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Abstract We prove that semigroups generated by reversible two-state Mealy
automata have remarkable growth properties: they are either finite or free. We give
an effective procedure to decide finiteness or freeness of such semigroups when the
generating automaton is also invertible.
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1 Introduction

Automaton (semi)groups — short for semigroups generated by Mealy automata and
groups generated by invertible Mealy automata — were formally introduced half a
century ago (for details, see [9, 17] and references therein). Over the years, impor-
tant results have started revealing their full potential, by contributing to important
conjectures in group theory, as the Milnor problem (the first example of a group of
intermediate growth) or the Burnside problem (an example of a very simple Mealy
automaton generating an infinite torsion group).

In a way, semigroups can be classified according to their growth function: at
one end stand finite semigroups and at the other one free semigroups. Finiteness of
automaton semigroups is an undecidable problem in general [13], and it is therefore
valuable to find special classes of Mealy automata for which the finiteness problem
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is decidable. Beside this undecidability result, several sufficient or necessary criteria
for finiteness have been developped [2, 4, 8, 9, 18, 20, 21, 25, 26] . Regarding the
decidability of freeness, it has been and it is still a challenge: only some particular
invertible Mealy automata, possibly parametrized, have been shown to generate free
groups [14, 23, 27–29]; and some Cayley automaton semigroups have been shown
to be free [26]. Very recently, [10] presents a decidable sufficient condition to have
free semigroups in an automaton group, but in a very different context, since the
considered Mealy automata cannot be reversible.

In this paper, we link both issues for semigroups generated by reversible two-state
Mealy automata, indirectly giving a classification of the growth of automata semi-
groups [17, Problem 7.1.1] for this particular case: we prove that such semigroups
are either finite or free, in this latter case the states of the generating Mealy automa-
ton being free generators of the semigroup, answering a conjecture stated in [18].
In particular we prove that in the free case the generated semigroup is spherically
transitive [17, Problem 7.2.1(f)].

On the basis of this dichotomy between finite and free semigroups, we prove that
finiteness and freeness of the semigroup are decidable if the generating reversible
two-state Mealy automaton is also invertible. Decidability of finiteness extends by
duality to groups generated by two-letter invertible-reversible Mealy automata. The
problems of deciding finiteness or freeness of automaton semigroups was raised by
Grigorchuk, Nekrashevych, and Sushchanskii [17, Problem 7.2.1(b)].

Specializing to two letters or states may seem to be a strong restriction, but most
of the significant examples in literature have faced this restriction: the first exam-
ple of a finitely generated group of intermediate growth, the Grigorchuk group [16,
17], is generated by a two-letter Mealy automaton while the very smallest Mealy
automaton with intermediate growth [6] has two letters and two states; the lamp-
lighter group [15] is generated by a two-letter and two-state Mealy automaton; the
Aleshin automaton [3, 28] gives the simplest example of a free automaton group and
has two letters. The article [7] is entirely devoted to the study of groups generated by
3-state 2-letter invertible Mealy automata.

This paper is organized as follows. In Section 2 we define Mealy automata
and automaton (semi)groups. Basic tools to manipulate them are introduced in
Section 3. Section 4 is devoted to the dichotomy between free and finite semi-
groups. The decidability results are proved in Section 5. The final section explores
possible and impossible extensions of our results. The cornerstone of our proofs
and constructions is the very classical Nerode equivalence used to minimize
automata.

2 (Semi) Groups Generated by Mealy Automata

2.1 Mealy Automata

If one forgets initial and final states, a (finite, deterministic, and complete) automaton
A is a triple (A, �, δ = (δi : A → A)i∈�), where the stateset A and the alphabet �

are non-empty finite sets, and where the δi are functions.



666 Theory Comput Syst (2016) 58:664–680

A Mealy automaton is a quadruple

(A, �, δ = (δi : A → A)i∈�, ρ = (ρx : � → �)x∈A) ,

such that both (A, �, δ) and (�, A, ρ) are automata. In other terms, a Mealy
automaton is a letter-to-letter transducer with the same input and output alphabet.

The graphical representation of a Mealy automaton is standard, see Fig. 1.
A Mealy automaton A = (A, �, δ, ρ) is invertible if the functions ρx are

permutations of � and reversible if the functions δi are permutations of A.
In a Mealy automaton A = (A, �, δ, ρ), the sets A and � play dual roles. So

we may consider the dual (Mealy) automaton defined by d(A) = (�, A, ρ, δ).
Obviously, a Mealy automaton is reversible if and only if its dual is invertible.

Considering the underlying graph of a Mealy automaton, it makes sense to look at
the connected components of a Mealy automaton. Note that a connected component
of a reversible Mealy automaton is always strongly connected: its (δi : A → A)i∈�

are permutations of a finite set and in particular they are surjective.

2.2 Automaton (semi) Groups

Let A = (A, �, δ, ρ) be a Mealy automaton. We view A as an automaton with an
input and an output tape, thus defining mappings from input words over � to output
words over �. Formally, for x ∈ A, the map ρx : �∗ → �∗, extending ρx : � → �,
is defined by:

∀i ∈ �, ∀s ∈ �∗, ρx(is) = ρx(i)ρδi (x)(s) .

By convention, the image of the empty word is itself. The mapping ρx is length-
preserving and prefix-preserving. We say that ρx is the production function associated
with (A, x) or more briefly, if there is no ambiguity, the production function of x.
For x = x1 · · · xn ∈ An with n > 0, set ρx : �∗ → �∗, ρx = ρxn ◦ · · · ◦ ρx1 .

Denote dually by δi : A∗ → A∗, i ∈ �, the production functions associated with
the dual automaton d(A). For s = s1 · · · sn ∈ �n with n > 0, set δs : A∗ → A∗, δs =
δsn ◦ · · · ◦ δs1 .

The semigroup of mappings from �∗ to �∗ generated by ρx, x ∈ A, is called
the semigroup generated by A and is denoted by 〈A〉+. When A is invertible, its

Fig. 1 Examples of Mealy automata: the Aleshin automaton generates the rank 3 free group [3, 28], the
Baby-Aleshin automaton generates the free product Z∗3

2 = Z2 ∗ Z2 ∗ Z2 [23]
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production functions are permutations on words of the same length and thus we may
consider the group of mappings from �∗ to �∗ generated by ρx, x ∈ A; it is called
the group generated by A and is denoted by 〈A〉.

An invertible Mealy automaton generates a finite group if and only if it generates
a finite semigroup [2]. A Mealy automaton generates a finite semigroup if and only
if so does its dual [2, 23, 24].

3 Basic Tools

In this section, we present basic tools to manipulate Mealy automata: Nerode equiv-
alence and minimization of automata (Section 3.1) are classic constructions from
automata theory, md-reduction and md-triviality (Section 3.2) have been introduced
in [2] to give a sufficient condition for finiteness, portraits of automorphisms on a
regular rooted tree (Section 3.3) come from geometric group theory and tensor clo-
sures (Section 3.4) are newly introduced in order to better control the structure of a
Mealy automaton.

Let A = (A, �, δ, ρ) be a Mealy automaton. A convenient and natural operation
is to raise A to the power n, for some n > 0: its n-th power is the Mealy automaton

An = (
An, �, (δi : An → An)i∈�, (ρu : � → �)u∈An

)
.

Note that the powers of a reversible Mealy automaton are reversible.

3.1 The Nerode Equivalence and the Minimization of a Mealy Automaton

Throughout this subsection, A = (A, �, δ, ρ) denotes a Mealy automaton.
The Nerode equivalence ≡ on A is the limit of the sequence of increasingly finer

equivalences (≡k) recursively defined by:

∀x, y ∈ A, x ≡0 y ⇐⇒ ρx = ρy ,

∀k � 0, x ≡k+1 y ⇐⇒ (x ≡k y ∧ ∀i ∈ �, δi(x) ≡k δi(y)) .

Since the set A is finite, this sequence is ultimately constant; moreover if two consec-
utive equivalences are equal, the sequence remains constant from this point on. The
limit is therefore computable.

For every element x in A, we denote by [x] (resp. [x]k) the class of x w.r.t. the
Nerode equivalence (resp. the ≡k equivalence), called the Nerode class (resp. the k-
class) of x. Extending to the n-th power of A, we denote by [x] the Nerode class in
An of x ∈ An.

The minimization of A is the Mealy automaton m(A) = (A/≡, �, δ̃, ρ̃), where
for every (x, i) in A × �, δ̃i ([x]) = [δi(x)] and ρ̃[x] = ρx . This definition is consis-
tent with the standard minimization of “deterministic finite automata” where instead
of considering the mappings (ρx : � → �)x , the computation is initiated by the sep-
aration between terminal and non-terminal states. Using the Hopcroft algorithm, the
time complexity of minimization is O(#�#A log #A), see [1].

Two states of a Mealy automaton belong to the same Nerode class if and only
if they represent the same element in the generated semigroup, i.e. if and only if
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they have the same production function �∗ → �∗. Two words on A of the same
length n are equivalent if they belong to the same Nerode class in An. By exten-
sion, any two words on A are equivalent if they have the same production function.
The set of all words equivalent to x ∈ A∗, regardless of their length, is denoted
by �x�.

Two states of a Mealy automaton belong to the same k-class if and only if the
restrictions of their production functions to �k → �k are equal.

The following remarks will be useful for the rest of the paper:

Remark 1 Let n be an integer. If each word of An is equivalent to a strictly shorter
word, then the semigroup 〈A〉+ is finite, its set of elements being {ρu, u ∈ A≤n−1}.

Remark 2 If two words of A∗ are equivalent, so are their images under the action of
each element of 〈d(A)〉+:

ρu = ρv ⇐⇒ ∀s, t ∈ �∗, ρu(st) = ρv(st)
⇐⇒ ρu(s)ρδs(u)(t) = ρv(s)ρδs(v)(t)
=⇒ ρδs(u)(t) = ρδs(v)(t)
⇐⇒ ∀s ∈ �∗, δs(u) = δs(v)

3.2 The md-reduction and the md-triviality

The md-reduction and the md-triviality were introduced in [2] to give a sufficient but
not necessary condition of finiteness. We show in Section 5 that, in the case of a two-
state or two-letter invertible-reversible Mealy automaton, this condition is actually
necessary.

A pair of dual Mealy automata is reduced if both automata are minimal. The md-
reduction of a Mealy automaton consists in minimizing the automaton or its dual
until the resulting pair of dual Mealy automata is reduced. It is well-defined: if
both a Mealy automaton and its dual automaton are non-minimal, the reduction is
confluent [2].

The trivial Mealy automaton represented in Fig. 2 generates the trivial
(semi)group. If the md-reduction of a Mealy automaton A leads to the trivial Mealy
automaton, A is said to be md-trivial. It is decidable whether a Mealy automaton
is md-trivial. An md-trivial Mealy automaton generates a finite semigroup, but in
general the converse is false [2].

A priori the sequence of minimization-dualization can be arbitrarily long: the min-
imization of a Mealy automaton with a minimal dual can make the dual automaton
non-minimal. Nevertheless, if the automaton has two states, the md-reduction can
be shortened to mdmd. Hence, in this particular case, the time complexity of the
md-reduction is O(#� log #�).

3.3 Portrait of a Word

Throughout this subsection, A = (A, �, δ, ρ) denotes an invertible Mealy
automaton.
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Fig. 2 The trivial Mealy
automaton

The set �∗ can naturally be thought of as a regular rooted tree; its root is the empty
word and two words are connected if and only if they are of the form s and si, with
s ∈ �∗, i ∈ �. The set �n is the n th level of �∗. A branch of the tree �∗ is a
sequence of words (sk)k∈N such that, for each k ∈ N, sk is of length k and is a prefix
of sk+1.

An automorphism of �∗ is a bijective map �∗ → �∗ preserving the root and the
adjacency of the vertices. Each state x of the automaton A acts on the regular rooted
tree �∗ by the production rule ρx . The constructions of this subsection are directly
inspired by this view (see [23] and references therein for more details on automor-
phisms acting on regular rooted trees). Denote by Aut(�∗) the set of automorphisms
of �∗.

An automorphism is level-transitive or spherically transitive if it acts transitively
on each level of the regular rooted tree [17, 23]. Such an automorphism has an infinite
order.

Let g be an automorphism on the regular rooted tree �∗. For any word s ∈ �∗,
there exists a unique automorphism g|s : �∗ → �∗ called a section of g and defined,
for all word t ∈ �∗, by g(st) = g(s)g|s(t), see [23] for more details. The portrait of g

is the tree �∗ in which each vertex s ∈ �∗ is labeled by g|s : � → �. It is denoted by
p∞(g). The permutation of � associated to the empty word is the root permutation
of g. A level (resp. branch) of a portrait is the labeled level (resp. branch) of the tree.

For a given integer k, the k-portrait of g is the restriction of p∞(g) to levels 0
to k − 1 and is denoted by pk(g), it represents the action of g on the partial regular
rooted tree �≤k .

Let u ∈ A∗. The portrait (or ∞-portrait — resp. the k-portrait) of u is the portrait
(resp. the k-portrait) of ρu: each vertex s ∈ �∗ is labeled by ρδs(u) : � → �. It
is denoted by p∞�u� (resp. pk�u�). This notation is completely justified by the fact
that two equivalent words have the same production function, and hence the same
portrait. An example is given in Fig. 3.

The map from Aut(�∗) to the set of portraits induces a monoid structure on the
set of portraits. The neutral element of the product of portraits is the identity portrait:
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Fig. 3 Some portrait of a two-letter Mealy automaton; id = id� and σ permutes i and j

I∞ = p∞(id�∗). The portraits of the automaton A are the portraits of the elements
of 〈A〉+. The product of two k-portraits of A can be expressed in terms of words:
pk�u�pk�v� = pk�uv�. It provides a monoid structure to the set of k-portraits of A,
whose neutral element is the identity k-portrait Ik = pk(id�∗).

A level of a portrait is homogeneous if all its vertices have the same label; a portrait
is homogeneous if all its levels are homogeneous: the portrait p3�1� of Fig. 3(b) has
homogeneous levels 0 and 2, but is not homogeneous. For any integer k ≥ 1, the
k-portrait pk(g) is almost homogeneous if pk−1(g) and all the

(
pk−1(g|i )

)
i∈�

are
homogeneous.

An almost homogeneous (k + 1)-portrait K is built in the following way from a
homogeneous k-portrait J and a sequence τ = (τi)i∈� of permutations of �: the
restriction of K to levels 0 to k − 1 is J and the leaves of the subtree of the root
corresponding to the letter i ∈ � have all label τi . This portrait is denoted by J �τ�,
see Fig. 4.

Remark 3 The product of two homogeneous k-portraits is a homogeneous k-portrait.
Furthermore, if � = {i, j}:

– the square of a homogeneous k-portrait is the identity k-portrait Ik;
– the square of an almost homogeneous k-portrait whose root permutation is the

identity on � is the identity k-portrait;
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Fig. 4 The almost homogeneous (k + 1)-portrait J �τ�, τ = (τi )i∈�

– the square of an almost homogeneous k-portrait J �τi, τj � whose root permu-
tation is the permutation of i and j is the identity k-portrait if and only if
τi = τj .

3.4 Tensor Closure

When a Mealy automaton generates a finite semigroup, we may augment the alphabet
on which it acts to gain a better control over its structure.

Let A = (A, �, δ, ρ) be a Mealy automaton which generates a finite semigroup.
Its tensor closure is the Mealy automaton c(A) = (A, �, δ̄, ρ̄), where � = {�s� | s ∈
�∗} = 〈d(A)〉+ and δ̄ and ρ̄ are the natural extensions of δ and ρ:

∀x ∈ A, ∀s ∈ �∗, δ̄�s�(x) = δs(x) and ρ̄x(�s�) = �ρx(s)� .

A Mealy automaton is tensor closed if it is isomorphic to its tensor closure. Its
dual is then minimal.

The following remark justifies the introduction of the tensor closures:

Remark 4 Let A be a two-state Mealy automaton which generates a finite semigroup.
Then the automaton c(A) generates a finite semigroup. If c(A) is md-trivial, then so
is A.

The first result is obtained by looking at the respective dual automata which generates
the same semigroup. The second result is immediate since a two-state Mealy automa-
ton A is md-trivial if and only if mdmd(A) is trivial and the alphabet of dmd(A) can
be injected into the alphabet of c(A).

Lemma 1 LetA be a two-state invertible-reversible tensor closed Mealy automaton.
The connected components of the powers of A are complete graphs.

Proof Set A = (A, �, δ, ρ) and let k be an integer. The connected components of
Ak are strongly connected by reversibility. Hence any two words u and v in the same
connected component are connected by a path with input label in �∗. The automaton
A being tensor closed, any word over � is equivalent to a one-length word over �

and so the connected component of u and v is a complete graph: any two states are
connected by a transition.
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4 The Semigroup is Either Free or Finite

Recall that a semigroup S is free if there exists a subset X of S such that every element
of S can be written uniquely as a word over X, its rank is then the cardinality of X.

Remark 5 A group G is free if there exists a subset X of G such that every element
of G can be written uniquely as an irreducible word over X � X−1. An invertible
automaton can generate a free semigroup and a non-free group; for example, the
dual of Aleshin automaton (see Fig. 1(a)) generates a free semigroup, by Theorems 1
and 2, but not a free group: ba−1ba−1 = 1.

Theorem 1 Let A be a reversible two-state Mealy automaton. If A admits a dis-
connected power, then it generates a finite semigroup, otherwise it generates a free
semigroup of rank 2 with the states of A being free generators.

Theorem 1 is a corollary of Proposition 1 and the case p = 2 in Proposition 2
below.

Let us look at the connected components of the powers of a Mealy automaton A.
For m > 0, u, v ∈ Am, and x, y ∈ A, if there exists a path from ux to vy in Am+1,
then there is a path from u to v in Am. Hence if An is disconnected, so are the Ak , for
all k > n. Thus there exists at most one integer n such that An is connected and An+1

is disconnected. This integer is called the connection degree of A. By convention, if
A is disconnected, its connection degree is 0, and it has an infinite connection degree
if no power of A is disconnected.

A Mealy automaton has an infinite connection degree if and only if its dual is
spherically transitive.

4.1 Finite Connection Degree

In this section, we prove that a reversible two-state Mealy automaton has a finite con-
nection degree if and only if it generates a finite semigroup. This result is already
known [7, Lemma 3], but we present here a new proof which fully exploits the struc-
ture of the automaton; its main idea is to bound the sizes of the connected components
of the powers of A once the connection degree has passed.

Lemma 2 Let A = (A, �, δ, ρ) be a reversible Mealy automaton with at least
two states, which generates a semigroup with torsion elements. Then its connection
degree is finite.

Proof Since 〈A〉+ has torsion elements, there exist a word u ∈ A+ and two integers
n ≥ 0 and k > 0 such that un and un+k are equivalent: ρun = ρun+k . Let s ∈ �∗, we
have:

δs(un+2k) = δs(un)δρun (s)(uk)δρun+k (s)(uk) = δs(un)
(
δρun (s)(uk)

)2
.

Hence all the states of the connected component of un+2k have form vw2 and
A(n+2k)|u| is disconnected.
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In the remainder of this subsection, A = (A, �, δ, ρ) denotes a reversible two-
state Mealy automaton (A = {x, y}) with finite connection degree n. If z ∈ A is a
state of A, z̄ ∈ A denotes the other state: z �= z̄.

Lemma 3 Let C be a connected component of Am for some m, and let u ∈ Am be
a state of C. The connected component (in Am+1) of ux has size #C if it does not
contain uy, and 2#C if it does contain uy.

Proof Let D be the connected component of ux: v ∈ Am is a state of C if and only
if there exists z ∈ A such that vz is a state of D, hence: N ≤ #D ≤ 2N . Let v be a
state of C and z ∈ A: ux and vz are in the same connected component if and only if
so are uy and vz̄. The result follows.

Recall that n is the connection degree of A.

Lemma 4 For each m ≥ n, the connected components of Am have size exactly 2n.

Proof By induction on m ≥ n. For m ∈ {n, n + 1}, the property is true (using
Lemma 3 for m = n + 1).

Assume m > n + 1. Suppose that the connected components of Am−1 and Am

have size 2n. Then let C be a connected component of Am+1 and u = u1 · · · um+1
a state of C. The word u• = u1 · · · um belongs to a connected component D of Am,
of size 2n by the induction hypothesis. Hence C has size 2n or 2n+1 according to
Lemma 3.

Suppose that C has size 2n+1: it means by Lemma 3 that both u and u•um+1 belong
to C. It follows that u2 · · · umum+1 and u2 · · · umum+1 belong to the same connected
component E of Am, of size 2n by the induction hypothesis. Hence Lemma 3 ensures
the existence of a connected component of Am−1 of size 2n−1, contradicting the
induction hypothesis.

Proposition 1 The connection degree of a reversible two-state Mealy automaton is
finite if and only if it generates a finite semigroup.

Proof Let A = (A, �, δ, ρ) be a reversible two-state Mealy automaton. If the
connection degree of A is 0, 〈d(A)〉+ is the trivial semigroup and 〈A〉+ is finite [2].

Otherwise, let n ≥ 1 be the connection degree of A: by Lemma 4, for m ≥ n,
the connected components of Am have size 2n. These connected components are
reversible Mealy automata on the alphabet �. Up to state numbering, there are only
a finite number of such automata and thus there exist p < q such that m(Ap) =
m(Aq). It follows by Remark 1 that 〈A〉+ is finite.

The reciprocal property is a particular case of Lemma 2.

4.2 Infinite Connection Degree

Here we prove that if a reversible p-state Mealy automaton, p prime, has infinite
connection degree, then it generates a free semigroup, the states of the automaton
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being free generators. The idea is to bound the sizes of the Nerode classes in the
powers of A.

For the next three lemmas, let A = (A, �, δ, ρ) be a reversible p-state Mealy
automaton, p prime, with infinite connection degree (A = {x1, . . . , xp}). By
Lemma 2, A generates an infinite semigroup.

Lemma 5 There cannot exist two equivalent words of different length in A∗.

Proof For each m, Am is connected, and so any two words of length m are mapped
one onto the other by an element of 〈d(A)〉+.

Let u and v be two equivalent words of different lengths, say |u| < |v|. Every
word of length |v| is then equivalent to a word of length |u|: if w is of length |v|, then
w = δt(v) for some t ∈ �∗, and, by Remark 2, w is equivalent to δt(u) of length |u|.
By Remark 1, the semigroup 〈A〉+ is finite, which is impossible.

Lemma 6 All the Nerode classes of a given power Am have the same size, which
happens to be a power of p.

Proof Let u ∈ Am: [u] ⊆ Am by definition. If [u] = Am, the result is clear. Other-
wise, let v ∈ Am − [u]. Since Am is connected, u is mapped onto v by an element of
〈d(A)〉+; that is there exists r ∈ �∗ such that v = δr(u).

By Remark 2, any word equivalent to u is mapped by δr onto a word equivalent
to v. Since the automaton Am is reversible, δr is a permutation of Am, hence we find
#[u] = #[v].

The stateset of Am has size a power of p, where p is a prime number, and so has
any Nerode equivalence class.

Lemma 7 There cannot exist two equivalent words of the same length in A∗.

Proof Let u and v be two different equivalent words of the same length n + 1. Let
us prove by induction on m > n that m(Am) has at most pn states.

The automaton An+1 has pn+1 states. The words u and v are in the same Nerode
class: by Lemma 6, all Nerode classes of An+1 have at least p elements and m(An+1)

has at most pn states.
Suppose that m(Am) has at most pn states. Then, since all Nerode classes have

the same size by Lemma 6, the induction hypothesis implies that they have at least
pm−n elements. Let us look at [xm

1 ]: it contains

xm
1 , u1, u2, . . . , upm−n−1 ,

which are pairwise distinct. Among these words, there is at least one whose suffix
in x1 is the shortest, say u1 without loss of generality: pm−n > 1 and xm

1 has the
longest possible suffix in x1. Hence [xm+1

1 ] contains the following pairwise distinct
pm−n + 1 words

xm+1
1 , u1x1, u2x1, . . . ,upm−n−1x1, x1u1 .
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By Lemma 6, #[xm+1
1 ] is a power of p, so #[xm+1

1 ] ≥ pm+1−n. As all Nerode classes
of Am+1 have the same cardinality, we can conclude that m(Am+1) has at most
pm+1/pm+1−n = pn elements, ending the induction.

Consequently, since there is only a finite number of different Mealy automata with
up to pn states, there exist k < � such that m(Ak) and m(A�) are equal up to state
numbering. By Remark 1, the semigroup 〈A〉+ is finite, which is impossible.

As a corollary of Proposition 1 and Lemmas 5, and 7 we can state the following
proposition.

Proposition 2 Let A be a reversible p-state Mealy automaton, p prime. If the
automaton A has infinite connection degree, then it generates a free semigroup of
rank p with the states of A being free generators of the semigroup. The converse
holds for p = 2.

It is known that a group containing a free subsemigroup of rank at least 2 has
exponential growth [11]. Thus it is useless to look for an intermediate growth group
generated by a two-state invertible-reversible Mealy automaton.

Corollary 1 An infinite group generated by a two-state invertible-reversible Mealy
automaton has exponential growth.

5 Decidability of Finiteness and of Freeness

This section is devoted to the decidability of finiteness and of freeness for semigroups
generated by two-state invertible-reversible Mealy automata by linking Theorem 1
and the possible md-triviality of such an automaton.

Lemma 8 Let A = (A, �, δ, ρ) be a two-state invertible-reversible automaton of
finite connection degree n. Two elements of�∗ which have the same action on a word
of An are equivalent.

Proof It is sufficient to prove that idA∗ is the only element of 〈d(A)〉+ which fixes a
word of An.

If n = 0, 〈d(A)〉+ is the trivial semigroup and the result is true. Otherwise, let
u ∈ An and s ∈ �∗ such that u is stable by δs: δs(u) = u.

By Lemma 3, An+1 has two connected components: ux belongs to one of them
and uy to the other one. Looking forward, a connected component C of Am, for
m ≥ n, originates two connected components of Am+1: {vzv | v ∈ C, zv ∈ A} and
{vzv | v ∈ C}. And all connected component of Am+1 are built this way. Hence if
two different words of the same length m > n have the same prefix of length n, they
belong to different connected components of Am.

Let t ∈ �∗ satisfy ρu(s) = t, and let v,w ∈ A∗ such that t maps v onto w:
δt(v) = w. The words uv and uw belong to the same connected component:

δs(uv) = δs(u)δρu(s)(v) = uδt(v) = uw ,
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and have a common prefix of length n, so they are equal. Hence: δt = idA∗ . As d(A)

is reversible, t is mapped onto s by an element of 〈A〉+ and δs = idA∗ .

We have a similar (but weaker) result on shorter words for tensor closed Mealy
automata. In the next three lemmas of this section, A = (A, �, δ, ρ) denotes a tensor
closed two-state invertible-reversible automaton of finite connection degree n: A =
{x, y}. By Lemma 1, An is complete as a graph. Furthermore, a transition has a
unique label: if a transition had several labels, they would coincide on a word of An

and by Lemma 8 they actually would be the same letter of �.

Lemma 9 Let k be an integer, 1 ≤ k ≤ n. Two elements of �∗ which map a given
word of Ak into the same word have the same action on Ak .

Proof Each word of �∗ is equivalent to a letter of �, hence it is sufficient to prove
the result for letters.

The Mealy automaton An has 2n states, is complete as a graph and each transition
has a unique label, so #� = 2n. By hypothesis, � is the set of elements of 〈d(A)〉+,
so #〈d(A)〉+ = 2n.

Let us consider the minimization of d(A), using the sequence of increasingly
finer equivalences (≡k) introduced in Section 3.1. Each n-class of � is a single-
ton by Lemma 8, hence the sequence (≡k) remains constant at least from n on. So
the Nerode equivalence produces 2n equivalence classes formed uniquely by sin-
gletons, by partitioning the stateset of d(A) of cardinality 2n in n steps, each step
cutting each class of the previous one into at most two subsets as #A = 2. Hence
the equivalence ≡k cuts each (k − 1)-class into two sets of the same cardinality:
∀k, 0 ≤ k ≤ n, ∀s ∈ �, #[s]k = #[s]k−1/2 = 2n−k .

Let k, 1 ≤ k ≤ n, u ∈ Ak , and s ∈ �. We have:

[s]k ⊆ {t ∈ � | t (u) = s(u)} . (1)

The left set in (1) has cardinality 2n−k , it is the set of elements of � which coincide
with s on Ak . Since two elements of � whose actions coincide on a word of An are
equivalent, the right set of (1) has cardinality at most #An−k = 2n−k , and so the two
sets of (1) are equal, leading to the result.

One consequence of Lemma 9 is that an element of �∗ which fixes a word of
length k on A fixes completely Ak .

Denote by id the identity of A and by σ the permutation of x and y. We can
translate Lemma 9 in terms of portraits of d(A): whenever two k-portraits of d(A)

have an identical branch, they are equal. In particular, Ik being a portrait of d(A), if
a whole branch of a k-portrait of d(A) is labeled by id, this portrait is Ik . Hence if in
a k-portrait of d(A), all vertices at level less than k − 1 are labeled by id, this portrait
is either Ik or Ik−1�σ, σ�. Note that for k ≤ n, both Ik and Ik−1�σ, σ� are portraits
of d(A).

By Lemma 8, any element of 〈d(A)〉+ whose n-portrait is In acts trivially on A∗.
What are the possible portraits of d(A)? Since An is connected and A is tensor

closed, it is immediate that each finite sequence (πi)1≤i≤n ∈ {id, σ }n labels a branch
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of an n-portrait of d(A): in An, there is a transition with input s ∈ � from xn to
π1(x) · · · πn(x) and the leftmost branch of pn�s� is labeled by π .

Lemma 10 The portraits of d(A) are homogeneous.

Proof Let us prove the result for k ≤ n, by induction on k ≥ 1. A 1-portrait has a
unique element, its root, and so is homogeneous.

Suppose that the �-portraits of d(A) are all homogeneous, for � ≤ k < n. Let us
consider a letter s ∈ � and S = pk+1�s�: it is almost homogeneous by the induction
hypothesis. More precisely: S = pk�s��τ1, τ2� for τ1, τ2, some permutations of A.

First case: δs permutes x and y.

We consider the following (n + 1)-portrait K:

– the restriction of K to levels 0 to (n − k − 1) is In−k ,
– in bottom-left of In−k , we put pk+1�s�: the root of pk+1�s� is the left child of the

bottom-left leaf of In−k (it is possible since we can choose the left branch of a
portrait, applying Lemma 9 and pk+1�s� is actually a portrait of d(A)),

– it is completed to be a portrait of d(A.

The leftmost branch of K2 starts with idn. Hence by Lemma 8, K2 is the identity
(n + 1)-portrait, which implies τ1 = τ2 by Remark 3 and Lemma 8, that is S is
homogeneous.

Second case: δs stabilizes A.

Let L be the (k +1)-portrait whose root permutation is σ and all other vertices are
labeled by id: it is a portrait of d(A) since so are all homogeneous (k + 1)-portraits
with root permutation σ from first case. Then by multiplying S by L, we obtain a
non-homogeneous (k +1)-portrait with root permutation σ which has to be a portrait
of d(A). That is impossible.

The proof is similar for k > n, considering the portrait pk�s�.

Lemma 11 The states of A are equivalent.

Proof By Lemma 10, all the portraits of d(A) are homogeneous. For any letter s ∈
�, since its portrait is homogeneous, ρx(s) and ρy(s) are equivalent. The automaton
being tensor closed, they are equal, and so ρx = ρy .

Theorem 2 LetA be a two-state invertible-reversible Mealy automaton. It generates
a finite group if and only if it is md-trivial.

Proof By [2], if A is md-trivial, it generates a finite group.
Suppose that A generates a finite group and consider its tensor closure c(A): c(A)

generates a finite group by Remark 4. The connection degree of c(A) is finite by
Proposition 1 and so c(A) is md-trivial by Lemma 11. Hence A is md-trivial by
Remark 4.



678 Theory Comput Syst (2016) 58:664–680

Fig. 5 A Mealy automaton
generating N

The last theorem summarizes all the decidability results arising from this article.

Theorem 3 It is decidable whether a two-state invertible-reversible Mealy automa-
ton with alphabet � generates a finite group, in time O(#� log #�). It is decidable
whether it generates a free semigroup, in time O(#� log #�).

It is decidable whether a two-letter invertible-reversible Mealy automaton with
stateset A generates a finite group, in time O(#A log #A).

Up to now, the only methods to conclude infiniteness of automaton groups
were to prove the existence of an element of infinite order [5, SIZE FR][22, Find-
ElementOfInfiniteOrder], using Sidki’s fundamental work [8, 25], or to test level
transitivity [5, IsLevelTransitive]. All these methods give sufficient but not necessary
conditions.

To illustrate the actual efficiency of the md-triviality as an algorithm to test
finiteness, let us consider the 2-letter 6-state invertible-reversible Mealy automata.
Bireversible Mealy automata are particular invertible-reversible Mealy automata
and an invertible-reversible automaton generates a finite group only if it is bire-
versible [2]. Testing the md-triviality of the 3446 bireversible 2-letter 6-states Mealy
automata takes 751ms1, while applying FindElementOfInfiniteOrder, SIZE FR or
IsLevelTransitive to determine the infinity of the group generated by the particular
bireversible 2-letter 6-state Mealy automaton of Fig. 3(a) is unsuccessful after three
weeks of computation.

6 (Im-)possible Extensions

All hypotheses are used to prove Theorems 1 and 2. This section is dedicated to see
which hypotheses are mandatory for the results and how to possibly extend these
results.

Theorem 1 (the semigroup is either finite or free) It is quite clear that this theo-
rem does not extend to more letters; for example the Baby Aleshin automaton (see
Fig. 1(b)) is reversible, has three states, and generates an infinite non-free semigroup
(its generators have order 2). Concerning the reversibility hypothesis, the automa-
ton of Fig. 5 has two-state and is well-known to generate the semigroup N, which is
neither finite, nor free of rank 2.

An extension of Theorem 1 to bigger alphabets could be the following one:

1Timings obtained on an Intel Xeon computer with clock speed 2.13GHz; programs written in GAP [12].
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Fig. 6 A reversible
non-invertible non-md-trivial
automaton which generates a
finite semigroup

Conjecture 1 An infinite semigroup generated by a reversible Mealy automaton
admits a free non-abelian subsemigroup.

This conjecture is supported by the fact that all bireversible Mealy automata which
appear in literature and generate infinite semigroups seem to have a non-abelian
free subgroup. Of course, this subgroup is not necessary generated by the states of
the automaton and finding its generators is surely the first difficulty to prove this
conjecture.

Note that if this conjecture were true, it would follow that a group generated by an
invertible-reversible Mealy automaton cannot answer to the Burnside problem and is
of exponential growth, if infinite.

Theorem 2 (decidability of finiteness and freeness) The article [2] gives two example
of non-md-trivial automata which generate finite semigroups. One of these exam-
ples is a two-state non-reversible automaton, the other one an eight-state bireversible
automaton and neither of them prove the necessity of the invertible hypothesis in
Theorem 2. The automaton of Fig. 6 has two state, is reversible, non-invertible, and
not md-trivial. The semigroup generated by this automaton is not free: x2 = xy =
yx = y2 maps any element of �ω into aω, and so this automaton generates a finite
semigroup.
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Šunić, Z.: On classification of groups generated by 3-state automata over a 2-letter alphabet. Algebra
Discrete Math. 1, 1–163 (2008)



680 Theory Comput Syst (2016) 58:664–680

8. Bondarenko, I.V., Bondarenko, N.V., Sidki, S.N., Zapata, F.R.: On the conjugacy problem for finite-
state automorphisms of regular rooted trees. Groups Geom. Dyn. 7(2), 323–355 (2013)

9. Cain, A.J.: Automaton semigroups. Theor. Comput. Sci. 410(47-49), 5022–5038 (2009)
10. D’Angeli, D., Rodaro, E.: Groups and semigroups defined by colorings of synchronizing automata.

Int. J. Algebra Comput., 21 (2014)
11. de la Harpe, P.: Topics in geometric group theory. University of Chicago Press (2000)
12. The GAP Group: GAP – groups, algorithms, and programming, v.4.4.12 (2008)
13. Gillibert, P.: The finiteness problem for automaton semigroups is undecidable. Int. J. Algebra Comput.

24(01), 1–9 (2014)
14. Glasner, Y., Mozes, Sh.: Automata and square complexes. Geom. Dedicata 111(1), 43–6 (2005)
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