OPT’s queue is empty again, and LPO’s queue consists
of B packets with required work 0. At this point, there arrive B new pack-
ets with required work 1, they are processed, and the entire sequence is
repeated.

In order for this sequence to work, we need to have

(
β + α + β

k

)
B = (1 − α) B,

OPT has processed (α + β)B extra packets, and from this equation we get

α + β =
(

1 + 1

k − 1

)−1

.

During the sequence, OPT has processed B

(
1 +

(
1 + 1

k−1

)−1
)

packets, and LPO

has processed B packets, yielding the necessary bound. �

For large k (of the order k ≈ Bn, n > 1), logarithmic lower bounds follow.

Theorem 4 The competitive ratio of PO (LPO) is at least �logB k� + 1 − O
(

1
B

)
.

Proof We proceed by induction on B. For the induction base, we begin with the
basic construction that works for k = Ω

(
B2

)
.
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Lemma 1 For k ≥ (B − 1)(B − 2), the competitive ratio of PO is at least 3B
B+1 ; for

LPO, the competitive ratio is at least 3.

Proof This time, we begin with the following buffer state:

Over the next B(B−1)/2 steps, PO (LPO) keeps processing the first packet, while
OPT, dropping the first packet, processes all the rest (their sizes sum up to the size of
the first one). Thus, after B(B − 1)/2 steps OPT’s queue is empty, and PO’s (LPO’s)
queue looks like

Over the next B steps, B packets of size 1 arrive in the system. On each step, PO
(LPO) drops the packet from the head of the queue since it is the largest one, while
OPT keeps processing packets as they arrive.

Thus, at the end of B(B − 1)/2 + B steps, PO (LPO) has a queue full of
and OPT has an empty queue; moreover, PO (LPO) has processed only one packet
(zero packets), while OPT has processed 2B packets. Now we have B packets of
size 1 arriving, and after that they are processed and the sequence is repeated, so
PO (LPO) processes B + 1 packets (B packets) and OPT processes 3B packets
per iteration.

If k grows further, we can iterate upon this construction to get better bounds.
For the induction step, suppose that we have already proven a lower bound of

n − O
(

1
B

)
, and the construction requires maximal required work per packet less

than S = Ω
(
Bn−1

)
.

Let us now use the construction from Lemma 1, but add S to every
packet’s required work and, consequently, S(B − 1) to the first packet’s required
work:

For the first (B + 2S)(B − 1)/2 steps, this works exactly like the previous
construction: OPT processes all packets except the first while PO (LPO) is pro-
cessing the first packet. After that, OPT’s queue is empty, and PO’s (LPO’s) queue
is

Now we can add packets from the previous construction (all at once), and OPT will
just take them into its queue, while PO (LPO) will replace all existing packets from
its queue with new ones. Thus, the situation has been reduced to the beginning of the
previous construction, but this time, PO (LPO) has already processed one packet and
OPT has already processed B − 1 packets.

This completes the proof of Theorem 4.
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3.2 Upper Bound on the Competitive Ratio of LPO

We already know that the performance of LPO and PO is incomparable in the worst
case (see Theorem 1), and it remains an interesting open problem to show an upper
bound on the competitive ratio of PO. In this section we provide the first known upper
bound of LPO. Specifically, we prove the following theorem.

Theorem 5 LPO is at most (max{1, ln k} + 2 + o(1))-competitive.

Recall that LPO does not transmit any packet until all packets in the buffer have
zero processing cycles left. The definition of LPO allows for a well-defined account-
ing infrastructure. In particular, it helps us define an iteration during which we will
count the number of packets transmitted by the optimal algorithm and compare it to
the contents of LPO’s buffer. The first iteration begins with the first arrival. An iter-
ation ends when all packets in the LPO buffer have zero processing passes left. Each
subsequent iteration begins after all LPO packets from the previous iteration have
been transmitted. We call an iteration congested if LPO’s buffer has been full during
this iteration.

First of all, note that during an uncongested iteration no algorithm can gain
over LPO because LPO processes all arrived packets (it does not push anything
out). Therefore, in what follows we assume that an iteration is always congested
(uncongested iterations can only improve the resulting upper bound).

We assume that OPT never pushes out packets and it is work-conserving; without
loss of generality, every optimal algorithm can be assumed to have these prop-
erties since it has access to the input sequence a priori. Further, we enhance
OPT with an additional property: at the end of each iteration, OPT flushes out
all packets remaining in its buffer from the previous iteration (for free, with
extra gain to its throughput). Clearly, the enhanced version of OPT is no worse
than the optimal algorithm since both properties provide additional advantages
to OPT versus the original optimal algorithm. In what follows, we will com-
pare LPO with this enhanced version of OPT for the purposes of an upper
bound.

To avoid ambiguity for the reference time, t should be interpreted as the arrival
time of a single packet. If more than one packet arrive at the same time slot, this
notation is considered for every packet independently, in the sequence in which they
arrive (although they might share the same actual time slot).

In what follows, we consider a congested iteration I that begins at time tbeg and
ends at time tend (see Fig. 3). We denote by tcon the first time moment when LPO’s
buffer is congested.

Lemma 2 The following statements hold:

(1) during I , the buffer occupancy of LPO is at least the buffer occupancy of OPT;
(2) if during a time interval [t, t ′], tbeg ≤ t ≤ t ′ ≤ tcon, there is no congestion

in LPO’s buffer then during [t, t ′] OPT transmits at most |IBLPO
t ′ | packets and

LPO does not transmit any packets.
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Fig. 3 The anatomy of a congested iteration. Time flows bottom up. At time tbeg, OPT buffer is empty.
At tcon, the first congestion in LPO buffer occurs, and OPT has A packets plus a possible HOL packet. At
time tend − B, LPO starts transmitting. At time tend (end of iteration), OPT flushes out whatever it has in
the buffer for free, and new iteration begins

Proof

(1) LPO takes as many packets as it can until its buffer is full and once full it
remains so for the rest of the iteration. Therefore, its buffer is at least as full as
OPT’s during an iteration.

(2) Since during [t, t ′] there is no congestion and since LPO is greedy, LPO buffer
contains all packets that arrive after t , and OPT cannot transmit more packets
than have arrived. LPO cannot transmit during this time since it transmits only
at the end of an iteration, and the iteration is assumed to be congested.

Let us now go over the iteration (bottom up on Fig. 3) and count the packets that
OPT can process on each step.

Lemma 3

(1) During [tbeg, tcon], OPT processes at most B − 1 packets.
(2) For every packet p in OPT’s buffer at time tcon except perhaps the HOL packet,

there is a corresponding packet q in LPO’s buffer with r(q) ≤ r(p).

Proof During [tbeg, tcon], there arrive exactly B packets (because LPO does not
transmit any packets and becomes congested at tcon). Moreover, OPT cannot pro-
cess all B packets because then LPO would also have time to process them, and
the iteration would be uncongested. Item (2) is equally obvious: every packet in
OPT’s buffer also resides in LPO’s buffer because LPO has not dropped anything
yet at time tcon; r(q) ≤ r(p) because LPO may have processed some packets
partially.
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We denote by A the number of non-HOL packets in OPT’s buffer at time tcon;
by WA, their total required processing. We denote by Mt the maximal number of
residual processing cycles among all packets in LPO’s buffer at time t that belong to
the current iteration;3 by Wt , the total residual work for all packets in LPO’s buffer
at time t . Lemma 3 shows that LPO’s buffer at time tcon contains A corresponding
packets, so

Wtcon ≤ WA + (B − A)k.

Moreover, over the next WA time slots OPT will be processing these A packets
and LPO, being congested, will also not be idle, so at time tcon + WA we will have
Wtcon+A ≤ (B −A)k (we give OPT its HOL packet for free, so OPT processes A+ 1
packets over [tcon, tcon + A]).

Lemma 4 For every packet accepted by OPT at time t ∈ [tcon, tend] and processed
by OPT during time interval [t ′, t ′′], tcon ≤ t ′ ≤ t ′′ ≤ tend, Wt ′′ ≤ Wt−1 − Mt .

Proof If LPO’s buffer is full then a packet p accepted by OPT either pushes out
a packet in LPO’s buffer or is rejected by LPO. If p pushes a packet out, then the
total work Wt−1 is immediately reduced by Mt − rt (p). Moreover, after processing
p, Wt ′′ ≤ Wt−1 − (Mt − rt (p)) − rt (p) = Wt−1 − Mt . If, on the other hand, p is
rejected by LPO then rt (p) ≥ Mt , and thus Wt ′′ ≤ Wt−1 − rt (p) ≤ Wt−1 − Mt .

Next we denote by f (B, W) the maximal number of packets that OPT can transmit
during [t, t ′], tcon ≤ t ≤ t ′ ≤ tend, where W = Wt−1. The next lemma is crucial for
the proof; it shows that OPT cannot have more than logarithmic (in k) gain over LPO
during the congestion period. Note that the statement of Lemma 5 could have been
simplified to f (B,W) ≤ B ln W

B
, which would suffice to prove Theorem 5. However,

we have decided to spell out the strongest result available to us. In particular, this
slightly stronger formulation may serve to close the gap between lower and upper
bounds either in this model or in subsequent modifications of it (since Lemma 5 is
quite general, and its ideas can be applied to other lazy policies).

Lemma 5 For every ε > 0, f (B, W) ≤ B−1
1−ε

ln W
B

for B sufficiently large.

Proof All packets LPO transmits it does at the end of an iteration, hence, if the
buffer of LPO is full, it will remain full until tend − B. At any time t , Mt ≥ Wt

B
:

the maximal required processing is no less than the average. By Lemma 4, for every
packet p accepted by OPT at time t , the total work W = Wt−1 is reduced by Mt after
OPT has processed p. Therefore, after OPT processes a packet at time t ′, Wt ′ is at

most W
(

1 − 1
B

)
.

3This qualification deals with a boundary case: during the last B time slots of an iteration, when LPO is
transmitting, we set Mt = 1 for t ∈ [tend − B, tend] independent of the newly arriving packets that will
be processed on the next iteration; at any other time, Mt is simply the maximum residual work among all
packets.
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We now prove the statement by induction on W . The base is trivial for W = B

since all packets are already 1’s.
The induction hypothesis is now that after one packet is processed by OPT, there

cannot be more than f
(
B, W

B

(
1 − 1

B

))
≤ B−1

1−ε
ln

[
W
B

(
1 − 1

B

)]
packets left, and

for the induction step we have to prove that

B − 1

1 − ε
ln

[
W

B

(
1 − 1

B

)]
+ 1 ≤ B − 1

1 − ε
ln

W

B
.

This is equivalent to

ln
W

B
≥ ln

[
W

B

B − 1

B
e

1−ε
B−1

]
,

and this holds asymptotically because for every ε > 0, we have e
1−ε
B−1 ≤ B

B−1 for B

sufficiently large.

Applying Lemma 5 to the time tcon + A, we get the following.

Corollary 1 For every ε > 0, the total number of packets processed by OPT between
tcon and tend in a congested iteration does not exceed

A + 1 + (B + o(B)) ln
(B − A)k

B
.

Now we are ready to prove Theorem 5.

Proof Consider an iteration I that begins at time tbeg and ends at time tend. If I is
uncongested then, as we have already noted, OPT cannot transmit more than

∣∣IBLPO
t

∣∣
packets during I .

Consider an iteration I first congested at time tcon, tbeg ≤ tcon ≤ tend. By
Lemma 2(2), during [tbeg, tcon)OPT can transmit at most B−1 packets, leaving A+1
packets in its buffer. By Corollary 1, OPT processes at most A+1+ B−1

1−ε
ln (B−A)k

B
+

o
(
B ln (B−A)k

B

)
packets during [tcon, tend], and then flushes out at most B packets

at time tend. Thus, the total number of packets transmitted by OPT over a congested
iteration is at most

2B + A + (B + o(B)) ln
(B − A)k

B
.

It is now easy to check that for every 1 ≤ A ≤ B −1 the competitive ratio is bounded
by the the theorem’s statement.

3.3 The Case of Two Required Processing Values

In this section, we consider a special case when there are only two possible required

processing values, 1 and k, so there are only two kinds of packets, and

This case often occurs in practice; for instance, may represent “commodity”

packets that are processed to completion while corresponds to packets requiring
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advanced processing of some kind. In this special case, PO and LPO have even better
competitiveness guarantees, as the bounds below indicate.

In what follows, we show a lower bound of 2 − 1
k

and a matching upper bound of
2 + 1

B
on the competitive ratio of LPO.

Theorem 6 (1) The competitive ratio of LPO in the two-valued case is at least
2 − 1

k
for B ≥ k.

(2) The competitive ratio of PO in the two-valued case is at least 2
1+ 1

k

for B ≥ k.

Proof

1. Similar to Theorem 3, the first burst for LPO consists of B
k
× followed by

(
B − B

k

)
Over the next

(
B − B

k

)
steps, OPT processes all while LPO

leaves only and in the queue. Then, B× arrive, and both algorithms
process B more packets, getting the ratio of 2 − 1

k
.

2. For PO, the first burst is the same but we wait for B steps; after B steps, PO has

processed B
k

packets while OPT has processed B packets, and we add B×
getting the bound.

Theorem 7 In the two-valued case, LPO is at most
(

2 + 1
B

)
-competitive.

Proof Following the notation from the proof of Theorem 5, consider a congested
iteration starting at time tbeg, getting its first congestion at time tcon, and ending at
time tend. The proof of the upper bound is very similar to the proof of Theorem 5,
with two important differences. Lemma 2 goes through without change.

The first difference is that Lemma 4 now becomes stronger.

Lemma 6 For every packet accepted by OPT at time t ∈ [tcon, tend] and processed
by OPT during time interval [t ′, t ′′], tcon ≤ t ′ ≤ t ′′ ≤ tend, Wt ′′ ≤ Wt−1 − k in all

cases except possibly the very last packet in LPO’s buffer.

Proof As long as LPO buffer contains at least one Mt = k.

Second, the two-valued case allows for more accurate analysis of the congested
period. Suppose that during [tbeg, tcon] (before first congestion) OPT has processed

α× extra packets (note that there cannot be any extra packets for OPT). This

means that at time tcon, LPO’s buffer contains at least α× (LPO never pushes out

a if it is possible to process it), and LPO has already spent at least α time slots on

its Therefore, Wtcon ≤ α + (B − α)k − α = (B − α)k. Thus, during [tcon, tend]
there can be at most B − α + 1 steps of Lemma 6, and as a result, OPT processes
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at most B − α + 1 packets during [tcon, tend] and then gets the final flush of B more
packets. Therefore, the resulting ratio is at most

α + B − α + 1 + B

B
= 2 + 1

B
.

4 Simulation Study

In this section, we consider the proposed policies (both push-out and non-push-out)
for FIFO buffers and conduct a simulation study in order to further explore and vali-
date their performance. Namely, we compare the performance of NPO, PO, and LPO
in different settings. It was shown in [15] that a push-out algorithm that processes
packets with less required processing first is optimal, so in what follows we denote it
by OPT∗. Clearly, OPT in the FIFO queueing model does not outperform OPT∗.

Publicly available traffic traces (such as CAIDA [6]) do not contain, to the
best of our knowledge, information on the processing requirements of packets.
Furthermore, these requirements are difficult to extract since they depend on the
specific hardware and NP configuration of the network elements. Another hand-
icap of such traces is that they provide no information about time-scale, and
specifically, how long should a time-slot last. This information is essential in our
model in order to determine both the number of processing cycles per time-slot,
as well as traffic burstiness. We therefore perform our simulations on synthetic
traces.

Our traffic is generated from 100 independent sources, each generated by an on-off
Markov modulated Poisson process (MMPP) which we use to simulate bursty traffic.
The choice of parameters is governed by average arrival load, which is determined by
the product of the average packet arrival rate and the average number of processing
cycles required by packets. In our simulations, each source has average packet rate
of 1

21λon, where λon is the parameter governing traffic generation while in the on
state. Each source also has a fixed required processing value for every emitted packet;
these values are distributed evenly across {1, . . . , k} (k being the maximum amount
of processing required by any packet). We conducted our simulations for 500,000
time slots, and allowed various parameters to vary in each set of simulations, in order
to better understand the effect each parameter has on system performance and verify
our analytic results.

By performing simulations for the maximal number of required passes k in the
range [1, 40] and the underlying source intensity λon in the range [0.005, 0.25], we
evaluate the performance of our algorithms in settings ranging from underload to
extreme overload, validating their performance in various traffic scenarios. Figure 4
shows simulation results. The vertical axis always represents the ratio between the
algorithm’s performance and OPT∗ performance arrival sequence (so the black line
corresponding to OPT∗ is always horizontal at 1). Throughout our simulation study,
the standard deviation never exceeded 0.05 (deviation bars are omitted for readabil-
ity). For every choice of parameters, we conducted 500,000 rounds (time slots) of
simulation, four sets of simulations in total.
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Fig. 4 Performance ratio of online algorithms versus optimal as a function of parameters: row 1, of λon;
row 2, of k; row 3, of B; row 4, of C. The y-axis on all graphs shows the competitiveness vs. OPT∗

Variable Intensity and Variable Maximum Number of Required Processing
Cycles Both the first and second set of simulations amount to testing different poli-
cies under gradually increasing processing requirements. The first and second row of
graphs on Fig. 4 show that OPT∗ keeps outperforming LPO and NPO more and more
as k grows; however, the difference in processing order between OPT∗ and PO does
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Table 1 Results summary: lower and upper bounds

Algorithm/family Case Lower bound Upper bound

NPO k k

PO k < B 2k
k+1 open problem

k ≥ B 2
(

1 − 1
B

)

k  B �logB k� + 1 − O
(

1
B

)

2-valued, k ≤ B 2k
k+1

LPO k < B 2 − 1
k

(max{1, ln k} + 2 + o(1))

k ≥ B 3
(

1 − 1
B

)
(max{1, ln k} + 2 + o(1))

k  B �logB k� + 1 − O
(

1
B

)
(max{1, ln k} + 2 + o(1))

2-valued, k ≤ B 2 − 1
k

(
2 + 1

B

)

not matter much. NPO results show that non-push-out policies cope very badly with
overload scenarios, as expected.

Variable Buffer Size In this set of simulations we evaluated the performance of our
algorithms for variable values of B in the range [1, 40]. Throughout our simulations
we again assumed a single core (C = 1) and evaluated different values of k. The third
row on Fig. 4 presents our results. Unsurprisingly, the performance of all algorithms
significantly improves as the buffer size increases; the difference between OPT∗ and
two other push-out algorithms visibly reduces, but, of course, it would take a huge
buffer for NPO to catch up (one would need to virtually remove the possibility of
congestion).

Variable Number of Cores In this set of simulations we evaluated the performance
of our algorithms for variable values of C in the range [1, 10]. The bottom row of
Fig. 4 presents our results; the performance of all algorithms, naturally, improves
drastically as the number of cores increases. There is an interesting phenomenon
here: push-out capability becomes less important since buffers are congested less
often, but LPO keeps paying for its “laziness”; so as C grows, eventually NPO out-
performs LPO. The increase in the number of cores essentially provides the network
processor (NP) with a speedup proportional to the number of cores (assuming the
average arrival rate remains constant).

5 Conclusion

In this paper, we provide performance guarantees for NP buffer scheduling algo-
rithms with FIFO queueing for packets with heterogeneous required processing. The
objective is to maximize the number of transmitted packets under various settings
such as push-out and non-push-out buffers. We validate our results by simulations.
Table 1 summarizes our contributions. As future work, it will be interesting to show
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an upper bound for the PO algorithm and try to close the gaps between lower and
upper bounds of the proposed on-line algorithms.
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20. Kogan, K., López-Ortiz, A., Nikolenko, S.I., Sirotkin, A.V.: A taxonomy of semi-FIFO policies. In:

Proceedings of the 31st IEEE International Performance Computing and Communications Conference
(IPCCC 2012), pp. 295–304 (2012)
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