The Outer-connected Domination Number of Sierpinski-like Graphs ´

Shun-Chieh Chang · Jia-Jie Liu · Yue-Li Wang

Published online: 23 April 2015 © Springer Science+Business Media New York 2015

Abstract An outer-connected dominating set in a graph $G = (V, E)$ is a set of vertices $D \subseteq V$ satisfying the condition that, for each vertex $v \notin D$, vertex *v* is adjacent to some vertex in *D* and the subgraph induced by $V \ D$ is connected. The outer-connected dominating set problem is to find an outer-connected dominating set with the minimum number of vertices which is denoted by $\tilde{\gamma}_c(G)$. In this paper, we determine $\tilde{\gamma}_c(S(n, k))$, $\tilde{\gamma}_c(S^+(n, k))$, $\tilde{\gamma}_c(S^{++}(n, k))$, and $\tilde{\gamma}_c(S_n)$, where $S(n, k)$, $S^+(n, k)$, $S^{++}(n, k)$, and S_n are Sierpinski-like graphs.

Keywords Outer-connected domination · Dominating set · Sierpiński graphs · Extended Sierpiński graphs · Sierpiński-like graphs

1 Introduction

Let $G = (V, E)$ be an undirected graph, where $V(G)$ and $E(G)$ are vertex and edge sets of *G* respectively. For simplicity, we also use *V* and *E* to represent $V(G)$ and $E(G)$, respectively, when only one graph is mentioned. All graphs considered in this paper are simple, i.e., with no loops and multiple edges. For any vertex $v \in V$ and a set *S* ⊆ *V*, the *open neighborhood* of *v* in *S* is the set $N_S(v) = \{u \in S | uv \in E\}$. The

e-mail: ylwang@cs.ntust.edu.tw

This work was supported in part by the National Science Council of Republic of China under contracts NSC 100–2221–E–011–067-MY3, NSC 101–2221–E–011–038–MY3, NSC 100-2221-E-011-068-, and NSC 100-2221-E-128-003-.

S.-C. Chang \cdot Y.-L. Wang (\boxtimes) Department of Information Management, National Taiwan University of Science and Technology, Taipei, Taiwan

closed neighborhood of *v* in *S* is $N_S[v] = N_S(v) \cup \{v\}$. If $S = V$, then we simply write $N(v)$ and $N[v]$ rather than $N_V(v)$ and $N_V[v]$, respectively.

Definition 1.1 For a graph *G*, a set $D \subseteq V$ is a *dominating set* if $N[D] = V$. The minimum size of a dominating set is the *domination number*, denoted by *γ (G)*. The *domination* problem is to determine a minimum dominating set of a graph *G*.

Definition 1.2 For a graph *G*, a dominating set *D* is an *outer-connected dominating set*, abbreviated as *OCD-set*, if the subgraph induced by $V \setminus D$ is connected. The *outer-connected domination number*, denoted by $\tilde{\gamma}_c(G)$, is the cardinality of a minimum OCD-set. The *outer-connected domination* problem is to determine a minimum OCD-set of a graph *G*.

It is clear that $\gamma(G) \leq \tilde{\gamma}_c(G)$. The concept of outer-connected domination problem in graphs was introduced in [\[3\]](#page-11-0) and subsequently studied in [\[1,](#page-11-1) [11,](#page-11-2) [20\]](#page-11-3). The outer-connected domination problem has been shown to be NP-complete for bipartite graphs [\[3\]](#page-11-0), doubly chordal graphs and undirected path graphs [\[20\]](#page-11-3), where a graph *G* is called an *undirected path graph* if *G* is the intersection graph of a family of paths of a tree. In [\[20\]](#page-11-3), MarkKeil and Pradhan proposed a linear time algorithm for computing a minimum OCD-set in proper interval graphs.

The *Sierpiński graph* $S(n, k)$ consists of *k* copies of $S(n - 1, k)$ for $n > 1$, where $S(1, k)$ is a complete graph of k vertices [\[13\]](#page-11-4). Graphs very similar to Sierpinski graphs were named *WK-recursive networks* in [\[25\]](#page-11-5).

For example, $S(1, 3)$, $S(2, 3)$, and $S(3, 3)$ are shown in Fig. [1a](#page-1-0), b, and c, respectively. In general, Sierpinski-like graphs include Sierpinski graphs, extended Sierpinski graphs, and Sierpinski gasket graphs. All those Sierpinski-like graphs will be introduced in Section [2.](#page-2-0)

The results of this paper are as follows:

- (1) $\tilde{\gamma}_c(S(n, k)) = k^{n-1}$, for $n \ge 1$ and $k \ge 3$,
(2) $\tilde{\gamma}_c(S^+(n, k)) = k^{n-1}$, for $n \ge 1$ and $k \ge 3$
- $\tilde{\gamma}_c(S^+(n, k)) = k^{n-1}$, for $n \geq 1$ and $k \geq 3$,
- (3) $\tilde{\gamma}_c(S^{++}(n, k)) = k^{n-1} + k^{n-2}$, for $n \ge 1$ and $k \ge 3$, and (4) $\tilde{\gamma}_c(S_n) = 3^{n-2}$ if $n \ge 3$; otherwise, $\tilde{\gamma}_c(S_n) = n$.
- $\tilde{\gamma}_c(S_n) = 3^{n-2}$ if $n \ge 3$; otherwise, $\tilde{\gamma}_c(S_n) = n$,

(c) $S(3,3)$

Fig. 1 Sierpiński graphs

where $S(n, k)$ denotes a Sierpinski graph, $S^+(n, k)$ and $S^{++}(n, k)$ denote two different extended Sierpinski graphs, and S_n denotes a Sierpinski gasket graph.

The organization of this paper is as follows. In Section [2,](#page-2-0) we introduce Sierpinskilike graphs in detail. The outer-connected domination number of Sierpinski graphs and extended Sierpinski graphs are investigated in Sections 3 and 4 , respectively. In Section [5,](#page-10-0) we investigate the outer-connected domination number of Sierpinski gasket graphs.

2 Sierpinski-like Graphs ´

The definitions of Sierpinski-like graphs are described as follows. The reader is ´ referred to $[2, 4, 7, 13, 22, 25]$ $[2, 4, 7, 13, 22, 25]$ $[2, 4, 7, 13, 22, 25]$ $[2, 4, 7, 13, 22, 25]$ $[2, 4, 7, 13, 22, 25]$ $[2, 4, 7, 13, 22, 25]$ $[2, 4, 7, 13, 22, 25]$ $[2, 4, 7, 13, 22, 25]$ $[2, 4, 7, 13, 22, 25]$ $[2, 4, 7, 13, 22, 25]$ $[2, 4, 7, 13, 22, 25]$ for the details. The vertex set of $S(n, k)$ consists of all *n*-tuples of integers 1, 2, ..., k, for integers $n \ge 1$ and $k \ge 3$, namely $V(S(n, k)) = \{1, 2, \ldots, k\}^n$. Accordingly, the label of vertex *v*, denoted by $\ell(v)$, is $v_1v_2\cdots v_n$ in regular expression form. By using a convention on representing regular expressions, we always use w, x, y , and z to denote a substring of $v_1v_2 \cdots v_n$ and *a*, *b*, *c*, and *d* to denote a number in $v_1v_2 \cdots v_n$, i.e., *a*, *b*, *c*, *d* $\in \{1, 2, ..., k\}$. The length of a substring *w* is denoted by |*w*|. For example, $\ell(v) = wab^{n-h}$, for $1 \leq h \leq n$, means that the label of *v* begins with prefix *w*, then concatenates with number *a*, and finally ends with $n - hb's$, where b^h is the *Kleene closure* in regular expression. Thus $|w| = h - 1$. For convenience, we also say that $v_1v_2 \cdots v_n$ is a vertex if $\ell(v) = v_1v_2\cdots v_n$.

Two different vertices *u* and *v* are adjacent in *S*(*n*, *k*) if and only if $\ell(u) = wab^{n-h}$ and $\ell(v) = wba^{n-h}$ with $a \neq b$ for some $1 \leq h \leq n$. Note that if $h = 1$, then *w* = ϵ which is a null string. Furthermore, if *h* = *n*, then both *b*^{*n*−*h*} and *a*^{*n*−*h*} are empty. By the definition above, the subgraph of $S(n, k)$ induced by the set of vertices whose labels begin with *a* is a Sierpinski subgraph $S(n - 1, k)$ and is denoted by $S_a(n-1, k)$. Similarly, we also use $S_w(n-|w|, k)$ to denote the subgraph induced by the vertices with prefix *w* in their labels. When $n - |w| = 1$, it is obvious that *Sw(*1*, k)* is a complete graph and we call it a *terminal clique*. A vertex *v* is an *extreme vertex* of $S_w(n - |w|, k)$ for $0 \leq |w| \leq n - 1$ if *v* is of the form $wa^{n-|w|}$ for 1 ≤ *a* ≤ *k*. Therefore, there are exactly *k* extreme vertices in every $S_w(n - |w|, k)$. Since the label of an extreme vertex *v* is a^n in $S(n, k)$, by definition, *v* has exactly *k* − 1 neighbors whose labels are of the form $a^{n-1}b$ with $b \neq a$. Every non-extreme vertex $\ell(v) = wab^{n-h}$ with $a \neq b$ in $S(n, k)$ has exactly k neighbors whose labels are of the form wba^{n-h} and $wab^{n-h-1}c$ with $1 \leq c \leq k$ and $c \neq b$. Thus the degree of every extreme vertex in $S(n, k)$ is $k - 1$ while all other vertices have degree k . Figure [2](#page-3-0) depicts $S(3, 3)$ and $S(3, 4)$. An interesting connection is that $S(n, 3)$ for $n \geq 1$ is isomorphic to the graphs of the Tower of Hanoi puzzle with *n* disks [\[6,](#page-11-10) [13\]](#page-11-4) and has been extensively studied (see [\[7,](#page-11-8) [9\]](#page-11-11) for an overview and the references therein for the details). Lately, Hinz and Parisse determined the average eccentricity of Sierpinski graphs $[8]$ $[8]$. In $[14]$, S. Klavžar, U. Milutinović and Ciril Petr investigate 1-perfect codes in *S(n, k)*. Parisse studied metric properties of *S(n, k)*[\[21\]](#page-11-14).

The extended Sierpinski graphs $S^+(n, k)$ and $S^{++}(n, k)$ were introduced by Klavzar and Mohar [[15\]](#page-11-15). The graph $S^+(n, k)$ is obtained from $S(n, k)$ by adding

Fig. 2 Labeled Sierpiński graphs

a special vertex, say *s*, and edges joining *s* to all extreme vertices of $S(n, k)$ (see Fig. [3a](#page-3-1)). The graph $S^{++}(n, k)$ is obtained from $S(n, k)$ by adding a new copy of $S(n-1, k)$ which is denoted by $S_{k+1}(n-1, k)$, and joining an extreme vertex a^n in *S*(*n*, *k*) to the vertex *ba*^{*n*−1} in the added *S*_{*k*+1}(*n* − 1, *k*) for 1 ≤ *a* ≤ *k*, where $b = k + 1$ (see Fig. [3b](#page-3-1)).

The *Sierpiński gasket graph* S_n is a variant of the Sierpiński graph $S(n, 3)$. The graph S_n can be obtained from $S(n, 3)$ by contracting every edge of $S(n, 3)$ that lies in no triangle. For example, compare Figs. [2a](#page-3-0) and [4.](#page-4-1) Vertices with labels 112 and 121 in *S(*3*,* 3*)* are contracted to the vertex 1*(*12|21*)* in *S*3, where "|" is the *union operation* in regular expression. According to the definition of extreme vertices in $S(n, k)$, the vertices with labels 1^n , 2^n , and 3^n in S_n are also called *extreme vertices*. The labels of other vertices are of the form $w(ab^h|ba^h)$ where $1 \leq h \leq n - 1$, $w \in \{1, 2, \ldots, k\}^{n-h-1}$, and *a* and *b* are one of the pairs: 1 and 2, 1 and 3, or 2 and

Fig. 3 Extended Sierpinski graphs: $S^+(3, 3)$ and $S^{++}(3, 3)$

Fig. 4 Sierpiński gasket graph *S*3

3. For convenience, we also use wab^h or wba^h to represent the contracted vertex *w*(*ab^h*|*ba^h*). The vertices with labels 12^{n-1} |21^{*n*−1}, 13^{n-1} |31^{*n*−1}, and 23^{*n*−1}|32^{*n*−1} are called the *waist vertices* of S_n . The neighbors of the extreme vertex a^n are of the form $a^{n-2}(ab|ba)$ with $a \neq b$. The neighbors of vertex *v* with label $w(ab^h|ba^h)$ are of the form: $wab^{h-2}(bc|cb)$ and $wba^{h-2}(ad|da)$ for $c \neq b$ and $d \neq a$. The Sierpinski gasket graph S_n also contains 3^{*x*} copies of S_{n-x} which are denoted by *S_n*−*x,a*, for *a* ∈ {1, 2, 3}^{*x*}, where *S_{n−<i>x,a*} contains all vertices whose labels begin with *a*.

Many properties of Sierpinski-like graphs have been studied such as the hamiltonicity in S_n [\[16,](#page-11-16) [24\]](#page-11-17) and in $S(n, k)$ [\[13\]](#page-11-4), the pancyclicity in S_n [\[24\]](#page-11-17), the efficient domination number in $S(n, k)$ [\[14\]](#page-11-13), and the coloring number in S_n [\[16\]](#page-11-16) and in $S(n, k)$ [\[21\]](#page-11-14). The vertex-, edge-, and total-colorings on Sierpinski-like graphs have been studied by Jakovac and Klavžar $[10]$ $[10]$. Lin, Liu, and Wang determined the hub numbers in $[18]$ and global strong defensive alliances in $[19]$ of Sierpinski-like graphs. Moreover, Sierpiński gasket graphs play an important role in dynamic systems and probability [\[5,](#page-11-21) [12\]](#page-11-22) as well as in psychology $[17, 23]$ $[17, 23]$ $[17, 23]$.

3 Computing $\tilde{\gamma}_c(S(n, k))$

For a vertex *v* in $S_w(n - |w|, k)$, a vertex $u \in N(v)$ is an *outer-neighbor* of *v* if *u* is not in $V(S_w(n - |w|, k))$. Note that every extreme vertex $v \in S_w(n - |w|, k)$ with $|w| \neq 0$ has exactly one outer-neighbor while a non-extreme vertex has no outerneighbor. Furthermore, if *u* is the outer-neighbor of *v* with respect to $S_w(n - |w|, k)$, then *v* is also the outer-neighbor of *u* with respect to $S_{w'}(n - |w'|, k)$, where *w'* is a prefix of *u* and $|w'|=|w|$.

Lemma 3.1 *For* $n \geq 1$ *and* $k \geq 3$, $\tilde{\gamma}_c(S(n, k)) \geq k^{n-1}$.

Proof First, we claim that if *D* is an OCD-set of $S(n, k)$ and the graph induced by $V(S(n, k)) \setminus D$ is not a terminal clique, then $D \cap V(S_w(1, k)) \neq \emptyset$ for any w with $|w| = n - 1$. Suppose to the contrary that there exists a terminal clique $S_w(1, k)$ for some *w* such that $D \cap V(S_w(1, k)) = \emptyset$. This implies that all outer-neighbors of the vertices in $S_w(1, k)$ are in *D*. Let *H* be the graph induced by $V(S(n, k)) \setminus D$. Since *H* is not a terminal clique, it contains at least two components and one of them is $S_w(1, k)$. This contradicts that *D* is an OCD-set of $S(n, k)$ and the claim holds.

Note that there are k^{n-1} terminal cliques in *S(n, k)*. By the claim above, it follows that $\tilde{\gamma}_c(S(n, k)) \geq k^{n-1}$. \Box

By Lemma 3.1, to prove that $\tilde{\gamma}_c(S(n, k)) = k^{n-1}$, it suffices to show that there exists an OCD-set whose cardinality is equal to k^{n-1} . In the following, we describe how to construct such an OCD-set. Hereafter, the plus operation on computing the label of a vertex is always taken modulo *k*. However, if the resulting value is 0, then we always use *k* to replace it.

Definition 3.2 Let $v = v_1 \cdots v_n$ be a vertex in Sierpinski-like graphs $S(n, k)$, $S^+(n, k)$, $S^{++}(n, k)$ or S_n . Define $f(v) = u_1 \cdots u_{n-1}$ with $u_i \equiv v_{i+1} + v_1 - 1$ $(\text{mod } k)$ for $1 \le i \le n-1$ as a folding operation on *v*. For brevity, let $f^1(v) = f(v)$, $f^{2}(v) = f(f(v)),$ $f^{3}(v) = f(f^{2}(v))$, and so on.

Definition 3.3 For *k* odd, let $F_{0,i}(n, k)$ (or simply $F_i(n, k)$) for $1 \leq i \leq k$ be the set of vertices *v* with $f^{n-1}(v) = i$, namely $F_i(n, k) = \{v : f^{n-1}(v) = i\}$ for $1 \le i \le k$. When *k* is even, define $F_e(n, k) = \{v : v_n = v_{n-1} + \frac{k}{2}\}.$

For example, in *S*(3, 3), we have $f(233) = 11$ and $f^2(233) = f(f(233)) =$ $f(11) = 1$. The set $F_1(3, 3)$ contains vertices 111, 123, 132, 212, 221, 233, 313, 322, and 331 in $S(3,3)$ (see the black vertices in Fig. [2a](#page-3-0)). For $S(3,4)$, we have $F_e(3, 4) = \{xy : x \in \{1, 2, 3, 4\}, y \in \{13, 24, 31, 42\}\}\$ (see the black vertices in Fig. [2b](#page-3-0)). In Lemmas 3.4-3.7, we show that $F_i(n, k)$, $1 \leq i \leq k$, is an OCD-set of *S*(*n*, *k*) with *k* odd, and, in Lemmas 3.8-3.9, we show that $F_e(n, k)$, $1 \le i \le k$, is an OCD-set of *S(n, k)* with *k* even.

Lemma 3.4 *Let* $v = v_1 \cdots v_n$ *be a vertex in* $S(n, k)$ *, for* $n \ge 1$ *and* $k \ge 3$ *. Then*

$$
f^{n-1}(v) \equiv v_n + \sum_{i=1}^{n-1} 2^{n-i-1} \cdot (v_i - 1) \pmod{k}.
$$

Proof Let $v^j = f^j(v)$ for $1 \leq j \leq n - 1$ and $v^j = v_1^j \cdots v_{n-j}^j$. By definition, it is easy to derive that

$$
v_1^j \equiv v_{j+1} + 2^{j-1}(v_1 - 1) + 2^{j-2}(v_2 - 1) + \dots + 2^0(v_j - 1) \pmod{k}.
$$
 (1)

Since $f^{n-1}(v) = v^{n-1}$ and there is exactly one number in v^{n-1} , it follows that $f^{n-1}(v) = v^{n-1} = v_1^{n-1}$. By [\(1\)](#page-5-0), we have $f^{n-1}(v) \equiv v_n + \sum_{i=1}^{n-1} 2^{n-i-1} \cdot (v_i - 1)$ *(*mod *k)*. This completes the proof.

Lemma 3.5 *For every terminal clique* $S_w(1, k)$ *in* $S(n, k)$ *, we have* $|V(S_w(1, k)) \cap$ $F_i(n, k) = 1, \text{ for } 1 \leq i \leq k, n \geq 1, k \geq 3.$

Proof Suppose to the contrary that there are two distinct vertices *u* and *v* which are in $V(S_w(1, k)) \cap F_i(n, k)$ for some *i* with $1 \leq i \leq k$. Let $u = w u_n$ and $v =$ *wv_n*. By Lemma 3.4, $f^{n-1}(wu_n) \equiv u_n + \sum_{i=1}^{n-1} 2^{n-i-1} \cdot (u_i - 1) \pmod{k}$ and $f^{n-1}(wv_n) \equiv v_n + \sum_{i=1}^{n-1} 2^{n-i-1} \cdot (v_i - 1) \pmod{k}$. By the definition of *u* and *v*, it follows that $u_i = v_i$ for $1 \leq i \leq n - 1$. Thus $\sum_{i=1}^{n-1}$ *v*, it follows that $u_i = v_i$ for $1 \le i \le n - 1$. Thus $\sum_{i=1}^{n-1} 2^{n-i-1} \cdot (u_i - 1) = \sum_{i=1}^{n-1} 2^{n-i-1} \cdot (v_i - 1)$. Since both *u* and *v* are in $F_i(n, k)$ for some *i* with $1 \le i \le n$ *i* ≤ *k*, it follows that $f^{n-1}(wu_n) = f^{n-1}(wv_n) = i$. Thus $u_n ≡ v_n \pmod{k}$. Since both u_n and v_n are smaller than or equal to k, this yields $u = v$, a contradiction. Thus $|V(S_w(1, k)) \cap F_i(n, k)| \leq 1$. Since $0 \leq f^{n-1}(v) \leq k - 1$ and there are no two distinct vertices *u* and *v* in $V(S_w(1, k))$ such that $f^{n-1}(u) = f^{n-1}(v)$, by the pigeonhole principle, we have $|V(S_w(1, k)) \cap F_i(n, k)| = 1$ for $1 \le i \le k$. This completes the proof. \Box

Lemma 3.6 *Let D be the set* $\{wa^{n-|w|} : 1 \le a \le k\}$ *of vertices in* $S(n, k)$ *for* $0 \leq |w| \leq n-1$. If *k* is odd, then $|D \cap F_i(n, k)| = 1$ for $1 \leq i \leq k$, $n \geq 1$, $k \geq 3$.

Proof Let *u* and *v* be any two distinct vertices in *D* with $u = wa^{n-|w|}$ and $v =$ $wb^{n-|w|}$. Assume without loss of generality that *a > b* and $w = w_1w_2 \cdots w_{|w|}$. To prove that $|D \cap F_i(n, k)| = 1$ for $1 \leq i \leq k$ when *k* is odd, it suffices to show that *f*^{*n*−1}(*u*) $\neq f^{n-1}(v)$. By Lemma 3.4,

$$
f^{n-1}(u) \equiv a + \sum_{i=1}^{|w|} 2^{n-i-1} \cdot (w_i - 1) + \sum_{i=|w|+1}^{n-1} 2^{n-i-1} \cdot (a-1) \pmod{k}
$$

and

$$
f^{n-1}(v) \equiv b + \sum_{i=1}^{|w|} 2^{n-i-1} \cdot (w_i - 1) + \sum_{i=|w|+1}^{n-1} 2^{n-i-1} \cdot (b-1) \pmod{k}.
$$

Subtracting $f^{n-1}(v)$ from $f^{n-1}(u)$, we can obtain that $f^{n-1}(u) - f^{n-1}(v) \equiv a$ *b* + $\sum_{i=|w|+1}^{n-1} 2^{n-i-1} \cdot (a - b) \pmod{k}$. After simplifying, $f^{n-1}(u) - f^{n-1}(v) \equiv$ $2^{n-|w|-1} \cdot (a - b) \pmod{k}$. Since $gcd(2^{n-|w|-1}, k) = 1$ and $a - b < k$, this yields $2^{n-|w|-1} \cdot (a-b) \neq 0 \pmod{k}$. This implies that $f^{n-1}(u) \neq f^{n-1}(v)$ and the lemma follows. follows.

Lemma 3.7 *If k is odd, then* $F_i(n, k)$ *is an OCD-set of* $S(n, k)$ *for every* $1 \leq i \leq k$ *,* $n \geqslant 1, k \geqslant 3.$

Proof By Lemma 3.5, we know that $F_i(n, k)$ is a dominating set of $S(n, k)$ for every $1 \le i \le k$. It remains to prove that the subgraph induced by $V(S(n, k)) \setminus F_i(n, k)$ for each $1 \leq i \leq k$ is connected. We prove it by induction on *n*.

First, consider the basis step, i.e., $n = 1$. Clearly, $S(1, k)$ is a complete graph and $F_i(1, k)$ for each $1 \leq i \leq k$ contains exactly one vertex. Thus the basis holds immediately.

Now we consider the induction step for $n > 1$. Since $S(n, k)$ consists of k copies of *S*(*n*−1*, k*), by the inductive hypothesis, the subgraph induced by $V(S_a(n-1, k))\setminus$

 $F_i(n, k)$ for each $1 \le a \le k$ is connected. It remains to prove that those induced subgraphs are connected. Assume that $1a^{n-1} \in F_i(n, k)$ for some $1 \leq i \leq k$. By Lemma 3.6, all other extreme vertices, say $1b^{n-1}$, of $S_1(n-1, k)$ with $b \neq a$ are not in $F_i(n, k)$. We claim that the outer-neighbor of $1b^{n-1}$, i.e., $b1^{n-1}$ if exists, is not in $F_i(n, k)$. Suppose to the contrary that $b1^{n-1} \in F_i(n, k)$. By Lemma 3.4,

$$
f^{n-1}\left(b1^{n-1}\right) = 1 + 2^{n-2} \cdot (b-1) + \sum_{i=2}^{n-1} 2^{n-i-1} \cdot (1-1) \pmod{k}
$$

$$
= 1 + 2^{n-2} \cdot (b-1) \pmod{k}
$$

$$
= i \pmod{k}
$$

and

$$
f^{n-1} (1a^{n-1}) = a + 2^{n-2} \cdot (1 - 1) + \sum_{i=2}^{n-1} 2^{n-i-1} \cdot (a - 1) \pmod{k}
$$

= $a + \sum_{i=2}^{n-1} 2^{n-i-1} \cdot (a - 1) \pmod{k}$
= $1 + 2^{n-2} \cdot (a - 1) \pmod{k}$
= *i* (mod *k*).

By the derivation above, we have $1 + 2^{n-2} \cdot (a-1) \equiv 1 + 2^{n-2} \cdot (b-1) \pmod{k}$. Since *k* is odd and $gcd(2^{n-2}, k) = 1$, this results in $a = b$, a contradiction. Thus the claim holds. Therefore, $V(S(n, k)) \setminus F_i(n, k)$ induces a connected subgraph. This establishes the proof of the lemma. establishes the proof of the lemma.

Now we consider the case where *k* is even in *S(n, k)*.

Lemma 3.8 *If k is even and* $k > 0$ *, then* $wa^2 \notin F_e(n, k)$ *.*

Proof Clearly, the equality $a = a + \frac{k}{2}$ does not hold unless $k = 0$. Thus the lemma follows immediately.

Lemma 3.9 *If k is even, then* $F_e(n, k)$ *is an OCD-set of* $S(n, k)$ *,* $n \ge 1$ *,* $k \ge 3$ *.*

Proof It is obvious that $F_e(n, k)$ is a dominating set of $S(n, k)$ since every terminal clique has a unique vertex in $F_e(n, k)$. All we have to prove is that the subgraph induced by $V(S(n, k)) \setminus F_e(n, k)$ is connected. We consider the following three cases.

Case 1 *n* = 1. Clearly, the subgraph induced by $V(S(n, k)) \setminus F_e(n, k)$ is connected when $n = 1$. when $n = 1$.

Case 2 $n = 2$.

Note that, by the definition of $S(n, k)$, it follows that $k \geq 4$ when k is even. Accordingly, any vertex in the set $\{v : v_2 = v_1 + 1 \text{ or } v_2 = v_1 - 1\}$ is not in $F_e(2, k)$. Thus, for induced subgraphs $S_a(1, k) \setminus F_e(2, k)$ and $S_{a+1}(1, k) \setminus F_e(2, k)$ for $1 \le a \le k - 1$, there exists an edge between vertices $a(a + 1)$ and $(a + 1)a$. Note that $a(a+1) \in S_a(1, k)$ and $(a+1)a \in S_{a+1}(1, k)$. Therefore, the subgraph induced by $V(S_w(2, k)) \setminus F_e(2, k)$ is connected.

Case 3 $n \geq 3$.

By using a similar argument as is Case 2, every subgraph induced by $V(S_w(2, k))\setminus$ $F_e(n, k)$ is connected, where $|w| = n - 2$. For $1 \le |w| \le n - 3$, by Lemma 3.8, every extreme vertex in $S_w(n - |w|, k)$ is not in $F_e(n, k)$. Note that the extreme vertices $\lim_{n \to \infty} S_w(n - |w|, k)$ for $1 \leq |w| \leq n - 3$ are of the form $w'ba^{n-|w|}$ for $1 \leq a \leq k$, where $w = w'b$. By definition, vertex $w'ba^{n-|w|}$ is adjacent to $w'ab^{n-|w|}$ which is an extreme vertex of $S_w(n - |w|, k)$ with $w = w'a$. Therefore, this implies that the subgraph induced by $V(S_w(n, k)) \setminus F_e(n, k)$ is connected.

Theorem 3.10 $\tilde{\gamma}_c(S(n, k)) = k^{n-1}, n \ge 1, k \ge 3.$

Proof For the case where *k* is odd, by Lemma 3.5 and the number of terminal cliques in *S*(*n*, *k*), it follows that $|F_i(n, k)| = k^{n-1}$ for $1 \le i \le k$. When *k* is even, by the definition of $F_e(n, k)$, we have $|V(S_w(1, k)) \cap F_e(n, k)| = 1$ and $|F_e(n, k)| = k^{n-1}$.
By Lemmas 3.1, 3.7, and 3.9, the theorem follows. □ By Lemmas 3.1, 3.7, and 3.9, the theorem follows.

4 Computing $\tilde{\gamma}_c(S^+(n,k))$ and $\tilde{\gamma}_c(S^{++}(n,k))$

Recall that the graph $S^+(n, k)$ is obtained from $S(n, k)$ by adding a special vertex, say *s*, and edges joining *s* to all extreme vertices of *S(n, k)* (see Fig. [3a](#page-3-1)) and the graph $S^{++}(n, k)$ is obtained from $S(n, k)$ by adding a new copy of $S(n - 1, k)$ which is denoted by $S_{k+1}(n-1, k)$, and joining an extreme vertex a^n in $S(n, k)$ to the vertex *ba*^{*n*−1} in the added S_{k+1} (*n* − 1, *k*) for $1 \le a \le k$, where *b* = *k* + 1 (see Fig. [3b](#page-3-1)).

Lemma 4.1 *For* $n \ge 1$ *and* $k \ge 3$, $\tilde{\gamma}_c(S^+(n, k)) \ge k^{n-1}$ *and* $\tilde{\gamma}_c(S^{++}(n, k)) \ge k^{n-1}$ $k^{n-1} + k^{n-2}$.

Proof By using a similar argument as in Lemma 3.1, we can show that if *D* is an OCD-set of $S^+(n, k)$ (respectively, $S^{++}(n, k)$) and the graph induced by $V(S^+(n, k)) \setminus D$ (respectively, $V(S^{++}(n, k)) \setminus D$) is not a terminal clique, then every terminal clique has at least one vertex in *D*. By definition, $S^+(n, k)$ contains $S(n, k)$ as a subgraph and $S^{++}(n, k)$ contains two disjoint subgraphs $S(n, k)$ and $S_{k+1}(n-1, k)$. Thus $\tilde{\gamma}_c(S^+(n, k)) \geq k^{n-1}$ and $\tilde{\gamma}_c(S^{++}(n, k)) \geq k^{n-1} + k^{n-2}$. This completes the proof. completes the proof.

In the following, we show that there exists an OCD-set whose cardinality is exactly equal to the lower bound described in Lemma 4.1 for $S^+(n, k)$ and $S^{++}(n, k)$.

Definition 4.2 Define

$$
F^+(n,k) = \begin{cases} F_{0,1}(n,k) & \text{if } k \text{ is odd,} \\ F_{\text{e}}(n,k) \cup \{1^n\} \setminus \{1^{n-1} \left(1 + \frac{k}{2}\right)\} & \text{if } k \text{ is even,} \end{cases}
$$

and

$$
F^{++}(n,k) = \begin{cases} F_{o,1}(n,k) \cup F_{o,1}(n-1,k) & \text{if } k \text{ is odd,} \\ F_e(n,k) \cup F_e(n-1,k) & \text{if } k \text{ is even,} \end{cases}
$$

where $F_{0,1}(n, k)$ and $F_e(n, k)$ are the OCD-sets of the subgraph $S(n, k)$ of $S^+(n, k)$ (or $S^{++}(n, k)$) when *k* is odd and even, respectively, and $F_{0,1}(n-1, k)$ and $F_e(n-1, k)$ are the OCD-sets of the subgraph $S_{k+1}(n-1, k)$ of $S^{++}(n, k)$.

Proposition 4.3 *For* $n \ge 1$ *and* $k \ge 3$, $\tilde{\gamma}_c(S^+(n, k)) = k^{n-1}$.

Proof By Lemma 4.1, it suffices to show that $F^+(n, k)$ is an OCD-set of $S^+(n, k)$. By Lemmas 3.7 and 3.9, we know that $F^+(n, k)$ is an OCD-set of $S(n, k)$. When *k* is odd, vertex 1^n is in $F^+(n, k)$, namely $F_{0,1}(n, k)$. Since *s* is adjacent to a^n in $S^+(n, k)$, vertex *s* of $S^+(n, k)$ is dominated by vertex 1^{*n*}. Note that all vertices a^n for $1 \le a \le k$ are not in $F^+(n, k)$ except $a = 1$. This implies that the subgraph induced by $V(S^+(n, k)) \setminus F^+(n, k)$ is connected. Thus $F^+(n, k)$ is an OCD-set of $S^+(n, k)$ when *k* is odd.

For the case where *k* is even, the set $F^+(n, k)$ is equal to $F_e(n, k) \cup \{1^n\} \setminus$ $\left\{1^{n-1}\left(1+\frac{k}{2}\right)\right\}$. Clearly, the neighbors of $1^{n-1}(1+\frac{k}{2})$ in the terminal clique containing 1^{n-1} $(1 + \frac{k}{2})$ are dominated by vertex 1^n . Moreover, vertex *s* is also dominated by 1ⁿ. It is easy to verify that the subgraph induced by $V(S^+(n, k)) \setminus F^+(n, k)$ is connected. Thus $F^+(n, k)$ is an OCD-set of $S^+(n, k)$ when k is even. Note that $|F^+(n, k)| = k^{n-1}$. This completes the proof. \Box

Proposition 4.4 *For* $n \ge 1$ *and* $k \ge 3$, $\tilde{\gamma}_c(S^{++}(n, k)) = k^{n-1} + k^{n-2}$.

Proof First we consider the case where *k* is odd. By Theorem 3.10, we know that $F_{0,1}(n, k)$ and $F_{0,1}(n-1, k)$ in $F^{++}(n, k)$ are OCD-sets of subgraphs $S(n, k)$ and $S_{k+1}(n-1, k)$ of $S^{++}(n, k)$. Thus $F^{++}(n, k)$ is a dominating set of $S^{++}(n, k)$. Note that vertex 2^n is in $V(S(n, k)) \setminus F_{0,1}(n, k)$ and $(k + 1)2^{n-1}$ is in $V(S_{k+1}(n-1, k)) \setminus F_{0,1}(n, k)$ $F_{0,1}(n-1,k)$. By definition, vertex 2^n is adjacent to vertex $(k+1)2^{n-1}$. This implies that the subgraph induced by $V(S^{++}(n, k)) \setminus F^{++}(n, k)$ is connected. Thus this case holds.

Now we consider the case where *k* is even. Clearly, the set $F^{++}(n, k)$ which is equal to $F_e(n, k) \cup F_e(n-1, k)$ is a dominating set of $S^{++}(n, k)$. Note that $|F^{++}(n, k)| = k^{n-1} + k^{n-2}$. Since 1^n and $(k+1)1^{n-1}$ are adjacent and both of them are in the subgraph induced by $V(S^{++}(n, k)) \setminus F^{++}(n, k)$, it follows that $F^{++}(n, k)$ is an OCD-set of $S^{++}(n, k)$. This completes the proof. is an OCD-set of $S^{++}(n, k)$. This completes the proof.

5 Computing $\tilde{\gamma}_c(S_n)$

Recall that every non-extreme vertex in Sierpinski gasket graphs S_n is contracted from two adjacent vertices whose edge lies in no triangle in $S(n, 3)$. The label of every contracted vertex can be expressed as $w(ab^h|ba^h)$ for some $1 \leq h \leq n - 1$ where the possible pairs of *a* and *b* are: 1 and 2, 1 and 3, or 2 and 3. It is easy to verify that $\tilde{\gamma}_c(S_1) = 1$, $\tilde{\gamma}_c(S_2) = 2$ and $\tilde{\gamma}_c(S_3) = 3$. Thus we assume that $n \geq 3$ in the rest of this section unless stated otherwise.

Theorem 5.1 (Theorem 7 in [\[24\]](#page-11-17)) *For* $n \ge 3$ *, we have* $\gamma(S_n) = 3^{n-2}$ *.*

Since $\tilde{\gamma}_c(S_n) \geq \gamma(S_n)$, we have the following corollary.

Corollary 5.2 *For* S_n *with* $n \geq 3$ *, we have* $\tilde{\gamma}_c(S_n) \geq 3^{n-2}$ *.*

In the following, we introduce how to find an outer-connected dominating set *D_n* with cardinality 3^{*n*−2} for *n* ≥ 3. Define *D_n* = {*v* : *v_{n−2}v_{n−1}v_n* ∈ {1(12|21), 2*(*23|32*)*, 3*(*13|31*)*}}. For example, *D*⁴ is depicted in Fig. [5.](#page-10-1)

Lemma 5.3 *For* S_n *with* $n \geq 4$ *, the set* D_n *is an OCD-set in* S_n *with* $|D_n| = 3^{n-2}$ *.*

Proof It is easy to verify that D_4 is an OCD-set in S_4 . For S_n with $n > 4$, it is clear that every *D*₄ of *S*_{4*,a*} for $a \in \{1, 2, 3\}^{n-4}$ is also an OCD-set of that *S*_{4*,a*}, and all extreme vertices of $S_{4,a}$ are not in its corresponding D_4 . Thus D_n is the union of all those *D*₄'s which form an OCD-set of *S_n*. Accordingly, $|D_n| = 3^{n-4} \cdot 3^2 = 3^{n-2}$.
This completes the proof. This completes the proof.

Hence, we have our final result as follows:

Theorem 5.4 *For* S_n *with* $n \geq 1$ *,*

$$
\tilde{\gamma}_c(S_n) = \begin{cases} n & \text{if } n = 1, 2, \\ 3^{n-2} & \text{if } n \geq 3. \end{cases}
$$

Fig. 5 All black vertices are in *D*4

 $\textcircled{2}$ Springer

Acknowledgments The authors would like to thank anonymous referees for their careful reading with corrections and useful comments which helped to improve the paper.

References

- 1. Akhbari, M.H., Hasni, R., Favaron, O., Karami, H., Sheikholeslami, S.M.: On the outer-connected domination in graphs. J. Comb. Optim. **26**, 10–18 (2013)
- 2. Chen, G.H., Duh, D.R.: Topological properties, communication, and computation on WK-recursive networks. Networks **24**, 303–317 (1994)
- 3. Cyman, J.: The outer-connected domination number of a graph. Australas. J. Comb. **38**, 35–46 (2007)
- 4. Duh, D.R., Chen, G.H.: Topological properties of WK-recursive networks. J. Parallel Distrib. Comput. **23**, 468–474 (1994)
- 5. Hinz, A.M., Schief, A.: The average distance on the Sierpinski gasket. Probab. Theory Relat. Fields ´ **87**, 129–138 (1990)
- 6. Hinz, A.M.: Pascal's triangle and the Tower of Hanoi. Am. Math. Mon. **99**, 538–544 (1992)
- 7. Hinz, A.M., Klavžar, S., Milutinoviá, U., Parisse, D., Petr, C.: Metric properties of the Tower of Hanoi graphs and Stern's diatomic sequence. Eur. J. Comb. **26**, 693–708 (2005)
- 8. Hinz, A.M., Parisse, D.: The Average Eccentricity of Sierpinski Graphs. Graphs and Combinatorics ´ **28**, 671–686 (2012)
- 9. Hinz, A.M., Klavžar, S., Milutinović, U., Petr, C.: The Tower of Hanoi-Myths and Maths. Birkhäuser/Springer Basel AG, Basel (2013)
- 10. Jakovac, M., Klavžar, S.: Vertex-, edge-, and total-colorings of Sierpiński-like graphs. Discret. Math. **309**, 1548–1556 (2009)
- 11. Jiang, H., Shan, E.: Outer-connected domination number in graphs. Utilitas Math. **81**, 265–274 (2010)
- 12. Kaimanovich, V.A. In: Grabner, P., W. Woess (eds.): Random walks on Sierpinski graphs: hyperbol- ´ icity and stochastic homogenization, In: Fractals in Graz 2001, pp. 145–183. Birkhauser (2003) ¨
- 13. Klavžar, S., Milutinović, U.: Graphs $S(n, k)$ and a variant of the Tower of Hanoi problem. Czechoslov. Math. J. **47**, 95–104 (1997)
- 14. Klavžar, S., Milutinović, U., Petr, C.: 1-perfect codes in Sierpiński graphs. Bull. Aust. Math. Soc. 66, 369–384 (2002)
- 15. Klavžar, S., Mohar, B.: Crossing numbers of Sierpiński-like graphs. J.Graph Theory 50, 186–198 (2005)
- 16. Klavžar, S.: Coloring Sierpiński graphs and Sierpiński gasket graphs. Taiwan. J. Math. 12, 513–522 (2008)
- 17. Klix, F., Rautenstrauch-Goede, K.: Struktur-und Komponentenanalyse von Problemlosungsprozessen, ¨ *Zeitschrift fur¨ Psychologie* **174**, 167–193 (1967)
- 18. Lin, C.H., Liu, J.J., Wang, Y.L., Yen, W.C.K.: The hub number of Sierpinski-like graphs. Theory ´ Comput. Syst. **49**(3), 588–600 (2011)
- 19. Lin, C.H., Liu, J.J., Wang, Y.L.: Global strong defensive alliances of Sierpiński-like graphs. Theory Comput. Syst. **53**(3), 365–385 (2013)
- 20. MarkKeil, J., Pradhan, D.: Computing a minimum outer-connected dominating set for the class of chordal graphs. Information Processing Letters **113**, 552–561 (2013)
- 21. Parisse, D.: On some metric properties of the Sierpinski graphs ´ *S(n, k)*. Ars Combinatoria **90**, 145– 160 (2009)
- 22. Romik, D.: Shortest paths in the Tower of Hanoi graph and finite automata. SIAM J. Discret. Math. **20**, 610–622 (2006)
- 23. Sydow, H.: Zur metrischen Erfasung von subjektiven Problemzuständen und zu deren Veränderung im Denkprozes, Zeitschrift für Psychologie 177, 145-198 (1970)
- 24. Teguia, A.M., Godbole, A.P.: Sierpinski gasket graphs and some of their properties. Australas. J. ´ Comb. **35**, 181–192 (2006)
- 25. Vecchia, G.D., Sanges, C.: A recursively scalable network VLSI implementation. Futur. Gener. Comput. Syst. **4**, 235–243 (1988)