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of Sierpiński-like Graphs

Shun-Chieh Chang ·Jia-Jie Liu ·Yue-Li Wang

Published online: 23 April 2015
© Springer Science+Business Media New York 2015

Abstract An outer-connected dominating set in a graph G = (V , E) is a set of
vertices D ⊆ V satisfying the condition that, for each vertex v /∈ D, vertex v is
adjacent to some vertex in D and the subgraph induced by V \D is connected. The
outer-connected dominating set problem is to find an outer-connected dominating
set with the minimum number of vertices which is denoted by γ̃c(G). In this paper,
we determine γ̃c(S(n, k)), γ̃c(S

+(n, k)), γ̃c(S
++(n, k)), and γ̃c(Sn), where S(n, k),

S+(n, k), S++(n, k), and Sn are Sierpiński-like graphs.

Keywords Outer-connected domination · Dominating set · Sierpiński graphs ·
Extended Sierpiński graphs · Sierpiński-like graphs

1 Introduction

Let G = (V , E) be an undirected graph, where V (G) and E(G) are vertex and edge
sets of G respectively. For simplicity, we also use V and E to represent V (G) and
E(G), respectively, when only one graph is mentioned. All graphs considered in this
paper are simple, i.e., with no loops and multiple edges. For any vertex v ∈ V and a
set S ⊆ V , the open neighborhood of v in S is the set NS(v) = {u ∈ S|uv ∈ E}. The
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closed neighborhood of v in S is NS[v] = NS(v) ∪ {v}. If S = V , then we simply
write N(v) and N[v] rather than NV (v) and NV [v], respectively.

Definition 1.1 For a graph G, a set D ⊆ V is a dominating set if N[D] = V . The
minimum size of a dominating set is the domination number, denoted by γ (G). The
domination problem is to determine a minimum dominating set of a graph G.

Definition 1.2 For a graph G, a dominating set D is an outer-connected dominat-
ing set, abbreviated as OCD-set, if the subgraph induced by V \D is connected. The
outer-connected domination number, denoted by γ̃c(G), is the cardinality of a mini-
mum OCD-set. The outer-connected domination problem is to determine a minimum
OCD-set of a graph G.

It is clear that γ (G) � γ̃c(G). The concept of outer-connected domination prob-
lem in graphs was introduced in [3] and subsequently studied in [1, 11, 20]. The
outer-connected domination problem has been shown to be NP-complete for bipar-
tite graphs [3], doubly chordal graphs and undirected path graphs [20], where a graph
G is called an undirected path graph if G is the intersection graph of a family of
paths of a tree. In [20], MarkKeil and Pradhan proposed a linear time algorithm for
computing a minimum OCD-set in proper interval graphs.

The Sierpiński graph S(n, k) consists of k copies of S(n − 1, k) for n > 1, where
S(1, k) is a complete graph of k vertices [13]. Graphs very similar to Sierpiński
graphs were named WK-recursive networks in [25].

For example, S(1, 3), S(2, 3), and S(3, 3) are shown in Fig. 1a, b, and c,
respectively. In general, Sierpiński-like graphs include Sierpiński graphs, extended
Sierpiński graphs, and Sierpiński gasket graphs. All those Sierpiński-like graphs will
be introduced in Section 2.

The results of this paper are as follows:

(1) γ̃c(S(n, k)) = kn−1, for n � 1 and k � 3,
(2) γ̃c(S

+(n, k)) = kn−1, for n � 1 and k � 3,
(3) γ̃c(S

++(n, k)) = kn−1 + kn−2, for n � 1 and k � 3, and
(4) γ̃c(Sn) = 3n−2 if n � 3; otherwise, γ̃c(Sn) = n,

Fig. 1 Sierpiński graphs
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where S(n, k) denotes a Sierpiński graph, S+(n, k) and S++(n, k) denote two
different extended Sierpiński graphs, and Sn denotes a Sierpiński gasket graph.

The organization of this paper is as follows. In Section 2, we introduce Sierpiński-
like graphs in detail. The outer-connected domination number of Sierpiński graphs
and extended Sierpiński graphs are investigated in Sections 3 and 4, respectively.
In Section 5, we investigate the outer-connected domination number of Sierpiński
gasket graphs.

2 Sierpiński-like Graphs

The definitions of Sierpiński-like graphs are described as follows. The reader is
referred to [2, 4, 7, 13, 22, 25] for the details. The vertex set of S(n, k) consists
of all n-tuples of integers 1, 2, . . . , k, for integers n � 1 and k � 3, namely
V (S(n, k)) = {1, 2, . . . , k}n. Accordingly, the label of vertex v, denoted by �(v), is
v1v2 · · · vn in regular expression form. By using a convention on representing reg-
ular expressions, we always use w, x, y, and z to denote a substring of v1v2 · · · vn

and a, b, c, and d to denote a number in v1v2 · · · vn, i.e., a, b, c, d ∈ {1, 2, . . . , k}.
The length of a substring w is denoted by |w|. For example, �(v) = wabn−h, for
1 � h � n, means that the label of v begins with prefix w, then concatenates with
number a, and finally ends with n − hb′s, where bh is the Kleene closure in regu-
lar expression. Thus |w| = h − 1. For convenience, we also say that v1v2 · · · vn is a
vertex if �(v) = v1v2 · · · vn.

Two different vertices u and v are adjacent in S(n, k) if and only if �(u) = wabn−h

and �(v) = wban−h with a �= b for some 1 � h � n. Note that if h = 1, then
w = ε which is a null string. Furthermore, if h = n, then both bn−h and an−h are
empty. By the definition above, the subgraph of S(n, k) induced by the set of vertices
whose labels begin with a is a Sierpiński subgraph S(n − 1, k) and is denoted by
Sa(n − 1, k). Similarly, we also use Sw(n − |w|, k) to denote the subgraph induced
by the vertices with prefix w in their labels. When n − |w| = 1, it is obvious that
Sw(1, k) is a complete graph and we call it a terminal clique. A vertex v is an extreme
vertex of Sw(n − |w|, k) for 0 � |w| � n − 1 if v is of the form wan−|w| for
1 � a � k. Therefore, there are exactly k extreme vertices in every Sw(n − |w|, k).
Since the label of an extreme vertex v is an in S(n, k), by definition, v has exactly
k − 1 neighbors whose labels are of the form an−1b with b �= a. Every non-extreme
vertex �(v) = wabn−h with a �= b in S(n, k) has exactly k neighbors whose labels
are of the form wban−h and wabn−h−1c with 1 � c � k and c �= b. Thus the degree
of every extreme vertex in S(n, k) is k − 1 while all other vertices have degree k.
Figure 2 depicts S(3, 3) and S(3, 4). An interesting connection is that S(n, 3) for
n � 1 is isomorphic to the graphs of the Tower of Hanoi puzzle with n disks [6,
13] and has been extensively studied (see [7, 9] for an overview and the references
therein for the details). Lately, Hinz and Parisse determined the average eccentricity
of Sierpiński graphs [8]. In [14], S. Klavžar, U. Milutinović and Ciril Petr investigate
1-perfect codes in S(n, k). Parisse studied metric properties of S(n, k)[21].

The extended Sierpiński graphs S+(n, k) and S++(n, k) were introduced by
Klavžar and Mohar [15]. The graph S+(n, k) is obtained from S(n, k) by adding
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Fig. 2 Labeled Sierpiński graphs

a special vertex, say s, and edges joining s to all extreme vertices of S(n, k) (see
Fig. 3a). The graph S++(n, k) is obtained from S(n, k) by adding a new copy of
S(n − 1, k) which is denoted by Sk+1(n − 1, k), and joining an extreme vertex an

in S(n, k) to the vertex ban−1 in the added Sk+1(n − 1, k) for 1 � a � k, where
b = k + 1 (see Fig. 3b).

The Sierpiński gasket graph Sn is a variant of the Sierpiński graph S(n, 3). The
graph Sn can be obtained from S(n, 3) by contracting every edge of S(n, 3) that lies
in no triangle. For example, compare Figs. 2a and 4. Vertices with labels 112 and
121 in S(3, 3) are contracted to the vertex 1(12|21) in S3, where “|” is the union
operation in regular expression. According to the definition of extreme vertices in
S(n, k), the vertices with labels 1n, 2n, and 3n in Sn are also called extreme vertices.
The labels of other vertices are of the form w(abh|bah) where 1 � h � n − 1,
w ∈ {1, 2, . . . , k}n−h−1, and a and b are one of the pairs: 1 and 2, 1 and 3, or 2 and

Fig. 3 Extended Sierpiński graphs: S+(3, 3) and S++(3, 3)
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Fig. 4 Sierpiński gasket graph
S3

3. For convenience, we also use wabh or wbah to represent the contracted vertex
w(abh|bah). The vertices with labels 12n−1|21n−1, 13n−1|31n−1, and 23n−1|32n−1

are called the waist vertices of Sn. The neighbors of the extreme vertex an are of the
form an−2(ab|ba) with a �= b. The neighbors of vertex v with label w(abh|bah)

are of the form: wabh−2(bc|cb) and wbah−2(ad|da) for c �= b and d �= a. The
Sierpiński gasket graph Sn also contains 3x copies of Sn−x which are denoted by
Sn−x,a , for a ∈ {1, 2, 3}x , where Sn−x,a contains all vertices whose labels begin
with a.

Many properties of Sierpiński-like graphs have been studied such as the hamil-
tonicity in Sn [16, 24] and in S(n, k) [13], the pancyclicity in Sn [24], the efficient
domination number in S(n, k) [14], and the coloring number in Sn [16] and in S(n, k)

[21]. The vertex-, edge-, and total-colorings on Sierpiński-like graphs have been stud-
ied by Jakovac and Klavžar [10]. Lin, Liu, and Wang determined the hub numbers in
[18] and global strong defensive alliances in [19] of Sierpiński-like graphs. Moreover,
Sierpiński gasket graphs play an important role in dynamic systems and probability
[5, 12] as well as in psychology [17, 23].

3 Computing γ̃c(S(n, k))

For a vertex v in Sw(n − |w|, k), a vertex u ∈ N(v) is an outer-neighbor of v if u is
not in V (Sw(n − |w|, k)). Note that every extreme vertex v ∈ Sw(n − |w|, k) with
|w| �= 0 has exactly one outer-neighbor while a non-extreme vertex has no outer-
neighbor. Furthermore, if u is the outer-neighbor of v with respect to Sw(n − |w|, k),
then v is also the outer-neighbor of u with respect to Sw′(n − |w′|, k), where w′ is a
prefix of u and |w′| = |w|.

Lemma 3.1 For n � 1 and k � 3, γ̃c(S(n, k)) � kn−1.

Proof First, we claim that if D is an OCD-set of S(n, k) and the graph induced by
V (S(n, k)) \ D is not a terminal clique, then D ∩ V (Sw(1, k)) �= ∅ for any w with
|w| = n − 1. Suppose to the contrary that there exists a terminal clique Sw(1, k) for
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some w such that D ∩ V (Sw(1, k)) = ∅. This implies that all outer-neighbors of the
vertices in Sw(1, k) are in D. Let H be the graph induced by V (S(n, k)) \ D. Since
H is not a terminal clique, it contains at least two components and one of them is
Sw(1, k). This contradicts that D is an OCD-set of S(n, k) and the claim holds.

Note that there are kn−1 terminal cliques in S(n, k). By the claim above, it follows
that γ̃c(S(n, k)) � kn−1.

By Lemma 3.1, to prove that γ̃c(S(n, k)) = kn−1, it suffices to show that there
exists an OCD-set whose cardinality is equal to kn−1. In the following, we describe
how to construct such an OCD-set. Hereafter, the plus operation on computing the
label of a vertex is always taken modulo k. However, if the resulting value is 0, then
we always use k to replace it.

Definition 3.2 Let v = v1 · · · vn be a vertex in Sierpiński-like graphs S(n, k),
S+(n, k), S++(n, k) or Sn. Define f (v) = u1 · · · un−1 with ui ≡ vi+1 + v1 − 1
(mod k) for 1 � i � n−1 as a folding operation on v. For brevity, let f 1(v) = f (v),
f 2(v) = f (f (v)), f 3(v) = f (f 2(v)), and so on.

Definition 3.3 For k odd, let Fo,i (n, k)(or simply Fi(n, k)) for 1 � i � k be the set
of vertices v with f n−1(v) = i, namely Fi(n, k) = {v : f n−1(v) = i} for 1 � i � k.
When k is even, define Fe(n, k) = {v : vn = vn−1 + k

2 }.

For example, in S(3, 3), we have f (233) = 11 and f 2(233) = f (f (233)) =
f (11) = 1. The set F1(3, 3) contains vertices 111, 123, 132, 212, 221, 233, 313,
322, and 331 in S(3, 3) (see the black vertices in Fig. 2a). For S(3, 4), we have
Fe(3, 4) = {xy : x ∈ {1, 2, 3, 4}, y ∈ {13, 24, 31, 42}} (see the black vertices in
Fig. 2b). In Lemmas 3.4-3.7, we show that Fi(n, k), 1 � i � k, is an OCD-set of
S(n, k) with k odd, and, in Lemmas 3.8-3.9, we show that Fe(n, k), 1 � i � k, is an
OCD-set of S(n, k) with k even.

Lemma 3.4 Let v = v1 · · · vn be a vertex in S(n, k), for n � 1 and k � 3. Then

f n−1(v) ≡ vn +
n−1∑

i=1

2n−i−1 · (vi − 1) (mod k).

Proof Let vj = f j (v) for 1 � j � n − 1 and vj = v
j

1 · · · vj
n−j . By definition, it is

easy to derive that

v
j

1 ≡ vj+1 + 2j−1(v1 − 1) + 2j−2(v2 − 1) + · · · + 20(vj − 1) (mod k). (1)

Since f n−1(v) = vn−1 and there is exactly one number in vn−1, it follows that
f n−1(v) = vn−1 = vn−1

1 . By (1), we have f n−1(v) ≡ vn + ∑n−1
i=1 2n−i−1 · (vi − 1)

(mod k). This completes the proof.

Lemma 3.5 For every terminal clique Sw(1, k) in S(n, k), we have |V (Sw(1, k)) ∩
Fi(n, k)| = 1, for 1 � i � k, n � 1, k � 3.
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Proof Suppose to the contrary that there are two distinct vertices u and v which
are in V (Sw(1, k)) ∩ Fi(n, k) for some i with 1 � i � k. Let u = wun and v =
wvn. By Lemma 3.4, f n−1(wun) ≡ un + ∑n−1

i=1 2n−i−1 · (ui − 1) (mod k) and

f n−1(wvn) ≡ vn + ∑n−1
i=1 2n−i−1 · (vi − 1) (mod k). By the definition of u and

v, it follows that ui = vi for 1 � i � n − 1. Thus
∑n−1

i=1 2n−i−1 · (ui − 1) =∑n−1
i=1 2n−i−1 · (vi − 1). Since both u and v are in Fi(n, k) for some i with 1 �

i � k, it follows that f n−1(wun) = f n−1(wvn) = i. Thus un ≡ vn (mod k). Since
both un and vn are smaller than or equal to k, this yields u = v, a contradiction.
Thus |V (Sw(1, k)) ∩ Fi(n, k)| � 1. Since 0 � f n−1(v) � k − 1 and there are no
two distinct vertices u and v in V (Sw(1, k)) such that f n−1(u) = f n−1(v), by the
pigeonhole principle, we have |V (Sw(1, k)) ∩ Fi(n, k)| = 1 for 1 � i � k. This
completes the proof.

Lemma 3.6 Let D be the set {wan−|w| : 1 � a � k} of vertices in S(n, k) for
0 � |w| � n − 1. If k is odd, then |D ∩ Fi(n, k)| = 1 for 1 � i � k, n � 1, k � 3.

Proof Let u and v be any two distinct vertices in D with u = wan−|w| and v =
wbn−|w|. Assume without loss of generality that a > b and w = w1w2 · · · w|w|. To
prove that |D ∩ Fi(n, k)| = 1 for 1 � i � k when k is odd, it suffices to show that
f n−1(u) �= f n−1(v). By Lemma 3.4,

f n−1(u) ≡ a +
|w|∑

i=1

2n−i−1 · (wi − 1) +
n−1∑

i=|w|+1

2n−i−1 · (a − 1) (mod k)

and

f n−1(v) ≡ b +
|w|∑

i=1

2n−i−1 · (wi − 1) +
n−1∑

i=|w|+1

2n−i−1 · (b − 1) (mod k).

Subtracting f n−1(v) from f n−1(u), we can obtain that f n−1(u) − f n−1(v) ≡ a −
b + ∑n−1

i=|w|+1 2n−i−1 · (a − b) (mod k). After simplifying, f n−1(u) − f n−1(v) ≡
2n−|w|−1 · (a − b) (mod k). Since gcd(2n−|w|−1, k) = 1 and a − b < k, this yields
2n−|w|−1 ·(a−b) �≡ 0 (mod k). This implies that f n−1(u) �= f n−1(v) and the lemma
follows.

Lemma 3.7 If k is odd, then Fi(n, k) is an OCD-set of S(n, k) for every 1 � i � k,
n � 1, k � 3.

Proof By Lemma 3.5, we know that Fi(n, k) is a dominating set of S(n, k) for every
1 � i � k. It remains to prove that the subgraph induced by V (S(n, k)) \ Fi(n, k)

for each 1 � i � k is connected. We prove it by induction on n.
First, consider the basis step, i.e., n = 1. Clearly, S(1, k) is a complete graph

and Fi(1, k) for each 1 � i � k contains exactly one vertex. Thus the basis holds
immediately.

Now we consider the induction step for n > 1. Since S(n, k) consists of k copies
of S(n−1, k), by the inductive hypothesis, the subgraph induced by V (Sa(n−1, k))\
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Fi(n, k) for each 1 � a � k is connected. It remains to prove that those induced
subgraphs are connected. Assume that 1an−1 ∈ Fi(n, k) for some 1 � i � k. By
Lemma 3.6, all other extreme vertices, say 1bn−1, of S1(n − 1, k) with b �= a are not
in Fi(n, k). We claim that the outer-neighbor of 1bn−1, i.e., b1n−1 if exists, is not in
Fi(n, k). Suppose to the contrary that b1n−1 ∈ Fi(n, k). By Lemma 3.4,

f n−1
(
b1n−1

)
= 1 + 2n−2 · (b − 1) +

n−1∑

i=2

2n−i−1 · (1 − 1) (mod k)

= 1 + 2n−2 · (b − 1) (mod k)

= i (mod k)

and

f n−1
(

1an−1
)

= a + 2n−2 · (1 − 1) +
n−1∑

i=2

2n−i−1 · (a − 1) (mod k)

= a +
n−1∑

i=2

2n−i−1 · (a − 1) (mod k)

= 1 + 2n−2 · (a − 1) (mod k)

= i (mod k).

By the derivation above, we have 1 + 2n−2 · (a − 1) ≡ 1 + 2n−2 · (b − 1) (mod k).
Since k is odd and gcd(2n−2, k) = 1, this results in a = b, a contradiction. Thus
the claim holds. Therefore, V (S(n, k))\Fi(n, k) induces a connected subgraph. This
establishes the proof of the lemma.

Now we consider the case where k is even in S(n, k).

Lemma 3.8 If k is even and k > 0, then wa2 �∈ Fe(n, k).

Proof Clearly, the equality a = a + k
2 does not hold unless k = 0. Thus the lemma

follows immediately.

Lemma 3.9 If k is even, then Fe(n, k) is an OCD-set of S(n, k), n � 1, k � 3.

Proof It is obvious that Fe(n, k) is a dominating set of S(n, k) since every termi-
nal clique has a unique vertex in Fe(n, k). All we have to prove is that the subgraph
induced by V (S(n, k)) \ Fe(n, k) is connected. We consider the following three
cases.

Case 1 n = 1. Clearly, the subgraph induced by V (S(n, k)) \ Fe(n, k) is connected
when n = 1.
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Case 2 n = 2.
Note that, by the definition of S(n, k), it follows that k � 4 when k is even.

Accordingly, any vertex in the set {v : v2 = v1 + 1 or v2 = v1 − 1} is not in
Fe(2, k). Thus, for induced subgraphs Sa(1, k) \ Fe(2, k) and Sa+1(1, k) \ Fe(2, k)

for 1 � a � k − 1, there exists an edge between vertices a(a + 1) and (a + 1)a. Note
that a(a + 1) ∈ Sa(1, k) and (a + 1)a ∈ Sa+1(1, k). Therefore, the subgraph induced
by V (Sw(2, k)) \ Fe(2, k) is connected.

Case 3 n � 3.
By using a similar argument as is Case 2, every subgraph induced by V (Sw(2, k))\

Fe(n, k) is connected, where |w| = n−2. For 1 � |w| � n−3, by Lemma 3.8, every
extreme vertex in Sw(n − |w|, k) is not in Fe(n, k). Note that the extreme vertices
in Sw(n − |w|, k) for 1 � |w| � n − 3 are of the form w′ban−|w| for 1 � a � k,
where w = w′b. By definition, vertex w′ban−|w| is adjacent to w′abn−|w| which is
an extreme vertex of Sw(n − |w|, k) with w = w′a. Therefore, this implies that the
subgraph induced by V (Sw(n, k)) \ Fe(n, k) is connected.

Theorem 3.10 γ̃c(S(n, k)) = kn−1, n � 1, k � 3.

Proof For the case where k is odd, by Lemma 3.5 and the number of terminal cliques
in S(n, k), it follows that |Fi(n, k)| = kn−1 for 1 � i � k. When k is even, by the
definition of Fe(n, k), we have |V (Sw(1, k)) ∩ Fe(n, k)| = 1 and |Fe(n, k)| = kn−1.
By Lemmas 3.1, 3.7, and 3.9, the theorem follows.

4 Computing γ̃c(S
+(n, k)) and γ̃c(S

++(n, k))

Recall that the graph S+(n, k) is obtained from S(n, k) by adding a special vertex,
say s, and edges joining s to all extreme vertices of S(n, k) (see Fig. 3a) and the graph
S++(n, k) is obtained from S(n, k) by adding a new copy of S(n − 1, k) which is
denoted by Sk+1(n − 1, k), and joining an extreme vertex an in S(n, k) to the vertex
ban−1 in the added Sk+1(n − 1, k) for 1 � a � k, where b = k + 1 (see Fig. 3b).

Lemma 4.1 For n � 1 and k � 3, γ̃c(S
+(n, k)) � kn−1 and γ̃c(S

++(n, k)) �
kn−1 + kn−2.

Proof By using a similar argument as in Lemma 3.1, we can show that if D

is an OCD-set of S+(n, k) (respectively, S++(n, k)) and the graph induced by
V (S+(n, k)) \ D (respectively, V (S++(n, k)) \ D) is not a terminal clique, then
every terminal clique has at least one vertex in D. By definition, S+(n, k) contains
S(n, k) as a subgraph and S++(n, k) contains two disjoint subgraphs S(n, k) and
Sk+1(n − 1, k). Thus γ̃c(S

+(n, k)) � kn−1 and γ̃c(S
++(n, k)) � kn−1 + kn−2. This

completes the proof.

In the following, we show that there exists an OCD-set whose cardinality is exactly
equal to the lower bound described in Lemma 4.1 for S+(n, k) and S++(n, k).
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Definition 4.2 Define

F+(n, k) =
{

Fo,1(n, k) if k is odd,
Fe(n, k) ∪ {1n} \ {

1n−1
(
1 + k

2

)}
if k is even,

and

F++(n, k) =
{

Fo,1(n, k) ∪ Fo,1(n − 1, k) if k is odd,
Fe(n, k) ∪ Fe(n − 1, k) if k is even,

where Fo,1(n, k) and Fe(n, k) are the OCD-sets of the subgraph S(n, k) of
S+(n, k)(or S++(n, k)) when k is odd and even, respectively, and Fo,1(n − 1, k) and
Fe(n − 1, k) are the OCD-sets of the subgraph Sk+1(n − 1, k) of S++(n, k).

Proposition 4.3 For n � 1 and k � 3, γ̃c(S
+(n, k)) = kn−1.

Proof By Lemma 4.1, it suffices to show that F+(n, k) is an OCD-set of S+(n, k).
By Lemmas 3.7 and 3.9, we know that F+(n, k) is an OCD-set of S(n, k). When
k is odd, vertex 1n is in F+(n, k), namely Fo,1(n, k). Since s is adjacent to an in
S+(n, k), vertex s of S+(n, k) is dominated by vertex 1n. Note that all vertices an for
1 � a � k are not in F+(n, k) except a = 1. This implies that the subgraph induced
by V (S+(n, k)) \ F+(n, k) is connected. Thus F+(n, k) is an OCD-set of S+(n, k)

when k is odd.
For the case where k is even, the set F+(n, k) is equal to Fe(n, k) ∪ {1n} \{

1n−1
(
1 + k

2

)}
. Clearly, the neighbors of 1n−1(1+ k

2 ) in the terminal clique contain-
ing 1n−1

(
1 + k

2

)
are dominated by vertex 1n. Moreover, vertex s is also dominated

by 1n. It is easy to verify that the subgraph induced by V (S+(n, k)) \ F+(n, k)

is connected. Thus F+(n, k) is an OCD-set of S+(n, k) when k is even. Note that
|F+(n, k)| = kn−1. This completes the proof.

Proposition 4.4 For n � 1 and k � 3, γ̃c(S
++(n, k)) = kn−1 + kn−2.

Proof First we consider the case where k is odd. By Theorem 3.10, we know that
Fo,1(n, k) and Fo,1(n − 1, k) in F++(n, k) are OCD-sets of subgraphs S(n, k) and
Sk+1(n−1, k) of S++(n, k). Thus F++(n, k) is a dominating set of S++(n, k). Note
that vertex 2n is in V (S(n, k)) \ Fo,1(n, k) and (k + 1)2n−1 is in V (Sk+1(n − 1, k)) \
Fo,1(n−1, k). By definition, vertex 2n is adjacent to vertex (k+1)2n−1. This implies
that the subgraph induced by V (S++(n, k)) \F++(n, k) is connected. Thus this case
holds.

Now we consider the case where k is even. Clearly, the set F++(n, k) which
is equal to Fe(n, k) ∪ Fe(n − 1, k) is a dominating set of S++(n, k). Note that
|F++(n, k)| = kn−1 + kn−2. Since 1n and (k + 1)1n−1 are adjacent and both of them
are in the subgraph induced by V (S++(n, k)) \F++(n, k), it follows that F++(n, k)

is an OCD-set of S++(n, k). This completes the proof.
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5 Computing γ̃c(Sn)

Recall that every non-extreme vertex in Sierpiński gasket graphs Sn is contracted
from two adjacent vertices whose edge lies in no triangle in S(n, 3). The label of
every contracted vertex can be expressed as w(abh|bah) for some 1 � h � n − 1
where the possible pairs of a and b are: 1 and 2, 1 and 3, or 2 and 3. It is easy to
verify that γ̃c(S1) = 1, γ̃c(S2) = 2 and γ̃c(S3) = 3. Thus we assume that n � 3 in
the rest of this section unless stated otherwise.

Theorem 5.1 (Theorem 7 in [24]) For n � 3, we have γ (Sn) = 3n−2.

Since γ̃c(Sn) � γ (Sn), we have the following corollary.

Corollary 5.2 For Sn with n � 3, we have γ̃c(Sn) � 3n−2.

In the following, we introduce how to find an outer-connected dominating set
Dn with cardinality 3n−2 for n � 3. Define Dn = {v : vn−2vn−1vn ∈ {1(12|21),
2(23|32), 3(13|31)}}. For example, D4 is depicted in Fig. 5.

Lemma 5.3 For Sn with n � 4, the set Dn is an OCD-set in Sn with |Dn| = 3n−2.

Proof It is easy to verify that D4 is an OCD-set in S4. For Sn with n > 4, it is clear
that every D4 of S4,a for a ∈ {1, 2, 3}n−4 is also an OCD-set of that S4,a , and all
extreme vertices of S4,a are not in its corresponding D4. Thus Dn is the union of all
those D4’s which form an OCD-set of Sn. Accordingly, |Dn| = 3n−4 · 32 = 3n−2.
This completes the proof.

Hence, we have our final result as follows:

Theorem 5.4 For Sn with n � 1,

γ̃c(Sn) =
{

n if n = 1, 2,

3n−2 if n � 3.

Fig. 5 All black vertices are in
D4
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