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Abstract We investigate schema languages for unordered XML having no rela-
tive order among siblings. First, we propose unordered regular expressions (UREs),
essentially regular expressions with unordered concatenation instead of standard
concatenation, that define languages of unordered words to model the allowed con-
tent of a node (i.e., collections of the labels of children). However, unrestricted
UREs are computationally too expensive as we show the intractability of two fun-
damental decision problems for UREs: membership of an unordered word to the
language of a URE and containment of two UREs. Consequently, we propose a prac-
tical and tractable restriction of UREs, disjunctive interval multiplicity expressions
(DIMEs). Next, we employ DIMEs to define languages of unordered trees and pro-
pose two schema languages: disjunctive interval multiplicity schema (DIMS), and its
restriction, disjunction-free interval multiplicity schema (IMS). We study the com-
plexity of the following static analysis problems: schema satisfiability, membership
of a tree to the language of a schema, schema containment, as well as twig query
satisfiability, implication, and containment in the presence of schema. Finally, we
study the expressive power of the proposed schema languages and compare them
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with yardstick languages of unordered trees (FO, MSO, and Presburger constraints)
and DTDs under commutative closure. Our results show that the proposed schema
languages are capable of expressing many practical languages of unordered trees and
enjoy desirable computational properties.

Keywords Schemas for XML · Unordered XML · Regular expressions · Twig
queries · Semi-structured data

1 Introduction

When XML is used for document-centric applications, the relative order among the
elements is typically important e.g., the relative order of paragraphs and chapters in a
book. On the other hand, in case of data-centric XML applications, the order among
the elements may be unimportant [1]. In this paper we focus on the latter use case. As
an example, take a trivialized fragment of an XML document containing the DBLP
repository in Fig. 1. While the order of the elements title, author, and year may differ
from one publication to another, it has no impact on the semantics of the data stored
in this semi-structured database.

Typically, a schema for XML defines for every node its content model i.e., the
children nodes it must, may, and cannot contain. For instance, in the DBLP exam-
ple, one would require every article to have exactly one title, one year, and one
or more authors. A book may additionally contain one publisher and may also
have one or more editors instead of authors. A schema has numerous important
uses. For instance, it allows to validate a document against a schema and iden-
tify potential errors. A schema also serves as a reference for a user who does not
know yet the structure of the XML document and attempts to query or modify its
content.

The Document Type Definition (DTD), the most widespread XML schema for-
malism for (ordered) XML [8, 23], is essentially a set of rules associating with each
label a regular expression that defines the admissible sequences of children. The
DTDs are best fitted for ordered content because they use regular expressions, a for-
malism that defines sequences of labels. However, when unordered content model
needs to be defined, there is a tendency to use over-permissive regular expressions.

Fig. 1 A trivialized DBLP repository
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For instance, the DTD below corresponds to the one used in practice for the DBLP
repository:1

dblp → (article | book)∗
article → (title | year | author)∗
book → (title | year | author | editor | publisher)∗

This DTD allows an article to contain any number of titles, years, and authors. A book
may also have any number of titles, years, authors, editors, and publishers. These
regular expressions are clearly over-permissive because they allow XML documents
that do not follow the intuitive guidelines set out earlier e.g., an XML document
containing an article with two titles and no should not be valid.

While it is possible to capture unordered content models with regular expressions,
a simple pumping argument shows that their size may need to be exponential in
the number of possible labels of the children. In case of the DBLP repository, this
number reaches values up to 12, which basically precludes any practical use of such
regular expressions. This suggests that over-permissive regular expressions may be
employed for the reasons of conciseness and readability, a consideration of great
practical importance.

The use of over-permissive regular expressions, apart from allowing documents
that do not follow the guidelines, has other negative consequences e.g., in static
analysis tasks that involve the schema. Take for example the following two twig
queries [3, 47]:

/dblp/book[author = “C.Papadimitriou”]
/dblp/book[author = “C.Papadimitriou”][title]

The first query selects the elements labeled book, children of dblp and having
an author containing the text “C. Papadimitriou.” The second query additionally
requires that book has a title. Naturally, these two queries should be equivalent
because every book should have a title. However, the DTD above does not capture
properly this requirement, and consequently the two queries are not equivalent w.r.t.
this DTD.

In this paper, we investigate schema languages for unordered XML. First, we
study languages of unordered words, where an unordered word can be seen as a
multiset of symbols. We consider unordered regular expressions (UREs), which are
essentially regular expressions with unordered concatenation “||” instead of stan-
dard concatenation. The unordered concatenation can be seen as union of multisets,
and consequently, the star “∗” can be seen as the Kleene closure of unordered
languages.

Similarly to a DTD which associates to each label a regular expression to define
its (ordered) content model, an unordered schema uses UREs to define for each label

1http://dblp.uni-trier.de/xml/dblp.dtd

http://dblp.uni-trier.de/xml/dblp.dtd
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its unordered content model. For instance, take the following schema (satisfied by
the tree in Fig. 1):

dblp → article∗ || book∗

article → title || year || author+
book → title || year || publisher? || (author+ | editor+)

The above schema uses UREs and captures the intuitive requirements for the DBLP
repository. In particular, an article must have exactly one title, exactly one year, and at
least one author. A book may additionally have a publisher and may have one or more
editors instead of authors. Note that, unlike the DTD defined earlier, this schema does
not allow documents having an article with several titles or without any author.

Using UREs is equivalent to using DTDs with regular expressions interpreted
under the commutative closure [4, 34]: essentially, a word matches the commutative
closure of a regular expression if there exists a permutation of the word that matches
the regular expression in the standard way. Deciding this problem is known to be NP-
complete [26] for arbitrary regular expressions. We show that the problem of testing
the membership of an unordered word to the language of a URE is NP-complete
even for a restricted subclass of UREs that allows unordered concatenation and the
option operator “?” only. Not surprisingly, testing the containment of two UREs is
also intractable. These results are of particular interest because they are novel and
do not follow from complexity results for regular expressions, where the order plays
typically an essential role [31, 46]. Consequently, we focus on finding restrictions
rendering UREs tractable and capable of capturing practical languages in a simple
and concise manner.

The first restriction is to disallow repetitions of a symbol in a URE, thus banning
expressions of the form a||a? because the symbol a is used twice. Instead we add gen-
eral interval multiplicities a[1,2] which offer a way to specify a range of occurrences
of a symbol in an unordered word without repeating a symbol in the URE. While
the complexity of the membership of an unordered word to the language of a URE
with interval multiplicities and without symbol repetitions has recently been shown
to be in PTIME [11], testing containment of two such UREs remains intractable.
We, therefore, add limitations on the nesting of the disjunction and the unordered
concatenation operators and the use of intervals, which yields the proposed class
of disjunctive interval multiplicity expressions (DIMEs). DIMEs enjoy good com-
putational properties: both the membership and the containment problems become
tractable. Also, we believe that despite the imposed restriction DIMEs remain a
practical class of UREs. For instance, all UREs used in the schema for the DBLP
repository above are DIMEs.

Next, we employ DIMEs to define languages of unordered trees and propose two
schema languages: disjunctive interval multiplicity schema (DIMS), and its restric-
tion, disjunction-free interval multiplicity schema (IMS). Naturally, the above schema
for the DBLP repository is a DIMS.We study the complexity of several basic decision
problems: schema satisfiability, membership of a tree to the language of a schema,
containment of two schemas, twig query satisfiability, implication, and containment
in the presence of schema. We present in Table 1 a summary of the complexity results
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Table 1 Summary of complexity results

Problem of interest DTD DIMS disj.-free DTD IMS

Schema satisfiability PTIME [14, 40] PTIME (Pr. 1) PTIME [14, 40] PTIME (Pr. 1)

Membership PTIME [14, 40] PTIME (Pr. 2) PTIME [14, 40] PTIME (Pr. 2)

Schema containment PSPACE-c†[40] PTIME (Pr. 1) coNP-h†[30] PTIME (Pr. 1)

PTIME [14] PTIME [14]

Query ‡ satisfiability NP-c [5] NP-c (Pr. 3) PTIME [5] PTIME (Th. 5)

Query ‡ implication EXPTIME-c [35] EXPTIME-c (Pr. 4) PTIME (Th. 7) PTIME (Th. 5)

Query ‡ containment EXPTIME-c [35] EXPTIME-c (Pr. 4) coNP-c (Th. 7) coNP-c (Th. 6)

†
When non-deterministic regular expressions are used

‡
For twig queries

and we observe that DIMSs and IMSs enjoy the same computational properties as
general DTDs and disjunction-free DTDs, respectively.

The lower bounds for the decision problems for DIMSs and IMSs are gener-
ally obtained with easy adaptations of their counterparts for general DTDs and
disjunction-free DTDs. To obtain the upper bounds we develop several new tools.
We propose to represent DIMEs with characterizing tuples that can be efficiently
computed and allow deciding in polynomial time the membership of a tree to the lan-
guage of a DIMS and the containment of two DIMSs. Also, we develop dependency
graphs for IMSs and a generalized definition of an embedding of a query. These two
tools help us to reason about query satisfiability, query implication, and query con-
tainment in the presence of IMSs. Our constructions and results for IMSs allow also
to characterize the complexity of query implication and query containment in the
presence of disjunction-free DTDs, which, to the best of our knowledge, have not
been previously studied.

Finally, we compare the expressive power of the proposed schema languages with
yardstick languages of unordered trees (FO, MSO, and Presburger constraints) and
DTDs under commutative closure. We show that the proposed schema languages are
capable of expressing many practical languages of unordered trees.

It is important to mention that this paper is a substantially extended version of
a preliminary work presented in [10]. More precisely, in this paper we show novel
intractability results for some subclasses of unordered regular expressions and we
extend the expressibility of the tractable subclasses. While in [10] we have consid-
ered only simple multiplicities (∗, +, ?), in this paper we deal with arbitrary interval
multiplicities of the form [n,m].
Organization In Section 2 we introduce some preliminary notions. In Section 3
we study the reasons of intractability of unordered regular expressions while in
Section 4 we present the tractable subclass of disjunctive interval multiplicity expres-
sions (DIMEs). In Section 5 we define two schema languages: the disjunctive interval
multiplicity schemas (DIMSs) and its restriction, the disjunction-free interval multi-
plicity schemas (IMSs), and the related problems of interest. In Sections 6 and 7 we
analyze the complexity of the problems of interest for DIMSs and IMSs, respectively.
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In Section 8 we discuss the expressiveness of the proposed formalisms. In Section 9
we present related work. In Section 10 we summarize our results and outline further
directions.

2 Preliminaries

Throughout this paper we assume an alphabet � that is a finite set of symbols. We
also assume that � has a total order <� that can be tested in constant time.

Trees We model XML documents with unordered labeled trees. Formally, a tree t is
a tuple (Nt , roott , labt , childt ), where Nt is a finite set of nodes, roott ∈ Nt is a
distinguished root node, labt : Nt → � is a labeling function, and childt ⊆ Nt ×Nt

is the parent-child relation. We assume that the relation childt is acyclic and require
every non-root node to have exactly one predecessor in this relation. By Tree we
denote the set of all trees.

Queries We work with the class of twig queries, which are essentially unordered
trees whose nodes may be additionally labeled with a distinguished wildcard symbol
� �∈ � and that use two types of edges, child (/) and descendant (//), corresponding
to the standard XPath axes. Note that the semantics of the //-edge is that of a proper
descendant (and not that of descendant-or-self). Formally, a twig query q is a tuple
(Nq, rootq, labq, childq, descq), where Nq is a finite set of nodes, rootq ∈ Nq is
the root node, labq : Nq → � ∪{�} is a labeling function, childq ⊆ Nq ×Nq is a set
of child edges, and descq ⊆ Nq × Nq is a set of descendant edges. We assume that
childq ∩ descq = ∅ and that the relation childq ∪ descq is acyclic and we require
every non-root node to have exactly one predecessor in this relation. By Twig we
denote the set of all twig queries. Twig queries are often presented using the abbre-
viated XPath syntax [47] e.g., the query q0 in Fig. 2a can be written as r/ � [�]//a.
Embeddings We define the semantics of twig queries using the notion of embedding
which is essentially a mapping of nodes of a query to the nodes of a tree that respects
the semantics of the edges of the query. Formally, for a query q ∈ Twig and a tree
t ∈ Tree, an embedding of q in t is a function λ : Nq → Nt such that:

1. λ(rootq) = roott ,
2. for every (n, n′) ∈ childq , (λ(n), λ(n′)) ∈ childt ,

Fig. 2 A tree and a twig query



Theory Comput Syst (2015) 57:337–376 343

3. for every (n, n′) ∈ descq , (λ(n), λ(n′)) ∈ (childt )
+ (the transitive closure of

childt ),
4. for every n ∈ Nq , labq(n) = � or labq(n) = labt (λ(n)).

We write t � q if there exists an embedding of q in t . Later on, in Section 7.2 we
generalize this definition of embedding as a tool that permits us characterizing the
problems of interest.

As already mentioned, we use the notion of embedding to define the semantics of
twig queries. In particular, we say that t satisfies q if there exists an embedding of q

in t and we write t |= q. By L(q) we denote the set of all trees satisfying q.
Note that we do not require the embedding to be injective i.e., two nodes of the

query may be mapped to the same node of the tree. Figure 3 presents all embeddings
of the query q0 in the tree t0 from Fig. 2.

UnorderedWords An unordered word is essentially a multiset of symbols i.e., a func-
tion w : � → N0 mapping symbols from the alphabet to natural numbers. We call
w(a) the number of occurrences of the symbol a inw. We also write a ∈ w as a short-
hand for w(a) �= 0. An empty word ε is an unordered word that has 0 occurrences of
every symbol i.e., ε(a) = 0 for every a ∈ �. We often use a simple representation of
unordered words, writing each symbol in the alphabet the number of times it occurs
in the unordered word. For example, when the alphabet is� = {a, b, c},w0 = aaacc

stands for the function w0(a) = 3, w0(b) = 0, and w0(c) = 2. Additionally, we may
write w0 = a3c2 instead of w0 = aaacc.

We use unordered words to model collections of children of XML nodes. As it is
usually done in the context of XML validation [41, 42], we assume that the XML
document is encoded in unary i.e., every node takes the same amount of memory.
Thus, we use a unary representation of unordered words, where each occurrence of
a symbol occupies the same amount of space. However, we point out that none of
the results presented in this paper changes with a binary representation. In particular,
the intractability of the membership of an unordered word to the language of a URE
(Theorem 1) also holds with a binary representation of unordered words.

Consequently, the size of an unordered word w, denoted |w|, is the sum of the
numbers of occurrences in w of all symbols in the alphabet. For instance, the size of
w0 = aaacc is |w0| = 5.

The (unordered) concatenation of two unordered words w1 and w2 is defined as
the multiset unionw1
w2 i.e., the function defined as (w1
w2)(a) = w1(a)+w2(a)

for every a ∈ �. For instance, aaacc
abbc = aaaabbccc. Note that ε is the identity

Fig. 3 Embeddings of q0 in t0
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element of the unordered concatenation ε
w = w
ε = w for every unordered word
w. Also, given an unordered word w, by wi we denote the concatenation w 
 . . .
w

(i times).
A language is a set of unordered words. The unordered concatenation of two

languages L1 and L2 is a language L1 
 L2 = {w1 
 w2 | w1 ∈ L1, w2 ∈
L2}. For instance, if L1 = {a, aac} and L2 = {ac, b, ε}, then L1 
 L2 =
{a, ab, aac, aabc, aaacc}.

Unordered Regular Expressions Analogously to regular expressions, which are used
to define languages of ordered words, we propose unordered regular expressions
to define languages of unordered words. Essentially, an unordered regular expres-
sion (URE) defines unordered words by using Kleene star “∗”, disjunction “|”, and
unordered concatenation “||”. Formally, we have the following grammar:

E ::= ε | a | E∗ | (E“|”E) | (E“||”E),

where a ∈ �. The semantics of UREs is defined as follows:

L(ε) = {ε},
L(a) = {a},
L(E1 | E2) = L(E1) ∪ L(E2),

L(E1 || E2) = L(E1) 
 L(E2),

L(E∗) = {w1 
 . . . 
 wi | w1, . . . , wi ∈ L(E) ∧ i ≥ 0}.
For instance, the URE (a || (b | c))∗ accepts the unordered words having the number
of occurrences of a equal to the total number of b’s and c’s.

The grammar above uses only one multiplicity ∗ and we introduce macros for two
other standard and commonly used multiplicities:

E+ := E || E∗, E? := E | ε.

The URE (a || b?)+ || (a | c)? accepts the unordered words having at least one a, at
most one c, and a number of b’s less or equal than the number of a’s.

Interval Multiplicities While the multiplicities ∗,+, and ? allow to specify unordered
words with multiple occurrences of a symbol, we additionally introduce interval
multiplicities to allow to specify a range of allowed occurrences of a symbol in
an unordered word. More precisely, we extend the grammar of UREs by allowing
expressions of the form E[n,m] and E[n,m]? , where n ∈ N0 and m ∈ N0 ∪ {∞}. Their
semantics is defined as follows:

L(E[n,m]) = {w1 
 . . . 
 wi | w1, . . . , wi ∈ L(E) ∧ n ≤ i ≤ m},
L(E[n,m]?) = L(E[n,m]) ∪ {ε}.

In the rest of the paper, we write simply interval instead of interval multiplicity.
Furthermore, we view the following standard multiplicities as macros for intervals:

∗ := [0, ∞], + := [1, ∞], ? := [0, 1].
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Additionally, we introduce the single occurrence multiplicity 1 as a macro for the
interval [1, 1].

Note that the intervals do not add expressibility to general UREs, but they become
useful if we impose some restrictions. For example, if we disallow repetitions of a
symbol in a URE and ban expressions of the form a ||a?, we can however write a[1,2]
to specify a range of occurrences of a symbol in an unordered word without repeating
a symbol in the URE.

3 Intractability of Unordered Regular Expressions

In this section, we study the reasons of the intractability of UREs w.r.t. the following
two fundamental decision problems: membership and containment. In Section 3.1
we show that membership is NP-complete even under significant restrictions on
the UREs while in Section 3.2 we show that the containment is �

p

2 -hard (and in
3-EXPTIME). We notice that the proofs of both results rely on UREs allowing repe-
titions of the same symbol. Consequently, we disallow such repetitions and we show
that this restriction does not avoid intractability of the containment (Section 3.3). We
observe that the proof of this result employs UREs with arbitrary use of disjunction
and intervals, and therefore, in Section 4 we impose further restrictions and define
the disjunctive interval multiplicity expressions (DIMEs), a subclass for which we
show that the two problems of interest become tractable.

3.1 Membership

In this section, we study the problem of deciding the membership of an unordered
word to the language of a URE. First of all, note that this problem can be easily
reduced to testing the membership of a vector to the Parikh image of a regular lan-
guage, known to be NP-complete [26], and vice versa. We show that deciding the
membership of an unordered word to the language a URE remains NP-complete even
under significant restrictions on the class of UREs, a result which does not follow
from [26].

Theorem 1 Given an unordered word w and an expression E of the grammar
E ::= a | E? | (E“||”E), deciding whether w ∈ L(E) is NP-complete.

Proof To show that this problem is in NP, we point out that a nondeterministic
Turing machine guesses a permutation of w and checks whether it is accepted by
the NFA corresponding to E with the unordered concatenation replaced by standard
concatenation. We recall that w has unary representation.

Next, we prove the NP-hardness by reduction from SAT1-in-3 i.e., given a 3CNF
formula, determine whether there exists a valuation such that each clause has exactly
one true literal (and exactly two false literals). The SAT1-in-3 problem is known
to be NP-complete [38]. The reduction works as follows. We take a 3CNF for-
mula ϕ = c1 ∧ . . . ∧ ck over the variables {x1, . . . , xn}. We take the alphabet
{d1, . . . , dk, v1, . . . , vn}. Each di corresponds to a clause ci (for 1 � i � k) and each
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vj corresponds to a variable xj (for 1 � j � n). We construct the unordered word
wϕ = d1 . . . dkv1 . . . vn and the expression Eϕ = X1 || . . . ||Xn, where for 1 � j � n:

Xj = (vj || dt1 || . . . || dtl )
? || (vj || df1 || . . . || dfm)?,

and dt1 , . . . , dtl (with 1 � t1, . . . , tl � k) correspond to the clauses that use the literal
xj , and df1, . . . dfm (with 1 � f1, . . . , fm � k) correspond to the clauses that use the
literal ¬xj . For example, for the formula ϕ0 = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x3 ∨ ¬x4),
we construct wϕ0 = d1d2v1v2v3v4 and

Eϕ0 = (v1 || d1)
? || (v1 || d2)

? || v?2 || (v2 || d1)
? || (v3 || d1 || d2)

? || v?3 || v?4 || (v4 || d2)
?.

We claim that ϕ ∈ SAT1-in-3 iff wϕ ∈ L(Eϕ). For the only if case, let V :
{x1, . . . , xn} → {true, false} be the SAT1-in-3 valuation of ϕ. We use V to construct
the derivation of wϕ in L(Eϕ): for 1 � j � n, we take (vj || dt1 || . . . || dtl ) from Xj if
V (xj ) = true, and (vj || df1 || . . . || dfm) from Xj otherwise. Since V is a SAT1-in-3
valuation of ϕ, each di (with 1 � i � k) occurs exactly once, hence wϕ ∈ L(Eϕ). For
the if case, we assume that wϕ ∈ L(Eϕ). Since wϕ(vj ) = 1, we infer that wϕ uses
exactly one of the expressions of the form (vj || . . .)?. Moreover, since wϕ(di) = 1,
we infer that the valuation encoded in the derivation of wϕ in L(Eϕ) validates exactly
one literal of each clause in ϕ, and therefore, ϕ ∈ SAT1-in-3. Clearly, the described
reduction works in polynomial time.

3.2 Containment

In this section, we study the problem of deciding the containment of two UREs.
It is well known that regular expression containment is a PSPACE-complete prob-
lem [46], but we cannot adapt this result to characterize the complexity of the
containment of UREs because the order plays an essential role in the reduction. In this
section, we prove that deciding the containment of UREs is �P

2-hard and we show
an upper bound which follows from the complexity of deciding the satisfiability of
Presburger logic formulas [36, 44].

Theorem 2 Given two UREs E1 and E2, deciding L(E1) ⊆ L(E2) is 1) �P
2-hard

and 2) in 3-EXPTIME.

Proof 1) We prove the �P
2-hardness by reduction from the problem of checking

the satisfiability of ∀∗∃∗QBF formulas, a classical �p

2 -complete problem. We take a
∀∗∃∗QBF formula

ψ = ∀x1, . . . , xn. ∃y1, . . . , ym. ϕ,

where ϕ = c1 ∧ . . . ∧ ck is a quantifier-free CNF formula. We call the variables
x1, . . . , xn universal and the variables y1, . . . , ym existential.

We take the alphabet {d1, . . . , dk, t1, f1, . . . , tn, fn} and we construct two expres-
sions, Eψ and E′

ψ . First, Eψ = d1 || . . . || dk || X1 || . . . || Xn, where for 1 � i � n

Xi = ((ti || da1 || . . . || dal
) | (fi || db1 || . . . || dbs )), and da1 , . . . dal

(with 1 �
a1, . . . , al � k) correspond to the clauses which use the literal xi , and db1 , . . . , dbs
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(with 1 � b1, . . . , bs � k) correspond to the clauses which use the literal ¬xi . For
example, for the formula

ψ0 = ∀x1, x2. ∃y1, y2. (x1 ∨ ¬x2 ∨ y1) ∧ (¬x1 ∨ y1 ∨ ¬y2) ∧ (x2 ∨ ¬y1),

we construct:

Eψ0 = d1 || d2 || d3 || ((t1 || d1) | (f1 || d2)) || ((t2 || d3) | (f2 || d1)).

Note that there is an one-to-one correspondence between the unordered words in
L(Eψ) and the valuations of the universal variables. For example, given the formula
ψ0, the unordered word d3

1d2d3t1f2 corresponds to the valuation V such that V (x1) =
true and V (x2) = f alse.

Next, we construct E′
ψ = X1 || . . . || Xn || Y1 || . . . || Ym, where:

– Xi = ((ti || d∗
a1

|| . . . || d∗
al

) | (fi || d∗
b1

|| . . . || d∗
bs

)), and da1 , . . . dal
(with

1 � a1, . . . , al � k) correspond to the clauses which use the literal xi , and
db1 , . . . , dbs (with 1 � b1, . . . , bs � k) correspond to the clauses which use the
literal ¬xi (for 1 ≤ i ≤ n),

– Yj = ((d∗
a1

|| . . . || d∗
al

) | (d∗
b1

|| . . . || d∗
bs

)), and da1 , . . . dal
(with 1 � a1, . . . , al �

k) correspond to the clauses which use the literal yj , and db1, . . . , dbs (with
1 � b1, . . . , bs � k) correspond to the clauses which use the literal ¬yj

(for 1 � j � m).

For example, for ψ0 above we construct:

E′
ψ0

= ((t1 || d∗
1 ) | (f1 || d∗

2 )) || ((t2 || d∗
3 ) | (f2 || d∗

1 )) || ((d∗
1 || d∗

2 ) | d∗
3 ) || (ε | d∗

2 ).

We claim that |= ψ iff Eψ ⊆ E′
ψ . For the only if case, for each valuation of the uni-

versal variables, we take the corresponding unordered word w ∈ L(Eψ). Since there
exists a valuation of the existential variables which satisfies ϕ, we use this valuation
to construct a derivation of w in L(E′

ψ). For the if case, for every unordered word
from L(Eψ), we take its derivation in L(E′

ψ) and we use it to construct a valuation
of the existential variables which satisfies ϕ. Clearly, the described reduction works
in polynomial time.

2) The membership of the problem to 3-EXPTIME follows from the complexity of
deciding the satisfiability of Presburger logic formulas, which is in 3-EXPTIME [36].
Given two UREs E1 and E2, we compute in linear time [44] two existential Pres-
burger formulas for their Parikh images: ϕE1 and ϕE2 , respectively. Next, we test
the satisfiability of the following closed Presburger logic formula: ∀x. ϕE1(x) ⇒
ϕE2(x).

While the complexity gap for the containment of UREs (as in Theorem 2) is
currently quite important, we believe that this gap may be reduced by working on
quantifier elimination for the Presburger formula obtained by translating the contain-
ment of UREs (as shown in the second part of the proof of Theorem 2). Although
we believe that this problem is �P

2-complete, its exact complexity remains an open
question.
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3.3 Disallowing Repetitions

The proofs of Theorem 1 and Theorem 2 rely on UREs allowing repetitions of
the same symbol, which might be one of the causes of the intractability. Conse-
quently, from now on we disallow repetitions of the same symbol in a URE. Similar
restrictions are commonly used for the regular expressions to maintain practical
aspects: single occurrence regular expressions (SOREs) [7], conflict-free types [17,
18, 22], and duplicate-free DTDs [33]. While the complexity of the membership of
an unordered word to the language of a URE without symbol repetitions has recently
been shown to be in PTIME [11], testing containment of two such UREs continues
to be intractable.

Theorem 3 Given two UREs E1 and E2 not allowing repetitions of symbols,
deciding L(E1) ⊆ L(E2) is coNP-hard.

Proof We show the coNP-hardness by reduction from the complement of 3SAT.
Take a 3CNF formula ϕ = c1 ∧ . . . ∧ ck over the variables {x1, . . . , xn}. We assume
w.l.o.g. that each variable occurs at most once in a clause. Take the alphabet {aij |
1 � i � k, 1 � j � n, ci uses xj or ¬xj }. We construct the expression Eϕ =
X1 || . . . || Xn, where Xj = ((at1j || . . . || atlj ) | (af1j || . . . || afmj ) (for 1 � j � n),
and ct1 , . . . , ctl (with 1 � t1, . . . , tl � k) are the clauses which use the literal xj , and
cf1 , . . . , cfm (with 1 � f1, . . . , fm � k) are the clauses which use the literal ¬xj .
Next, we construct E′

ϕ = (C1 | . . . | Ck)
[0,k−1], where Ci = (aij1 | . . . | aijp )+ (for

1 � i � k), and xj1 , . . . , xjp (with 1 � j1, . . . , jp � n) are the variables used by the
clause ci . For example, for

ϕ0 = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ ¬x4),

we obtain:

Eϕ0 = (a11 | a21) || (a32 | a12) || ((a13 || a23) | a33) || (ε | (a24 || a34)),

E′
ϕ0

= ((a11 | a12 | a13)
+ | (a21 | a23 | a24)

+ | (a32 | a33 | a34)
+)[0,2].

Note that there is an one-to-one correspondence between the unordered words wV in
L(Eϕ) and the valuations V of the variables x1, . . . , xn (*). For example, for above
ϕ0 and the valuation V such that V (x1) = V (x2) = V (x3) = true and V (x4) = false,
the unordered word wV = a11a32a13a23a24a34 is in L(Eϕ0). Moreover, given an
wV ∈ L(Eϕ), one can easily obtain the valuation.

We observe that the interval [0, k −1] is used above a disjunction of k expressions
of the form Ci and there is no repetition of symbols among the expressions of the
form Ci . This allows us to state an instrumental property (**): w ∈ L(Eϕ ′) iff there
exists an i ∈ {1, . . . , k} such that none of the symbols used in Ci occurs in w. From
(*) and (**), we infer that given a valuation V , V |= ϕ iff wV ∈ L(Eϕ) \ L(Eϕ ′),
that yields ϕ ∈ 3SAT iff L(Eϕ) � L(E′

ϕ). Clearly, the described reduction works in
polynomial time.
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Theorem 3 shows that disallowing repetitions of symbols in a URE does not avoid
the intractability of the containment. Additionally, we observe that the proof of The-
orem 3 employs UREs with arbitrary use of disjunction and intervals. Consequently,
in the next section we impose further restrictions that yield a class of UREs with
desirable computational properties.

4 Disjunctive Interval Multiplicity Expressions (DIMEs)

In this section, we present the DIMEs, a subclass of UREs for which membership and
containment become tractable. First, we present an intuitive representation of DIMEs
with characterizing tuples (Section 4.1). Next, we formally define DIMEs and show
that they are precisely captured by their characterizing tuples (Section 4.2). Finally,
we use a compact representation of the characterizing tuples to show the tractability
of DIMEs (Section 4.3).

4.1 Characterizing Tuples

In this section, we introduce the notion of characterizing tuple that is an alternative,
more intuitive representation of DIMEs, the subclass of UREs that we formally define
in Section 4.2. Recall that by a ∈ w we denote w(a) �= 0. Given a DIME E, the
characterizing tuple 
E = (CE, NE, PE, KE) is as follows.

– The conflicting pairs of siblings CE consisting of all pairs of symbols in � such
that E defines no word using both symbols simultaneously:

CE = {(a, b) ∈ � × � | �w ∈ L(E). a ∈ w ∧ b ∈ w}.

– The extended cardinality map NE capturing for each symbol in the alphabet the
possible numbers of its occurrences in the unordered words defined by E:

NE = {(a, w(a)) ∈ � × N0 | w ∈ L(E)}.

– The collections of required symbols PE capturing symbols that must be present in
every word; essentially, a set of symbols X belongs to PE if every word defined
by E contains at least one element from X:

PE = {X ⊆ � | ∀w ∈ L(E). ∃a ∈ X. a ∈ w}.

– The counting dependencies KE consisting of pairs of symbols (a, b) such that
in every word defined by E, the number of bs is at most the number of as. Note
that if both (a, b) and (b, a) belong to KE , then all unordered words defined by
E should have the same number of a’s and b’s.

KE = {(a, b) ∈ � × � | ∀w ∈ L(E). w(a) � w(b)}.
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As an example we take E0 = a+ || ((b || c?)+ | d[5,∞]) and we illustrate its char-
acterizing tuple 
E0 . Because PE is closed under supersets, we list only its minimal
elements:

CE0 = {(b, d), (c, d), (d, b), (d, c)},
NE0 = {(a, i) | i � 1} ∪ {(b, i) | i � 0} ∪ {(c, i) | i � 0} ∪ {(d, i) | i = 0 ∨ i � 5},
PE0 = {{a}, {b, d}, . . .},
KE0 = {(b, c)}.
We point out that NE may be infinite and PE exponential in the size of E. Later on
we discuss how to represent both sets in a compact manner while allowing efficient
manipulation.

Then, an unordered word w satisfies a characterizing tuple 
E corresponding to
a DIME E, denoted w |= 
E , if the following conditions are satisfied:

1. w |= CE i.e., ∀(a, b) ∈ CE. (a ∈ w ⇒ b /∈ w) ∧ (b ∈ w ⇒ a /∈ w),
2. w |= NE i.e., ∀a ∈ �. (a, w(a)) ∈ NE ,
3. w |= PE i.e., ∀X ∈ PE. ∃a ∈ X. a ∈ w,
4. w |= KE i.e., ∀(a, b) ∈ KE. w(a) � w(b).

For instance, the unordered word aabbc satisfies the characterizing tuple 
E0 corre-
sponding to the aforementioned DIMEE0 = a+||((b||c?)+ | d[5,∞]) since it satisfies
all the four conditions imposed by 
E0 . On the other hand, note that the following
unordered words do not satisfy 
E0 :

– abddddd because it contains at the same time b and d, and (b, d) ∈ CE0 ,
– add because it has two d’s and (d, 2) /∈ NE0 ,
– aa because it does not contain any b or d and {b, d} ∈ PE0 ,
– abbccc because it has more c’s than b’s and (b, c) ∈ KE0 .

In the next section, we define the DIMEs and show that they are precisely captured
by characterizing tuples.

4.2 Grammar of DIMEs

An atom is (a
I1
1 || . . . || a

Ik

k ), where all Ii’s are ? or 1. For example, (a || b? || c) is an

atom, but (a[3,4] || b) is not an atom. A clause is (A
I1
1 | . . . | A

Ik

k ), where all Ai’s are
atoms and all Ii’s are intervals. A clause is simple if all Ii’s are ? or 1. For example,
(a[2,3] | (b? || c)∗) is a clause (which is not simple), ((a? || b) | c?) is a simple clause
while ((a? || b+) | c) is not a clause.

A disjunctive interval multiplicity expression (DIME) is (D
I1
1 || . . . || D

Ik

k ), where
for 1 � i � k either 1) Di is a simple clause and Ii ∈ {+, ∗}, or 2) Di is a clause
and Ii ∈ {1, ?}. Moreover, a symbol can occur at most once in a DIME. For example,
(a | (b || c?)+) || (d [3,4] | e∗) is a DIME while (a || b?)+ || (a | c) is not a DIME
because it uses the symbol a twice. A disjunction-free interval multiplicity expression
(IME) is a DIME which does not use the disjunction operator. An example of IME is
a || (b || c?)+ || d[3,4]. For more practical examples of DIMEs see Examples 3 and 4
from Section 5.
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We have tailored DIMEs to be able to capture them with characterizing tuples that
permit deciding membership and containment in polynomial time (cf. Section 4.3).
As we have already pointed out Section 3.3, a slightly more relaxed restriction on
the nesting of disjunction and intervals leads to intractability of the containment
(Theorem 3). Even though DIMEs may look very complex, the imposed restrictions
are necessary to obtain lower complexity while considering fragments with practical
relevance (cf. Section 8).

Next, we show that each DIME can be rewritten as an equivalent reduced DIME.
Reduced DIMEs may also seem complex, but they are a building block for (i) proving
that the language of a DIME is precisely captured by its characterizing tuple (Lemma
1), and (ii) computing the compact representation of the characterizing tuples that
yield the tractability of DIMEs (cf. Section 4.3).

Before defining the reduced DIMEs, we need to introduce some additional nota-
tions. Given an atom A (resp. a clause D), we denote by �A (resp. �D) the set of
symbols occurring inA (resp.D). Given a DIMEE, by I a

E (resp. IA
E or ID

E ) we denote
the interval associated in E to the symbol a (resp. atom A or clause D). Because
we consider only expressions without repetitions, this interval is well-defined. More-
over, if E is clear from the context, we write simply I a (resp. IA or ID) instead of
I a
E (resp. IA

E or ID
E ). Furthermore, given an interval I which can be either [n,m] or

[n,m]?, by I ? we understand the interval [n,m]?. In a reduced DIME E, each clause
with interval DI has one of the following three types:

1. DI = (A1 | . . . | Ak)
+, where k � 2 and, for every i ∈ {1, . . . , k}, Ai is an

atom such that there exists a ∈ �Ai
such that I a = 1.

For example, ((a || b?) | c)+ has type 1, but a+ and ((a? || b?) | c)+ do not.
2. (A

I1
1 | . . . | A

Ik

k ), where for every i ∈ {1, . . . , k} 1) Ai is an atom such that there
exists a ∈ �Ai

such that Ia = 1 and 2) 0 does not belong to the set represented
by the interval Ii .

For example, (a | (b? || c)[5,∞]) and a+ have type 2, but (a | (b? || c?)[5,∞])
and (a∗ | (b? || c)[5,∞]) do not.

3. (A
I1
1 | . . . | A

Ik

k ), where for every i ∈ {1, . . . , k} Ai is an atom and Ii is an
interval such that 0 belongs to the set represented by the interval Ii .

For example, (a∗ | (b || c)[3,4]?) and (a? || b?)∗ have type 3, but (a? || b?)[3,4]
does not.

The reduced DIMEs easily yield the construction of their characterizing tuples.
Take a clause with interval DI from a DIME E and observe that the symbols from
�D are present in the characterizing tuple 
E as follows.

– If DI is of type 1, then there is no symbol in �D that occurs in a conflict in
CE . Otherwise, CE consists of all pairs of distinct symbols (a, b) from �D that
appear in different atoms from DI .

– If DI is of type 1, then we have (a, n) ∈ NE for every (a, n) ∈ �D × N0.
Otherwise, the possible number of occurrences of every symbol a from �D can
be obtained directly from the two intervals above it: the interval of D and the
interval of the atom containing a. We explain in Section 4.3 how to precisely
construct a compact representation of the potentially infinite set NE .
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– If DI is of type 1 or 2, then every unordered word defined by E contains at
least one of the symbols a from �D having interval I a = 1. More precisely, PE

contains all sets of symbols X ⊆ � containing, for every atom of D, at least one
symbol a with I a = 1. For example, for ((a || b || c?) | (d || e))+, PE consists of
the sets {a, d}, {a, e}, {b, d}, {b, e} and all their supersets. Otherwise, if DI is of
type 3, then there is no set in PE containing only symbols from �D .

– Regardless of the type of DI , the counting dependencies KE consist of all pairs
of symbols (a, b) such that they appear in the same atom in D and I a = 1.

To obtain reduced DIMEs, we use the following rules:

– Take a simple clause (A
I1
1 | . . . | A

Ik

k ).

– (A
I1
1 | . . . | A

Ik

k )∗ goes to A∗
1 || . . . ||A∗

k (k clauses of type 3). Essentially,
we distribute the ∗ of a disjunction of atoms with intervals to each of
the atoms. For example, (a | (b || c?))∗ goes to a∗ || (b || c?)∗.

– (A
I1
1 | . . . | A

Ik

k )+ goes toA∗
1 ||. . .||A∗

k (k clauses of type 3) if there exists

an atom with interval A
Ii

i (i ∈ {1, . . . , k}) that defines the empty word
i.e., Ii =? or I a =? for every symbol a ∈ �Ai

. If the empty word is
defined, then we can basically transform the + into ∗ and then distribute
the ∗ as for the previous case. For example, ((a || b?) | (c || d)?)+ goes
to (a || b?)∗ || (c || d)∗.

– Take a clause (A
I1
1 | . . . | A

Ik

k ).

– (A
I1
1 | . . . | A

Ik

k )? goes to (A
I ?1
1 | . . . | A

I ?k
k ) (type 3). We essentially

distribute the ? of a disjunction of atoms with intervals to each of the
atoms. For example, (a[2,3] | b+)? goes to (a[2,3]? | b∗).

– (A
I1
1 | . . . | A

Ik

k ) goes to (A
I ?1
1 | . . . | A

I ?k
k ) (type 3) if there exists

an atom with interval A
Ii

i (i ∈ {1, . . . , k}) that defines the empty word
i.e., 0 belongs to the set represented by Ii or Ia =? for every symbol
a ∈ �Ai

. If the empty word is defined by one of the atoms, then we can
basically distribute ? to all of them. For example, (a | (b || c)[0,5]) goes
to (a? | (b || c)[0,5]).

– Take an atom (a?1 || . . . || a?k) and an interval I . Then, (a?1 || . . . || a?k)
I goes to

(a?1 || . . . || a?k)
[0,max(I )], where by max(I ) we denote the maximum value from

the set represented by the interval I . This step may be combined with one of the
previous ones to rewrite a clause with interval as one of type 3. For example,
((a? || b?)[3,6] | c) goes to ((a? || b?)[0,6] | c?).

– Remove symbols a (resp. atoms A or clauses D) such that I a (resp. IA or ID)
is [0, 0].

Note that each of the rewriting steps gives an equivalent reduced expression.
Next, we assume that we work with reduced DIMEs only and show that the

language defined by a DIME E comprises of all unordered words satisfying the
characterizing tuple 
E .
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Lemma 1 Given an unordered word w and a DIME E, w ∈ L(E) iff w |= 
E .

Proof The only if part follows from the definition of the satisfiability of 
E . For
the if part, we take the tuple 
E corresponding to a DIME E = D

I1
1 || . . . || D

Ik

k and
an unordered word w such that w |= 
E . Let w = w1 
 . . . 
 wk 
 w′, where each
wi contains all occurrences in w of the symbols from �Di

(for 1 � i � k). Since
w |= NE , we infer that there is no symbol a ∈ �\(�D1 ∪. . .∪�Dk

) such that a ∈ w,
which implies w′ = ε. Thus, proving w |= E reduces to proving that wi |= D

Ii

i

(for 1 � i � k). Since E is a reduced DIME, each derivation can be constructed by
reasoning on the three possible types of the D

Ii

i (for 1 � i � k).

Case 1 Take D
Ii

i = (A1 | . . . | Ak)
+ of type 1. From the semantics of the UREs, we

observe that proving wi |= D
Ii

i is equivalent to proving that (i) wi is non-empty and
(ii) wi can be split as wi = w′

1 
 . . . 
 w′
p, where every w′

j (1 � j � p) satisfies
an atom Al (1 � l � k). First, we point out that since w satisfies the collections of
required symbols PE , we infer that wi is non-empty, which implies (i). Then, since
w satisfies the extended cardinality map NE and the counting dependencies KE , we
infer that (ii) is also satisfied.

Case 2 Take D
Ii

i = (A
I1
1 | . . . | A

Ik

k ) of type 2. From the semantics of UREs, we

observe that proving wi |= D
Ii

i is equivalent to proving that (i) wi is non-empty

and (ii) there exists an atom with interval A
Ij

j (1 � j � k) such that wi |= A
Ij

j .
Since w |= PE , we infer that wi is non-empty hence (i) is satisfied. Then, since
w |= CE , we infer that only the symbols from one atom Aj of Di are present in wi .
Moreover, since w |= NE and w |= KE , we infer that the number of occurrences

of each symbol from �Aj
are such that wi |= A

Ij

j . Hence, the condition (ii) is also
satisfied.

Case 3 Take D
Ii

i = (A
I1
1 | . . . | A

Ik

k ) of type 3. The only difference w.r.t the previous

case is that wi may be also empty, hence proving wi |= D
Ii

i is equivalent to proving

only that there exists an atom with interval A
Ij

j (1 � j � k) such that wi |= A
Ij

j ,
which follows similarly to the previous case.

Moreover, we define the subsumption of two characterizing tuples, which cap-
tures the containment of DIMEs. Given two DIMEs E and E′, we write 
E′ � 
E

if CE ⊆ CE′ , NE′ ⊆ NE , PE ⊆ PE′ , and KE ⊆ KE′ . Then, we obtain the
following.

Lemma 2 Given two DIMEs E and E′, L(E′) ⊆ L(E) iff 
E′ � 
E .

Proof First, we claim that given two DIMEs E and E′: 
E′ � 
E iff w |= 
E′
implies w |= 
E for every w (*). The only if part of (*) follows directly from the
definitions while the if part can be easily shown by contraposition. From Lemma 1
and (*) we infer the correctness of Lemma 2.
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Example 1 For the following DIMEs, it holds that L(E′) � L(E) and L(E) �

L(E′):
– Take E = a∗ ||b∗ and E′ = (a ||b?)∗. Note that KE = ∅ and KE′ = {(a, b)}. For

instance, the unordered word b belongs to L(E), but does not belong to L(E′).
– Take E = a[3,6]? | b∗ and E′ = a[3,6] | b+. Note that PE = ∅, and

PE′ = {{a, b}}. For instance, the unordered word ε belongs to L(E), but does
not belong to L(E′).

– Take E = (a || b?)∗ and E′ = (a || b?)[0,5]. Note that (a, 6) belongs to NE , but
not to NE′ . For instance, the unordered word a6 belongs to L(E), but does not
belong to L(E′).

– Take E = (a | b)+ and E′ = a+ | b+. Note that CE = ∅, and
CE′ = {(a, b), (b, a)}. For instance, the unordered word ab belongs to L(E), but
does not belong to L(E′). �

Lemma 2 shows that two equivalent DIMEs yield the same characterizing tuple,
and hence, the tuple
E can be viewed as a “canonical form” for the language defined
by a DIME E. Formally, we obtain the following.

Corollary 1 Given two DIMEs E and E′, L(E) = L(E′) iff 
E = 
E′ .

In the next section, we show that the characterizing tuple has a compact repre-
sentation that permits us to decide the problems of membership and containment in
polynomial time.

4.3 Tractability of DIMEs

We now show that the characterizing tuple admits a compact representation that
yields the tractability of deciding membership and containment of DIMEs.

Given a reduced DIME E, note that CE and KE are quadratic in |�| and can be
easily constructed. The set CE consists of all pairs of distinct symbols (a, b) such
that they appear in different atoms in the same clause of type 2 or 3. Moreover, KE

consists of all pairs of distinct symbols (a, b) such that they appear in the same atom
and I a = 1.

While NE may be infinite, it can be easily represented in a compact manner using
intervals: for every symbol a, the set {i ∈ N0 | (a, i) ∈ NE} is representable by an
interval. Given a symbol a ∈ �, by N̂E(a) we denote the interval representing the
set {i ∈ N0 | (a, i) ∈ NE} that can be easily obtained from E:

– N̂E(a) = [0, 0] if a appears in no clause in E,
– N̂E(a) = [0, ∞] (or simply ∗) if a appears in a clause of type 1 in E,
– N̂E(a) = IA if I a = 1, A is the atom containing a, and A is the unique atom of

a clause of type 2 or 3,

– N̂E(a) = IA?
if Ia = 1, A is the atom containing a, and A appears in a clause

of type 2 or 3 containing at least two atoms,
– N̂E(a) = [0,max(IA)] if I a =?, A is the atom containing a, and A appears in a

clause of type 2 or 3.
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For example, for E0 = a+ || ((b || c?)+ | d[5,∞]), we obtain the following N̂E0 :

N̂E0(a) = +, N̂E0(b) = ∗, N̂E0(c) = ∗, N̂E0(d) = [5, ∞]?.
Naturally, testing NE′ ⊆ NE reduces to a simple test on N̂E′ and N̂E .

Representing PE in a compact manner is more tricky. A natural idea would be
to store only its ⊆-minimal elements since PE is closed under supersets. Unfortu-
nately, there exist DIMEs having an exponential number of ⊆-minimal elements. For
instance, for the DIME E1 = ((a || b) | (c || d))+ || ((e || f )[2,5] | g[1,3]) || (h∗ || i[0,9]),
the set PE1 has 6 ⊆-minimal elements: {a, c}, {a, d}, {b, c}, {b, d}, {e, g}, and {f, g}.
The example easily generalizes to arbitrary numbers of atoms used in the clauses.

However, we observe that the exponentially-many ⊆-minimal elements may
contain redundant information that is already captured by other elements of the char-
acterizing tuple. For instance, for the above DIME E1, if we know that {a, c} belongs
to PE , we can easily see that other ⊆-minimal elements also belong to PE . More
precisely, we observe that for every unordered word w defined by E it holds that
w(a) = w(b), w(c) = w(d) and w(e) = w(f ), which is captured by the count-
ing dependencies KE = {(a, b), (b, a), (c, d), (d, c), (e, f ), (f, e)}. Hence, for the
unordered words defined by E, the presence of an a implies the presence of a b, the
presence of a c implies the presence of a d, etc. Consequently, if {a, c} belongs to
PE , then {b, c}, {a, d}, and {b, d} also belong to PE . Similarly, if {e, g} belongs to
PE , then {f, g} also belongs to PE .

Next, we use the aforementioned observation to define a compact representation
of PE . For this purpose, we introduce the auxiliary notion of symbols implied by a
DIME E in the presence of a set of symbols X, denoted implE(X):

implE(X) = X ∪ {a ∈ � | ∃b ∈ X. (a, b) ∈ KE and (b, a) ∈ KE}.
For example, for the above E1, we have implE({a, c}) = {a, b, c, d}.

Moreover, given a DIME E, by P⊆min
E we denote the set of all ⊆-minimal elements

of PE . Given a subset P ⊆ P⊆min
E , we say that P is:

– non-redundant if ∀X ∈ P. � ∃Y ∈ P. X ⊆ implE(Y ),
– covering if ∀X ∈ P⊆min

E . ∃Y ∈ P. X ⊆ implE(Y ).

For example, take the aboveE1 = ((a||b) | (c||d))+||((e||f )[2,5] | g[1,3])||(h∗||i[0,9])
and recall that P⊆min

E1
= {{a, c}, {a, d}, {b, c}, {b, d}, {e, g}, {f, g}}. Then, we have

the following:

– {{b, c}, {f, g}} is non-redundant and covering,
– {{b, c}} is non-redundant and it is not covering,
– {{a, c}, {b, c}, {f, g}} is redundant and covering,
– {{a, c}, {b, c}} is redundant and not covering.
Given a DIME E, the compact representation of the collections of required symbols
PE is naturally a non-redundant and covering subset of P⊆min

E . Since there may exist
many non-redundant and covering subsets of P⊆min

E , we use the total order <� on the
alphabet � to propose a deterministic construction of the compact representation P̂E .
For this purpose, we define first some additional notations.
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Given an atom A, by �(A) we denote the smallest label from � w.r.t. <� that is
present in A and has interval 1:

�(A) = min
<�

{a ∈ �A | I a = 1}.

For example, �(a || b) = a. Then, given a clause with interval DI , by �(DI ) we
denote the set of all symbols �(A) for every atom A in D:

�(DI ) = {�(A) | A is an atom in D}.
For example, �(((a || b) | (c || d))+) = {a, c} and �(((e || f )[2,5] | g[1,3])) = {e, g}.
Then, P̂ (E) consists of all such sets for the clauses with intervals of type 1 or 2:

P̂E = {�(DI ) | DI is a clause with interval of type 1 or 2 in E}.
For example, P̂E1 = {{a, c}, {e, g}}. Notice that the set {a, c} is due to the clause
with interval ((a || b) | (c || d))+ of type 1 and the set {e, g} is due to the clause
with interval ((e || f )[2,5] | g[1,3]) of type 2. Also notice that the clause with interval
(h∗ || i[0,9]) is of type 3, none of its symbols is required, and consequently, no set in
P̂E contains symbols from it.

We have introduced all elements to be able to define the compact representation
of a characterizing tuple. Given a DIME E, we say that 
̂ = (CE, N̂E, P̂E, KE) is
the compact representation of its characterizing tuple 
E . Then, an unordered word
w satisfies 
̂E , denoted w |= 
̂E , if

– w |= CE andw |= KE as previously defined when we have introducedw |= 
E ,
– w |= N̂E i.e., ∀a ∈ �. w(a) ∈ N̂E(a),
– w |= P̂E i.e., ∀X ∈ P̂E. ∃a ∈ X. a ∈ w. Notice that we use exactly the same

definition as for w |= PE and recall that P̂E is in fact a non-redundant and
covering subset of P⊆min

E .

Next, we show that given a DIME E, its compact characterizing tuple 
̂E defines
precisely the same set of unordered words as its characterizing tuple 
E .

Lemma 3 Given an unordered word w and a DIME E, w |= 
E iff w |= 
̂E .

Proof The only if part follows directly from the definitions. For the if part, proving
w |= 
E reduces to proving that w |= PE , which moreover, reduces to proving
that for every X from P⊆min

E there is a symbol a in X that occurs in w (*). Since P̂E

is a covering subset of P⊆min
E , we know that for every X ∈ P⊆min

E there exists a set
Y ∈ P̂E such that X ⊆ implE(Y ). Since w |= P̂E and w |= KE , we infer that (*) is
satisfied.

Additionally, we define the subsumption of the compact representations of two
characterizing tuples. Given two DIMEs E and E′, we write 
̂E′ � 
̂E if

– CE ⊆ CE′ and KE ⊆ KE′ (as for the subsumption of characterizing tuples),
– ∀a ∈ �. N̂E′(a) ⊆ N̂E(a),
– ∀X ∈ P̂E. ∃Y ∈ P̂E′ . Y ⊆ implE′(X).
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Next, we show that the subsumption of compact representations of characterizing
tuples captures the subsumption of characterizing tuples.

Lemma 4 Given two DIMEs E and E′, 
E′ � 
E iff 
̂E′ � 
̂E .

Proof First, since PE is closed under supersets, we observe that

PE ⊆ PE′ iff ∀X ∈ P⊆min
E . ∃Y ∈ P⊆min

E′ . Y ⊆ X.

Moreover, the conditions CE ⊆ CE′ and KE ⊆ KE′ are part of both 
E′ � 
E and

̂E′ � 
̂E . Consequently, proving 
E′ � 
E iff 
̂E′ � 
̂E reduces to proving
that, if CE ⊆ CE′ and KE ⊆ KE′ , then

∀X ∈ P⊆min
E . ∃Y ∈ P⊆min

E′ . Y ⊆ X iff ∀X ∈ P̂E. ∃Y ∈ P̂E′ . Y ⊆ implE′(X).

For the only if part, take a set X from P̂E . Since X also belongs to P⊆min
E , we know

by hypothesis that there exists a set Y in P⊆min
E′ such that Y ⊆ X. Then, construct

a set Y ′ from Y by replacing each symbol b from Y with the smallest a w.r.t. <�

such that (a, b) and (b, a) belong to KE′ . Moreover, since KE ⊆ KE′ , we infer
that Y ′ ⊆ implE′(X). For the if part, take an X from P̂E and an Y from P̂E′ s.t.
Y ⊆ implE′(X). To construct the corresponding X′ in P⊆min

E and Y ′ in P⊆min
E′ such that

Y ′ ⊆ X′, we replace symbols a from X and a′ from Y with symbols b in X′ and b′ in
Y ′ such that (a, b) and (b, a) belong to KE , and (a′, b′) and (b′, a′) belong to KE′ .
Since KE ⊆ KE′ , we know that such X′ and Y ′ do exist.

Example 2 Take E = a∗ || (b | c)+ || d∗ and E′ = (a || b)+ | (c || d)+. Notice that
L(E′) ⊆ L(E), 
E′ � 
E , and 
̂E′ � 
̂E . In particular, we have the following.

– CE = ∅ is included in CE′ = {(a, c), (a, d), (b, c), (b, d), (c, a), (c, b), (d, a), (d, b)},
– N̂E(a) = N̂E′(a) = ∗, . . . , N̂E(d) = N̂E′(d) = ∗,
– KE = ∅ is included in KE′ = {(a, b), (b, a), (c, d), (d, c)},
– P̂E = {{b, c}} and P̂E′ = {{a, c}} that compactly represent PE = {{b, c}, . . .}

and PE′ = {{a, c}, {a, d}, {b, c}, {b, d}, . . .}, respectively (we have listed only
the ⊆-minimal sets). Then, take X = {b, c} from P̂E and notice that there
exists Y = {a, c} in P̂E′ such that Y ⊆ implE′(X) because implE′({b, c}) =
{a, b, c, d}. �

Next, we show that the compact representation is of polynomial size.

Lemma 5 Given a DIME E, the compact representation 
̂E = (CE, N̂E, P̂E, KE)

of its characterizing tuple 
E is of size polynomial in the size of the alphabet �.

Proof By construction, the sizes of CE and KE are quadratic in |�| while the sizes
of P̂E and N̂E are linear in |�|.

The use of compact representation of characterizing tuples allows us to state the
main result of this section.
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Theorem 4 Given an unordered word w and two DIMEs E and E′:

1. deciding whether w ∈ L(E) is in PTIME,
2. deciding whether L(E′) ⊆ L(E) is in PTIME.

Proof The first part follows from Lemma 1, Lemma 3, and Lemma 5. The second
part follows from Lemma 2, Lemma 4, and Lemma 5.

5 Interval Multiplicity Schemas

In this section, we employ DIMEs to define schema languages and we present the
related problems of interest.

Definition 1 A disjunctive interval multiplicity schema (DIMS) is a tuple S =
(rootS, RS), where rootS ∈ � is a designated root label and RS maps symbols
in � to DIMEs. By DIMS we denote the set of all disjunctive interval multiplicity
schemas. A disjunction-free interval multiplicity schema (IMS) S = (rootS, RS) is a
restricted DIMS, where RS maps symbols in � to IMEs. By IMS we denote the set
of all disjunction-free interval multiplicity schemas.

We define the language captured by a DIMS S in the following way. Given a tree
t , we first define the unordered word chn

t of children of a node n ∈ Nt of t i.e.,
chn

t (a) = |{m ∈ Nt | (n, m) ∈ childt ∧ labt (m) = a}|. Now, a tree t satisfies
S, in symbols t |= S, if labt (roott ) = rootS and for every node n ∈ Nt , chn

t ∈
L(RS(labt (n))). By L(S) ⊆ Tree we denote the set of all trees satisfying S.

In the sequel, we present a schema S = (rootS, RS) as a set of rules of the form
a → RS(a), for every a ∈ �. If L(RS(a)) = ε, then we write a → ε or we simply
omit writing such a rule.

Example 3 Take the content model of a semi-structured database storing informa-
tion about a peer-to-peer file sharing system, having the following rules: 1) a peer is
allowed to download at most the same number of files that it uploads, and 2) peers
are split into two groups: a peer is a vip if it uploads at least 100 files, otherwise it is
a simple user:

peers → user∗ || vip∗,
user → (upload || download?)[0,99],
vip → (upload || download?)[100,∞]. �

Example 4 Take the content model of a semi-structured database storing information
about two types of cultural events: plays and movies. Every event has a date when it
takes place. If the event is a play, then it takes place in a theater while a movie takes
place in a cinema.

events → event∗,
event → date || ((play || theater) | (movie || cinema)). �
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Problems of Interest We define next the problems of interest and we formally state
the corresponding decision problems parameterized by the class of schema S and,
when appropriate, by a class of queries Q.

– Schema satisfiability – checking if there exists a tree satisfying the given schema:

SATS = {S ∈ S | ∃t ∈ Tree. t |= S}.
– Membership – checking if the given tree satisfies the given schema:

MEMBS = {(S, t) ∈ S × Tree | t |= S}.
– Schema containment – checking if every tree satisfying one given schema

satisfies another given schema:

CNTS = {(S1, S2) ∈ S × S | L(S1) ⊆ L(S2)}.
– Query satisfiability by schema – checking if there exists a tree that satisfies the

given schema and the given query:

SATS,Q = {(S, q) ∈ S × Q | ∃t ∈ L(S). t |= q}.
– Query implication by schema – checking if every tree satisfying the given schema

satisfies also the given query:

IMPLS,Q = {(S, q) ∈ S × Q | ∀t ∈ L(S). t |= q}.
– Query containment in the presence of schema – checking if every tree satisfying

the given schema and one given query also satisfies another given query:

CNTS,Q = {(p, q, S) ∈ Q × Q × S | ∀t ∈ L(S). t |= p ⇒ t |= q}.
We study these problems for DIMSs and IMSs in Sections 6 and 7 of the paper.

6 Complexity of Disjunctive Interval Multiplicity Schemas (DIMSs)

In this section, we present the complexity results for DIMSs. First, we show the
tractability of schema satisfiability and containment. Then, we provide an algorithm
for deciding membership in streaming i.e., that processes an XML document in a
single pass and using memory depending on the height of the tree and not on its
size. Finally, we point out that the complexity of query satisfiability, implication, and
containment in the presence of the schema follow from existing results.

First, we show the tractability of schema satisfiability and schema containment.

Proposition 1 SATDIMS and CNTDIMS are in PTIME.

Proof A simple algorithm based on dynamic programming can decide the satisfi-
ability of a DIMS. More precisely, given a schema S = (rootS, RS), one has to
determine for every symbol a of the alphabet � whether there exists a (finite) tree t

that satisfies S′ = (a, RS). Then, the schema S is satisfiable if there exist such a tree
for the root label rootS .



360 Theory Comput Syst (2015) 57:337–376

Moreover, testing the containment of two DIMSs reduces to testing, for each sym-
bol in the alphabet, the containment of the associated DIMEs, which is in PTIME
(Theorem 4).

Next, we provide an algorithm for deciding membership in streaming i.e., that
processes an XML document in a single pass and uses memory depending on the
height of the tree and not on its size. Our notion of streaming has been employed
in [42] as a relaxation of the constant-memory XML validation against DTDs, which
can be performed only for some DTDs [41, 42]. In general, validation against DIMSs
cannot be performed with constant memory due to the same observations as in
[41, 42] w.r.t. the use of recursion in the schema. Hence, we have chosen our notion
of streaming to be able to have an algorithm that works for the entire class of DIMSs.
We assume that the input tree is given in XML format, with arbitrary ordering of sib-
ling nodes. Moreover, the proposed algorithm has earliest rejection i.e., if the given
tree does not satisfy the given schema, the algorithm outputs the result as early as
possible. For a tree t , height(t) is the height of t defined in the usual way. We employ
the standard RAM model and assume that subsequent natural numbers are used as
labels in �.

Proposition 2 MEMBDIMS is in PTIME. There exists an earliest rejection streaming
algorithm that checks membership of a tree t in a DIMS S in time O(|t | × |�|2) and
using space O(height (t) × |�|2).

Proof We propose Algorithm 1 for deciding the membership of a tree t to the lan-
guage of a DIMS S. The input tree t is given in XML format, with some arbitrary
ordering of sibling nodes. We assume a well-formed stream˜t ⊂ {open, close} × �

representing a tree t and a procedure read(˜t) that returns the next pair (θ, b) in the
stream, where θ ∈ {open, close} and b ∈ �. The algorithm works for every arbitrary
ordering of sibling nodes. To validate a tree t against a DIMS S = (rootS, RS), one
has to run Algorithm 1 after reading the opening tag of the root.

For a given node, the algorithm constructs the compact representation of the char-
acterizing tuple of its label (line 1), which requires spaceO(|�|2) (cf. Lemma 5). The
algorithm also stores for a given node the number of occurrences of each label in �

among its children. This is done using the array count, which requires space O(�).
Initially, all values in the array count are set at 0 (lines 2-3) and they are updated after
reading the open tag of the children (lines 4-6). During the execution, the algorithm
maintains a stack whose height is the depth of the currently visited node. Naturally,
the bound on space required is O(height(t) × |�|2).

The algorithm has earliest rejection since it rejects a tree as early as possible.
More precisely, this can be done after reading the opening tag for nodes that violate
the maximum value for the allowed cardinality for their label (lines 7-8) or violate
some conflicting pair of siblings (lines 9-10). If it is not the case, the algorithm recur-
sively validates the corresponding subtree (lines 11-12). After reading all children of
the current node, the algorithm checks whether the components of the characteriz-
ing tuple are satisfied: the extended cardinality map (lines 14-15), the collections of
required symbols (lines 16-17), and the counting dependencies (lines 18-19). Notice
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that since we have checked the conflicting pairs of siblings after reading each opening
tag, we do not need to check them again after reading all children. However, we still
need to check the extended cardinality map at this moment to see whether the number
of occurrences of each label is in the allowed interval. When we have read the open-
ing tag, we were able to reject only if the maximum value for the allowed number
of occurrences has been already violated. As for the collections of required symbols
and the counting dependencies, we are able to establish whether they are satisfied or
not after reading all children. If none of the constraints imposed by the characterizing
tuple is violated, the algorithm returns true (line 20). As we have already shown with
Lemma 1 and Lemma 3, the compact representation of the characterizing tuple cap-
tures precisely the language of a given DIME. Consequently, the algorithm returns
true after reading the root node iff the given tree satisfies the given schema.

We continue with complexity results that follow from known facts. Query
satisfiability for DTDs is NP-complete [5] and we adapt the result for DIMSs.

Proposition 3 SATDIMS,Twig is NP-complete.

Proof Proposition 4.2.1 from [5] implies that satisfiability of twig queries in the
presence of DTDs is NP-hard. We adapt the proof and we obtain the following
reduction from SAT to SATDIMS,Twig: we take a CNF formula ϕ = ∧n

i=1 Ci over
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the variables x1, . . . , xm, where each Ci is a disjunction of literals. We take � =
{r, t1, f1, . . . , tm, fm, c1, . . . , cn} and we construct:

– The DIMS S having the root label r and the rules:

– r → (t1 | f1) || . . . || (tm | fm),
– tj → cj1 || . . . || cjk

, where cj1 , . . . , cjk
correspond to the clauses using

xj (for 1 � j � m),
– fi → cj1 || . . . || cjk

, where cj1 , . . . , cjk
correspond to the clauses using

¬xj (for 1 � j � m).

– The twig query q = r[//c1] . . . [//cn].
For example, for the formula ϕ0 = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x3 ∨ ¬x4) we obtain
the DIMS S containing the rules:

r → (t1 | f1) || (t2 | f2) || (t3 | f3) || (t4 | f4),

t1 → c1, f1 → c2, t2 → ε, f2 → c1,

t3 → c1 || c2, f3 → ε, t4 → ε, f4 → c2.

and the query q = /r[//c1][//c2]. The formula ϕ is satisfiable iff (S, q) ∈
SATDIMS,Twig. The described reduction works in polynomial time in the size of the
input formula.

For the NP upper bound, we reduce SATDIMS,Twig to SATDTD,Twig (i.e., the prob-
lem of satisfiability of twig queries in the presence of DTDs), known to be in NP
(Theorem 4.4 from [5]). Given a DIMS S, we construct a DTD D having the same
root label as S and whose rules are obtained from the rules of S by replacing the
unordered concatenation with standard (ordered) concatenation. Then, take a twig
query q. We claim that there exists an (unordered) tree satisfying q and S iff there
exists an (ordered) tree satisfying q and D. For the if part, take an ordered tree t sat-
isfying q and D, remove the order to obtain an unordered tree t ′, and observe that t ′
satisfies S. For the only if part, take an unordered tree t satisfying q and S. From the
construction of D, we infer that there exists S′ ∈dims an ordered tree t ′ (obtained via
some ordering of the sibling nodes of t) satisfying both q and D. We recall that the
twig queries disregard the relative order among the siblings.

The complexity results for query implication and query containment in the pres-
ence of DIMSs follow from the EXPTIME-completeness proof from [35] for twig
query containment in the presence of DTDs.

Proposition 4 IMPLDIMS,Twig and CNTDIMS,Twig are EXPTIME-complete.

Proof The EXPTIME-hardness proof of twig containment in the presence of DTDs
(Theorem 4.5 from [35]) has been done using a reduction from the Two-player cor-
ridor tiling problem and a technique introduced in [32]. In the proof from [35],
when testing the containment p ⊆S q, p is chosen such that it satisfies every tree
in S, hence IMPLDTD,Twig is also EXPTIME-complete. Furthermore, Lemma 3 in
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[32] can be adapted to twig queries and DIMS: for every S ∈ DIMS and twig
queries q0, q1, . . . , qm there exists S′ ∈ DIMS and twig queries q and q ′ such that
q0 ⊆S q1 ∪ . . . ∪ qm iff q ⊆S′ q ′. Moreover, the DTD in [35] can be captured with a
DIMS constructible in polynomial time: take the same reduction as in [35] and then
replace the standard concatenation with unordered concatenation. Hence, we infer
that CNTDIMS,Twig and IMPLDIMS,Twig are also EXPTIME-hard.

For the EXPTIME upper bound, we reduce CNTDIMS,Twig to CNTDTD,Twig (i.e.,
the problem of twig query containment in the presence of DTDs), known to be in
EXPTIME (Theorem 4.4 from [35]). Given a DIMS S, we construct a DTD D having
the same root label as S and whose rules are obtained from the rules of S by replacing
the unordered concatenation with standard (ordered) concatenation. Then, take two
twig queries p and q. We claim that p ⊆S q iff p ⊆D q and show the two parts by
contraposition. For the if part, assume p �⊆S q, hence there exists an unordered tree t

that satisfies q and S, but not p. From the construction of D, we infer that there exists
an ordered tree t ′ (obtained via some ordering of the sibling nodes of t) that satisfies
q and D, but not p. For the only if part, assume p �⊆D q, hence there exists an
ordered tree t that satisfies q and D, but not p. By removing the order of t , we obtain
an unordered tree t ′ that satisfies q and S, but not p. We recall that the twig queries
disregard the relative order among the siblings. The membership of CNTDIMS,Twig to
EXPTIME yields that IMPLDIMS,Twig is also in EXPTIME (it suffices to take as p

the universal query).

7 Complexity of Disjunction-Free Interval Multiplicity Schemas (IMSs)

Although query satisfiability and query implication in the presence of schema are
intractable for DIMSs, we prove that they become tractable for IMSs (Section 7.4).
We also show a considerably lower complexity for query containment in the pres-
ence of schema: coNP-completeness for IMSs instead of EXPTIME-completeness
for DIMSs (Section 7.4). Additionally, we point out that our results for IMSs allow
also to characterize the complexity of query implication and query containment in the
presence of disjunction-free DTDs (i.e., restricted DTDs using regular expressions
without disjunction operator), which, to the best of our knowledge, have not been pre-
viously studied (Section 7.5). To prove our results, we develop a set of tools that we
present next: dependency graphs (Section 7.1), generalized definition of embedding
(Section 7.2), family of characteristic graphs (Section 7.3).

7.1 Dependency Graphs

Recall that IMSs use IMEs, which are essentially expressions of the form A
I1
1 || . . . ||

A
Ik

k , where A1, . . . , Ak are atoms, and I1, . . . , Ik are intervals. Given an IME E,
let symbols∀(E) be the set of symbols present in all unordered words in L(E), and
symbols(E) the set of symbols present in at least one unordered word in L(E):

symbols∀(E) = {a ∈ � | ∀w ∈ L(E). a ∈ w},
symbols∃(E) = {a ∈ � | ∃w ∈ L(E). a ∈ w}.
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Given an IME E, notice that symbols∀(E) ⊆ symbols∃(E), and moreover, the sets
symbols∀(E) and symbols(E) can be easily constructed from E. For example, given
E0 = (a ||b?)[5,6] ||c+, we have symbols∀(E0) = {a, c} and symbols(E0) = {a, b, c}.

Definition 2 Given an IMS S = (rootS, RS), the existential dependency graph of
S is the directed rooted graph G∃

S = (�, rootS, E∃
S) with the node set �, the dis-

tinguished root node rootS , and the set of edges E∃
S such that (a, b) ∈ E∃

S if b ∈
symbols∃(RS(a)). Furthermore, the universal dependency graph of S is the directed
rooted graph G∀

S = (�, rootS, E∀
S) such that (a, b) ∈ E∀

S if b ∈ symbols∀(RS(a)).

Example 5 Take the IMS S containing the rules:

r → (a? || b)[1,10] || c, a → d?, b → a[2,3] || c∗ || d+.

In Fig. 4 we present the existential dependency graph of S and the universal
dependency graph of S. �

Given an IMS S and a symbol a, we say that a is reachable (or useful) in S if there
exists a tree in L(S) which has a node labeled by a. Moreover, we say that an IMS is
trimmed if it contains rules only for the reachable symbols. For every satisfiable IMS
S, there exists an equivalent trimmed version which can be obtained by removing the
rules for the symbols involved in unreachable components in G∀

S (in the spirit of [2]).
Notice that the unreachable components of G∀

S correspond in fact to cycles in G∀
S . In

the sequel, we assume w.l.o.g. that all IMSs that we manipulate are satisfiable and
trimmed.

7.2 Generalizing the Embedding

We generalize the notion of embedding previously defined in Section 2. Note that
in the rest of the section we use the term dependency graphs when we refer to both
existential and universal dependency graphs. First, an embedding of a query q in a
dependency graph G = (�, root, E) is a function λ : Nq → � such that:

1. λ(rootq) = root ,
2. for every (n, n′) ∈ childq , (λ(n), λ(n′)) ∈ E,
3. for every (n, n′) ∈ descq , (λ(n), λ(n′)) ∈ E+ (the transitive closure of E),
4. for every n ∈ Nq , labq(n) = � or labq(n) = λ(n).

Fig. 4 Existential dependency graph G∃
S and universal dependency graph G∀

S for Example 5
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If there exists an embedding of q in G, we write G � q. Next, a simulation of a
dependency graph G = (�, root, E) in a tree t is a relation R ⊆ � × Nt such that:

1 (root, roott ) ∈ R,
2 for every (a, n) ∈ R, (a, a′) ∈ E, there exists n′ ∈ Nt such that (n, n′) ∈ childt

and (a′, n′) ∈ R,
3 for every (a, n) ∈ R. labt (n) = a.

Note that R is a total relation for the nodes of the graph reachable from the root i.e.,
for every a ∈ � reachable from root in G, there exists a node n ∈ Nt such that
(a, n) ∈ R. If there exists a simulation from G to t , we write t � G. Additionally,
note that given a graph containing cycles reachable from the root, there does not
exist any (finite) tree where it can be simulated. However, we point out that in the
remainder we use the notion of simulation only for universal dependency graphs that
are supposed to come from trimmed IMSs, hence they do not have such cycles.

Given two dependency graphs G1 = (�, root, E1) and G2 = (�, root, E2), G1
is a subgraph of G2 if E1 ⊆ E2. For a dependency graph G = (�, root, E), we
define the partial order ≤G on the subgraphs of G: given G1 and G2 two subgraphs
of G, G1 ≤G G2 if G1 is a subgraph of G2. Note that the relation ≤G is reflexive,
antisymmetric, and transitive, thus being an ordering relation. Moreover, it is well-
founded and it has a minimal element G0 = (�, root,∅). The following result can
be easily shown by a structural induction using the order ≤G.

Lemma 6 For every IMS S, its universal dependency graph can be simulated in
every tree t which belongs to the language of S.

A path in a dependency graph G = (�, root, E) is a non-empty sequence of vertices
starting at root such that for every two consecutive vertices in the sequence, there
is a directed edge between them in G. By Paths(G) ⊆ �+ we denote the set of
all paths in G. The set of paths is finite only for graphs without cycles reachable
from the root. For instance, the paths of the graph G1 in Fig. 5b are Paths(G1) =
{r, ra, rb, rc, rbd, rcd, rbde, rcde}.

Similarly, a path in a tree t is a non-empty sequence of nodes starting at roott
such that every two consecutive nodes in the sequence are in the relation childt . By
Paths(t) ⊆ N+

t we denote the set of all paths in t . Then, we define LabPaths(t) ⊆
�+ as the set of sequences of labels of nodes from all paths in t . For instance, for

Fig. 5 A tree and two graphs with their corresponding unfoldings
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the tree t1 from Fig. 5b we have Paths(t1) = {n0, n0n1, n0n1n2, n0n3, n0n3n4}
and LabPaths(t1) = {r , ra, rab}. Note that |LabPaths(t)| ≤ |Paths(t)|. The unfold-
ing of a dependency graph G = (�, root, E), denoted uG, is a tree uG =
(NuG

, rootuG
, labuG

, childuG
) such that:

– NuG
= Paths(G),

– rootuG
∈ NuG

is the root of uG,
– (p, p · a) ∈ childuG

, for every path p, p · a ∈ Paths(G) (note that “·” stands for
standard ordered concatenation),

– labuG
(rootuG

) = root , and labuG
(p · a) = a, for every path p · a ∈ Paths(G).

The unfolding of a graph is finite only when the graph has no cycle reachable from the
root, because otherwise Paths(G) is infinite, hence uG is infinite. In the remainder,
we use the unfolding only for graphs having no cycle reachable from the root (in order
to have finite unfoldings). In such a case, the unfolding can be seen as the smallest
tree uG (w.r.t. the number of nodes) having LabPaths(uG) = Paths(G). The idea
of the unfolding is to transform the dependency graph G into a tree having the child
relation instead of directed edges. There are nodes duplicated in order to avoid nodes
with more than one incoming edge. For instance, in Fig. 5b we take the graph G1 and
construct its unfolding uG1 . Moreover, notice that the size of the unfolding may be
exponential in the size of the graph, for example for the graph G2 from Fig. 5c.

We also extend the definition of embedding and propose the embedding from a
tree to another tree i.e., given two trees t and t ′, we say that t ′ can be embedded in
t (denoted t � t ′) if the query (Nt ′ , roott ′, labt ′, childt ′,∅) can be embedded in t .
Similarly, we can define the embedding from a tree to a dependency graph. Note that
two embeddings can be composed, for example:

– ∀t, t ′ ∈ Tree. ∀q ∈ Twig. (t � t ′ ∧ t ′ � q ⇒ t � q),
– ∀S ∈ IMS. ∀t ∈ Tree. ∀q ∈ Twig. (G

∀/∃
S � t ∧ t � q ⇒ G

∀/∃
S � q).

We state next two auxiliary lemmas that can be easily proven by structural induction
on the dependency graphs (using the order ≤G):

Lemma 7 A dependency graph G can be simulated in a tree t iff its unfolding uG

can be embedded in t .

Lemma 8 A query q can be embedded in a dependency graph G iff q can be
embedded in the unfolding tree of G.

In Fig. 6 we present the operations fuse and add. Given two trees t and t ′, we say
that t �0 t ′ if t ′ is obtained from t by applying one of the operations from Fig. 6.
The fuse operation takes two siblings with the same label and creates only one node
having below it the subtrees corresponding to each of the siblings. The add operation
consists simply in adding a subtree at some place in the tree. By � we denote the
transitive and reflexive closure of �0.

Note that the fuse and add operations preserve the embedding i.e., given a twig
query q and two trees t and t ′, if t � q and t � t ′, then t ′ � q. Furthermore,
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Fig. 6 Operations fuse and add

if we can embed a query q in a tree t which can be embedded in the existential
dependency graph of an IMS S, we can perform a sequence of operations such that t
is transformed into another tree t ′ satisfying S and q at the same time. Formally, we
have the following.

Lemma 9 Given an IMS S, a query q and a tree t , if G∃
S � t and t � q, then there

exists a tree t ′ ∈ L(S)∩L(q). The tree t ′ can be constructed after a sequence of fuse
and add operations (consistently with the schema S) from the tree t and we denote
t �S t ′.

7.3 Family of Characteristic Graphs

Given a schema S and a query q, we can capture all trees satisfying both S and q

with the characteristic graphs that we introduce next.
More formally, a characteristic graph G is a tuple (VG, rootG, labG, EG), where

VG is a finite set of vertices, rootG ∈ VG is the root of the graph, labG : VG → �

is a labeling function (with labG(rootG) = rootS), and EG ⊆ VG × VG is the set
of edges. Let us assume that G∃

S � q and take such an embedding λ : Nq → �.
By (q, S, λ) we denote the set of all characteristic graphs for q and S w.r.t. λ. To
construct such a graph, let us start with G = (VG, rootG, labG, EG) where VG and
EG are empty, and perform the four steps described below.

1. For every n in Nq , add a node n′ to VG such that labG(n′) = λ(n). Let rootG be
the node such that labG(rootG) = rootS .

2. For every (n1, n2) in childq , add (n′
1, n

′
2) to EG, where n′

1 and n′
2 are the nodes

corresponding to n1 and n2, respectively, as constructed at step 1.
3. For every (n1, n2) in descq , choose an acyclic path a0, . . . , ak in G∃

S where
λ(n1) = a0 and λ(n2) = ak . Notice that, since n1 and n2 belong to Nq , we
have already added in VG two nodes n′

1 and n′
2, respectively, corresponding to

them at step 1. Then, for every ai (with 1 ≤ i ≤ k − 1), we add in VG a node
n′′

i such that labG(n′′
i ) = ai . Also, add in EG the edges (n′

1, n
′′
1), (n

′′
1, n

′′
2), . . . ,

(n′′
k−1, n

′
2).

4. For every n in VG, take from G∀
S the subgraph (V ′, labG(n), E′) rooted at

labG(n). Then, for every a �= labG(n) in V ′ add a node n′ in V ′ such that
labG(n′) = a. Also, for every (a1, a2) ∈ E′, add in EG an edge (n1, n2) where
n1 and n2 are the nodes corresponding to a1 and a2, respectively.

The following example illustrates the construction of such a graph.
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Example 6 Take in Fig. 7a an existential dependency graph G∃
S , a twig query q, and

an embedding λ : Nq → G∃
S . Notice that in G∃

S we have drawn the universal edges
with a full line and those that are existential without being universal with a dotted
line. Then, in Fig. 7b we present an example of a graph G from (q, S, λ). Notice
that in G we have represented in boxes the nodes corresponding to the images λ(n)

for the nodes of the query n ∈ Nq . �

Next, we define the set of all characteristic graphs for q and S w.r.t. the all
embeddings λ of q in G∃

S :

G(q, S) = {G ∈ (q, S, λ) | λ is an embedding of q in G∃
S}.

Note that G � q and the size of G is polynomially bounded by |q| × |�|2 for every
G in G(q, S). Indeed, after step 1 of the construction, a characteristic graph G has
|q| nodes. Then, after steps 2 and 3, since at step 3 we allow only acyclic paths of
G∃

S , we add at most |�| nodes for each already existing node, hence G has at most
|q| × |�| nodes. Finally, after 4, since we add at most |�| nodes for each already
existing node, G has at most |q| × |�|2 nodes.

Furthermore, let ∗(q, S, λ) and G∗(q, S) be sets of characteristic graphs con-
structed similarly to (q, S, λ) and G(q, S), respectively, the only difference being
that we allow cyclic paths at step 3 of the aforementioned construction. While the
size of the graphs in G(q, S) is polynomial, notice that the size of the graphs in
G∗(q, S) is not necessary polynomial since the possible cyclic paths chosen at step 3
can be arbitrarily long. Additionally, note that |G(q, S)| is finite and may be exponen-
tial while |G∗(q, S)| may be infinite if the existential dependency graph G∃

S contains
cycles reachable from the root.

Fig. 7 An embedding from a query q to an existential dependency graph G∃
S and a graph G ∈ G(q, S).

In G∃
S , the universal edges are drawn with a full line and those that are existential without being universal

with a dotted line
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Next, we extend the previous definition of the unfolding to the characteristic
graphs. Given an IME E and a symbol a, by min nb(E, a) we denote the minimum
number of occurrences of the symbol a in every unordered word defined by E. Next,
we define the unfolding of a characteristic graph. Given a query q, an IMS S, and a
characteristic graph G ∈ G∗(q, S), we construct its unfolding as follows:

– Let uG be the unfolding of G obtained as defined in Section 7.2.
– Update uG such that for every n ∈ NuG

, for every a ∈ �, let ta the subtree
having as root the child of n labeled by a. Next, add copies of ta as children of n

until n has min nb(RS(labuG
(n)), a) children labeled by a.

Notice that every graph G in G∗(q, S) is acyclic. Indeed, when constructing such
a graph G, after steps 1, 2 and 3, G is basically shaped as a tree. Then, the subgraphs
that we fuse at step 4 are all acyclic since they are subgraphs of the universal depen-
dency graph G∀

S that we assume trimmed (cf. Section 7.1). Since every graph G in
G∗(q, S) is acyclic, it has a finite unfolding, which naturally belongs to the language
of S.

7.4 Complexity Results

In this section, we use the above defined tools to show the complexity results
for IMSs. First, the dependency graphs and embeddings capture satisfiability and
implication of queries by IMSs.

Lemma 10 Given a twig query q and an IMS S:

1. q is satisfiable by S iff G∃
S � q,

2. q is implied by S iff G∀
S � q.

Proof 1) For the if part, we know that G∃
S � q, thus the family of graphs G(q, S) is

not empty. The unfolding of every graph from G(q, S) satisfies S and q at the same
time, hence q is satisfiable by S. For the only if part, we know that there exists a tree
t ∈ L(S) ∩ L(q), and we assume w.l.o.g. that it is the unfolding of a graph G from
G∗(q, S). Since t � q, we obtain uG � q, hence G � q (by Lemma 8), which, from
the construction of G, implies that G∃

S � q.
2) For the if part, we know thatG∀

S � q, which implies by Lemma 8 that uG∀
S
� q.

On the other hand, take a tree t ∈ L(S). By Lemma 6 we have t � G∀
S , which implies

by Lemma 7 that t � uG∀
S
. From the last embedding and uG∀

S
� q we infer that

t � q. Since t can be every tree in the language of S, we conclude that q is implied
by S. For the only if part, we know that for every t ∈ L(S), t � q. Consider the tree
t obtained as follows: we take uG∀

S
and we duplicate some subtrees in order to have,

for each node n ∈ Nt , min nb(RS(labt (n)), a) children labeled by a. Naturally, t is
in the language of S, hence t � q from the hypothesis. From the definition of the
unfolding, we infer that G∀

S � t , which implies that G∀
S � q.

For instance, the twig query q = r[a]/b//d can be embedded in the existential
dependency graph of the IMS S from Example 5, thus q is satisfiable by S. In Fig. 8
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Fig. 8 Embeddings of q in G∃
S and in a tree t which satisfies S and q at the same time

we present embeddings of q in G∃
S and in a tree t satisfying both S and q. Addi-

tionally, notice that the twig query q = r[a]/b//d cannot be embedded in G∀
S from

Example 5, and therefore, q is not implied by S. On the other hand, the twig query
q ′ = r/b//d can be embedded in G∀

S , thus q ′ is implied by S.
Moreover, we point out that testing the embedding of a query in a dependency

graph can be done in polynomial time with a simple bottom-up algorithm. From this
observation and Lemma 10 we obtain the following.

Theorem 5 SATIMS,Twig and IMPLIMS,Twig are in PTIME.

Next, we present the complexity of query containment in the presence of IMSs.
The coNP-completeness of the containment of twig queries [32] implies the coNP-
hardness of the containment of twig queries in the presence of IMSs. Proving the
membership of the problem to coNP is, however, not trivial. Given an instance
(p, q, S), the set of all trees satisfying p and S can be characterized with a set G(p, S)

containing an exponential number of polynomially-sized graphs and p is contained
in q in the presence of S iff the query q can be embedded into all graphs in G(p, S).
This condition is easily checked by a non-deterministic Turing machine.

Theorem 6 CNTIMS,Twig is coNP-complete.

Proof The coNP-completeness of the containment of twig queries (Theorem 4
in [32]) implies that CNTIMS,Twig is coNP-hard. Next, we prove the membership of
the problem to coNP. Given an instance (p, q, S), a witness is a function λ : Np →
�. Testing whether λ is an embedding from p to G∃

S requires polynomial time. If λ

is an embedding, a non-deterministic polynomial algorithm chooses a graph G from
(p, S, λ) and checks whether q can be embedded in G. We claim that p �S q iff
there exists a graph G in G(p, S) such that G �� q.

For the if case, we assume that there exists a graph G ∈ G(p, S) such that G �� q.
We know that G � p, thus uG � p (by Lemma 8), hence there exists a tree t ∈ L(S)

such that t � p and uG �S t (by Lemma 9). If we assume by absurd that t � q, we
have uG � q, thus G � q, which is a contradiction. We infer thus that there exists a
tree t ∈ L(S) ∩ L(p), such that t /∈ L(q), and consequently, p �S q.

For the only if case, we assume that p �S q, hence there exists a tree t ∈ L(S) ∩
L(p) such that t /∈ L(q). Because t ∈ L(S)∩L(p), we know that there exists a graph
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G ∈ G∗(p, S), such that uG �S t . We know that t �� q, thus uG �� q (by Lemma
8), that yields G � q. Furthermore, by using a simple pumping argument, we have
∀q ∈ Twig. ∀G ∈ G∗(q, S). (G �� q ⇒ ∃G′ ∈ G(q, S). G′ �� q), which implies that
there exists a graph G′ ∈ G(p, S) such that G′ �� q.

7.5 Extending the Complexity Results to Disjunction-Free DTDs

We also point out that the complexity results for implication and containment of
twig queries in the presence of IMSs can be adapted to disjunction-free DTDs. This
allows us to state results which, to the best of our knowledge, are novel. Similarly
to the IMSs, we represent a disjunction-free DTD as a tuple S = (rootS, RS), where
rootS is a designated root label and RS maps symbols to regular expressions using
no disjunction, basically regular expressions of the grammar:

E ::= ε | a | E∗ | E? | E+ | (E · E),

where a ∈ � and “·” stands for the standard concatenation operator. Given such an
expression E, let symbols∀(E) be the set of symbols present in all words from L(E),
and symbols(E) the set of symbols present in at least one word from L(E):

symbols∀(E) = {a ∈ � | ∀w ∈ L(E). ∃w1, w2. w = w1 · a · w2},
symbols∃(E) = {a ∈ � | ∃w ∈ L(E). ∃w1, w2. w = w1 · a · w2}.

As pointed out for the IMEs, note that the sets symbols∀(E) and symbols∃(E) can
be easily constructed from E. Next, we adapt the notions of dependency graph and
universal dependency graph for disjunction-free DTDs. The existential dependency
graph of a disjunction-free DTD S is a directed rooted graph G∃

S = (�, rootS, E∃
S),

where
E∃

S = {(a, a′) | a′ ∈ symbols∃(RS(a))}.
Similarly, the universal dependency graph of a disjunction-free DTD S is a directed
rooted graph G∀

S = (�, rootS, E∀
S), where

E∀
S = {(a, a′) | a′ ∈ symbols∀(RS(a))}.

Analogously to the IMSs, we assume w.l.o.g. that we manipulate only disjunction-
free DTDs having no cycle reachable from the root in the universal dependency
graph. Otherwise, if there is a cycle in the universal dependency graph, this means
that there is no tree consistent with the schema and containing at least one of the
symbols implied in that cycle. Moreover, similarly to IMSs, for a symbol a ∈ � and
a disjunction-free regular expression E, by min nb(E, a) we denote the minimum
number of occurrences of the symbol a in every word defined by E.

Next, we state our complexity results for disjunction-free DTDs.

Theorem 7 IMPLdisj-free-DTD,Twig is in PTIME and CNTdisj-free-DTD,Twig is coNP-
complete.

Proof We claim that a query q is implied by a disjunction-free DTD S iff G∀
S � q

and since the embedding of a query in a graph can be computed in polynomial
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time, this implies that IMPLdisj-free-DTD,Twig is in PTIME. The proof follows from
the proof of Lemma 10.2. The coNP-completeness of the containment of twig
queries (Theorem 4 in [32]) implies that CNTdisj-free-DTD,Twig is coNP-hard. The-
orem 6 states the coNP-completeness of the query containment in the presence
of IMSs and an easy adaptation of its proof technique yields the membership of
CNTdisj-free-DTD,Twig to coNP. The mentioned proofs can be adapted because given a
disjunction-free regular expression E and a word u ∈ L(E), u can in fact be obtained
as an ordering of the unordered word w = ⊎

a∈� amin nb(E,a). Moreover, the order
imposed by the DTD on the siblings is not important because the twig queries are
order-oblivious.

8 Expressiveness of DIMS

First, we compare the expressive power of DIMSs with yardstick languages of
unordered trees. We begin with FO logic that uses only the binary child predicate
and the unary label predicates Pa with a ∈ �. It is easy to show that DIMSs are
not comparable with FO. With a simple rule a → (b || c)∗ a DIMS can express the
language of trees where every node labeled by a has as children only nodes labeled
by b and c such that the number of b’s is equal to the number of c’s. Such lan-
guage cannot be captured with FO for reasons similar to those for which it cannot
be expressed in FO whether the cardinality of the universe is even. There are lan-
guages of unordered trees expressible by FO, but not expressible by DIMSs e.g., the
language of trees that contain exactly two nodes labeled b. Such languages are not
expressible by DIMSs for reasons similar to those for which they cannot be expressed
by DTDs, more precisely they are not closed under substitution of subtrees with the
same root type (cf. Lemma 2.10 in [37]). By using exactly the same examples, note
that DIMSs and MSO are also incomparable. MSO with Presburger constraints [12,
13, 43, 44] is essentially an extension of MSO that additionally allows elements of
arithmetic (numerical variables and value comparisons) and unary functions #a that
return the number of children of a node having a given label a ∈ �. This extension is
very powerful and can express Parikh images of arbitrary regular languages. DIMSs
are strictly less expressive than Presburger MSO as they use a strict restriction of
unordered regular expressions.

Next, we compare the expressive power of DIMSs and DTDs. For this purpose,
we introduce a simple tool for comparing regular expressions with DIMEs. Given a
regular expressionR, the languageL(R) of unordered words is obtained by removing
the relative order of symbols from every ordered word defined by R. A DIME E

captures R if L(E) = L(R). This tool is equivalent to considering DTDs under
commutative closure [4, 34]. We believe that this simple comparison is adequate
because if a DTD is to be used in a data-centric application, then supposedly the
order between siblings is not important. Therefore, a DIME that captures a regular
expression defines basically the same admissible content model of a node, without
imposing an order among the children.

Naturally, by using the above notion to compare the expressive powers of DTDs
and DIMSs, DTDs are strictly more expressive than DIMSs. For example, the
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commutative closure of the regular expression (a · (b | c))∗ cannot be expressed by
a DIME. Various classes of regular expressions have been reported in widespread
use in real-world schemas and have been studied in the literature: simple regular
expressions [8, 29], single occurrence regular expressions (SOREs) [7], chain reg-
ular expressions (CHAREs) [7]. DIMEs are strictly more expressive than CHAREs
and incomparable to the other mentioned classes of regular expressions.

Finally, we investigate how many real-life DTDs can be captured with DIMSs and
use the comparison on the XMark benchmark [39] and the University of Amsterdam
XML Web Collection [23]. All 77 regular expressions of the XMark benchmark are
captured by DIMEs, and among them 76 by IMEs. As for the DTDs from the Univer-
sity of Amsterdam XML Web Collection, 92 % of regular expressions are captured
by DIMEs and among them 78 % by IMEs. We also point out that CHAREs, cap-
tured by DIMEs, are reported to represent up to 90 % of regular expressions used
in real-life DTDs [7]. These numbers give a generally positive coverage, but should
be interpreted with caution, as we do not know which of the considered DTDs were
indeed intended for data-centric applications.

9 Related Work

Languages of unordered trees can be expressed by logic formalisms or by tree
automata. Boneva et al. [12, 13] make a survey on such formalisms and compare
their expressiveness. The fundamental difference resides in the kind of constraints
that can be expressed for the allowed collections of children for some node. We men-
tion here only formalisms introduced in the context of XML. Presburger automata
[43], sheaves automata [20], and the TQL logic [15] allow to express Presburger con-
straints on the numbers of occurrences of the different symbols among the children of
some node. Suitable restrictions allow to obtain the same expressiveness as the Pres-
burger MSO logic on unordered trees [12, 13], strictly more expressive than DIMSs.
Additionally, we believe that DIMSs are more appropriate to be used as schema lan-
guages, as they were designed as such, in particular regarding the more user-friendly
DTD-like syntax.

Languages of unordered trees can be also expressed by considering DTDs under
commutative closure [4, 34]. We assume DTDs using arbitrary regular expressions,
not necessarily one-unambiguous [14] as required by theW3C.We also point out that
it has been recently shown that it is PSPACE-complete to decide whether a given reg-
ular expression can be rewritten as an equivalent one-unambiguous one [19]. Given
a DTD using arbitrary regular expressions under commutative closure, we say that
an (ordered) tree matches such a DTD iff every tree obtained by reordering of sib-
ling nodes also matches the DTD. However, it is PSPACE-complete to test whether
a DTD defines a commutatively-closed set of trees [34] and, moreover, such a DTD
may be of exponential size w.r.t. the size of the alphabet, which makes such DTDs
unfeasible. Another consequence of the high expressive power of DTDs under com-
mutative closure is that the membership problem is NP-complete [26]. Therefore,
these formalisms were not extensively used in practice. From a different point of
view, Martens et al. [27, 28] investigate DTDs equipped with formulas from the SL
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logic that specifies unordered languages and obtain complexity improvements for
typechecking XML transformations.

The unordered concatenation operator “||” should not be confused with the shuffle
(interleaving) operator “&” used in a restricted form in XML Schema and RELAX
NG to define order-oblivious, yet still ordered, content. On the one hand, a∗&b

defines all ordered words with an arbitrary number of a’s and exactly one occurrence
of b, and analogously, a∗ || b defines all unordered words with exactly the same char-
acteristic. On the other hand, (a&b)∗ defines ordered words of the form w1 · . . . ·wn,
where the factors w1, . . . , wn are either ab or ba, while (a || b)∗ defines unordered
words having the same number of a’s and b’s. For instance, (a&b)∗ does not accept
the ordered word aabb while it has the same number of a’s and b’s. Adding the shuf-
fle and interval multiplicities to the regular expressions increases the computational
complexity of fundamental decision problems such as: membership [6, 25], inclu-
sion, equivalence, and intersection [21]. Colazzo et al. [17, 18, 22] propose efficient
algorithms for membership and inclusion of conflict-free types, a class of regular
expressions with shuffle and numerical constraints using intervals. Their approach is
based on capturing a language with a set of constraints, similar to our characterizing
tuples for DIMEs. While conflict-free types and DIMEs both forbid repetitions of
symbols, they differ on the restrictions imposed on the use of the operators and the
interval multiplicities. Consequently, they are incomparable.

We finally point out that the static analysis problems involving twig queries i.e.,
twig query satisfiability [5], implication [9, 24], and containment [35] in the presence
of schema have been extensively studied in the context of DTDs. However, to the
best of our knowledge, these problems have not been previously studied neither for
the mentioned unordered schema languages, nor for DTDs using classes of regular
expressions extended with counting and interleaving.

10 Conclusions and Future Work

We have studied schema languages for unordered XML. First, we have investigated
languages of unordered words and we have proposed disjunctive interval multiplicity
expressions (DIMEs), a subclass of unordered regular expressions for which two
fundamental decision problems, membership of an unordered word to the language
of a DIME and containment of two DIMEs, are tractable. Next, we have employed
DIMEs to define languages of unordered trees and have proposed disjunctive interval
multiplicity schema (DIMS) and its restriction, disjunction-free interval multiplicity
schema (IMS). DIMSs and IMSs can be seen as DTDs using restricted classes of
regular expressions and interpreted under commutative closure to define unordered
content models. These restrictions allow to maintain a relatively low computational
complexity of basic static analysis problems while allowing to capture a significant
part of the expressive power of practical DTDs.

As future work, we want to study whether the restrictions imposed by the gram-
mar of DIMEs can be relaxed while maintaining the tractability of the problems of
interest. Moreover, we would like to investigate learning algorithms for the unordered
schema languages proposed in this paper. We have already proposed learning
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algorithms for restrictions of DIMSs and IMSs [16] and we want to extend them
to take into account all the expressive power. We also aim to apply the unordered
schemas to query minimization [3] i.e., given a query and a schema, find a smaller
yet equivalent query in the presence of the schema. Furthermore, we want to use
unordered schemas and optimization techniques to boost the learning algorithms for
twig queries [45].
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