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Abstract We study the problem of designing truthful mechanisms for makespan
minimization in scheduling. In particular, we consider randomized mechanisms for
a restriction of the general multi-dimensional domain (i.e., unrelated machines). In
a sense, our setting is the simplest multi-dimensional setting, where each machine
holds privately only a single-bit of information. Some of the impossibility results
for deterministic mechanisms carry over our setting as well. We prove a separation
between truthful-in-expectation and universally truthful mechanisms for makespan
minimization: We first show how to design an optimal truthful-in-expectation mech-
anism, and then prove lower bounds on the approximation guarantee of universally
truthful mechanisms.

Keywords Mechanism Design · Scheduling · Approximation algorithms · Analysis
of algorithms

1 Introduction

Mechanism design is a field in game theory that studies how to implement good
system-wide solutions to problems that involve multiple self-interested agents, each
one holding (part of) the inputs and having her own private preferences about
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the solutions computed by the mechanism. Algorithmic mechanism design mainly
focused on settings where the goal is to maximize the social welfare in auction
contexts where the goal is to maximize the auctioner revenue. Recently, other opti-
mization goals have been considered, such as those that incorporate fairness criteria.
Among these alternative goals the problem of minimizing the makespan in the
context of machine scheduling is certainly one of the most extensively studied.

Designing truthful mechanisms for scheduling problems was first suggested in
the seminal paper by Nisan and Ronen [17], as a paradigm to demonstrate the
applicability of Mechanism Design to an optimization problem. In its general form,
where the machines are unrelated, there are n jobs to be assigned to m machines.
The time needed by a machine i to process job k is described by a nonnega-
tive real value tik. Given such an input matrix, a standard task from the algorithm
designer’s point of view, is to allocate the jobs in a way such that some global objec-
tive is optimized; a typical objective is to minimize the maximum completion time
(i.e. the makespan).

In a game-theoretic setting, it is assumed that each entry of this matrix is not
known to the designer, but instead it is a private value held by a selfish agent that
controls the machine. We call this private value the agent’s type. The mechanism has
to ask each agent for her type and the agent can misreport her type to the designer
if this is advantageous to her. Mechanism design suggests using monetary compen-
sation to incentivize agents to report truthfully. Truthful implementation in dominant
strategies is desired, because it facilitates the prediction of the outcome and at the
same time simplifies the agents’ way of reasoning. The challenge is to design truthful
mechanisms that optimize/approximate the makespan.

When the entries of the matrix t are unrelated, the type domain for each machine i

is an n-valued vector ti . For this multi-dimensional domain, the constraints imposed
by truthfulness make the problem hard. Nisan and Ronen [17], showed that it is
impossible to design a truthful mechanism with approximation factor better than 2,
even for two machines. Later this bound was further improved to 2.41 [6] for 3
machines, and to 2.618 [11] for many machines. In [17], it was also shown that apply-
ing the VCG mechanism [7, 10, 20] achieves an approximation ratio of m, and it has
been conjectured that this bound is tight. This conjecture still remains open, but it
was further strengthened by Ashlagi et al. [1], who proved the conjecture for the intu-
itively very natural case of anonymous mechanisms (where roughly the allocation
algorithm does not base its decisions on the machines’ ids).

Randomization provably helps for this problem. There are two notions of truth-
fulness for randomized mechanisms. Roughly, a mechanism is universally truthful
if it is defined as a probability distribution over deterministic truthful mechanisms,
while it is truthful-in-expectation, if in expectation no player can benefit by lying.
Already in [17], a universally truthful mechanism was suggested for the case with
two machines. The mechanism was extended to the case of m machines by Mu’alem
and Schapira [16] with an approximation guarantee of 0.875m, and this was further
improved in [14] to 0.837m. Lu and Yu [15] showed a truthful-in-expectationmecha-
nism with an approximation guarantee of (m+5)/2. In [16] a lower bound of 2−1/m

for both randomized versions was shown, while in [5] the lower bound was extended
to fractional mechanisms, and an upper bound of (m + 1)/2 was provided.
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Surprisingly, even for the special case of two machines a tight answer on the
approximation factor of truthful randomized mechanisms has not been given. Cur-
rently, the lower bound is 1.5 [16], while the best upper bound is 1.5963 due to
[15].

Setting restrictions to the input domain can make the problem easier. The single-
dimensional counterpart of the problem is scheduling on related machines. In this
case it is assumed that machine i has speed si and tik = wk/si , where the weights wk

of the jobs are known to the designer. Notice that the only information missing to the
designer is the speed of the machines. Here, the constraints imposed by truthfulness
seem harmless; the optimal allocation is truthfully implementable [2], although it
takes exponential running time, while the best possible approximation guarantee, a
PTAS, can be achieved by polynomial time truthful mechanisms [4, 8]. In fact, a
recent paper [9] shows that monotone PTASs can be achieved for a wide range of
objective functions. An immediate conclusion is that when one restricts the domain,
then truthfulness becomes less and less stringent.

A prominent approach suggested by Lavi and Swamy [12], is to restrict the input
domain, but still keep the multi-dimensional flavour. They assumed that each entry
in the input matrix can take only two possible values L, H , that are publicly known
to the designer. In this case, a very elegant deterministic mechanism achieves an
approximation factor of 2, that is a great improvement comparing to the m upper
bound that is the best known for the general problem. Surprisingly, even for this
special case the lower bound is 11/10.

1.1 Our Contribution

The focus of this work is to study selfish scheduling problems on restricted but multi-
dimensional input domains for which optimized/efficient mechanisms can be given.
Following [12], we consider domains where each agent’s type can take only one of
two possible values L, H , with L < H , that are publicly known, but we even restrict
the way these values are placed in a player input vector. We assume that the designer
is given for each machine some publicly known partition of the tasks into two sets
such that all jobs in the same set take the same execution time. Thus, the only infor-
mation missing to the designer is which set of the partition contains jobs taking time
L and which set contains jobs taking timeH . Therefore, the only missing information
is a single bit for each player.1 The lower bound given in [12] is still valid for our set-
ting. It is important to emphasize that all the aforementioned lower bounds are due to
truthfulness, and hold even for exponential running time algorithms. We explore the
effects of truthfulness (both randomized and deterministic) in this restricted setting.
Our contributions are the following:

1Notice that the information missing is just a single bit, much less than that of the related machines case,
where the missing information is a positive real number. However, ours is not a single-dimensional domain.
We refer the reader to Chapter 9 and 12 of [18] for the precise definition of a single-dimensional domain.
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(1) Power of truthful-in-expectation mechanisms There is a class of scheduling prob-
lems on two-values domains with publicly known partitions (see Section 1.2) for
which every algorithm (thus including optimal ones) can be turned into a truthful-in-
expectation mechanism with the same approximation guarantee (Theorem 4). On the
contrary, universally truthful randomized mechanisms cannot achieve an approxima-
tion better than 31/30 (Theorem 22), and the 11/10 lower bound for deterministic
mechanisms in [12] also applies.2

(2) Mechanisms for two machines For the special case of two machines with uniform
partitions (see Section 1.2), we present an exact truthful-in-expectation mechanism
(Theorem 19).

We also give some evidence that two-vales domains are easier than the general
case, even for this simple case of two machines. In fact, we show that the lower bound
of 2 for deterministic mechanisms for unrelated machines still hold (Theorem 24)
when we admit three–values domains. On the other hand, a 3/2–approximation deter-
ministic truthful mechanisms exists for two-values domains with publicly known
partitions (Theorem 20), that are still a restriction of the two-values domains.

1.2 Preliminaries

The scheduling domain We have n jobs to be scheduled on m machines. Each job
must be assigned to exactly one machine. In the unrelated-machines setting, each
machine i has a vector of processing times or type ti = (tih)h, where tih ∈ �≥0 is i’s
processing time for job h.

In the two-values domains by Lavi and Swamy [12], the time for executing job
h on machine i is either L (low) or H (high), with H > L (the case L = H is
trivial). Given a partition of the jobs (S, S̄), we say that machine i is an LS-machine
(respectively, HS-machine) if all jobs in S take time L (respectively, H ), and all jobs
not in S take time H (respectively, L). That is, the type ti of an LS-machine i is such
that for any job h

tih = Lh
S :=

{
L if h ∈ S

H otherwise

and similarly for HS-machines.
In this work, we consider the two-values domains with publicly known partitions,

that are special cases of the two-values domains defined in [12]. For each machine
i we are given a publicly known subset Si and the private information is whether i

is an LSi -machine or an HSi -machine. Hence, the type ti ∈ {LSi , HSi }. Intuitively, a
type ti = LSi indicates that machine i is “good” for the jobs in Si and “bad” for other
jobs, while for ti = HSi it is the other way around (notice that HSi = LS̄i

where

2Notice that such a separation was not known for the general problem since, although Lu [13], showed
a lower bound higher than 1.5 for universally truthful mechanisms, the result holds only for scale-free
mechanisms. This is arguably a very natural assumption, but it is still needed to be proven that it is without
loss of generality.
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S̄i = [n] \ Si). We shall further distinguish between three restrictions (of increasing
difficulty) of the domain with publicly known partitions:

1. identical partitions, where all subsets Si are identical;
2. uniform partitions, where all subsets Si have size s for some s ≥ 0;
3. (unrestricted) publicly known partitions, which impose no restriction on the

subsets Si .

We say that job h is an L-job (respectively, H -job) for machine i if tih = L

(respectively, tih = H ), with ti being the type of machine i. We represent an alloca-
tion by a matrix x = (xih), where xih ∈ {0, 1} and xih = 1 iff job h is assigned to
machine i (since every job is assigned to exactly one machine,

∑
i xih = 1).

Given an allocation x and machine types t , we define the load of machine i as the
set of jobs allocated to i in x and denote by

Ci(x, t) :=
∑
h

xihtih

the cost of the allocation x for machine i. The makespan of x with respect to t is the
maximum cost of any machine, i.e., maxi Ci(x, t).

An exact or optimal allocation is an allocation that, for the given input t , minimizes
the makespan. A c-approximation is an allocation whose makespan is at most c times
that of the optimal allocation. A deterministic algorithm A outputs an allocation x =
A(t). For a randomized algorithm Arand , Arand(t) is a probability distribution over
all possible allocations; we call Arand(t) a randomized allocation.

Mechanism Design In order to characterize truthful mechanisms, we consider the
allocations that are given in output for two inputs which differ only in one machine’s
type. We let (t̂i , t−i) denote the vector (t1, . . . , ti−1, t̂i , ti+1, . . . , tm) obtained from t

by replacing ti with t̂i .
Given types t and a job allocation x, we count the number of L-jobs and the

number of H -jobs allocated to machine i in x:

ni
L(x, t) := |{h : tih = L and xih = 1}|,

ni
H (x, t) := |{h : tih = H and xih = 1}|.

We next introduce a monotonicity condition which characterizes truthful mecha-
nisms for our domains. This condition (and the characterization) is a special case of
a known characterization by Rochet [19] for general domains, as well as the corre-
sponding characterization that Lavi and Swamy [12] derive for two-values domains.
Rochet [19] proved that a mechanism is truthful if and only if its algorithm satisfies
a so-called cycle monotonicity condition. For our domains, cycle monotonicity boils
down to the following condition.

Definition 1 (monotone algorithm) An algorithm A is monotone (in expectation) if,
for any machine i and for any two inputs that differ only in the type of machine i,
t = (ti , t−i) and t̂ = (t̂i , t−i ), the following inequality holds (in expectation):

ni
L − ni

H + n̂i
L − n̂i

H ≥ 0 (1)
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where ni
L = ni

L(A(t), t), ni
H = ni

H (A(t), t), n̂i
L = ni

L(A(t̂), t̂), and n̂i
L =

ni
L(A(t̂), t̂).

The results by Rochet [19] and by Lavi and Swamy [12] imply that truthfulness for
our domains is equivalent to the monotonicity condition above. For completeness, we
give a direct proof (using essentially the same arguments) since this will also allow
us to provide a simple closed formula for the payments.

Theorem 2 For the case of two-values domains with publicly known partitions, there
exist prices P such that the mechanism (A, P ) is truthful (in expectation) iff A is
monotone (in expectation).

Proof Truthfulness is equivalent to the condition that, for every i and t = (ti , t−i)

and t̂ = (t̂i , t−i ), the following holds

Pi(t) − L · ni
L(x, t) − H · ni

H (x, t) ≥ Pi(t̂) − L · ni
L(x̂, t) − H · ni

H (x̂, t)

Pi(t̂ ) − L · ni
L(x̂, t̂) − H · ni

H (x̂, t̂) ≥ Pi(t) − L · ni
L(x, t̂) − H · ni

H (x, t̂)

where x = A(t) and x̂ = A(t̂). We can rewrite some of these terms in a more
convenient form by observing that, by definition of our domain, the types ti and t̂i are
“complementary” meaning that a job has cost L (respectively, H ) in ti if and only if
in t̂i it has cost H (respectively, L). Therefore

ni
L(x̂, t) = ni

H (x̂, t̂ ), ni
H (x̂, t) = ni

L(x̂, t̂), ni
L(x, t̂ ) = ni

H (x, t), ni
H (x, t̂ ) = ni

L(x, t)

and truthfulness is equivalent to

Pi(t) − Lni
L − Hni

H ≥ Pi(t̂) − Ln̂i
H − Hn̂i

L (2)

Pi(t̂) − Ln̂i
L − Hn̂i

H ≥ Pi(t) − Lni
H − Hni

L (3)

where ni
L = ni

L(A(t), t), ni
H = ni

H (A(t), t), n̂i
L = ni

L(A(t̂), t̂), and n̂i
L =

ni
L(A(t̂), t̂).
These two inequalities imply the monotonicity condition (1). That is, a mechanism

(A, P ) is truthful only if A is monotone.
We next prove that, if A is monotone, then there are payments P such that (A, P )

is truthful. We set the payments as

Pi(t) = (ni
L + ni

H )

(
L + H

2

)

Pi(t̂) = (n̂i
L + n̂i

H )

(
L + H

2

)
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and observe that the truthfulness conditions (2–3) are satisfied since

(2) ⇔ ni
L

(
L + H

2
− L

)
+ ni

H

(
L + H

2
− H

)
≥ n̂i

L

(
L + H

2
− H

)
+ ni

H

(
L + H

2
− L

)

⇔ ni
L

(
H − L

2

)
+ ni

H

(
L − H

2

)
≥ n̂i

L

(
L − H

2

)
+ ni

H

(
H − L

2

)

⇔
(

H − L

2

)
(ni

L − ni
H + n̂i

L − n̂i
H ) ≥ 0 ⇔ (1)

and a symmetric argument shows that (3) ⇔ (1).

Throughout the paper, we refer to the quantity ni
L(x, t) − ni

H (x, t) as the
unbalance of machine i in the allocation x with respect to type t . We also
refer to the quantity in (1) as the overall unbalance of machine i. For any
instance t , for any two machines i and j , and for any α, β ∈ {L, H }, we
consider the subset of jobs whose execution time is α on machine i and β on
machine j :

J
ij
αβ(t) := {h : tih = α and tjh = β}.

1.3 An Illustrative Example

We begin with an example and show how we can use randomization to design opti-
mal monotone-in-expectation algorithms from deterministic algorithms in the case of
two-values domains with identical partitions.

Consider the following instances along with their optimal allocation (gray box),
and the unbalance ni

L − ni
H for each of the two machines (numbers outside the box):

(4)
Let machine 1 and machine 2 correspond to top and bottom machine, respec-
tively. Note that we connect two instances by a dotted line if they differ in
exactly one machine’s type, and the line indicates which one is that machine.
Therefore the monotonicity condition (1) requires that, for any dotted line join-
ing two instances t = (ti , t−i) and t̂ = (t̂i , t−i), the corresponding machine i

has nonnegative overall unbalance: For example, the first two instances differ by
machine 1 and the overall unbalance is −3 + 4 = 1. Observe that monotonic-
ity condition (1) is violated by the allocations of the two middle instances which
differ in the type of machine i = 2 and the corresponding overall unbalance is
1 − 2 = −1.

One may try to recover monotonicity by observing that the allocations in (4) are
not the only ones that minimize the makespan. In the first and in the third input we
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could swap the jobs between the two machines (leaving the allocations of the second
and fourth instance unchanged):

(5)
Unfortunately, now the monotonicity condition is violated due to the allocation of the
first machine in the last two instances.

The above instances have been used by Lavi and Swamy [12] to prove
their lower bound for deterministic mechanisms. However, if we choose ran-
domly between the allocation in (4) and the one in (5) with the same
probability, the corresponding optimal randomized algorithm satisfies mono-
tonicity in expectation (for example, in the first instance the unbalance
becomes −3/2 for both machines, while in the second instance it remains
unchanged).

Fact 3 For two machines and two-values domains with identical partitions as above,
with values L = 2 and H = 5, no truthful mechanism can achieve an approximation
factor better than 1.1 [12]. On the contrary, for the same problem there exists an
exact truthful-in-expectation mechanism.

In the sequel we show that this positive result holds in general for some of our
domains, and not only in the very special instance where deterministic mechanisms
cannot be optimal.

2 Identical Partitions

In this section we consider the case of machines with identical partitions and
give a general (“black box”) method to convert scheduling deterministic algorithms
into mechanisms that are truthful-in-expectation. The main result of this section is
summarized by the following theorem.

Theorem 4 Every deterministic algorithm A for scheduling jobs on machines with
identical partitions can be turned into a randomized mechanism M which is truthful-
in-expectation and such that the allocation returned by M has makespan no greater
than the one returned by A.

Let (S, S̄) be a partition of the jobs, with |S| = s and |S̄| = n − s, such that for
each machine i we have Si = S. Without loss of generality we can reorder the jobs in
such a way that S = {1, 2, . . . , s} and S̄ = {s+1, s+2, . . . , n}. Since the partition of
the jobs is public, the only information that is private to each machine is which side
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of the partition contains its L-jobs. Thus, the type’s domain of each machine contains
only two elements:

LS = (L · · ·LH · · · · · · H) and HS = (H · · · HL · · · · · ·L)

For any instance t , we denote bymS(t) andmS̄(t) the number of LS -machines and
HS-machines in t , respectively. Clearly, mS(t) + mS̄(t) = m. Given an allocation x,
it is convenient to count, for each side of the partition, the number of jobs that are
scheduled in x as L-jobs:

nLS (x, t) = |{h ∈ S : ∃i such that xih = 1 and tih = L}| (6)

nLS̄
(x, t) = |{h ∈ S̄ : ∃i such that xih = 1 and tih = L}| (7)

and nL(x, t) := nLS (x, t) + nLS̄
(x, t) = ∑

i ni
L(x, t) is the overall number of jobs

allocated in x as L-jobs.
Following the idea described in Section 1.3, we show now how to obtain a ran-

domized allocation from a deterministic one by randomly “shuffling” machines of
the same type:

Definition 5 For any deterministic allocation x, we denote by x(rand) the randomized
allocation obtained from x as follows:

– Pick an integer r ∈ {0, . . . , mS − 1} uniformly at random, and set x
(rand)
i :=

xi+r mod mS
for each LS -machine i;

– Pick an integer r̄ ∈ {0, . . . , mS̄ − 1} uniformly at random, and set x
(rand)
i :=

xi+r̄ mod mS̄
for each HS-machine i.

For any deterministic algorithm A, we let A(rand) be the randomized algorithm that,
on input t , returns the randomized allocation x(rand) where x = A(t).

Notice that nLS (x
(rand), t) = nLS (x, t) and nLS̄

(x(rand), t) = nLS̄
(x, t). In the

following discussion we fix x and t and simply write nLS and nLS̄
.

For any LS-machine i, its expected load consists of ni
L = nLS /mS L-jobs and

ni
H = (n − s − nLS̄

)/mS H -jobs. Thus the expected unbalance of an LS-machine is

ni
L − ni

H = nLS − (n − s − nLS̄
)

mS

= nL − (n − s)

mS

.

Similarly, the expected load of an HS-machine i consists of ni
L = nLS̄

/mS̄ L-jobs

and n
j
H = (s − nLS )/mS̄ H -jobs and its expected unbalance is equal to

ni
L − ni

H = nLS̄
− (s − nLS )

mS̄

= nL − s

mS̄

.

Lemma 6 Algorithm A(rand) is monotone-in-expectation if the deterministic algo-
rithm A is such that for any t = (LS, t−i ) and t̂ = (HS, t−i ), it holds that

nL − (n − s)

mS

+ n̂L − s

mS̄ + 1
≥ 0 (8)
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where nL = nL(A(t), t) and n̂L = nL(A(t̂), t̂ ) denote the number of L-jobs
allocated by A on input t and t̂ , respectively.

Proof Consider two instances t = (LS, t−i ) and t̂ = (HS, t−i ). By the previous
discussion we have that, for any i, the total unbalance of machine i is

ni
L − ni

H + n̂i
L − n̂i

H = nL − (n − s)

mS

+ n̂L − s

m̂S̄

where m̂S̄ is the number of HS-machines in t̂ . Since m̂S̄ = mS̄ + 1, then (8) is
equivalent to (1) and, by Definition 1, A(rand) is monotone-in-expectation.

2.1 Canonical Allocations

Lemma 6 says that in order to design an exact truthful-in-expectation mechanism for
two-values domains with identical partitions it is sufficient to design a deterministic
exact algorithm which satisfies the condition in (8). We now show that this is always
possible by taking any exact algorithm A and transforming the allocations computed
by A into “canonical” allocations. Intuitively, canonical allocations are allocations
where it is not possible to swap jobs between two machines and increase the number
of allocated L-jobs without increasing the makespan of the allocation. These allo-
cations can be obtained from any allocation by repeatedly swapping jobs according
to local rules (specified below). We will show that each of these swap operations
increases the number of allocated L-jobs, without increasing the makespan.

To this end, we extend our previous notation.

Definition 7 Given an instance t and an allocation x, for any α, β ∈ {L, H } and for
any two machines i and j , we let nij

αβ(x, t) be the number of α-jobs that are allocated
to machine i and that are β-jobs for machine j :

n
ij
αβ(x, t) := |{k : xik = 1, tik = α, and tjk = β}|.

Notice that nij
αβ is different from n

ji
βα because the first index denotes the machine

that has the jobs. We can now define canonical allocations.

Definition 8 (canonical allocation) A canonical allocation (for instance t) is an
allocation obtained by modifying a deterministic allocation x as follows:

1. Apply the following Rule R1 as long as possible: Suppose jobs h and k are
allocated to machines i and j , respectively (xih = 1 = xjk). If tik ≤ tih and
tjh < tjk (i.e., no machine gets worse and at least one gets better if we swap the
two jobs among the machines i and j ), then move job h to machine j and job k

to machine i (set xik = xjh = 1 and xih = xjk = 0).

2. Apply the following Rule R2 as long as possible: If n
ij

HL(x, t) > n
ji

LH (x, t) and

j gets only jobs from J
ji

LH (t), then move n
ij

HL jobs in J
ij

HL(t) from i to j , and

move n
ji
LH jobs in J

ji
LH (t) from j to i (see Fig. 1).
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Fig. 1 The swapping Rule R2 in the definition of canonical allocation

Fact 9 Both Rules R1 and R2 decrease the overall number of H -jobs by at least
one. Thus, given x and t , it is possible to compute in polynomial time a canonical
allocation x ′ (following the two steps in Definition 8) whose cost is not larger than
the cost of x.

2.2 A Black-box Construction (Proof of Theorem 4)

We can assume without loss of generality that our deterministic algorithm always
returns canonical allocations (Fact 9). The following two lemmas provide important
structural properties of such canonical allocations.

Lemma 10 Every allocation x that is canonical with respect to the instance t is such
that either nLS (x, t) = s or nLS̄

(x, t) = n − s.

Proof Suppose for contradiction that nLS (x, t) < s and nLS̄
(x, t) < n − s. Then, in

the allocation x there exists a job h ∈ S that is assigned to an HS-machine i and a job
l ∈ S̄ that is assigned to an LS-machine j . Since tih = H and tj l = H while tjh = L

and til = L then it is possible to apply Rule R1 to jobs j and l. But this contradicts
the hypothesis that x is canonical with respect to t .

Lemma 11 If the allocation x is canonical with respect to the instance t then we
have that:

1. If nLS (x, t) = s then nLS̄
(x, t) ≥ mS̄

m
· (n − s);

2. If nLS̄
(x, t) = n − s then nLS (x, t) ≥ mS

m
· s.

Proof We prove only point 1 (proof of point 2 being similar).
Let x be an allocation that is canonical with respect to t and such that nLS (x, t) =

s. Since nLS̄
(x, t) is equal to the number of jobs in S̄ that are allocated to HS-

machines then there are n− s −nLS̄
(x, t) jobs of S̄ that are allocated to LS -machines

(i.e. they are allocated as H -jobs). Therefore, there must be an LS -machine i and an
HS-machine j such that i gets at least (n − s − nLS̄

(x, t))/mS jobs from S̄ (and all
these jobs are bad for i but good for j ) and j gets at most nLS̄

(x, t)/mS̄ jobs from S̄

(they are good for j but bad for i). Then, we have

n
ij

HL ≥ n − s − nLS̄
(x, t)

mS

. (9)
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and

n
ji
LH ≤ nLS̄

(x, t)

mS̄

. (10)

Observe now that since by hypothesis nLS (x, t) = s, we have that j gets only jobs

from S̄ and, since x is canonical then, by point 2 of Definition 8, it must be n
ij
HL ≤

n
ji

LH . Thus, the following inequality holds:

nLS̄
(x, t)

mS̄

≥ n − s − nLS̄
(x, t)

mS

(11)

from which we obtain that

nLS̄
(x, t) · (1/mS + 1/mS̄) = nLS̄

(x, t) · m/(mS · mS̄) ≥ (n − s)/mS,

and thus

nLS̄
(x, t) ≥ (n − s) · mS̄

m
.

We can now give a black-box construction to transform any deterministic algo-
rithm into a randomized and monotone-in-expectation one that has no worse
makespan.

Proof Theorem 4 Let A be a deterministic scheduling algorithm and let A′ be
the algorithm that first calls A to compute an allocation and then transforms
this allocation into a canonical one. We observe that the canonization process
described in Definition 8 does not increase the makespan of the allocation. Thus,
by Theorem 2 and Lemma 6, to prove the theorem it is sufficient to show
that for any t = (LS, t−i ) and t̂ = (HS, t−i) such that x = A′(t) and
x̂ = A′(t̂)

nL − (n − s)

mS

+ n̂L − s

m − mS + 1
≥ 0

where nL is the number of L-jobs allocated in x and n̂L is the number of L-jobs
allocated in x̂.

Because of Lemma 10 there are only four cases to consider:

1. (nLS = s and n
L̂S̄

= n − s.) Observe that nL + n̂L ≥ n. Therefore

nL − (n − s)

mS

+ n̂L − s

m − mS + 1
≥ nL − (n − s) + n̂L − s

max{mS, m − mS + 1}
= nL + n̂L − n

max{mS, m − mS + 1}
≥ 0.

2. (nLS̄
= n − s and n

L̂S
= s.) Also in this case nL + n̂L ≥ n. The rest of the proof

goes like the previous case.
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3. (nLS = s and n
L̂S

= s.) Since mS̄ = m − mS and m̂S̄ = mS̄ + 1, by Lemma 11,
we have that

nLS̄
≥ m − mS

m
· (n − s) and n̂LS̄

≥ mS̄ + 1

m
· (n − s).

Hence

nL − (n − s)

mS

+ n̂L − s

m − mS + 1
= s + nLS̄

− (n − s)

mS

+ s + n̂LS̄
− s

mS̄ + 1

≥ s + m−mS

m
· (n − s) − (n − s)

mS

+
mS̄+1

m
(n − s)

mS̄ + 1

≥ s

mS

− n − s

m
+ n − s

m

≥ 0.

4. (nLS̄
= n−s and n

L̂S̄
= n−s.) This case follows by symmetry with the previous

case (simply exchange S with S̄).

2.3 Complexity Considerations

We stress that our black-box construction of truthful-in-expectation mecha-
nisms (Theorem 4) can be carried out efficiently, i.e., in polynomial time.
Indeed, any polynomial-time c-approximation algorithm can be transformed into
a polynomial-time monotone algorithm with the same approximation guaran-
tee. Moreover, the payments used in the proof of Theorem 4 can be computed
directly from the allocation. In a recent paper [3] Bonifaci and Wiese gave a
new PTAS for scheduling jobs on an arbitrary number of unrelated machines
when these machines are of a limited number of types. Since, in our set-
ting, machines are of only two types, we can use this result to show the
following.

Corollary 12 For any number of machines with identical partitions and for any ε >

0, there exists a polynomial-time truthful-in-expectation mechanism which returns a
(1 + ε)-approximate allocation.

We shall prove in Section 4 that the same result cannot be achieved by (universally)
truthful mechanisms, even if we allow them to run in exponential time.
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3 Mechanisms for Two Machines

In this section we consider scheduling on two-values domains with publicly known
partitions in the case of m = 2 machines. In particular, we give an exact truthful-
in-expectation mechanism for the case with uniform partitions (Section 3.1) and
a deterministic 3/2-approximation mechanism for the case of (restricted) publicly
known partitions (Section 3.2).

3.1 An Exact Truthful-in-Expectation Mechanism

As in the case of identical partitions, we show that every exact algorithm can be
turned into an exact monotone-in-expectation algorithm (by Theorem 2 this implies
an exact truthful-in-expectation mechanism). Also in this case we restrict ourselves
to scheduling algorithms that give in output only canonical allocations (this is
without loss of generality by Fact 9) and obtain monotonicity-in-expectation by ran-
domizing among several exact allocations. However, since the partitions are not
identical, the randomization procedure will be applied only to some of the canonical
allocations.

Consider the four possible inputs and let us represent them as the simple graph in
Fig. 2 where two inputs are adjacent if and only if they differ in exactly the type of
one machine:

Note that the monotonicity condition (1) involves only inputs that are adjacent in
this graph. Our strategy is to prove that monotonicity is satisfied at every edge. To
this aim, we define two classes of allocations and prove that all canonical alloca-
tions are in one of these two classes. We then show that the randomization procedure
guarantees monotonicity for canonical allocations in each of the two possible classes.

Definition 13 (allocation classes) An allocation x is classified with respect to the
instance t as

– i-restricted if machine i gets only a proper subset of the jobs in J
ij
LH (t), where

j 	= i denotes the other machine;

Fig. 2 The strategy to obtain randomized monotone allocations for two machines: Each node corresponds
to a possible input and two nodes are adjacent if and only if they differ in exactly one machine’s type; The
monotonicity condition (1) involves only pairs of adjacent inputs, and our strategy is to turn two out of the
four canonical allocations into randomized ones
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– symmetric if, for any i ∈ {1, 2} and j 	= i, machine i gets all jobs in J
ij

LH (t), no

job in J
ij

HL(t), and a (possibly empty) subset of the jobs in J
ij

LL(t) ∪ J
ij

HH (t).

We say that x is restricted if it is 1-restricted or 2-restricted. Restricted and
symmetric allocations are shown in Fig. 3.

The following lemma proves that all exact canonical allocations belong to one of
the classes defined in Definition 13.

Lemma 14 Every exact canonical allocation x with respect to an instance t is either
symmetric or restricted.

Proof Let x be an exact canonical allocation with respect to instance t . We remark
that, by definition, J 12

LH (t) = J 21
HL(t) and J 21

LH (t) = J 12
HL(t). This fact follows

directly from Definition 8.

Fact 15 If the swapping Rule R1 cannot be applied to an allocation x with
respect to t , then there is at most one machine i such that nij

HL(x, t) > 0, with

j 	= i. In this case, machine j gets only jobs from the set J ji

LH (t).

Therefore it is not possible that in the allocation x machine 1 gets some
jobs from J 12

HL(t) and machine 2 gets some jobs from J 21
HL(t). Observe that

if neither machine gets such jobs then the allocation x is of class symmetric
(see Definition 13). Thus, we have only to prove that in all the other cases
in the allocation x there is a machine i that gets only a subset of jobs in
J

ij

LH (t).
Suppose first that machine 1 gets some jobs from J 12

HL(t) and machine 2 gets
no jobs from J 21

HL(t). This means that all jobs in J 21
HL(t) = J 12

HL(t) are allo-
cated to machine 1. To conclude that the solution is of class 2–restricted, it is
sufficient to show that all jobs in JLL(t) ∪ JHH (t) are allocated to machine 1.
But, this is true since if machine 2 would get a job h̄ ∈ JLL(t) ∪ JHH (t)

then it would be possible to apply Rule-R1 (see Definition 8) to swap h̄ with
a job h ∈ J 12

HL(t), thus contradicting the hypothesis that the allocation is
canonical.

Similarly, we have that if machine 2 gets some jobs from J 21
HL(t) and machine 1

gets no jobs from J 12
HL(t), then the solution if of class 1–restricted.

Fig. 3 The two allocation classes of Definition 13
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The following two technical lemmas give bounds on the number of jobs allocated
to machines in exact allocations.

Lemma 16 In any exact allocation for an instance t , if there is at least one job that
can be assigned as L-job to one of the two machines (i.e., there is at least a machine
i and a job k such that tik = L), then no machine gets more than �n/2� H -jobs.

Proof Consider the allocation in which machine i gets job k and any subset of �n/2�
other jobs, and the other machine j gets all the remaining n − (�n/2� + 1) = �n/2�
jobs. The makespan of this allocation is at most L + �n/2�H < H + �n/2�H =
n/2�H . That is, any allocation that assigns more than �n/2� H -jobs cannot be an
exact allocation because it has larger makespan.

Lemma 17 If an instance t admits an exact allocation of class i–restricted then
machine i gets at least n/2 jobs in J

ij
LH (t), with i 	= j . This implies that |J ij

LH (t)| >

n/2.

Proof Let x be an exact i–restricted allocation, for some i ∈ {1, 2}. By Definition
13, machine i gets in x only a proper subset of the jobs in J

ij
LH (t) and machine

j gets at least one H -job. Then, ni
L(x, t) = n

ij

LH (x, t) and ni
H (x, t) = 0. Since

x is an exact allocation, i must get more jobs than j , otherwise a new allocation
with smaller makespan could be obtained by moving one job in J

ij

LH (t) from j to i.

Thus, ni
L(x, t) > n/2. To conclude the proof observe that ni

L(x, t) = n
ij

LH (x, t) <

|J ij
LH (t)|, where the inequality is strict because i gets in x only a proper subset of the

jobs in J
ij
LH (t).

We remark that in order to prove the monotonicity condition in (1) we would
like to have allocations that have large unbalance. The following lemma says that,
for two of the four possible inputs, exact canonical allocations can be converted
into exact randomized allocations having a “good” expected unbalance on both
machines.

Lemma 18 For every deterministic exact canonical allocation x for an instance

t ∈ {(LS1 , LS2), (HS1, HS2)}
with uniform partitions (i.e. |S1| = |S2|), there exists a randomized allocation x(rand)

which gives an expected unbalance of n
2 − |JHH (t)| to both machines and has

makespan equal to that of x.

Proof Since the partitions are uniform, the subsets J 12
LH (t) and J 12

HL(t) have the same
size

s − |S1 ∩ S2|
in both instances (see Fig. 4). This implies that allocation x must be symmetric, for
otherwise we would have one of the two subsets J 12

LH (t) or J 21
LH (t) with more than
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Fig. 4 Swapping operation to obtain allocation y from the symmetric allocation x

n/2 elements (Lemma 14 and Lemma 17), which cannot be because they have the
same size and they are disjoint.

Since allocation x is symmetric, we can build a new allocation y by swapping jobs
in J 12

LL(t) and in J 12
HH (t) between the two machines (see Fig. 4). Clearly, the number

of H -jobs is now exchanged between the two machines, that is

n1H (y, t) = n2H (x, t) and n2H (y, t) = n1H (x, t).

Since |J 12
LH (t)| = |J 12

HL(t)|, the same happens with respect to the L-jobs, that is

n1L(y, t) = n2L(x, t) and n2L(y, t) = n1L(x, t).

This means that y has the same makespan as x. Moreover, if we pick at random
with probability 1/2 between allocation x and allocation y, in the resulting random-
ized allocation x(rand), the expected number of L-jobs assigned to any of the two
machines is equal to

n1L(x, t) + n2L(x, t)

2
= n − |JHH (t)|

2
,

while the expected number of H -jobs is equal to

ni
H (x, t) + n

j

H (x, t)

2
= |JHH (t)|

2
.

The expected unbalance of each machine is thus n/2 − |JHH (t)|. Clearly, since y

and x have the same makespan, the makespan of x(rand) is the same as the same
makespan of x.

We are now in a position to prove the main result of this section:

Theorem 19 For m = 2 machines there exists an exact truthful-in-expectation
mechanism for scheduling on two-values domains with uniform partitions.

Proof Let A be any exact deterministic algorithm for scheduling on two machines
that gives in output only canonical allocations. We can define a randomized exact
algorithm which first computes x = A(t), and then replaces x by the randomized
allocation x(rand) of Lemma 18 in two out of the four possible input instances (see
Fig. 2):

A(rand)(t) :=
{

x(rand) if t ∈ {(LS1, LS2), (HS1, HS2)}
x if t ∈ {(HS1, LS2), (LS1, HS2)}



540 Theory Comput Syst (2015) 57:523–548

By Lemma 18, A(rand) is also an exact algorithm. So, we only need to prove that the
monotonicity condition in (1) holds in expectation (Theorem 2).

Observe that any two instances t = (ti , t−i ) and t̂ = (t̂i , t−i) that differ only on the
type of one machine i correspond to a pair of adjacent nodes in the graph in Fig. 2.
We can thus assume without loss of generality that t denotes the instance for which
A(rand) returns a randomized allocation x(rand) and t̂ denotes the instance for which
it return a deterministic exact canonical allocation x̂,

t ∈ {(LS1 , LS2), (HS1, HS2)} and t̂ ∈ {(LS1 , HS2), (HS1, LS2)}.
Consider the overall expected unbalance of machine i,

UNi := ni
L − ni

H + n̂i
L − n̂i

H (12)

where ni
L = ni

L(x(rand), t), ni
H = ni

H (x(rand), t), n̂i
L = ni

L(x̂, t̂) and n̂i
H = ni

H (x̂, t̂).
By Lemma 18, we know that ni

L − ni
H = n/2 − |JHH (t)| and thus

UNi = n/2 − |JHH (t)| + n̂i
L − n̂i

H .

To show that this quantity is positive we distinguish two cases:

(x̂ is i–restricted) Machine i gets no H -jobs (Definition 13) and at least n/2 L-
jobs (Lemma 17), which means that

n̂i
L − n̂i

H ≥ n/2

thus implying

UNi ≥ n/2 − |JHH (t)| + n/2

= n − |JHH (t)|
≥ 0.

(x̂ is not i–restricted) By Lemma 14, allocation x̂ is either symmetric or j–
restricted with j 	= i. In both cases, machine i gets all jobs in J

ij
LH (t̂). Since

t̂ ∈ {(LS1, HS2), (HS1, LS2)} and because the partitions have uniform size, in
instance t̂ there is at least one job that can be assigned as an L-job to one of the
two machines. Thus, by Lemma 16, in allocation x̂ machine i gets at most n/2
H -jobs. Therefore we have

n̂i
L − n̂i

H ≥ |J ij

LH (t̂)| − n/2.

Observe that J ij
LH (t̂) = JHH ij(t), which implies

UNi ≥ n/2 − |JHH (t)| + |JHH (t)| − n/2

= 0.

We have thus shown that A(rand) is monotone in expectation.

3.2 A Deterministic 3/2-Approximation Truthful Mechanism

Now we switch to deterministic mechanisms and we prove the following result:
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Theorem 20 For m = 2machines there exists a polynomial-time 3/2-approximation
deterministic truthful mechanism for scheduling for two-values domains with (unre-
stricted) publicly known partitions.

In order to prove this result we exhibit a monotone 3/2-approximation algorithm.
We were unable to extend the mechanism for the case of three or more machines so
this is left as a natural open problem.

The algorithm On input t , the algorithm partitions the jobs into three subsets:

JLL(t), JHH (t) and JLHHL(t) := J 12
LH (t) ∪ J 12

HL(t)

First, the algorithm allocates jobs in JLHHL(t), and then completes the allocation by
dividing “evenly” the other jobs in JLL(t) and in JHH (t). Some careful tie breaking
rule will be used here to deal with the case in which some of these subsets of jobs
have odd cardinality.

The algorithm consists of the following two steps (in the sequel we do not specify
the input “t”):

1. Step 1 (allocate jobs in JLHHL) We allocate these jobs depending on the class
of the canonical exact allocation (see Definition 13) for all jobs:

(a) (class i–restricted. Compute a canonical exact allocation for JLHHL.
(b) (class symmetric). Assign all jobs in JLHHL as L-jobs.

We denote by J i
LHHL the set of jobs that are assigned to machine i in this first

step, and let C(LHHL)
i be the corresponding cost of machine i.

2. Step 2 (allocate jobs in JLL and JHH ) For a set of jobs S, we denote by �S/2�
and S/2� an arbitrary subset of S of cardinality �|S|/2� and |S|/2�, respec-
tively. We define the set J i of all jobs that are assigned to machine i at the
end of this step (which includes the jobs J i

LHHL assigned in the previous step)

as follows: For i and j satisfying C
(LHHL)
i ≥ C

(LHHL)
j , we allocate to i the

set

J i :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

J i
LHHL ∪

⌊
JHH

2

⌋
∪

⌈
JLL

2

⌉
if both |JLL| and |JHH | are odd;

J i
LHHL ∪

⌊
JHH

2

⌋
∪

⌊
JLL

2

⌋
otherwise,

and thus machine j gets the rest of the jobs

J j := [n] \ J i.

Approximation guarantee The two steps of the algorithm keep a small difference
between the completion times of the two machines as is formally demonstrated in the
following:
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Lemma 21 After each step, the difference between the two completion times is at
most the optimum, that is

max
i

C
(LHHL)
i ≤ OPT and max

i
Ci ≤ min

i
Ci + OPT.

Proof As for the first part, let JLHHL be not empty (otherwise the statement trivially
holds). Recall that there are two cases for the allocation of jobs in JLHHL. In the first
case (canonical exact is not symmetric) the algorithm allocates JLHHL identically
to the exact allocation on this set, and therefore the statement holds. In the second
case (canonical exact is symmetric), the algorithm allocates all jobs as L-jobs. This
is exactly what the exact allocation does, so the statement follows.

For the second statement, if the machine with higher C
(LHHL)
i determines the

final makespan, and both JLL, JHH have odd size, then

max
i

Ci = max
i

C
(LHHL)
i +

⌊
JHH

2

⌋
H +

⌈
JLL

2

⌉
L

≤ min
i

C
(LHHL)
i + OPT +

⌊
JHH

2

⌋
H +

⌈
JLL

2

⌉
L

≤ min
i

C
(LHHL)
i +

⌈
JHH

2

⌉
H +

⌊
JLL

2

⌋
L + OPT

= min
i

Ci + OPT,

while if not both JLL, JHH are odd,

max
i

Ci = max
i

C
(LHHL)
i +

⌊
JHH

2

⌋
H +

⌊
JLL

2

⌋
L

≤ min
i

C
(LHHL)
i + OPT +

⌊
JHH

2

⌋
H +

⌊
JLL

2

⌋
L

≤ min
i

Ci + OPT.

Finally, if the machine with lower C
(LHHL)
i determines the makespan, then

max
i

Ci ≤ min
i

C
(LHHL)
i +

⌊
JHH

2

⌋
H +

⌊
JLL

2

⌋
L + H

≤ max
i

C
(LHHL)
i +

⌊
JHH

2

⌋
H +

⌊
JLL

2

⌋
L + H

≤ min
i

Ci + OPT.

Proof of approximation guarantee Then we prove the 3/2-approximation guaran-
tee by distinguishing the two cases in Step 1 of the algorithm (allocation of jobs in
JLHHL) which correspond to the class of the canonical exact allocation for the whole
instance.
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(class 1–restricted or 2–restricted). Recall that an allocation of class 2–restricted
assigns a proper subset of these jobs to machine 2, thus implying that machine 1
must get at least one H -job from this set. (The case of the solution for the class
1–restricted is similar). Therefore

OPT ≥ OPT1 ≥ |JLL|L + |JHH |H + H.

On the other hand, by using Lemma 21, we obtain

2APX = 2max
i

Ci ≤ C1+C2+H = |JLL|L+|JHH |H +C
(LHHL)
1 +C

(LHHL)
2 +H ≤ 3OPT .

(class symmetric). Consider the number of jobs from respectively JLL and JHH

that the optimum xopt assigns to machine 1:

n12LL := n12LL(xopt , t) and n12HH := n12HH (xopt , t).

This gives the following lower bound on the optimum (the costs of the two
machines):

OPT ≥ n12LLL + n12HH H + |J 12
LH |L

OPT ≥ (|JLL| − n12LL)L + (|JHH | − n12HH )H + |J 21
LH |L

and thus (by summing up)

2OPT ≥ |JLL|L + |JHH |H + (|J 12
LH | + |J 21

LH |)L.

In this scenario, our algorithm assigns all jobs in JLHHL = J 12
LH ∪ J 21

LH as L-jobs
and thus the two costs satisfy

C
(LHHL)
1 + C

(LHHL)
2 = |J 12

LH |L + |J 12
HL|L.

Therefore

2APX = 2max
i

Ci ≤ C1 + C2 + H = |JLL|L + |JHH |H + C
(LHHL)
1 + C

(LHHL)
2 + H

≤ |JLL|L + |JHH |H + H + 2OPT − |JLL|L − |JHH |H ≤ 3OPT,

Hence the approximation guarantee has been shown for both cases.

Observe that the performance guarantee of Theorem 20 is tight. In fact, for the
instance |JLL| = 2, |JHH | = 1, |JLHHL| = 0, with H = 2L, we have that the
optimal makespan is 2L while the makespan of the algorithm is 3L.

Monotonicity First observe that the algorithm assigns to machine i at least half
(rounded up or down) of its L-jobs in t , and at most half (rounded up or down) of its
H -jobs in t . In particular,

n
ij
LH ≥

⌈
J

ij

LH

2

⌉
, n

ij
LL ≥

⌊
J

ij

LL

2

⌋
and n

ij
HL ≤

⌊
J

ij

HL

2

⌋
, n

ij
HH ≤

⌈
J

ij

HH

2

⌉
.

For the jobsets JLL and JHH this is immediate. Now, let us consider the jobset J
ij

LH

(the other case is symmetric). If we are in the symmetric case, the algorithm assigns
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all these jobs to i. Otherwise, the algorithm computes the canonical optimum on

JLHHL. Suppose that n
ij
LH <  J

ij

LH

2 �. Optimality implies that machine i gets at least

one H job from the set J
ij
HL. But then the allocation is not canonical (nor optimal)

since Rule 2 of Definition 8 can be applied. Therefore we obtain

ni
L ≥

⌈
J

ij

LH

2

⌉
+

⌊
J

ij

LL

2

⌋
, ni

H ≤
⌈

J
ij

HH

2

⌉
+

⌊
J

ij

HL

2

⌋
. (13)

Second, observe that if the type of machine i flips from ti to t̂i , then |Ĵ ij
ᾱβ | = |J ij

αβ |
(here L̄ = H and H̄ = L). Applying (13) for both ti , t̂i and using the last identity,
we finally obtain (1).

Complexity To prove that our mechanism is polynomial we have to show that both
the allocation and the prices can be computed in polynomial time. Observe that the
allocation algorithm has first to compute an exact canonical allocation to decide how
to perform his first step. Since, the cost of the allocation depends only on how many
L jobs and H jobs are assigned to each of the two machines we can compute an
exact allocation in polynomial-time by a brute-force algorithm. Then, by Fact 9, this
allocation can be transformed into an exact canonical allocation in polynomial time.
Given an exact canonical allocation, the first step of the algorithm takes polynomial
time to compute an allocation of the jobs in in JLHHL while the second step takes
constant time to complete this allocation with the jobs in JLL and JHH . Finally, by
Theorem 2, we can compute prices of our mechanism directly from the allocation in
constant time.

4 Lower Bounds and Separation Results

The next theorem says that truthful-in-expectation mechanisms are provably more
powerful than universally truthful mechanisms. Indeed, for this problem version,
exact truthful-in-expectation mechanism exist for any number of machines (see
Theorem 4 and Corollary 12). The proof combines the idea of the lower bound
by Lavi and Swamy [12] with a technique used by Mu’alem and Schapira [16]:
They use Yao’s Min-Max Principle to obtain lower bounds on universally truthful
mechanisms.

Theorem 22 No universally truthful mechanism can achieve an approximation fac-
tor better than 31/30 for scheduling on two machines, even for the case of identical
partitions.

Proof A universally truthful mechanism is simply a probability distribution over
deterministic truthful mechanisms [17]. A lower bound on the approximation ratio
of any universally truthful mechanism can be obtained via Yao’s Min-Max Principle
as illustrated in [16]: find a probability distribution over all possible inputs such that
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every deterministic mechanism (monotone algorithm) has an expected approximation
guarantee of c or worse.

Example 23 (two-machines identical partitions) We have the four inputs in the exam-
ple in Section 1.3. We know that any deterministic algorithm must err on at least
one of these four inputs and this implies that (because of the values) on this input
the approximation is 10/9 ≈ 1.111 (the deterministic lower bound). Taking the uni-
form distribution over these four inputs, Yao’s principle tells us that every universally
truthful mechanism must have an (expected) approximation which is not better than
(1/4) · (10/9) + 3/4 = 37/36 ≈ 1.0277.

The previous bound can be improved by optimizing the probability distribution. In
particular, we assign positive probabilities only to three out of the four inputs shown
here:

(14)

Every deterministic monotone algorithm must change the output in at least one of
these three inputs (because monotonicity is not satisfied between the first two inputs
and between the last two). Deterministic algorithms that use an alternative allocation
in the first (or the third) input have an expected approximation at least

p · (10/9) + (1 − p) = 1 + p/10

while for those algorithms that use an alternative allocation in the second input, the
approximation is at least

(1 − 2p)11/10+ 2p = 1 + 1/10 − 2p/10

Taking p = 1/3 we equate these two quantities and thus obtain that every determin-
istic algorithm must have an approximation of at least 31/30 ≈ 1.0333. Therefore
Yao’s Min-Max Principle yields Theorem 22.

Lower bounds for three-values domains The above bounds can be strengthened by
considering three-values domains (which are no-longer “single-bit”). First, we give
an alternative proof for the lower bound of 2 for deterministic mechanisms on two
machines, first showed by Nisan and Ronen in [17]. The proof in [17] requires that
the input domain consists of at least 4 different values. Here, we extend the proof in
order to hold even when the domain consists of 3 different values.

Theorem 24 For two machines and the case in which the processing times can take
three values, no (deterministic) truthful mechanism can achieve an approximation
factor better than 2.

Proof Assume that we have only two machines and an odd number of jobs, that is
n = 2k + 1. For every machine i and job h, the processing time can only take the
following three values tih ∈ {0, 1, 1+ ε}.
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Let us assume that the input is tih = 1, for all machines i, and for all jobs h. Let
x = A(t) be the allocation matrix determined by the mechanism M = (A, P ). If one
of the machines gets all the jobs then the algorithm has makespan 2k + 1, while the
opt has makespan k + 1, and so the approximation ratio can be arbitrarily close to 2
for large arbitrarily large values of k. If the jobs are allocated to both machines, let j
be the machine that gets a subset Sj of jobs with odd cardinality. Now produce the
following input t̂ by changing the type of j only:

t̂ih =
⎧⎨
⎩
0, i = j and h ∈ Sj

1 + ε, i = j and h 	∈ Sj

tih, otherwise

Let x̂ = A(t̂), be the allocation for the input t̂ . Because the mechanism is truthful, it
should also be monotone (see e.g. [6]):∑

h∈Sj

(tjh − t̂jh) · (xjh − x̂jh) ≤ 0.

From this we get that the subset of jobs that machine j gets for the input t̂ is also Sj .
The makespan of the mechanism for the input t̂ is

∣∣S̄j

∣∣, where S̄j = [n] \ Sj , while
the optimal makespan is

∣∣S̄j

∣∣ /2.
We next strengthen the lower bound on universally truthful mechanisms of The-

orem 22 by considering domains of three values. The proof consists of a suitable
probability distribution over the instances used for the deterministic lower bound.

Theorem 25 No universally truthful mechanism can achieve an approximation fac-
tor better than 9/8 for scheduling on two machines and three jobs that take three
values.

Proof There are three jobs and t is the matrix with all processing times equal 1.
Besides the two allocations which assign all jobs to one machine, there are 6 non-
trivial allocations:

(15)

We next show that every deterministic monotone algorithm which gives one of these
allocations cannot have an approximation better than 2. Consider a modified instance
for each of these allocations:

(16)

where δ = 1+ ε and ε is some tiny number. Every monotone deterministic algorithm
which chooses one of the allocations in (16) is forced to output the corresponding
allocation in (16) (this is the same as in the proof of Theorem 24 when considering
three jobs). The approximation is then 2/(1 + ε) which, for tiny ε, gets arbitrarily
close to 2.

Assign a probability p to each of the instances in (16) and probability q = (1−6p)

to the instance of all 1’s. Every deterministic algorithm which allocates all jobs to the
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same machine has expected approximation at least

q(3/2) + 1 − q = 1 + q/2 = 1 + 1/2 − 3p

while every deterministic monotone algorithm using on of the allocations in (15) has
expected approximation at least

2p + 1 − p = 1 + p

Taking p = 1/8 these two quantities are equal and thus every deterministic mono-
tone algorithm has an expected approximation at least 9/8. Yao’s Min-Max Principle
implies that this lower bound applies to every universally truthful mechanism.

5 Conclusion

In this paper we studied scheduling on selfish machines for two-values input domains
with publicly known partitions. We considered three different models of publicly
known partitions and presented both exact randomized truthful-in-expectation and
approximation determinisitc mechanisms and proved some lower bounds.

Our work leaves several open questions. First of all, we are able to derive exact
truthful-in-expectation mechanisms for an arbitrary number of machines only in the
case where partitions are identical. Moreover, exact truthful-in-expectation mecha-
nisms for two machines are given only for uniform partitions. A natural open question
is whether it is possible to extend the result to more general cases like (1) any num-
ber of machines with uniform partitions, or (2) two machines with unrestricted given
partitions? Finally we note that the lower bound of 2 for three-values domains does
not consider jobs’ partitions (as our upper bounds do) and thus it would be natu-
ral/interesting to prove a lower bound for three-values domains with publicly known
partitions.
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