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Abstract We consider the power-aware problem of scheduling non-preemptively a
set of jobs on a single speed-scalable processor so as to minimize the maximum late-
ness, under a given budget of energy. In the offline setting, our main contribution is a
combinatorial polynomial time algorithm for the case in which the jobs have common
release dates. In the presence of arbitrary release dates, we show that the problem
becomes strongly NP-hard. Moreover, we show that there is no O(1)-competitive
deterministic algorithm for the online setting in which the jobs arrive over time.
Then, we turn our attention to an aggregated variant of the problem, where the objec-
tive is to find a schedule minimizing a linear combination of maximum lateness and
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energy. As we show, our results for the budget variant can be adapted to derive a sim-
ilar polynomial time algorithm and anNP-hardness proof for the aggregated variant
in the offline setting, with common and arbitrary release dates respectively. More
interestingly, for the online case, we propose a 2-competitive algorithm.

Keywords Energy efficiency · Speed scaling · Scheduling · Maximum lateness

1 Introduction

In classical scheduling an important measure of the Quality of Service (QoS) of a
schedule is the maximum lateness [8]. Every job, among other characteristics, is
associated with a due date and the lateness of a job, with respect to a particular
schedule, is defined as the difference of the job’s completion time minus its due date,
while the maximum lateness is computed as the maximum over all jobs. In this paper,
we propose to optimize this QoS objective in the context of power management,
where the operating system may change the speed of the processor(s) in order to save
energy. In general, high processor speeds imply high performance with respect to the
QoS criterion (here the maximum lateness) at the price of high energy consumption.

Formally, an instance of our problem consists of a set of n jobs J = {1, 2, . . . , n},
where every job i is associated with a release date ri , a work wi and a delivery time
qi , that have to be executed non-preemptively on a single speed-scalable processor.
Note that in this setting, where jobs are associated with delivery times instead of
deadlines, different jobs may be delivered simultaneously. For a given schedule the
lateness of job i is defined as Li = Ci + qi , where Ci is the completion time of job i

and the maximum lateness is defined as Lmax = max1≤i≤n{Li}. Jobs that attain the
maximum lateness in a schedule are referred as critical jobs.

At a given time t , if a processor runs at speed s, then its power consumption is
P(s) = sα , where α > 2 is a constant. By integrating the power over time we can
compute the processor’s energy consumption. That is, if a processor operates at a
constant speed s, it executes an amount of work w in w/s time units and consumes
an amount of energy E = wsα−1.

As maximum lateness minimization and energy savings are conflicting objectives,
we consider two variants: In the, so called, budget variant, we aim in minimizing
Lmax = maxi∈J {Li} for a given budget of energy. Using the classical three field
notation [10], we denote such a problem by S1 | ri | Lmax(E), where S1 denotes
a single speed scalable processor. In the second approach, that we call aggregated
variant, our objective is to minimize a linear combination of maximum lateness and
energy, that is S1 | ri | Lmax + βE, where β ≥ 0 is a given parameter that specifies
the relative importance of energy versus maximum lateness (see [4] for a motivation
of the aggregated approach).

In this context, a schedule σ has to specify for every job the time interval during
which it is executed as well as its speed over time. It is well known, e.g. [16], that
there is an optimal schedule where each job i is executed at a constant speed; this is
a consequence of the convexity of speed-to-power function.
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Related Work and our Results Yao, Demers and Shenker, in their seminal paper [16]
proposed an optimal polynomial time algorithm for finding a feasible preemptive
schedule on a single processor for a set of jobs with release dates and deadlines
minimizing the energy used. They also proposed two online algorithms for the same
problem (OA and AVR).

Bunde [6] studied the budget variant of the non-preemptive makespan minimiza-
tion problem for the single-processor case and the multiple processor case with jobs
of unit work. He also proved the NP-hardness of the multiprocessor case when-
ever the jobs have arbitrary works. Pruhs et al. [14] studied the budget variant of the
non-preemptive multiprocessor makespan minimization problem in the presence of
precedence constraints, and proposed an approximation algorithm. They also gave a
PTAS for the case with no precedence constraints.

Albers et al. [3] were the first to consider an aggregated variant for a power-aware
scheduling problem by studying online and offline versions of the non-preemptive
problem of minimizing the sum of flow times of the jobs plus energy, with jobs of unit
work. The flow time of a job is defined as the difference between its completion time
and its release date. It has to be noticed that Pruhs et al. [13] have studied the budget
variant of this problem. Bansal et al. [4] proved that there is no O(1)-competitive
algorithm, for the budget variant, even if all jobs have unit works.

The interested readermay find recent reviews on power-aware scheduling in [1, 2].
In this paper we consider the maximum lateness criterion in the power-aware con-

text. For the budget variant we propose an optimal algorithm for the non-preemptive
single processor case with common release dates, while in Section 3 we prove that
the problem, in the presence of release dates becomes strongly NP-hard and it does
not admit any O(1)-competitive deterministic algorithm. In Section 4, we move to
the aggregated variant, and we give an optimal algorithm for the single processor
problem with common release dates and a strongly NP-hardness proof for arbitrary
release dates. Moreover, we propose a 2-competitive algorithm for the latter case.

2 Budget Variant with Common Release Dates

In this section we present a polynomial-time algorithm for the S1 | | Lmax(E) prob-
lem. Our algorithm is based on a number of structural properties of an optimal
schedule, deduced by formulating our problem as a convex program and applying the
KKT (Karush, Kuhn, Tucker) conditions.

2.1 General form of KKT Conditions

Next, we describe the general form of the KKT conditions for convex programs (see
e.g., [5]). Assume that we are given the following convex program:

min f (x)

gi(x) ≤ 0, 1 ≤ i ≤ q

hj (x) = 0, 1 ≤ j ≤ r

x ∈ Rn
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Suppose that the program is strictly feasible, i.e. there is a point x such that
gi(x) < 0 and hj (x) = 0 for all 1 ≤ i ≤ q and 1 ≤ j ≤ r , where all functions gi

and hj are differentiable at x. Let λi and μj be the dual variables associated to the
constraints gi(x) ≤ 0 and hj (x) = 0, respectively. The Karush-Kuhn-Tucker (KKT)
conditions are:

gi(x) ≤ 0, 1 ≤ i ≤ q (1)

hj (x) = 0, 1 ≤ j ≤ r (2)

λi ≥ 0, 1 ≤ i ≤ q (3)

λigi(x) = 0, 1 ≤ i ≤ q (4)

∇f (x) +
q∑

i=1

λi∇gi(x) +
r∑

j=1

μj∇hj (x) = 0 (5)

KKT conditions are necessary and sufficient for solutions x ∈ Rn, λ ∈ Rq

and μ ∈ Rr to be primal and dual optimal, where λ = (λ1, λ2, . . . , λq) and
μ = (μ1, μ2, . . . , μr). We refer to the conditions (1) and (2) as primal feasible,
to the (3) as dual feasible, to the (4) as complementary slackness and to the (5) as
stationarity conditions, respectively.

2.2 A Convex Programming Formulation

A convex programming formulation of our problem stems from two basic proper-
ties of an optimal schedule. First, because of the convexity of the speed-to-power
function, each job i runs at a constant speed si . Second, jobs are scheduled
according to the EDD (Earliest Due Date First) rule, or equivalently in non-
increasing order of their delivery times; this can be easily shown by a standard
exchange argument. Hence, we propose the following formulation where all jobs
are considered to be released at time zero and numbered according to the EDD
order:

minL

Ci + qi ≤ L, 1 ≤ i ≤ n (6)
w1

s1
≤ C1, (7)

Ci−1 + wi

si
≤ Ci, 2 ≤ i ≤ n (8)

n∑

i=1

wis
α−1
i ≤ E (9)

L,Ci, si ≥ 0, 1 ≤ i ≤ n (10)

Our objective is to minimize the maximum lateness, L, among all feasible
schedules. Constraints (6) ensure that the lateness of each job is at most L,
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constraints (7) and (8) enforce the jobs to be scheduled according to the EDD
rule in non-overlapping time intervals, constraint (9) does not allow to exceed
the givenenergy budget E and constraints (10) ensure that the maximum lateness,
the completion times and the speeds of jobs are non-negative. Constraint (9), for
α > 2, and constraints (7) and (8) are convex, while constraints (6) and (10)
and the objective function are linear. Thus, our mathematical program is indeed
convex.

This convex program already implies a polynomial algorithm for our problem,
as convex programs can be solved to arbitrary precision by the Ellipsoid algorithm
[12]. Since the Ellipsoid algorithm is rather impractical, we will exploit this convex
program to derive a fast combinatorial algorithm.

2.3 Properties of an Optimal Schedule

In what follows we deduce a number of structural properties of an optimal schedule
by applying the KKT conditions to the above convex program.

Lemma 1 For the maximum lateness problem with an energy budgetE, the following
properties are necessary and sufficient for optimality of a feasible schedule.

(i) Each job i runs at a constant speed si .
(ii) Jobs are scheduled according to the EDD rule.
(iii) There are no idle periods in the schedule.
(iv) The last job is critical, i.e., Ln = Lmax .
(v) Every non-critical job i has equal speed with the job i + 1, i.e., si = si+1.
(vi) Jobs are executed in non-increasing speeds, i.e., si ≥ si+1.
(vii) All the energy budget is consumed.

Proof 1 In order to apply the KKT conditions to the convex program, we associate
to each set of constraints from (6) up to (9), dual variables βi, γ1, γi, δ, respectively.
W.l.o.g. the variables L,Ci and si are positive and, by the complementary slackness
conditions, the dual variables associated to the constraints (10) are equal to zero.

Stationarity conditions give that

∇L +
n∑

i=1

βi∇ (Ci + qi − L) + γ1∇
(

w1

s1
− C1

)

+
n∑

i=2

γi∇
(

Ci−1 + wi

si
− Ci

)
+ δ∇

(
n∑

i=1

wis
a−1
i − E

)
= 0 ⇒

(
1 −

n∑

i=1

βi

)
∇L +

n−1∑

i=1

(βi − γi + γi+1) ∇Ci

+ (βn − γn)∇Cn +
n∑

i=1

(
−γiwis

−2
i + (a − 1)δwis

a−2
i

)
∇si = 0
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Equivalently, we obtain the following equalities.

n∑

i=1

βi = 1 (11)

βi = γi − γi+11 ≤ i ≤ n − 1 (12)

βn = γn (13)

(α − 1)δ = γi

sα
i

1 ≤ i ≤ n (14)

The complementary slackness conditions give that

βi(Ci + qi − L) = 0 1 ≤ i ≤ n (15)

γ1

(
w1

s1
− C1

)
= 0 (16)

γi

(
Ci−1 + wi

si
− Ci

)
= 0 2 ≤ i ≤ n (17)

δ

(
n∑

i=1

wis
α−1
i − E

)
= 0 (18)

First, we will show that the properties are necessary for optimality. That is, there
is always an optimal schedule satisfying them.

(i)-(ii) They have been already discussed above.
(iii) First, note that δ �= 0. If δ = 0 then by (14), we get that γi = 0 for each

1 ≤ i ≤ n. This, combined with (12) and (13) yields that
∑n

i=1βi = 0,
which is a contradiction because of (11). Since δ �= 0, we get by (14) that
γi �= 0 for each 1 ≤ i ≤ n. Then, equations (16) and (17) give that there is
no idle time in any optimal schedule since C1 = w1

s1
and Ci = Ci−1 + wi

si
,

for 2 ≤ i ≤ n, respectively.
(iv) Since δ �= 0, by (14), it follows that γn �= 0 and finally, because of (13),

βn �= 0. So, the last job to finish is always a critical job, by (15).
(v) Note that for every non-critical job i, it holds that Ci + qi < L and (15)

implies that βi = 0 for every such job. Hence, if a job i is non-critical
βi = 0 ⇒ γi = γi+1 ⇒ si = si+1, by (12) and (14), respectively.

(vi) By the dual feasibility conditions and the (12) and (14) we get, respectively,
that βi ≥ 0 ⇒ γi ≥ γi+1 ⇒ si ≥ si+1. Thus, the jobs are executed with
non-increasing speeds.

(vii) If the energy budget is not entirely consumed, then by (18), δ = 0, which is
a contradiction, since, as we have already proved, δ �= 0.

Next, we will show that the properties are also sufficient for optimality. That
is, any feasible schedule satisfying them must be optimal. In order to show this,
it suffices to prove that, given any feasible schedule satisfying the properties, we
can always give values to the dual variables such that the KKT conditions are
satisfied.
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Consider a feasible schedule and let si and Ci be the speed and the com-
pletion time of the job i, 1 ≤ i ≤ n, respectively. Moreover, let L be the
maximum lateness of the schedule. We give values to the dual variables as
follows.

δ = 1

(α − 1)sα
1

γi = sα
i

sα
1

, 1 ≤ i ≤ n

βi = sα
i − sα

i+1

sα
1

, 1 ≤ i ≤ n − 1

βn = sα
n

sα
1

We, now, observe that these values of the dual variables together with the values
of the primal variables satisfy the KKT conditions.

Note that

n∑

i=1

βi =
n∑

i=1

sα
i − sα

i+1

sα
1

= sα
1

sα
1

= 1

βi = sα
i − sα

i+1

sα
1

= sα
i

sα
1

− sα
i+1

sα
1

= γi − γi+11 ≤ i ≤ n − 1

βn = sα
n

sα
1

= γn

(α − 1)δ = 1

sα
1

= sα
i

sα
1

1

sα
i

= γi

sα
i

1 ≤ i ≤ n

So the stationarity conditions are satisfied.
Consider now a job i, 1 ≤ i ≤ n. If i is critical, then Ci + qi = L. Else, by

property (v) we have that, for 1 ≤ i ≤ n − 1,

si = si+1 ⇔ sα
i

sα
1

= sα
i+1

sα
1

⇔ βi = 0

Thus, (15) is satisfied. By property (iii), we have that C1 = w1
s1

and Ci = Ci−1+ wi

si
,

for 2 ≤ i ≤ n. Therefore, equations (16) and (17) are also satisfied. Furthermore, by
property (vii), all the energy budget is consumed and the equation (18) holds. Hence,
the complementary slackness conditions are satisfied.

Finally, in order to complete our proof, it remains to show that the values of all the
dual variables are non-negative. The only case for which this is not straightforward,
is for the values of variables βi , for 1 ≤ i ≤ n − 1. But, it must be the case that
βi ≥ 0 for all 1 ≤ i ≤ n − 1, because of the property (vi) and the theorem follows.
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We refer to any schedule satisfying the properties of Lemma 1 as a regular sched-
ule. By Lemma 1, every optimal schedule is regular and vice versa; however, there
might be feasible, but not optimal, non-regular schedules. By (i, j) we denote a
sequence of consecutive jobs i, i + 1, . . . , j . Any regular schedule can be partitioned
into groups of jobs, of the form (i, j), where the jobs i − 1 and j are critical and the
jobs i, i +1, . . . , j −1 are not. By Lemma 1 (v), all jobs of such a group are executed
at the same speed. We denote this common speed by sj and the total amount of work

of jobs in (i, j) byw(i, j) = ∑j
k=iwk . Then, the next proposition follows easily from

Lemma 1.

Proposition 1 Let i, j , be two consecutive critical jobs of a regular schedule. The
speed of each job in the group (i + 1, j) equals to sj = w(i+1,j)

qi−qj
.

Proof 2 Assume without loss of generality that i completes before j . Since i and j

are both critical, they attain equal maximum latnesses, i.e.Li = Lj . Moreover, in any
regular schedule, by Lemma 1 (iv), there is no idle period between jobs i, i+1, . . . , j .
Furthermore, all jobs i + 1, i + 2, . . . , j − 1 are non-critical and, by Lemma 1 (vi),
they are all executed with speed equal to that of job j . Hence, we get, respectively,
that

Li = Lj ⇒ Ci +qi = Cj +qj ⇒
i∑

k=1

wk

sk
+qi =

j∑

k=1

wk

sk
+qj ⇒ sj = w(i + 1, j)

qi − qj

.

Clearly, given that Li = Lj and Ci < Cj , it must be the case that qi �= qj .

2.4 An Optimal Combinatorial Algorithm

So far, by proving that the properties of a regular schedule are necessary and
sufficient for optimality, we have derived a clear image of the structure of an
optimal schedule for the S1 | | Lmax(E) problem. Next, we propose Algorithm
BUD which constructs such a schedule in polynomial time. Note that a regu-
lar schedule is fully specified by the speeds of the jobs. The rough idea of our
algorithm is the following: First, it constructs a preliminary schedule by find-
ing groups of jobs running in non-increasing speeds without taking care of the
energy consumption. Second, the algorithm manages the energy consumption w.r.t.
the energy budget E and determines the final speeds of all jobs. Let E′ be the
energy consumption of the current schedule at any point of the execution of the
algorithm.

Algorithm BUD needs the jobs to be ordered/numbered according to the EDD
rule and an initial sorting step is required. Once this step is performed, it starts from
job n which is always a critical job and considers all jobs but the first, in reverse
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Fig. 1 The execution of Algorithm BUD for an instance of 3 jobs, without release dates, works 10, 2, 2,
delivery times 5, 4, 2, α = 3 and E = 20

order. When a job i, 2 ≤ i ≤ n, is considered for the first time, its speed si is set
according to Proposition 1, assuming that jobs i − 1 and i are critical. If si ≥ sj , for
i+1 ≤ j ≤ n, then si is called eligible speed and it is assigned to job i; by definition,
the speed sn = wn

qn−1−qn
is considered to be eligible. If speed si is not eligible, i is

a non-critical job and it is merged with the (i + 1)’s group. More specifically, if c

is the last job of this group, then the speeds of jobs i, i + 1, . . . , c are calculated by
applying Proposition 1, assuming that i −1 and c are critical while i, i +1, . . . , c−1
are not. Next, the algorithm examines whether the new value of si is eligible. If this
is the case, then it considers the job i − 1. Otherwise, a further merging of the i’s
group with the (c + 1)’s group, is performed, as before. That is, if c′ is the last job of
the (c+1)’s group, all jobs i, i +1, . . . , c′ are assigned the same speed assuming that
jobs i − 1 and c′ are critical, while i, i + 1, . . . , c′ − 1 are not. This speed, according
to the Proposition 1, is equal to sc′ = w(i,c′)

qi−1−qc′
. Note that the job c is no longer critical

in this case. This merging procedure is repeated until job i is assigned an eligible
speed. In a degenerate case, jobs i, i +1, . . . , n are merged into one group. When the
algorithm has assigned an eligible speed to all jobs 2, 3, . . . , n, it sets s1 = s2 and its
first part completes. Note that s1 becomes also eligible. An example of the first part
of our algorithm is given in Fig. 1i.

Next, Algorithm BUD takes into account the available budget of energy E. If
E − E′ ≥ 0, the current schedule’s energy consumption does not exceed the budget
of energy, and the surplus E − E′ is assigned to the first job. Otherwise, the current
schedule is regular, except that it consumes an amount of energy greater than E.
Then, the algorithm reduces the consumed energy until it becomes equal to E. In
fact, it decreases the speed of the first group, by merging subsequent groups with it,
if necessary. This merging procedure is different from the one of the first part of the
algorithm and it is as follows: let i be the critical job of maximal index with si = s1
in the current schedule. Observe that si > si+1. The algorithm sets the speed of
jobs 1, 2, . . . , i equal to si+1. This causes a reduction to E′ and there are two cases
to distinguish: either E′ ≤ E or E′ > E. In the first case, the algorithm adds an
amount of energy E − E′ to jobs 1, 2, . . . , i by increasing their speeds uniformly,
i.e. so that they are all executed with the same speed. In the second case, at least
one further merging step has to be performed. When the algorithm terminates, it is
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obvious that E′ = E. For an example of the second part of our algorithm see Fig. 1ii
and iii.

Theorem 1 Algorithm BUD is optimal for the S1 | | Lmax(E) problem.

Proof 3 We shall prove that the algorithm satisfies the properties of Lemma 1, i.e., it
produces a regular schedule. For convenience, we distinguish two parts in the algo-
rithm: Part I, corresponding to lines 1-6 and Part II, corresponding to lines 7-16,
respectively.

Property (i)-(ii): The algorithm gives a single constant speed to each job and keeps
their initial EDD order.

Property (iii): In Part I, the speeds of jobs are assigned according to Proposition 1.
Specifically, the algorithm fixes two consecutive critical jobs i and j , i < j ,
with, potentially, some non-critical jobs between them. Then the speed of the non-
critical jobs and the one of the critical job j is defined such that there is no idle
period between the jobs. In Part II, no idle period is added between any jobs.

Property (iv) - (v): When the speed of job n is initialized, this is done by assuming
that it is critical. Next, consider the current schedule just after the completion of
Part I. This schedule can be partitioned into sequences of jobs, a+1, a+2, . . . , b,
with a ≥ 1, such that the jobs of each sequence are executed with the same speed
which has been assigned by applying Proposition 1, assuming that the jobs a and b

are critical. In fact, jobs a and b attain equal lateness. In order for such a sequence
to be a group, we should also prove that all but the last jobs are non-critical while
the last job is critical.
Let a + 1, a + 2, . . . , b be a sequence of jobs. We claim that Li < Lb, for

a + 1 ≤ i ≤ b − 1. Assume, by contradiction, that there exists a job j , where
a+1 ≤ j ≤ b−1, such thatLj ≥ Lb, or equivalently, qj −qb ≥ ∑b

i=j+1
wi

sb
. Since

the last job of a sequence attains equal lateness with the last job of the sequence
that follows, we have that La = Lb. This yields that qa − qb = ∑b

i=a+1
wi

sb
.

Therefore, qa − qj ≤ ∑j

i=a+1
wi

sb
.

Obviously, for any job i, a + 1 ≤ i ≤ b − 1, we must have a speed si >
wi

qi−1−qi
, since otherwise, it wouldn’t have been merged with another group. That
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is, qi−1 − qi >
wi

si
. If we sum the last inequalities for a + 1 ≤ i ≤ j , we get that

qa − qj >
∑j

i=a+1
wi

sb
, a contradiction.

At this point, we have showed that when Part I completes, if a job i, 2 ≤ i ≤ n,
is critical, then it must be the right extremity of a sequence. Moreover, among all
jobs 2, 3, . . . , n, the last jobs of all sequences, including job n, attain equal lateness
and the remaining jobs attain smaller lateness. In addition, job 1 attains equal late-
ness with the last job of the sequence that follows. Recall that, at this point, we set
s1 = s2. Job 1 would have equal lateness with the last job of the sequence that fol-
lows for any s1 > 0 since the speed of the second group is set by applying Proposi-
tion 1, assuming that 1 is critical. So, at the end of Part I, job 1, job n and every last
job of a sequence are critical. Therefore, after Part I finishes, Properties (iv) and (v)
hold.
In Part II, if no merging step is performed, then the processing time of job

1 is decreased by some t ≥ 0 and its lateness decreases by t , while the
processing times and speeds of the other jobs are not modified. So, the late-
ness of every other job also decreases by t . Hence, the Properties (iv) and (v)
hold.
If at least one merging step is performed, then the speed of the jobs in the

first group decreases and their processing time increases. Then, in the first group,
every non-critical job i has equal speed with the job i + 1 that follows, while
the speeds of the jobs in other groups remain unchanged. Now, let ti be the total
increase in the processing time of job i, 1 ≤ i ≤ n. Note that this quantity is
positive only for jobs belonging to the first group of the current schedule. Then,
the lateness of any job i, 1 ≤ i ≤ n, increases by

∑i
j=1tj ; if c1 is the critical

job of the first group, it remains critical after the merging step since its lateness
and the lateness of every other job that follows, increase by the same quantity,
equal to

∑c1
j=1tj . Note, that if a further merging step is performed, we consider

the first two groups as one group. Moreover, the lateness of any job increases
by no more than the increase of the lateness of job n, and thus, in the final
schedule, job n remains critical and Property (iv) holds. Furthermore, each non-
critical job has equal speed with the job that follows and Property (v) holds as
well.

Property (vi): At the end of Part I, the speeds of jobs are non-increasing since oth-
erwise, a merging step would be performed. Moreover, during Part II, no speed of
a job becomes less than the speed of a subsequent job.

Property (vii): Recall that E′ is the total energy consumed when Part I completes.
If E′ is less than the energy budget, then the energy of the first job increases
until the schedule consumes exactly E units of energy, while if E′ is greater than
the energy budget E, then the energy consumption of the schedule is gradually
decreased until it becomes equal to E.

Let us now consider the complexity of the algorithm. Initially, jobs are sorted
according to the EDD rule in O(n log n) time. The first part of the algorithm may
take O(n2) time since each merging step takes O(n) time and there can be O(n)

merging steps. Also, the algorithm’s second part takes O(n2) time since the speed
of each job may change at most O(n) times. Therefore, the overall complexity of
the algorithm is O(n2).
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3 Budget Variant with Arbitrary Release Dates

We now consider the budget variant of the maximum lateness problem, where the
jobs have arbitrary release dates, i.e., S1 | rj | Lmax(E) and we show that it becomes
strongly NP-hard. Moreover, we show that there is no O(1)-competitive algorithm
for its online version, even when all jobs have unit works.

3.1 NP-hardness

We reduce 3-PARTITION to the S1 | rj | Lmax(E) problem. 3-PARTITION problem
is a well known NP-hard [7] problem where, we are given a positive integer B

and a set of 3n positive integers A = {a1, a2, . . . , a3n}, where B/4 < ai < B/2
and

∑
ai∈Aai = nB, and we ask if there exists a partition of A into n disjoint sets

A1, A2 . . . , An such that, for each 1 ≤ k ≤ n,
∑

ai∈Ak
ai = B.

Our reduction is inspired by theNP-hardness proof for the classical 1 | rj | Lmax

problem [11], where we are given a set of jobs with each job i having a release
date ri , a due date di and a processing time pi and we seek a schedule minimizing
the maximum lateness; note that, the feasibility version of this later problem is also
known as the SEQUENCING WITHIN INTERVALS problem [7].

The 1 | rj | Lmax problem can be viewed as a variant of our problem where the
speed of each job is part of the instance. Specifically, we consider that each job i has
an amount of work wi = pi and it is executed at a constant speed si = 1. Based on
this idea, we extend the existingNP-hardness reduction by fixing an energy budget,
so that all jobs have to be executed at the same speed si = 1 in order to get a feasible
schedule.

Theorem 2 S1 | rj | Lmax(E) problem is strongly NP-hard.

Proof 4 We construct an instance of S1 | rj | Lmax(E) from an instance of
3-PARTITION as follows. The instance is depicted in Table 1.

– For each integer ai , 1 ≤ i ≤ 3n, we create a job i with wi = ai , ri = 0 and
qi = 0.

– We introduce n − 1 gadget jobs, where the gadget job i, 3n + 1 ≤ i ≤ 4n − 1,
has wi = B, ri = (2i − 6n − 1)B and qi = (8n − 2i − 1)B.

– We set E = (2n − 1)B.

We shall prove that there is a feasible schedule σ with Lmax = (2n−1)B and total
energy consumption E = (2n−1)B if and only if there exists a 3-PARTITION of A.

(⇐) For the first direction, assume that A1, A2 . . . , An is a partition of A, where∑
ai∈Ak

ai = B for 1 ≤ k ≤ n. Then, consider the schedule σ where: (i) each job
i corresponding to an integer ai ∈ Ak , 1 ≤ k ≤ n, is scheduled during the time
interval [2(k − 1)B, (2k − 1)B], (ii) each gadget job i, 3n + 1 ≤ i ≤ 4n − 1 is
scheduled during the time interval [(2i − 6n − 1)B, (2i − 6n)B], and (iii) all jobs
are executed at constant speed si = 1. The schedule σ (see Fig. 2) is feasible and
attains maximum lateness equal to Lmax = (2n − 1)B. The total energy consumed
is E = ∑4n−1

i=1 wis
α−1
i = ∑4n−1

i=1 wi = (2n − 1)B.
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(⇒) For the opposite direction, assume that σ is a feasible schedule with
Lmax = (2n − 1)B and total energy consumption E = (2n − 1)B. In σ , each
job i, 1 ≤ i ≤ 3n, must have completion time Ci ≤ (2n − 1)B and each gad-
get job i, 3n + 1 ≤ i ≤ 4n − 1, must have completion time Ci ≤ (2i − 6n)B,
since Li ≤ (2n − 1)B for every job i. For notational convenience, let W =
(2n − 1)B be the sum of works of all jobs. Let also pi be the execution time of job
i, 1 ≤ i ≤ 4n − 1.

It holds also that the completion time of (the last job of) schedule σ is Cmax =
(2n − 1)B. To see this, assume for the sake of contradiction that Cmax < (2n − 1)B.
Then, by the convexity of speed-to-power function, it follows that the total energy
consumption in σ will be

E(σ) =
4n−1∑

i=1

wis
α−1
i =

4n−1∑

i=1

wi

(
wi

pi

)α−1

≥ W

(
W

Cmax

)α−1

> (2n − 1)B

which is not possible because the energy budget is exceeded. With a similar argu-
ment, it can be shown that there will be no idle time during the interval [0, (2n−1)B]
in σ . Moreover, due to the convexity of the speed-to-power function, among the
schedules with makespan Cmax = (2n − 1)B which have no idle period during
[0, (2n − 1)B], only the ones in which all the jobs are executed with speed equal to
sj = 1 have energy consumption not greater than E = (2n − 1). Clearly, σ must be
one of these schedules. Hence, every gadget job i, 3n + 1 ≤ i ≤ 4n − 1, is executed
within the whole time interval [(2i − 6n − 1)B, (2i − 6n)B] in σ .

So far we have shown that every gadget job i, 3n + 1 ≤ i ≤ 4n − 1, spans
in σ the time interval [(2i − 6n − 1)B, (2i − 6n)B], while the other jobs i, 1 ≤
i ≤ 3n, span the time intervals [2(k − 1)B, (2k − 1)B], 1 ≤ k ≤ n. Therefore,
during any interval [2(k − 1)B, (2k − 1)B], 1 ≤ k ≤ n, there will be executed a
set of jobs with total amount of work B. This execution defines a 3-PARTITION
for A.

Table 1 An instance of
S1 | rj | Lmax(E) reduced from
an instance of 3-Partition

i wi ri qi

1 a1 0 0

2 a2 0 0

. . . . . . . . . . . .

3n a3n 0 0

3n + 1 B B (2n − 3)B

3n + 2 B 3B (2n − 5)B

3n + 3 B 5B (2n − 7)B

. . . . . . . . . . . .

4n − 2 B (2n − 5)B 3B

4n − 1 B (2n − 3)B B
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3.2 The On-Line Case

Let us now turn our attention to the online version of the S1 | rj | Lmax(E) problem.
Bansal et al. [4] gave an adversarial strategy for proving that there is no O(1)-
competitive algorithm for the problem of minimizing the total flow of a set of unit
work jobs on a single speed-scalable processor. This adversarial strategy consists of
batches of jobs, B1, B2, . . . , Bk , with all the jobs in batch Bi released after the online
algorithm has finished all the jobs in Bi−1. Following a similar strategy it can be
proved that the makespan minimization problem, for a given budget of energy, i.e.
the problem S1 |rj , wj = 1| Cmax(E), does not admit an O(1)-competitive algo-
rithm. Note that the makespan minimization is a special case of our lateness problem
(with qi = 0, 1 ≤ i ≤ n).

Theorem 3 There is no O(1)-competitive algorithm for the online version of the S1
| rj | Cmax(E) problem, even when jobs have unit works.

Proof 5 In order to prove the theorem, we assume the existence of a ρ-competitive
algorithm A, where ρ > 1 is a constant. Then, we reach a contradiction by showing
that there is an instance of the problem that cannot be feasibly solved by A.

We consider a set of jobs consisting of batches B1, B2, . . . , B	, where the batch
Bi , 1 ≤ i ≤ 	, contains ni = 2i−1 unit work jobs which all arrive at the same time;
the jobs of the batch B1 are released at the time r1 = 0 while the jobs of the batch
Bi , 1 ≤ i ≤ 	, are released at time ri . We assume that ri is large enough so that the
algorithm A has completed the jobs in the batches B1, . . . , Bi−1 by ri .

We denote by C∗
max,k , 1 ≤ k ≤ 	, the value of the makespan that the optimal

offline algorithm achieves for the instance that consists exactly of the jobs in the
batches B1, B2, . . . , Bk . The term C∗

max,k is upper bounded by the makespan of the
schedule in which all the jobs in B1, B2, . . . , Bk are assigned equal speeds such
that their energy consumption is equal to the energy budget E and they are executed
continuously starting at time rk . Therefore,

C∗
max,k ≤ rk +

⎛

⎜⎝

(∑k
i=1ni

)α

E

⎞

⎟⎠

1
α−1

(19)

AsA is a ρ-competitive algorithm, it must complete all jobs of the batches B1, B2,

. . . , Bk not later than ρ · C∗
max,k independently of the number of batches that our

original instance contains. Otherwise, it wouldn’t be ρ-competitive for the instance
of the problem that consists only of the batches B1, B2, . . . , Bk . Let Cmax,k be the

Fig. 2 A feasible schedule σ for S1 | rj | Lmax(E) that attains maximum lateness equal to Lmax =
(2n − 1)B
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completion time of the jobs in batches B1, B2, . . . , Bk inA’s schedule. Then, it must
be the case that

Cmax,k ≤ ρ · C∗
max,k (20)

Let Ek be the energy consumption of the jobs in batch Bk in A’s schedule. Due to
the convexity of the speed-to-power function, we have that

Ek ≥ nα
k

(Cmax,k − rk)α−1
(21)

By combining inequalities (19), (20), (21) and the fact that rk ≤ C∗
max,k , we obtain

that

Ek ≥ nα
k(∑k

i=1 ni

)α

E

(2ρ − 1)α−1

Since ni = 2i−1 for 1 ≤ i ≤ k, we conclude that

Ek ≥ E

2α(2ρ − 1)α−1

Thus, if the number of batches 	 is large enough, i.e. 	 → ∞, the algorithm will
run out of energy after having completed �2α(2ρ − 1)α−1� batches, so it won’t be
able to finish the batches that follow.

4 Aggregated Variant

In this section, we turn our attention to the aggregated variant of the maximum late-
ness problem, where our objective is to minimize Lmax + βE, for some β > 0. For
this variant, in the online case, we are able to overcome the impossibility of obtaining
constant-factor competitive algorithms (Theorem 3). Initially, we consider instances
in which the jobs have a common release date and we describe how to obtain an
optimal offline algorithm for the aggregated variant by slightly modifying our algo-
rithm and its analysis for the budget variant in Section 2. For instances with arbitrary
release dates, we explain why our NP-hardness proof for the budget variant implies
that the aggregated variant is also NP-hard. Last, we turn our attention to the online
case of the aggregated problem in which the jobs arrive over time and we propose a 2-
competitive algorithm which schedules the jobs into batches, by repeatedly applying
our optimal offline algorithm for jobs with a common release date.

Common Release Dates When all jobs are released at the same time, S1 | | Lmax +
βE, we are able to derive a polynomial algorithm, by using Algorithm BUD in the
following way: suppose that we are given the energy consumption E∗ of an optimal
schedule minimizing Lmax + βE. Then, in order to construct such an optimal sched-
ule, it suffices to apply the optimal algorithm for the budget variant with an energy
budget equal to E∗. This means that the optimal schedule for the aggregated vari-
ant is a regular schedule, satisfying the properties of Lemma 1 (with budget E∗).
However, in order to construct the optimal schedule minimizing Lmax + βE, we
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need to compute E∗. One approach, which has been already suggested in the lit-
erature for the total flow time criterion (see [3, 4]), would be to perform a binary
search procedure in the interval of all possible energy levels. Here, we describe
an alternative approach which resembles to the one we followed for the budget
variant.

We first formulate the aggregated variant as a convex program similar to the one
for the budget variant. Now, we do not introduce a constraint on the total energy con-
sumption, since it is added in the objective function. By applying the KKT conditions,
we obtain almost the same structure (properties) of an optimal solution with one sin-
gle difference: the energy consumption is not specified by a given budget of energy,
but it results from the fact that the speed of the first job should always be equal to a
fixed value. Specifically, the Property (vii) of Lemma 1 is replaced by the fact that

“the job executed first runs at speed s1 =
(

1
(α−1)β

)α

”. Therefore, in order to obtain

an optimal schedule for the aggregated variant, it suffices to do the following: Run
lines (1)-(6) of Algorithm BUD. Let σ be the schedule produced. Find the highest-
index critical job, i, i �= 1, in σ , such that its corresponding sequence, (k, i), has
speed si < s1. Modify σ such that all jobs 1, 2, . . . , k − 1 are executed at speed s1.

Arbitrary Release Dates It is not hard to see that if we are given an optimal algorithm
for the aggregated variant, then we can obtain an optimal polynomial algorithm for
the budget variant by using binary search on the possible values of β and stopping at
a value β∗ such that the energy consumption of the schedule minimizing Lmax +β∗E
is equal to the energy budget. Since, by Theorem 2, the budget variant isNP-hard to
solve, we conclude that the aggregated variant is also NP-hard.

Now, we turn our attention in the online version of the aggregated variant and
we derive a 2-competitive online algorithm for the S1 | rj | Lmax + βE problem.
The algorithm schedules the jobs in a number of phases by repeatedly applying the
optimal offline algorithm for the S1 | | Lmax + βE problem. This approach was
introduced in [15]. We denote by σ ∗(J, t) the optimal schedule of a set of jobs J

with a common release date t .

Algorithm ALE Let J0 be the set of jobs that arrive at time t0 = 0. In phase 0, jobs in
J0 are scheduled according to σ ∗(J0, 0). Let t1 be the time at which the last job of J0
is finished, i.e., the end of phase 0, and J1 be the set of jobs released during (t0, t1].
In phase 1, jobs in J1 are scheduled as in σ ∗(J1, t1) and so on. In general, if ti is the
end of phase i − 1, we denote Ji to be the set of jobs released during (ti−1, ti]. Jobs
in Ji are scheduled by computing σ ∗(Ji, ti). Next, we analyze the competitive ratio
of the algorithm.

Theorem 4 Algorithm ALE is 2-competitive for the online version of the S1 | rj |
Lmax + βE problem.

Proof 6 Assume that Algorithm ALE produces a schedule in 	 + 1 phases. Recall
that the jobs of the i-th phase, i.e., the jobs in Ji , are released during (ti−1, ti] and
scheduled as in σ ∗(Ji, ti). Let Lmax,i + βEi be the cost of σ ∗(Ji, ti), where Lmax,i
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is the maximum lateness among the jobs in Ji and Ei be the energy consumed by the
jobs of Ji . The objective value of the algorithm’s schedule is

SOL = max
0≤i≤	

{Lmax,i} + β

	∑

i=0

Ei (22)

Now, we consider the optimal schedule. To lower bound the objective value OPT of
an optimal schedule, we round down the release dates of the jobs; the release dates
of the jobs in phase i, are rounded down to ti−1. Let σ ∗

d and OPTd be the optimal
schedule for the rounded instance and its cost, respectively. Clearly, any feasible
schedule for the initial instance is also feasible for the rounded one. Thus, OPT ≥
OPTd .

To lower boundOPTd we consider a restricted speed-scaling scheduling problem,
i.e., a problem where each job can only be executed by a subset of the available
processors. The instance of this problem consists of 	 + 1 available speed-scalable
processors M0, M1, . . . , M	 and the set of jobs J , with their release dates rounded
down, as before. Jobs in J0 can only be assigned to the processor M0 and every
job in Ji can only be executed by one of the processors M0 or Mi, 1 ≤ i ≤ 	.
Moreover, it is required that all jobs in Ji , 0 ≤ i ≤ 	, are executed by the same
processor. Let σ ∗

m, OPTm be the optimal schedule and its cost, respectively, for this
restricted problem. Obviously, OPTd ≥ OPTm since σ ∗

d is feasible for the restricted
scheduling problem.

Let us now describe an optimal schedule σ ∗
m. Through a simple exchange argu-

ment, it can be shown that the jobs of Ji, 0 ≤ i ≤ 	, in an optimal schedule, are
executed by the processor Mi . Moreover, jobs in Ji , for 1 ≤ i ≤ 	, are sched-
uled according to σ ∗(Ji, ti−1), while for i = 0, according to σ ∗(J0, t0). Assume
that the maximum lateness of the above schedule, is attained by a job of the set
Jk, 0 ≤ k ≤ 	, in the processor Mk . So, let L∗

max = L∗
max,k , where L∗

max , L
∗
max,k is

the maximum lateness of the schedules σ ∗
m, σ ∗(Ji, ti−1), respectively. Let E∗

i be the
energy consumption of schedule σ ∗(Ji, ti−1). Then,

OPTm = L∗
max,k + β

	∑

i=0

E∗
i (23)

By considering the schedules σ ∗(Ji, ti−1) and σ ∗(Ji, ti), it can be easily shown that
L∗

max,i = Lmax,i − (ti − ti−1) and E∗
i = Ei . Then, by (22) and (23) it yields that

OPTm = SOL − (tk − tk−1). Note that tk − tk−1 is the total processing time of the
jobs in Jk−1, in the schedule produced by ALE, which is equal to the processing time
of the jobs in Jk−1 in σ ∗

m. Recall also that the last job of each set Ji attains Lmax,i .
Thus, tk − tk−1 ≤ L∗

max,k−1 ≤ OPT . Therefore, SOL ≤ 2OPT and Algorithm
ALE is 2-competitive for the S1 | rj | Lmax + βE problem.

5 Concluding Remarks

We presented positive and negative results for the offline and online power-aware
versions of the classical maximum lateness scheduling problem. These results, along
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with the existing literature on power-aware versions of other problems, like makespan
and total flow time, form a strong evidence for the complexity of the power-aware
scheduling problems: they are in the same complexity class (polynomial or NP-
hard) as their classical versions. For polynomial algorithms, the most promising
approach consists of deducing strong structural properties of optimal schedules by
applying the KKT conditions on a convex programming formulation of the problem.
For NP-hardness results, existing NP-completeness reductions of the correspond-
ing classical problems can be adapted, by forcing all jobs to be executed with speed
equal to one and considering the processing times as works. An interesting direction
for future work concerns the use of resource (energy) augmentation (see [9, 14]) for
the online case of the budget variant of the problem, in order to overcome the fact
that there is no O(1)-competitive deterministic algorithm (see Theorem 3). It is also
interesting to improve the competitive ratio of Algorithm ALE, in Section 4, for the
aggregated variant.
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