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Abstract The framework of database repairs is a principled approach to manag-
ing inconsistency in databases. In particular, the consistent answers of a query on
an inconsistent database provide sound semantics and the guarantee that the values
obtained are those returned by the query on every repair of the given inconsistent
database. In this paper, we carry out a systematic investigation of the data complex-
ity of the consistent answers of conjunctive queries for set-based repairs and with
respect to classes of constraints that, in recent years, have been extensively studied
in the context of data exchange and data integration. Our results, which range from
polynomial-time computability to undecidability, complement or improve on earlier
work, and provide a fairly comprehensive picture of the data complexity of consis-
tent query answering. We also address the problem of finding a “representative” or
“useful” repair of an inconsistent database. To this effect, we introduce the notion of
a universal repair, as well as relaxations of it, and then apply it to the investigation of
the data complexity of consistent query answering.
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1 Introduction

An inconsistent database is a database that fails to satisfy one or more integrity con-
straints that the data are hand are supposed to obey. Inconsistency in databases arises
in a variety of applications, including data integration and data warehousing, where
the task is to bring together data distributed over different sources that may obey
mutually incompatible constraints. In practice, inconsistency is handled mainly via
data cleaning, which means that the inconsistent database is transformed, through
deletions or additions, to a consistent one that is then used for query answering or for
warehousing purposes. This process, however, forces arbitrary choices to be made
since, in general, there is a multitude of ways in which an inconsistent databases can
be transformed to a consistent one. Arenas, Bertossi and Chomicki [4] introduced a
principled approach to the management of inconsistency by formulating the notions
of a repair of an inconsistent database and of consistent query answering. Intuitively,
a repair of an inconsistent database I is a consistent database J that differs from I in
a “minimal” way. Furthermore, the consistent answers of a query q on an inconsis-
tent database I are defined to be the intersection

⋂{q(J ) : J is a repair of I }. Thus,
the inconsistencies in the database are kept, but are handled at query time by consid-
ering all repairs and returning the tuples that are guaranteed to be in the result of the
query on every repair.

Two algorithmic problems concerning repairs of inconsistent databases naturally
arise. The first is, of course, the problem of computing the consistent answers of
a query over an inconsistent database. The second is the repair checking problem,
which can be thought of as the model-checking problem for repairs: given two
database instances I and J , is J a repair of I? Since the publication of [4] in 1999,
these two problems have been extensively explored for different types of repairs
(set-based repairs, cardinality-based repairs, attribute-based repairs) and for differ-
ent types of constraints. As regards types of constraints, the earlier work on repair
checking and consistent query answering focused on functional dependencies, inclu-
sion dependencies, and denial constraints (see the overviews [7, 13]). More recently,
broader classes of constraints, such as tuple-generating dependencies (tgds) and
equality-generating dependencies (egds), have also been considered in the study of
repair checking and consistent query answering. As is well known, these classes of
constraints were originally investigated in the context of classical dependency theory,
but in the past decade have found numerous uses in the context of data integration and
data exchange. For some of these broader classes of constraints, the repair-checking
problem has been studied in [2] and [24], and the consistent query answering problem
in [32] and [3].

In this paper, we systematically explore the data complexity of consistent query
answering for sets of tgds and egds. This means that for every fixed set � of tgds
and egds and for every fixed conjunctive query q, we consider the complexity of the
following algorithmic problem: given a database instance I , compute the consistent
answers of q on I w.r.t. �. Concerning the types of repairs, we consider set-based
repairs, that is, subset-repairs, superset-repairs, and ⊕-repairs (symmetric difference
repairs).
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Our main results about the data complexity of consistent query answering, together
with previously known results, are summarized in Table 1. In this table, by an entry
such as “C/C-comp.” we mean that for every fixed set of dependencies in the class
considered and for every fixed conjunctive query, the problem is in C and that there
is a set of dependencies in the class and a conjunctive query for which the problem is
C-complete.

One finding of our investigation is that the class of LAV (local-as-view) tgds
exhibits tractable algorithmic behavior as regards the data complexity of consistent
query answering with respect to all three types of set-based repairs considered here;
this extends earlier results about inclusion dependencies and subset-repairs [14].
Another finding is that there is a set (in fact, a singleton set) of GAV (global-as-
view) tgds for which the data complexity of the consistent query answering with
respect to both subset-repairs and ⊕-repairs is coNP-complete; this strengthens a
coNP-completeness result for GAV tgds and functional dependencies with respect
to ⊕-constraints in [32]. We also show that there are sets of weakly acyclic sets of
tgds for which the data complexity of the consistent query answering problem is �

p

2 -
complete with respect to both subset-repairs and ⊕-repairs; earlier, �p

2 -completeness
results had been obtained for the data complexity of consistent query answering for
sets of functional dependencies and universal constraints [32] with respect to ⊕-
repairs. Finally, we show that the assumption of weak acyclicity is of the essence for
the decidability of the consistent query answering problem. Specifically, we show
that there is a fixed set of tgds and a fixed conjunctive query for which the consistent
query answering problem is undecidable with respect to ⊕-repairs; furthermore, a
similar undecidability result holds for superset-repairs. Previously, it was known that
the consistent query answering problem was undecidable in combined complexity for
conjunctive queries and for sets of inclusion dependencies and functional dependen-
cies with respect to superset-repairs [31]. It was also known that the consistent query
answering problem was undecidable in combined complexity for unions of conjunc-
tive queries and for sets of inclusion dependencies and functional dependencies with
respect to ⊕-repairs [11]. Finally, it was known that there is a fixed set of univer-
sal constraints and a fixed universal query for which consistent query answering is
undecidable with respect to ⊕-repairs [3].

In addition to the data complexity of consistent query answering, we also
addressed the following question: For which types of dependencies is it the case that,
given a database instance, there is an efficient way to compute a “representative” and
“useful” repair?

We formalized and answered this question by introducing the notion of a universal
repair and the notion of an n-universal repair, where n is a positive integer. These
notions are analogous to and, in fact, are motivated from the notion of a universal
solution in data exchange [17]. Furthermore, the notion of universal repair is closely
related to the notion of nucleus in [35], since a universal repair is nucleus that is also a
repair. Informally, a universal repair is a repair such that the consistent answers of an
arbitrary conjunctive query can be computed by essentially evaluating the query on
the universal repair. Similarly, an n-universal repair has the same property but only
for conjunctive queries with at most n atoms. We study the existence of universal
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repairs and of n-universal repairs, as well as structural properties of such repairs
and the complexity of computing them. We show that, if � is a set of LAV tgds,
then every database instance has a unique universal ⊕-repair that is also a universal
subset-repair and can be computed in polynomial time. Furthermore, while not every
database instance has a universal superset-repair, we show that for every n ≥ 1, an
n-universal superset-repair exists and can be computed in polynomial time. If � is a
weakly acyclic set of tgds and egds, things are the other way around: every database
instance has a universal superset-repair that can be computed in polynomial time,
but not every instance has a universal, or even a 1-universal, ⊕-repair; furthermore,
similar limitations hold true for subset-repairs.

An extended abstract of the present paper has appeared earlier in [33]. The present
paper augments it by providing detailed proofs and new material. In particular,
Proposition 3.8 and Theorem 4.1 are new results obtained since the publication of
[33].

2 Basic Notions

A schema R is a finite sequence (R1, . . . , Rk) of relation symbols, each of a fixed
arity. An instance I over R is a sequence (RI

1 , . . . , RI
k ), where each RI

i is a relation
of the same arity as Ri . For notational simplicity, we shall write Ri to denote both the
relation symbol and the relation RI

i that interprets it. A fact of an instance I (over R)
is an expression Ri(v1, . . . , vm), where Ri is one of the relations of I and v1, . . . , vm

are values such that (v1, . . . , vm) ∈ Ri . Every instance can be identified with the set
of its facts. The size of an instance is the number of facts it has. The active domain of
an instance I , denoted by adom(I ), is the set of all values occurring in the facts of I .
We assume that all instances I considered are finite, which means that every relation
Ri of I is finite, for 1 ≤ i ≤ k.

Definition 2.1 (Dependencies) A tuple-generating dependency (tgd) is a first-order
sentence of the form

∀x(φ(x) → ∃y ψ(x, y)),

where φ, ψ are conjunctions of atomic formulas, x = (x1, . . . , xn) and y =
(y1, . . . , ym) are tuples of variables, and every universally quantified variable xi

occurs in φ.
An equality-generating dependency (egd) is a first-order sentence of the form

∀x(φ(x) → xk = x�),

where φ is a conjunction of atomic formulas, x = (x1, . . . , xn) is a tuple of variables,
1 ≤ k, � ≤ n, and each universally quantified variable xi occurs in φ.

In what follows, by the term dependency, we will mean a tgd or an egd. Also, by
a set of dependencies, we will mean a finite set of dependencies.

Definition 2.2 A local-as-view or, simply, LAV tgd is a tgd ∀x(φ(x) → ∃y ψ(x, y))
in which φ is a single atomic formula.
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A global-as-view or, simply, GAV tgd is a tgd ∀x(φ(x) → ψ(x′)) in which ψ is a
single atomic formula such that the variables in x′ are among the variables of x.

For example, the copy tgd ∀x∀y(E(x, y) → F(x, y)) is both a LAV tgd and a
GAV tgd. In contrast,

∀x∀y(E(x, y) → ∃z(F (x, z) ∧ F(z, y)))

is a LAV tgd that is not a GAV tgd, while

∀x∀y∀z(E(x, z) ∧ E(z, y) → F(x, y))

is a GAV tgd that is not a LAV tgd. Note that every inclusion dependency is a LAV
tgd, but not vice-versa. Furthermore, every tgd with no existential quantifiers in its
right-hand side (such tgds are called full) is logically equivalent to a set of GAV tgds.
For example, the full tgd ∀x∀y∀z(E(x, z) ∧ E(z, y) → F(x, y) ∧ P(x)) is logi-
cally equivalent to the set consisting of the GAV tgds ∀x∀y∀z(E(x, z) ∧ E(z, y) →
F(x, y)) and ∀x∀y∀z(E(x, z) ∧ E(z, y) → P(x)).

From now on and for the sake of readability, we will often drop the universal
quantifiers when writing dependencies.

As mentioned in the Introduction, tgds play an important role in data exchange
and data integration, where they are used to specify the relationship between a source
(local) schema and a target (global) schema or to express constraints in a target
(global) schema. Moreover, it is known that weakly acyclic sets of tgds have good
algorithmic properties as regards data exchange that, in general, are not possessed by
arbitrary sets of tgds.

Definition 2.3 (Weak Acyclicity [15, 17]) Let � be a set of tgds and egds over a
schema S.

• The dependency graph of � is the following directed graph.
The nodes are the pairs (R, i), where R ∈ S is a relation of some arity k, and

1 ≤ i ≤ k. We call such pairs positions.
There is an edge from position (R, i) to position (S, j) if � contains a tgd

∀x(φ → ∃yψ) such that some variable from x occurs in position (R, i) in φ and
in position (S, j) in ψ .

There is a special edge from position (R, i) to position (S, j) if � contains a
tgd ∀x(φ → ∃yψ) such that (i) some variable from x occurs in position (R, i)

in φ and also occurs in ψ , and (ii) some variable from y occurs in position (S, j)

in ψ .
• We say that � is weakly acyclic if the dependency graph contains no cycle going

through a special edge.

Every set of GAV tgds is weakly acyclic, since the dependency graph has no spe-
cial edges. It is also easy to see that every acyclic set of inclusion dependencies is
weakly acyclic. However, the set � = {D(x, y) → M(y),M(y) → ∃xD(x, y)} is
a cyclic, yet weakly acyclic set of inclusion dependencies. Finally, the singleton set
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consisting of the inclusion dependency R(x, y) → ∃zR(y, z) is not weakly acyclic
because the dependency graph contains a self-loop on position R.2.

Intuitively, a repair of an instance I with respect to a set of dependencies � is an
instance J that satisfies � and “differs minimally” from I . Here, we will consider
three different set-based types of repairs. If I and J are instances, we will write I ⊕J

to denote the symmetric difference (I \ J ) ∪ (J \ I ) of I and J , that is, I ⊕ J is the
set of all facts that either belong to I and not to J , or belong to J and not to I .

Definition 2.4 (Repairs) Let I, J be instances, and � a set of dependencies.

• We say that J is an ⊕-repair of I w.r.t. � if J |= � and there is no instance J ′
such that J ′ |= � and I ⊕ J ′ � I ⊕ J .

• We say that J is a subset-repair of I w.r.t. � if J is both a subset of I and a
⊕-repair of I w.r.t. �. Equivalently, J is a subset-repair of I w.r.t. � if J ⊆ I ,
J |= � and there is no instance J ′ ⊆ I such that J ′ |= � and J � J ′.

• We say that J is a superset-repair of I w.r.t � if J is both a superset of I and a
⊕-repair of I w.r.t. �. Equivalently, J is a superset-repair of I w.r.t. � if I ⊆ J ,
J |= �, and there is no instance J ′ such that I ⊆ J ′, J ′ |= � and J ′ � J .

In what follows and when the set � of dependencies is understood from the con-
text, we will often drop the reference to � and, instead, write simply that J is an
⊕-repair of I , and similarly for subset and superset repairs.

For example, consider the key constraint R(x, y) ∧ R(x, z) → y = z and the
instance I = {R(a, b), R(a, c), R(b, c)}. Then I has exactly two subset-repairs J1
and J2 that are also its only ⊕-repairs, namely, J1 = {R(a, b), R(b, c)} and J2 =
{R(a, c), R(b, c)}.

Next, let � = {P(x) → Q(x)} and I = {P(a), P (b)}. Then I has exactly four
⊕-repairs, namely, J1 = ∅, J2 = {P(a),Q(a)}, J3 = {P(b),Q(b)}, and J4 =
{P(a), P (b), Q(a), Q(b)}. Note that J1 is the only subset-repair of I , while J4 is the
only superset-repair of I .

For a different example, let � = {R(x, y) → ∃zR(y, z)} and I = {R(1, 2)}. It is
easy to see that, for every n ≥ 1 and every k < n, the “loop” instance

Jn,k = {R(i, i + 1) | 1 ≤ i < n} ∪ {R(n, k)}

is a superset-repair (hence, also a ⊕-repair) of I w.r.t. �. Thus, I has infinitely many,
and arbitrarily large, superset-repairs w.r.t. �.

Next, we give the definitions of the main algorithmic problems in the study of
repairs.

Definition 2.5 (Repair Checking) Let � be a set of dependencies, and let � ∈
{⊕, subset, superset}. The �-repair checking problem w.r.t. � asks: given instances I

and I ′, check whether I ′ is a �-repair of I w.r.t. �.

Definition 2.6 (Consistent Answers) Let � be a set of dependencies, q a conjunctive
query, I an instance, and � ∈ {⊕, subset, superset}.
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• The �-consistent answers of q on I w.r.t. �, denoted by �-Con(q,I,�), is the
intersection

⋂
{q(J ) | J is a � -repair of I w.r.t. �}.

• The �-consistent query answering problem of q w.r.t. � asks: given an instance
I , compute the �-consistent answer of q on I with respect to �.

Several remarks are in order now. First, we wish to emphasize that only finite
instances and only finite repairs are considered in this paper. It is known that there
exist sets of dependencies �, conjunctive queries q, and instances I such that the
consistent answer to q on I w.r.t. � would yield a different result if infinite repairs
would be considered as well (see [31]). Second, if � consists of tgds and egds, there
is always a subset-repair and, hence, also an ⊕-repair. If � consists of tgds only, there
is also always a superset-repair.

Proposition 2.7 If � is a set dependencies, then every instance has a subset-repair
and, hence, also an ⊕-repair w.r.t. �. Furthermore, � is a set of tgds, then every
instance has a superset-repair w.r.t. �.

Proof The empty instance satisfies �, hence, for every instance I that fails to satisfy
�, there is a maximal (w.r.t. ⊆) instance J such that J ⊆ I and J |= �. Now let
� consist of tgds only, and let I be an instance. Take J to be the instance that has
the same active domain of I and in which each relation symbol denotes the complete
relation (of appropriate arity) over the given active domain. Then I ⊆ J and J |= �.
Hence, there is a minimal (w.r.t. ⊆) instance J ′ ⊆ J such that I ⊆ J ′ and J ′ |= �.
By construction, J is a superset-repair of I w.r.t. �.

Finally, it is easy to see that, for all � ∈ {⊕, subset, superset}, it is the case that the
�-repair checking problem is in coNP. Moreover, the subset-consistent query answer-
ing is always in �

p

2 . For example, to check that J is not an ⊕-repair of I , one
has to guess an instance J ′ of size at most |I | + |J | and verify that J ′ |= � and
I ⊕ J ′ ⊂ I ⊕ J .

Note that the notion of superset-consistent answers is closely related to the notion
of certain answers in incomplete information and in data exchange. To make the
connection with data exchange precise, recall from [17] that a schema mapping (also
called data exchange setting) is a 4-tuple M = (S,T, �st , �t ), where S and T are
disjoint schemas called the source schema and the target schema, �st is a collection
of source-to-target tgds, and �t is a set of target dependencies, that is, dependencies
over the target schema. Recall also that an instance J over the target schema is said
to be a solution for an instance I over the source schema if the pair (I, J ) satisfies all
constraints in �st ∪ �t . Finally, recall that, if M is a schema mapping, q is a query
over the target schema of M, and I is an instance over the source schema of M, then
the certain answers of q on I w.r.t. M, denoted by certain(q, I,M), are defined as
follows:

certain(q, I,M) =
⋂

{q(J )| J is solution for I w.r.t. M}.
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The connection between superset-consistent answers and certain answers is given by
the next proposition.

Proposition 2.8 Let � is a set of dependencies and let M� be the schema mapping
defined as follows:

(i) The source-to-target tgds of M� are copy tgds of the form R′(x) → R(x),
whereR is a relation symbol of the schema of� andR′ is a new relation symbol
whose arity is that of R.

(ii) The target tgds and egds ofM� are the tgds and egds in �.

Then for every conjunctive query q and every instance I ,

superset-Con(q, I, �) = certain(q, I ′,M�),

where I ′ is the copy of the instance I obtained by changing the name of every relation
R of I to R′.

The preceding proposition is proved by first observing that every superset repair
of I w.r.t. � is a solution of I ′ w.r.t. M� and then combining the monotonicity of
conjunctive queries with the fact that every solution J for I ′ w.r.t. M� contains a
superset-repair of I . We will make use of this connection in some of our complexity
results for the superset-consistent query answering problem.

Finally, we recall the definition of data complexity from [34] adapted to our
context.

Definition 2.9 Let L be a class of dependencies, let � ∈ {⊕, subset, superset}, and
let C be a complexity class.

• We say that the data complexity of �-consistent query answering w.r.t. L is in C
if for every finite subset � of L and for every conjunctive query q, we have that
the �-consistent query answering problem of q w.r.t. � is in C.

• We say that the data complexity of �-consistent query answering w.r.t. L is C-
complete if it is in C and there are a finite subset �′ of L and a conjunctive
query q ′, such that the �-consistent query answering problem of q ′ w.r.t. �′ is
C-complete.

3 Universal Repairs

By analogy to the notion of a universal solution in data exchange [17], we will now
introduce the notion of a universal repair. Since it will turn out that universal repairs
often do not exist, we also introduce a weaker notion, namely, that of a n-universal
repair, n ≥ 1.

Definition 3.1 Let � be a set of dependencies, I an instance, and � ∈ {⊕, subset,
superset}.
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• A universal �-repair of I w.r.t. � is a �-repair J of I w.r.t. � such that if q is a
conjunctive query, then

�-Con(q, I, �) = q(J )↓,

where q(J )↓ is the set of tuples in q(J ) containing only values from the active
domain adom(I ) of I .

• For n ≥ 1, an n-universal �-repair of I w.r.t. � is a �-repair J of I w.r.t. � such
that if q is conjunctive query with at most n atoms, then

�-Con(q, I, �) = q(J )↓.

Clearly, a universal repair is also a n-universal repair, for every n ≥ 1. As we
shall soon see, however, the converse is not always true. The next proposition, which
follows immediately from the definitions and the fact that the data complexity of
conjunctive queries is in PTIME, justifies the introduction of the notions of universal
repairs and n-universal repairs.

Proposition 3.2 Let � be a set of dependencies and let � ∈ {⊕, subset, superset}.
• Assume that n is a positive integer. If there is a polynomial-time algorithm that,

given an instance I , it returns an n-universal �-repair of I w.r.t. �, then the data
complexity of the �-consistent query answering problem for conjunctive queries
with at most n atoms is in PTIME.

• In particular, if there is a polynomial-time algorithm that, given an instance I ,
it returns a universal �-repair for I w.r.t. �, then the data complexity of the
�-consistent query answering for conjunctive queries is in PTIME.

It is not hard to see that the notion of a universal repair can be characterized in
terms of homomorphisms.

Proposition 3.3 Let � be a set of dependencies, let � ∈ {⊕, subset, superset}, and
let I and J be two instances. Then the following statements are equivalent.

(1) J is a universal �-repair of I w.r.t. �.
(2) J is a �-repair of I w.r.t. � and for every �-repair J ′ of I w.r.t. �, there is a

homomorphism h : J → J ′ such that h(a) = a, for every a in adom(I ) ∩
adom(J ).

Proof The direction (1) ⇒ (2) is proved by applying the definition of universal �-
repair to the variant of canonical conjunctive query of J in which the elements in
the intersection adom(I ) ∩ adom(J ) are viewed as free variables and the elements
in adom(J ) \ adom(I ) are existentially quantified. The direction (2) ⇒ (1) follows
from the preservation of conjunctive queries under homomorphisms.

Note that a similar characterization of n-universal repairs in terms of homomor-
phisms does not hold; intuitively, the reason is that, in general, an n-universal repair
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may contain more than n facts, so the proof of direction (1) ⇒ (2) does not go
through.

The notion of a universal repair is closely related to that of a nucleus, which was
introduced and studied in the context of update repairs by J. Wijsen in [35]. The
notion of a nucleus can be adapted to set-based repairs as follows.

Let � be a set of dependencies, � ∈ {⊕, subset, superset}, and I an instance.
A �-nucleus for I w.r.t. � is an instance J such that if q is a conjunctive query,
then �-Con(q, I, �) = q(J )↓. Thus, a �-universal repair for I w.r.t. � is �-nucleus
for I w.r.t. � that also happens to be a �-repair of I w.r.t. �. It should be pointed
out that, if an instance I has finitely many �-repairs w.r.t. �, then a �-nucleus for I

w.r.t. � always exists. To see this, let J be the direct product of all �-repairs of I

w.r.t. �. From the definition of the direct product and the fact that the direct prod-
uct has homomorphisms to each of its factors, it is easy to verify that for every
Boolean conjunctive query q, we have that �-Con(q, I, �) = q(J ). This does not
exactly extend to non-Boolean conjunctive queries, but comes quite close. For exam-
ple, if q is a unary conjunctive query and a is an element in the active domain
adom(I ), then a ∈ �-Con(q, I, �) if and only if the tuple (a, . . . , a) ∈ q(J ).
Therefore, one can obtain a �-nucleus J ∗ for I from J by taking an isomorphic
copy of J in which every tuple in J of the form (a, . . . , a) with a ∈ adom(I )

is identified with a, while every tuple that is not of this form is identified with a
unique element not in adom(I ). This construction is also described in [35, Defini-
tion 4.4]. See also the proof of Proposition 3.8 below, where a similar construction is
used.

Note that all �-nuclei of I w.r.t. � are homomorphically equivalent via homomor-
phisms that are the identity on elements of the active domain adom(I ) of I . However,
it is possible that every �-nucleus of I w.r.t. � is of size exponentially bigger than the
size of I .

We now give several examples illustrating universal repairs and n-universal
repairs.

Example 3.4 Let � = {R(x, y) → ∃zR(y, z)}.
First, consider the instance I = {R(1, 2), R(2, 2), R(1, 3), R(3, 4)}. Then the

instance J = {R(1, 2), R(2, 2)} is a universal subset-repair of I w.r.t. �, because it
is the only subset-repair of I .

Next, consider the instance I = {R(1, 2)}. Then I has no universal superset-repair;
indeed, this is so because every superset-repair of I must contain a cycle of some
length n0 (recall that all repairs must be finite), and therefore cannot be universal
since, as seen earlier, not every superset-repair contains a cycle of the same length n0.
However, for every n ≥ 1, there are n-universal superset-repairs of I . Specifically,
one such n-universal repair is the “loop” instance

J4n,2n = {R(i, i + 1)|1 ≤ i < 4n} ∪ {R(4n, 2n)}.

Example 3.5 Let � = {P(x) ∧ Q(x) → R(x)} and I = {P(a),Q(a)}. The instance
J = {P (a), Q(a), R(a)} is a universal superset-repair of I w.r.t. �, because it is
the only superset-repair of I . However, I has no universal subset-repair, since its
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subset-repairs are {P(a)} and {Q(a)}. In fact, I does not even have a 1-universal
subset-repair, since the queries P(x) and Q(x) return different values on the two
subset-repairs of I .

Example 3.6 Let � = {P(x) ∧ Q(y) → x = y} and I = {P(a),Q(b)}. First, I has
no superset-repair w.r.t. �, hence it has no 1-universal superset-repair. Furthermore,
it has neither a 1-universal subset-repair, nor a 1-universal ⊕-repair w.r.t. �.

The next proposition describes some basic properties of the different types of uni-
versal repairs, and the relationship between them. When we consider an isomorphism
between repairs J, J ′ of an instance I , we assume that the isomorphism h in question
is constant on the active domain of I , that is, h(a) = a for all a ∈ adom(I ).

Proposition 3.7 Let � be a set of dependencies.

1. Every instance has at most one universal superset-repair, up to isomorphism.
2. An instance has a universal subset-repair if and only if it has exactly one subset-

repair. Consequently, every instance has at most one universal subset-repair.
3. Every universal ⊕-repair of an instance I is a universal subset-repair of I .

Consequently, every instance has at most one universal ⊕-repair. In contrast, a
universal subset-repair need not be a universal ⊕-repair.

4. For every instance I and every instance J , the following statements are
equivalent:

(1) J is a universal ⊕-repair of I .
(2) J is a universal subset-repair of I and J ⊆ J ′, for every ⊕-repair J ′

of I .
(3) J is a subset repair of I and J ⊆ J ′, for every ⊕-repair J ′ of I .

Proof 1. Let J1 and J2 be universal superset-repairs of I . In particular, the active
domain of I is contained in both the active domain adom(J1) of J1 and the active
domain adom(J2) of J2. Let q1 and q2 be the canonical conjunctive queries of
J1 and J2, where, as in the proof of Proposition 3.3, the values in the active
domain adom(I ) of I are treated as free variables of the queries, and the values
in adom(Ji) \ adom(I ), i = 1, 2, are treated as existentially quantified variables
of the queries. By universality, q1(J1)↓ = q1(J2)↓ and q2(J1)↓ = q2(J2)↓. This
implies that there are homomorphisms h1 : J1 → J2 and h2 : J2 → J1 such
that h1(a) = a and h2(a) = a for all values a in the active domain of I . Conse-
quently, J1 and J2 are homomorphically equivalent, where the values from the active
domain of I are treated as constants. Furthermore, since J1 and J2 are superset-
repairs of I , we claim that each of them is a core (with the values from the active
domain of I treated as constants). This means that there is no proper retraction of
Ji to itself, i.e., we have to show that, for i = 1, 2, there is no homomorphism
h : Ji → Ji such that h is the identity on its range and h(Ji) (as a set of facts)
is properly contained in Ji . Suppose that h : Ji → Ji is a homomorphism that is
the identity on its range. Then we have that I ⊆ h(Ji) ⊆ Ji . Moreover, since �

consists of tgds and egds, Ji satisfies �, and h is the identity on its range, we have
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that h(Ji) |= � (this means that tgds and egds are preserved under retrac-
tions - see also cf. [23]). Since Ji is a superset repair of I , it follows that
h(Ji) = Ji . This completes the proof that J1 and J2 are cores. But it is a well
known fact that any two homomorphically equivalent core instances are isomorphic
(cf. [18, 25]).

2. If an instance I has exactly one subset-repair J , then, trivially, J is a universal
subset-repair. If, on the other hand, there are (at least) two different subset-repairs J1
and J2, then, by the definition of subset repairs, neither is a subset of the other, and
hence, neither can be universal. This is so because each Ji , i = 1, 2, contains a fact,
say R(a), that is not included in all subset-repairs; therefore, Ji does not correctly
compute the consistent answers for the query R(x).

3. Let J be a universal ⊕-repair of I w.r.t. �. Let J ′ be a subset-repair of I (recall
that every instance has a subset-repair). Since J is a universal ⊕-repair, every fact
R(a) of I that belongs to J also belongs also to J ′ (for, if not, then evaluating the
query q(x) = R(x) in J would not yield the consistent answers). Consequently,
J ′ ⊕ I ⊆ J ⊕ I , and therefore, by the definition of ⊕-repairs, J = J ′. Hence J is a
subset-repair.

Not every universal subset-repair is a universal ⊕-repair. To see this, consider
the set � = {P(x) → ∃y Q(y), P (x) ∧ Q(x) → R(x)} and the instances I =
{P(a),Q(a)} and J = {Q(a)}. Then J is a universal subset-repair of I , but not a uni-
versal ⊕-repair of I , as may be seen by considering the ⊕-repair J ′ = {P(a),Q(b)}
and the query q(x) = Q(x). In fact, this shows that J is not even a 1-universal
⊕-repair of I .

4. For the implication (1) ⇒ (2), if J is a universal ⊕-repair of I , then, as
shown in Part 3, J is a universal subset-repair of I . Moreover, by ⊕-universality,
J is contained in every ⊕-repair of I . The implication (2) ⇒ (3) is obvi-
ous. Finally, for the implication (3) ⇒ (1), assume that J is a subset repair
of I that is contained in every ⊕-repair of I , and let q be a conjunctive query.
Since every subset repair is also a ⊕-repair, we have that ⊕-Con(q, I, �) ⊆ q(J )↓ =
q(J ) (the equality holds because J is a subinstance of I ). Moreover, if J ′ is an arbi-
trary ⊕-repair of I , then we have that q(J ) ⊆ q(J ′), since J ⊆ J ′ and conjunctive
queries are monotone. Thus, q(J ) ⊆ ⊕-Con(q, I, �) and so ⊕-Con(q, I, �) =
q(J )↓ = q(J ).

Note that Part 2 and Part 3 of Proposition 3.7 hold with “n-universal” in place of
“universal”, where n is an arbitrary positive integer. The reason is that universality
was applied only to queries with a single atom. In particular, the counterexam-
ple in the proof of Part 3 shows that a universal subset-repair need not even be
a 1-universal ⊕-repair. Note also that the notion of a universal superset-repair
is intimately linked to the notion of a core universal solution in data exchange
[18], as seen in the proof of Proposition 3.7. We will further exploit this con-
nection when we consider superset-repairs for weakly acyclic sets of tgds and
egds.

Proposition 3.8 Let � be a set of dependencies. Every instance that has a superset-
repair w.r.t. � has an n-universal superset-repair w.r.t. �, for each positive integer
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n.1 Moreover, there is a set of tgds � for which there is no algorithm that, given an
instance I , computes a 1-universal superset repair of I .

Proof Let � be a set of dependencies, let I be an instance, and let n be a natural
number. Let Qn the set of all pairs 〈q, a〉 where q is a conjunctive query with at
most n atoms, and a ∈ adom(I )k (where k ≥ 0 is the arity of q) be such that
a �∈ superset-Con(q, I, �). For each 〈q, a〉 ∈ Qn, let J〈q,a〉 be a superset-repair of I

w.r.t. � such that a �∈ q(J〈q,a〉). Let J× be the direct product �{J〈q,a〉 | 〈q, a〉 ∈ Qn}
(cf. [16]), and let J be an isomorphic copy of J× in which each “diagonal element”,
i.e., each element of the form (a, a, . . . , a) is replaced by a.

Claim 1 I ⊆ J and J |= �.

First, we prove that I is a subset of J . Every fact R(a1, . . . , am) of I must belong
to all superset-repairs of I , from which it follows, by the definition of direct products,
that R((a1, . . . , a1), . . . , (am, . . . , am)) belongs to J×, and therefore R(a1, . . . , am)

belongs to J .
Next we show that � is true in J . This follows from the known fact that tgds

and egds are preserved under taking direct products [16]: whenever I1, . . . , In are
instances satisfying a set of tgds and egds �, then the direct product �iIi satisfies
�. This finishes the proof of the Claim.

It follows from Claim 1 that there is some superset-repair J0 of I such that J0 ⊆ J .
We prove that J0 is a n-universal superset-repair of I w.r.t. �. That is, for all queries
q with at most n atoms,

superset-Con(q, I, �) = q(J0)↓.

One inclusion follows from the fact that J0 is a superset-repair of I

w.r.t. �. For the other inclusion, we reason by contraposition: suppose that a �∈
superset-Con(q, I, �). Then, by construction, a �∈ q(J〈q,a〉). Let h : J× → J〈q,a〉 be
the natural map that sends each tuple to its value at the coordinate corresponding to
〈q, a〉. Let h′ : J → J〈q,a〉 be the composition of h with the isomorphism between
J× and J . In other words,

h′(x) =
{

a if x = a for some a ∈ adom(I )

h(x) otherwise

Since h : J× → J〈q,a〉 is a homomorphism, we have that h′ : J → J〈q,a〉 is a
homomorphism as well. Since conjunctive queries are preserved by homomorphisms,
it follows that a �∈ q(J ). Since J0 ⊆ J and conjunctive queries are monotone, this
implies that a �∈ q(J0).

1Proposition 7.1 in [33] asserts the existence of a set of tgds � and an instance I , such that I has no
1-universal superset-repair w.r.t. �. Unfortunately, there was a mistake in the proof of this proposition.
Proposition 3.8 clarifies the situation (note that, by Proposition 2.7, for sets of tgds �, every instance has
a superset-repair).
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We now proceed to the second part of the proposition. It was shown in [10] that
there is a set of tgds � and a Boolean conjunctive query q consisting of a single atom,
such that the following problem is undecidable:

Given an instance I , decide whether, for every instance J |= � with I ⊆ J , we
have that q is true in J .

Using the notation used in Proposition 2.8, this is precisely the problem of comput-
ing the certain answers of q with respect to the schema mapping M� . It follows
that there is no effective algorithm for computing a 1-universal superset-repair
with respect to �, since, by Proposition 2.8, such an algorithm would imme-
diately yield an algorithm for computing the certain answers of q with respect
to �.

4 LAV tgds

The main result of this section is that if � is a set of LAV tgds and q is a conjunc-
tive query, then there is a polynomial-time algorithm for computing the �-consistent
answers of q on a given instance I w.r.t. �, where � ∈ {⊕, subset, superset}. We
also show that there is a polynomial-time algorithm for the �-repair checking prob-
lem w.r.t. �, where � ∈ {⊕, subset, superset}. In the special case in which � is a set
of inclusion dependencies, the tractability of the subset-repair checking problem and
the subset-consistent query answering problem for conjunctive queries was estab-
lished in [14]. The tractability of the subset and the ⊕-repair checking problem for
a weakly acyclic set of LAV tgds was shown in [2] and was subsequently extended
to the broader class of semi-LAV sets of tgds [24] (which is still a subclass of the
class of weakly acyclic sets of tgds). Finally, the ⊕-consistent query problem for
sets of inclusion dependencies and universal constraints was studied in [9], where
disjunctive logic programming was used to obtain the ⊕-consistent answers, but no
complexity results were established.

In obtaining our tractability results, we will use extensively the notions of
universal repair and of n-universal repair, n ≥ 1, for sets of LAV tgds.

We say that a set of dependencies � is closed under union if for all instances I1, I2
such that I1 |= � and I2 |= �, we have that I1 ∪ I2 |= �. It is well known that every
set of LAV tgds is closed under union (e.g., see [2, 12]). The next result shows that,
in a certain sense, this property is characteristic of LAV tgds. For completeness, we
also include a proof that sets of LAV tgds are closed under union.

Theorem 4.1 Every set of LAV tgds is closed under union. Furthermore, if � is a set
of tgds that is closed under union, then � is logically equivalent to a set of LAV tgds.

Proof Suppose that � is a set of LAV tgds and that I1 and I2 are instances such that
both satisfy �. Let ∀x(R(x) → ∃yψ(x, y) be a tgd in �. Then, for every tuple of
values a such that R(a) holds in I1 ∪ I2, we have that R(a) already holds in I1 or I2,
and hence ∃yψ(a, y) holds in I1 or in I2, which implies that it also holds in I1 ∪ I2.
This shows that I1 ∪ I2 |= �.
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We now prove that the converse holds. Let � be a set of tgds that is closed under
union, and let R be the schema of �. We define �′ as the (finite) set of all LAV tgds
over R implied by � and containing at most n atoms in the right-hand side, where n

is the maximum number of atoms in the right-hand side of a tgd in �. By definition,
� logically implies every LAV tgd in �′. Conversely, consider any tgd in � of the
form

σ = ∀x(φ(x) → ∃yψ(x, y))

We will show that �′ |= σ . Let I be the canonical instance of φ(x), that is, the
instance whose active domain consists of the variables in x and whose facts are the
atoms in φ. Let g be the natural variable assignment for x, i.e., the map that sends
every variable in x to itself.

For each fact f of I , let Jf be an n-universal superset-repair of {f } with respect to
� (using Proposition 3.8), using all fresh elements except for the elements belonging
to the fact f itself. Finally, let J = ⋃{Jf | f is a fact of I }. It follows from the
closure under union that J |= �. Furthermore, by construction, we have that I ⊆ J .
In particular, we have that J |= φ(x) under the variable assignment g, and therefore,
ψ(x, y) must be satisfied under some variable assignment g′ extending g.

In what follows, the basic idea will be that we split the conjunctive query
∃yψ(x, y) into different parts, such that each part is mapped (by g′) into a differ-
ent “component” Jf of J . If it happens to be the case that g′ maps each existential
variable to a value outside of adom(I), then this will turn out to be easy to do.
In general, it may be the case that g′ maps some of the variables y to elements of
adom(I ). However, if this is the case, then we can find a substitution instance of ψ

that is satisfied, and where those existential variables have been replaced some of the
universally quantified variables. Let ∃y′ψ ′(x, y′) be a maximal substitution instance
(i.e., replacing as many existentially quantified variables by universal quantified vari-
ables as possible) for which it is the case that J |= ∃y′ψ ′(x, y′) under the variable
assignment g, and let h be a variable assignment for x and y′ extending g such that
ψ ′(x, y′) is satisfied in J under h. Note that by construction, h(x) = x for all x ∈ x
and h(y) �∈ adom(I ) for all y ∈ y′.

We now label each atom A of ψ by a fact f of I such that h(A) belongs to Jf

(note that, by construction of J , we can always find such a fact. If there are more than
one, we choose one arbitrarily). Observe that, if two atoms of ψ receive a different
label, they cannot share an existentially quantified variable (this is precisely because
all existential variables are mapped by h to values outside adom(I), which must
therefore belong to a unique “component” Jq of J ). For each fact f of I , let qf be
the conjunctive query that is obtained as the subquery of ∃y′ψ(x, y′) consisting of the
atoms labeled f . Then by construction, qf is a conjunctive query that is satisfied in
Jf under the natural variable assignment g. Since qf has at most n atoms and Jf is an
n-universal superset-repair of {f }, it follows that qf is true in every superset-repair
of {f } with respect to �, under the natural variable assignment g. But this means that
� implies the LAV tgd ∀x(f (x) → q(x)), and hence the latter belongs to �′. This
argument applies to each fact f of I . It follows that, whenever φ(x) is satisfied in an
instance satisfying �′, then the LAV tgds in �′ ensure that ∃y′ψ(x, y′), and hence
also ∃yψ(x, y) is satisfied. In other words, �′ implies σ .
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Closure under union implies that every instance has a universal ⊕-repair. In fact,
the following characterization holds.

Proposition 4.2 Let � be a set of dependencies. The following statements are
equivalent:

(1) � is closed under union.
(2) Every instance has a universal ⊕-repair w.r.t. �.
(3) Every instance has a universal subset-repair w.r.t. �.

Proof For the direction (1) ⇒ (2), let � be a set of tgds that is closed under union,
and let I be an instance. Since the empty instance satisfies �, we have that I has
at least one subset-repair w.r.t. �. In fact, I has a unique subset-repair.2 For, if J1
and J2 are subset-repairs of I , then J1 ∪ J2 is also a subinstance of I satisfying �,
and hence, by the definition of repairs, J1 = J1 ∪ J2 = J2. Clearly, the unique
subset-repair J of I is a universal subset-repair of I . Furthermore, we claim that J

is a universal ⊕-repair of I . Let q be a conjunctive query. We have to show that
⊕-Con(q, I, �) = q(J )↓. From the definition of ⊕-Con(q, I, �) and since J is a ⊕-
repair of I , it follows that ⊕-Con(q, I, �) ⊆ q(J )↓. For the other inclusion, let K be
a ⊕-repair of I . We have to show that q(J )↓ ⊆ q(K). Since J and K are ⊕-repairs,
we have J � � and K � �. By closure under union, we have that also J ∪ K � �.
As J ⊆ I , we have I ⊕ (J ∪ K) ⊆ I ⊕ K . Since K is a ⊕-repair of I , this can only
happen if K ∪ J = K , which means that J ⊆ K . It follows that q(J )↓ ⊆ q(K).
Hence, J is a universal ⊕-repair of I .

The direction (2) ⇒ (3) follows immediately from Proposition 3.7.
[3⇒ 1] Let I1, I2 be instances satisfying �. Towards a contradiction, suppose that

I1 ∪ I2 does not satisfy �. Let J be the universal subset-repair of I1 ∪ I2. Then J

must omit some fact of I1 ∪ I2. Without loss of generality, we may assume that J

omits a fact of I1. Since I1 satisfies �, there must be a subset-repair of I1 ∪ I2 that
contains all facts in I1. But this subset-repair must then be incomparable to J , which
means that J is not the only subset-repair of I , and hence, by Proposition 3.7, J is
not a universal subset-repair of I , a contradiction.

Corollary 4.3 If � is a set of LAV tgds, then every instance I has a unique subset
repair, which is also the unique universal subset-repair and the unique universal
⊕-repair of I w.r.t. �.

Corollary 4.3 implies, in particular, that if � is a set of LAV tgds, then, for all
conjunctive queries q and instances I , ⊕-Con(q, I, �) = subset-Con(q, I, �).

Theorem 4.4 Let � be a set of LAV tgds. There is a polynomial-time algorithm that,
given an instance I , computes the unique universal subset-repair of I w.r.t. � (which
is also the unique universal ⊕-repair of J w.r.t. �).

2For inclusion dependencies, this fact was pointed out in [14].
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Proof Let I be an instance. By Corollary 4.3, I has a unique subset repair I0, which
is also both the unique universal subset-repair and the unique universal ⊕-repair of
I . We will show how to compute I0 in polynomial time. We start with a definition.
Let τ be a LAV tgd of the form ∀x (R(x) → ∃yψ(x, y)). We say that a fact t falsifies
the LAV tgd τ in an instance J if t is in J , it is of the form R(a), and ∃yψ(a, y) is
false in J .

The algorithm works as follows. It starts with the instance I . As long as the current
instance contains a fact R(a) that falsifies some tgd in �, it removes it from the
current instance.

Clearly, the algorithm runs in time polynomial in the size of I . It is easy to show
by induction that, at any time of the run of the algorithm, the current instance is a
superset of the unique subset-repair I0 of I . Hence, if J is the instance obtained at
the end of the run of the algorithm, we have that I0 ⊆ J . Moreover, since there is no
tuple falsifying a tgd in � in J , we have that J satisfies �. Since J � �, I0 ⊆ J ⊆ I ,
and I0 is a subset-repair of I , we conclude that I0 is equal to J .

The situation for superset-repairs is very different. Example 3.4 shows that an
instance may have infinitely many superset-repairs of arbitrarily large size, and it
may have no universal superset-repairs. Nevertheless, we will show that if � is a
set of LAV tgds then, for every instance I and every n ≥ 1, there is an n-universal
superset-repair for I w.r.t. � that can be computed in polynomial time in the size of
I . For this, we need the following lemma.

Lemma 4.5 Let � be a set of LAV tgds. There is a polynomial time algorithm that,
given instances I and J with I ⊆ J and J |= �, computes a superset-repair K of I
w.r.t. � such that K ⊆ J .

Proof Figure 1 depicts an algorithm that, given I and J with I ⊆ J and J � �,
either verifies that J is a repair of I or computes a set K such that I ⊆ K � J and
K � �. By applying repeatedly the algorithm until it outputs a repair, we obtain the
result.

By Theorem 4.4, computing the subset-repair of an instance is in polynomial time.
It follows that the algorithm in Fig. 1 runs in time polynomial in the sizes of I and J .

We prove the correctness of the algorithm. Suppose first that the algorithm outputs
an instance K . We have to show that I ⊆ K � J and K � �. By construction, there
exists a fact R(a) in J\I such that K is the subset-repair of J\{R(a)}. This implies
that K � � and K � J . Moreover, K contains I , as the algorithm returned K .

Fig. 1 Algorithm for the
superset-repair checking
problem with respect to a set of
LAV tgds
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Next, assume that J is not a superset-repair. We have to prove that the algorithm
does not output “J is a repair”. Since J is not a superset-repair, there exists an
instance J0 such that I ⊆ J0 � J and J0 � �. Take R(a) in J\J0. Let L be the
subset-repair of J\{R(a)}.

Consider the instance L0 := L ∪ J0. By Theorem 4.1, L0 � �. Moreover, L0 ⊆
J\{R(a)} and J ⊕L0 ⊆ J ⊕K . Since K is a subset-repair of J , this can only happen
if L0 = K . That is, J0 ⊆ L. Together with I ⊆ J0, we obtain I ⊆ L. Recall that
L is the subset-repair of J\{R(a)}. This means that, when the algorithm enters the
loop and picks R(a), it stops running and returns the instance L. In particular, the
algorithm does not output “J is a repair”.

Theorem 4.6 Let � be a set of LAV tgds, and let n ≥ 1. There is a polynomial time
algorithm that, given an instance I , computes an n-universal superset-repair of I

w.r.t. �.

Proof Let R be the schema consisting of the relations in �. We may safely restrict
attention to instances over R (because facts involving relations outside of R do not
require repairing).

By Propositions 3.8 and 2.7, every instance I has an n-universal superset-repair
w.r.t. �. Using the fact that � consists of LAV tgds, we can furthermore show that
an n-universal superset-repair of a given instance can be effectively constructed:
let q be any conjunctive query over R with at most n atoms, and let a be a tuple
from adom(I) whose length is the arity of q. Recall from Proposition 2.8 that
a ∈ superset-Con(q, I, �) holds if and only if a is belongs to q(J ) for all instances
J extending I and satisfying �. It was shown in [5, 10] that the latter is decidable
in double exponential time, and, moreover, when a �∈ superset-Con(q, I, �), a coun-
terexample (i.e., an instance J |= � such that I ⊆ J and a �∈ q(J )) can be effectively
constructed (this was shown in [5, 10] for guarded tgds, which form a proper gen-
eralization of LAV tgds). These facts immediately turn the construction described in
the proof of Proposition 3.8 into an effective procedure.

In the remainder of the proof, we show that, for fixed � and n, we can compute
n-universal superset-solutions in polynomial time.

We first consider instances consisting of a single fact (over R). Let I = {R(a)},
where R(a) is some fact over R. By Proposition 3.8, I has an n-universal superset-
repair, which we will denote by JR(a). For each fact R(a), we choose some suitable
such JR(a). There are only finitely many distinct facts over R, up to isomorphism
(i.e., up to a one-to-one renaming of values), and therefore the map that sends each
fact R(a) to the chosen instance JR(a) can be viewed as a finite object (by assuming
that, whenever two facts f, f ′ are isomorphic, then the chosen instances Jf and Jf ′
are isomorphic as well). We can think of it as a lookup table that will be used by the
algorithm below to efficiently construct n-universal repairs for instances consisting
of a single fact. Note that the lookup table does not depend on the input instance (it
depends only on �, which is fixed) and hence constructing the lookup table is not
part of the computation performed by the algorithm.

We now proceed with the description of the algorithm. Given as input an arbitrary
instance I , the algorithm constructs, in polynomial time, an instance J , namely, the
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union of all instances JR(a) where R(a) is a fact belonging to I . We assume here that
each instance JR(a) contains, besides a, only fresh values not occurring in any of the
other instances.

Clearly, we have that I ⊆ J . Since LAV tgds are closed under union, we have
that J |= �. In what follows, we will show that, for every query q of size at
most n, and for every tuple a from the active domain of I , if a ∈ q(J ) then
a ∈ superset-Con(q, I, �) in I . By Lemma 4.5, we can construct, in polynomial
time, a subinstance J ′ of J is a superset-repair of I . We will show that J ′ is in fact
an n-universal superset-repair of I .

Let a ∈ q(J ) where q is a conjunctive query of size at most n and a is a
tuple from the active domain of I . For the sake of a contradiction, assume that
a �∈ superset-Con(q, I, �). We may assume that q is a minimal size query for which
this happens.

Let h be a witnessing homorphism from q to J . We know that h is injective, for,
otherwise, we could replace q by a smaller query. We also know that the image of h

is entirely contained in a single part JF of J (where F is a fact of I ). This is because,
otherwise, q could be divided into two subqueries, one whose image is contained in
some JF and the other containing the rest of the query q. One of these two parts
would then be a smaller counterexample.

But, since the image of h is entirely contained in JF , and we know that JF is
an n-universal superset-repair of {F }, we have that a ∈ superset-Con(q, {F }, �) ⊆
superset-Con(q, I, �).

The proof of Theorem 4.6 also shows that, given a set of LAV tgds �, a natural
number n ≥ 1, and an instance I , we can effectively compute an n-universal superset-
repair of I w.r.t. �.

The main result of this section is now an immediate consequence of Proposi-
tion 3.2, Theorems 4.4, and 4.6.

Theorem 4.7 For every set � of LAV tgds, for every conjunctive query q, and for � ∈
{⊕, superset, subset}, the �-consistent query answering problem w.r.t. � is solvable
in polynomial time.

The Repair-Checking Problem We now consider the repair checking problem for sets
of LAV tgds. First, we show how the ⊕-repair checking problem can be reduced to
the subset-repair checking problem and the superset-repair checking problem.

Lemma 4.8 Let � be a set of LAV tgds, and let I and J be two instances. Then the
following statements are equivalent:

1. J is a ⊕-repair of I w.r.t. �.
2. J is a superset-repair of I ∩ J w.r.t. � and J is a subset-repair of I ∪ J w.r.t. �.

Proof Let � be a set of LAV tgds, and let I and J be two instances. For the direction
(1) ⇒ (2), assume that J is a ⊕-repair of I . First, we prove that J is a superset-repair
of I ∩ J . Let K0 be an instance such that K0 � � and I ∩ J ⊆ K0 ⊆ J . We have
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to show that K0 = J . As I ∩ J ⊆ K0 ⊆ J , we also have I ⊕ K0 ⊆ I ⊕ J . Since
K0 � � and J is a ⊕-repair of I , this can only happen if K0 = J .

Next we prove that J is a subset-repair of I ∪ J . Let K1 be an instance such that
K1 � � and J ⊆ K1 ⊆ I ∪J . We have to show that J = K1. Since J ⊆ K1 ⊆ I ∪J ,
we have I ⊕ K1 ⊆ I ⊕ J . Putting this together with the facts that K1 � � and J is a
⊕-repair of I , we obtain K1 = J .

For the direction (2) ⇒ (1), assume that J is a superset-repair of I ∩ J w.r.t. �

and that J is a subset-repair of I ∩ J w.r.t. �. Let K be an instance such that K � �

and I ⊕ K ⊆ I ⊕ J . We have to show that K = J . Since I ⊕ K ⊆ I ⊕ J , we have

J ∩ I ⊆ K ∩ I and K\I ⊆ J\I.

As K\I ⊆ J\I , we have K ∪ J ⊆ I ∪ J . Moreover, since K � � and J � �, it
follows from Theorem 4.1 that K ∪ J � �. Recall that J is a subset-repair of I ∪ J .
Since K ∪ J � � and J ⊆ K ∪ J ⊆ I ∪ J , this implies that J = K ∪ J . Hence,
K ⊆ J .

Recall that J ∩ I ⊆ K ∩ I . Putting everything together, we have I ∩ J ⊆ K ⊆ J .
Since K � � and J is a repair of I ∩ J , this implies K = J .

Theorem 4.9 Let � be a set of LAV tgds, and let � ∈ {⊕, superset, subset}. The
�-repair checking problem w.r.t. � is solvable in polynomial time.

Proof By Lemma 4.8, it suffices to give polynomial-time algorithms for the
superset-repair checking problem and the subset-repair checking problem. The fact
that the subset-repair checking problem is solvable in polynomial time follows
directly from Theorem 4.4 (since it suffices to check for equality with the universal
subset-repair). Finally, the fact that the superset-repair checking problem is solvable
in polynomial time is a direct consequence of Lemma 4.5

Adding egds The tractability results concerning LAV tgds are optimal, in the sense
that if we consider sets of LAV tgds and egds, then most of them do not remain
true. We discuss first the repair-checking problem for sets of LAV tgds and egds.
In [14], it was shown that there is a set consisting of a cyclic inclusion dependency
and a functional dependency for which the subset-repair checking problem is coNP-
complete. In [2], the intractability of subset-repair checking (and ⊕-repair checking)
was shown to hold for the union of an acyclic set of inclusion dependencies with
a set of egds. However, the superset-repair checking problem can still be solved in
polynomial time. This follows from the next lemma combined with Theorem 4.9.

Lemma 4.10 Let � be a set of tgds and egds, and let I and J be two instances such
that I ⊆ J and J � �. Then J is a superset-repair of I w.r.t. � if and only if J is a
superset-repair of I w.r.t. the set �1 consisting of all tgds in �.

Proof Assume that � = �1 ∪ �2, where �1 is a set of tgds and �2 is a set of egds.
Let I and J be two instances such that I ⊆ J and J � �1 ∪ �2. It is clear that if J

is a superset-repair of I w.r.t. �1, then J is a superset-repair of I w.r.t. �1 ∪ �2.
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For the other direction, assume that J is a superset-repair of I w.r.t. �1 ∪ �2.
Towards a contradiction, assume that J is not a superset-repair of I w.r.t. �1. Hence,
there is an instance J ′ such that I ⊆ J ′ � J and J ′ � �1. Since �2 is a set of egds,
J � �2 and J ′ ⊆ J , we also have that J ′ � �2. So, J ′ is a superset of I such that
J ′ ⊆ J and J ′ � �1 ∪ �2. This contradicts the fact that J is a superset-repair of I

w.r.t. � = �1 ∪ �2.

Next, we comment on the consistent query answering problem for sets of LAV
tgds and egds. Theorem 4.7 in [14] shows that there is a set � of inclusion depen-
dencies and functional dependencies, and a conjunctive query q such that computing
the subset-consistent answers of q w.r.t. � is a �

p

2 -complete problem. Furthermore,
as regards the combined complexity of consistent query answering, it follows from
Theorem 5 in [31] that the following problem is undecidable: given a set �

of LAV tgds and egds, a conjunctive query q and an instance I , compute the
superset-consistent answers of q on I w.r.t. �. We leave it as an open problem
whether or not this undecidability result still holds for some fixed conjunctive
query q and some fixed set � of LAV tgds and egds. It is also unknown whether
or not the data complexity of ⊕-consistent answers for conjunctive queries is
decidable. As mentioned in the Introduction, the ⊕-consistent answering prob-
lem for unions of conjunctive queries and for sets of inclusion dependencies and
functional dependencies was shown to be undecidable in combined complexity
[11].

Finally, if we consider LAV tgds together with egds, there might not always exist
a universal (or even 1-universal) subset-repair, ⊕-repair or superset-repair, as seen
in Example 3.6.

5 GAV tgds

In this section, we investigate the existence and efficient computability of univer-
sal repairs for GAV tgds, we review known complexity results for repair checking
and consistent query answering for GAV tgds, and we provide new matching lower
bounds. Furthermore, toward the end of the section, we will briefly consider the
addition of egds, and will also discuss semi-LAV sets of tgds; as mentioned earlier,
semi-LAV sets of tgds were introduced in [24].

Recall that in the case of LAV tgds, every instance has a unique subset-repair,
which is also the unique universal ⊕-repair. This is far from true for GAV tgds. First
of all, Example 3.5 shows that there is a set � of GAV tgds and an instance I such
that I has no 1-universal subset repair w.r.t. �; therefore, Proposition 3.7 implies that
I also has no 1-universal ⊕-repair w.r.t. �. In addition, even if an instance happens
to have a universal subset-repair, this may not be a universal ⊕-repair, as revealed by
the next example.

Example 5.1 Consider the set

� = {P(x) ∧ Q(y) → M(y), M(x) → P(x)}
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and the instance I = {M(a), Q(b)}. The instance J = {Q(b)} is then the only subset-
repair of I , hence it is also a universal subset-repair of I . However, J is not a universal
⊕-repair of I , as can be seen by considering the ⊕-repair J ′ = {M(a), P (a)} and the
query Q(x). This also shows that, unlike the case of LAV tgds, the subset-consistent
answers of a conjunctive query w.r.t. a class of GAV tgds do not always coin-
cide with the ⊕-consistent answers of the same query w.r.t. the same class of GAV
tgds.

Unlike the case for subset-repairs and ⊕-repairs, we will show that, for sets of
GAV tgds, every instance has a universal superset-repair. In fact, every instance
has a unique superset-repair; moreover, the latter property is characteristic for
GAV tgds (this will be analogous to the characterization of LAV tgds given in the
previous section). To state and proof this characterization, we need a definition
and a lemma. We say that a set � of dependencies is closed under intersec-
tion if for all instances I1, I2 such that I1 |= � and I2 |= �, we have that
I1 ∩ I2 |= �. Closure under intersection will turn out to be equivalent to the exis-
tence of a unique superset-repair, and this characterizes the GAV tgds among all
tgds.

Lemma 5.2 Let� be a set of tgds and let I be an instance that has a unique superset-
repair J w.r.t. �. If I ′ is an instance and J ′ is a superset-repair of I ′ w.r.t. �, then
every homomorphism h : I → I ′ can be extended to a homomorphism h′ : J → J ′.

Proof Here, adom(K) will denote the active domain of an instance K , while rng(h)

will denote the range of the function h. Let J ′
h be the following instance:

• adom(J ′
h) = adom(I ) ∪ (adom(J ′) \ rng(h)).

• For every fact R(b1, . . . , bn) of J ′, we populate J ′
h with all possible facts that

can be obtained by replacing each value bi by a value ai ∈ dom(I) such that
h(ai) = bi , if bi ∈ rng(h), or leaving bi untouched, otherwise.

Since h(I) ⊆ I ′ ⊆ J ′, we have that I ⊆ J ′
h. Let h′ be a function defined on

adom(J ′
h) in the following way: if a ∈ dom(I), then h′(a) = h(a); if a �∈ dom(I)

(but a ∈ adom(J ′) \ rng(h)), then h′(a) = a. From the construction of J ′
h and

the definition of h′, it follows that h′ is a homomorphism from J ′
h to J ′. To com-

plete the proof, it suffices to show that J ′
h |= �. Indeed, once we have shown

this, it will follow that J ⊆ J ′
h, because I ⊆ J ′

h and J is the unique superset-
repair of I ; consequently, the restriction of h′ on adom(J ) is a homomorphism from
J to J ′.

To show that J ′
h |= �, consider an arbitrary tgd from �, say,

φ(x) → ∃yψ(x, y).

Suppose that J ′
h satisfies φ(a) for some tuple of values a. Then, by the construction

of J ′
h, we have that J ′ satisfies φ(h′(a)), and hence, it also satisfies ψ(h′(a),b) for

some values b = b1, . . . , bm. Let a′ = a′
1, . . . , a

′
m be a tuple of values such that

h′(a′
i ) = bi , for 1 ≤ i ≤ m. Then, by construction, J ′

h satisfies ψ(a, a′).
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Theorem 5.3 Let � be a set of tgds. Then the following statements are equivalent:

1. Every instance has a unique (universal) superset-repair w.r.t. �.
2. � is closed under intersection.
3. � is logically equivalent to a set of GAV tgds.

Proof The proof goes round-robin.
[1⇒3] Assume that every instance I has a unique superset-repair J . It follows

that J can only contain values that come from the active domain of I (otherwise,
by taking an isomorphic copy in which the values outside of the active domain
of I are replaced by fresh values, we would refute the uniqueness of the repair).
Consider a tgd τ ∈ � of the form φ(x) → ∃yψ(x, y), where ψ is a conjunc-
tion of atomic formulas. Let Iφ be the canonical instance of φ(x), and let Jφ be
the unique superset-repair of Iφ . Since Jφ is a repair of Iφ , it satisfies the tgd τ .
It follows that ∃yψ(x, y) is satisfied in Jφ under the natural assignment. Since Jφ

contains only values that are from the active domain of Iφ , this means that Jφ satis-
fies ψ(x, x′) for some tuple of values x′ from the active domain of Iφ . Let τ̂ be the
dependency

φ(x) → ψ(x, x′),

which can be equivalently written as a finite set of GAV tgds, and let �̂ = {̂τ | τ ∈
�}. We claim that � and �̂ are logically equivalent. The fact that �′ logically implies
� follows directly from the construction of �′. For the other direction, suppose that
I |= � and I |= φ(a) for some tuple of values a. Let Iφ be again the canonical
instance of φ(x). Then the function h : x �→ a is a homomorphism from Iφ to
I . Since Jφ is the unique superset-repair of Iφ w.r.t. �, Lemma 5.2 implies that h

extends to a homomorphism from Jφ to every superset-repair of I . Since I satisfies
�, it is its own repair, which means that I satisfies ψ(a, h(a)). Therefore, I |= τ̂ .

[3⇒ 2] Let � be a set of GAV tgds. Let I1 |= � and I2 |= �, and suppose that,
for some GAV tgd t ∈ � of the form

φ(x1, . . . , xn) → R(xi1 , . . . , xik )

it holds that I1 ∩ I2 |= φ(a1, . . . , an) for some values a1, . . . , an. Then both I1 and
I2 satisfy φ(a1, . . . , an); since I1 and I2 satisfy �, we have that I1 and I2 satisfy
R(ai1 , . . . , aik ); thus, the fact R(ai1 , . . . , aik ) belongs to the intersection of I1 and I2.

[2⇒ 1] Let � be a set of tgds that is closed under intersection. Let I be an instance
and let J be the instance consisting of all possible facts over the active domain of
I . Then I ⊆ J and J |= �, hence a superset-repair of I must exist. Suppose that
I has two distinct superset-repairs J1 and J2. By closure under intersection, J1 ∩
J2 |= �, hence the properties of superset-repairs imply that J1 = J1 ∩ J2 = J2, a
contradiction.

The classical chase procedure from dependency theory (see [1]) provides a method
for efficiently computing the unique superset-repair of an instance w.r.t. a set of GAV
tgds.
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Theorem 5.4 Let � be a set of GAV tgds. There is a polynomial time algorithm that,
given an instance I , computes the unique (universal) superset-repair of I w.r.t. �.

We now move to consistent query answering. Let � be a set of GAV tgds and
let q be a conjunctive query. The preceding Theorem 5.4 implies immediately that
the superset-consistent query answering problem for q w.r.t. � is solvable in polyno-
mial time. Staworko and Chomicki [32] showed that both the subset-consistent query
answering problem and the ⊕-consistent query answering problem for q w.r.t. � are
in coNP. This will also follow from Theorem 6.2 in the next section, which implies
that the size of every ⊕-repair of an instance I w.r.t. a set of GAV tgds is bounded
by a polynomial in the size of I . In [32], it is also shown that there is a conjunctive
query q and a set � consisting of GAV tgds and egds such that the ⊕-consistent query
answering problem for q w.r.t. � is coNP-complete. Our next result improves on this
lower bound by showing that it can hold even for a set consisting of a single GAV tgd.

Theorem 5.5 There is a set � consisting of a single GAV tgd and there is a conjunc-
tive query q such that both the subset-consistent query answering problem and the
⊕-consistent query answering problem for q w.r.t. � are coNP-complete.

Proof We produce a GAV tgd τ , a conjunctive query q, and a polynomial-time
reduction from the complement of POSITIVE 1-IN-3-SAT to the problem of find-
ing the ⊕-consistent answers of q w.r.t. {τ }. Recall that POSITIVE 1-IN-3-SAT is
the following NP-complete problem [22]: given a Boolean formula φ in conjunctive
normal form and such that each clause is a disjunction of the form (x1 ∨ x2 ∨ x3) of
three positive literals, is there a truth assignment that makes true exactly one variable
in every clause?

Let τ be the following GAV tgd:

∀x, u, u′(P (x, u) ∧ P(x, u′) → E(u, u′))

and let q be the following conjunctive query:

∃x1, x2, x3, u1, u2, u3(R(x1, x2, x3) ∧ P(x1, u1)

∧ P(x2, u2) ∧ P(x3, u3) ∧ S(u1, u2, u3)).

The intuition behind the relation symbols is as follows: P encodes truth values for
the variables in a given Boolean formula, while E is used to simulate equality. The
tgd τ expresses that each variable is assigned at most one truth value.

The relation R encodes every clause (x1 ∨ x2 ∨ x3) occurring in a formula in con-
junctive normal form such that each clause is a disjunction of three positive literals.
The relation S will consist of the triples in {0, 1}3\{(1, 0, 0), (0, 1, 0), (0, 0, 1)} . The
conjunctive query q expresses that there are a clause (x1 ∨ x2 ∨ x3) and truth values
assigned to x1, x2 and x3 such that it is not the case that exactly one variable is true
in the clause (x1 ∨ x2 ∨ x3).

Let φ be a formula of the form

(x11 ∨ x12 ∨ x13) ∧ · · · ∧ (xn1 ∨ xn2 ∨ xn3),
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where for all 1 ≤ i ≤ n and for all 1 ≤ j ≤ 3, xij is a variable. We denote by V ar

the set {xij | 1 ≤ i ≤ n, 1 ≤ i ≤ 3}. We construct an instance I such that

⊕ -Con(q, I, �) = true iff φ /∈ POSITIVE 1-IN-3-SAT. (1)

The instance I is defined as follows:

RI = {(xi1, xi2, xi3) | 1 ≤ i ≤ n},
P I = {(xij , 0), (xij , 1) | 1 ≤ i ≤ n, 1 ≤ j ≤ 3},
EI = {(1, 1), (0, 0)},
SI = {0, 1}3\{(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

In order to prove the implication from left to right of (1), suppose that
⊕-Con(q, I, �) = true. Let V : Prop → {0, 1} be an assignment. We have to show
that it is not the case that exactly one variable is true in every clause. That is, there
exists a conjunct

xi1 ∨ xi2 ∨ xi3

of φ such that (V (xi1), V (xi2), V (xi3)) does not belong to
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

We define an instance J0 in the following way:

RJ0 = {(xi1, xi2, xi3) | 1 ≤ i ≤ n},
P J0 = {(xij , V (xij )) | 1 ≤ i ≤ n, 1 ≤ j ≤ 3},
EJ0 = {(1, 1), (0, 0)},
SJ0 = {0, 1}3\{(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

We can check that J0 is a ⊕-repair of I with respect to �. Since the ⊕-consistent
answer of q is true, q is true in J0. Hence, there are x1, x2, x3, u1, u2 and u3 such that

R(x1, x2, x3) ∧ P(x1, u1) ∧ P(x2, u2) ∧ P(x3, u3) ∧ S(u1, u2, u3)

holds in J0. By definition of RJ0 , RJ0(x1, x2, x3) implies that x1 ∨ x2 ∨ x3 is a
conjunct of φ. It also follows from the definition of P J0 that for all 1 ≤ i ≤ 3,
P J0(xi, ui) implies ui = V (xi). Next, by definition of SJ0 , SJ0(u1, u2, u2) means
that (u1, u2, u3) /∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Putting everything together, we have a conjunct x1 ∨ x2 ∨ x3 of φ such that
(V (xi1), V (xi2), V (xi3)) does not belong to {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. This fin-
ishes the proof of the implication from left to right of (1).

Next we show the implication from right to left of (1). Suppose that φ does not
belong to POSITIVE 1-IN-3-SAT. Let J be a ⊕-repair of I .

We start by proving that RJ = RI and SJ = SI . Consider the instance J0 obtained
by replacing RJ by RI and SJ by SI . Since t is true in J and neither R nor S occurs
in �, t is true in K . By definition of J0, I ⊕ J0 ⊆ I ⊕ J . Since J0 is a ⊕-repair, this
implies that J0 is equal to J . Therefore, RJ = RI and SJ = SI .

Since RJ = RI and SJ = SI , it follows from the definitions of RI , SI and q that
(†) q is true in J iff there are a conjunct xi1 ∨ xi2 ∨ xi3 of φ and

u1, u2, u3 such that P J (xi1, u1), P J (xi2, u2), P J (xi3, u3) and (u1, u2, u3) /∈
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
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Claim 1 One of the followings holds:

(a) For all x ∈ Prop and for all u ∈ {0, 1}, P(x, u) belongs to J .
(b) For all x ∈ Prop, there is a unique u ∈ {0, 1} such that P J (x, u) holds.

Proof of Claim We start by proving that

∀x ∈ Prop,∀u, u′(P J (x, u) or EJ (u, u′) ⇒ u, u′ ∈ {0, 1}) (2)

Consider the instance J1 obtained from J by deleting the tuples of the form P J (x, u),
EJ (u, u′) and EJ (u′, u), where x ∈ Prop and u /∈ {0, 1}. The tgd t is satisfied in J1.
It also follows from the definitions of I and J1 that I ⊕ J1 ⊆ I ⊕ J . Since J is a ⊕-
repair, this means that J1 = J . That is, for all u, u′ such that P J (x, u) or EJ (u, u′)
or EJ (u′, u) holds, u belongs to {0, 1}.

Next we show that
{(0, 0), (1, 1)} ⊆ EJ . (3)

Consider the instance J2 obtained from J by adding the tuples E(0, 0) and E(0, 1)

to J . We can check that J2 satisfies t . Moreover, by definitions of I and J2, we have
I ⊕ J2 ⊆ I ⊕ J . Since J is a ⊕-repair, J2 = J . That is, E(0, 0) and E(0, 1) belong
to J .

Putting (2) and (3) together, we obtain that

{(0, 0), (1, 1)} ⊆ EJ ⊆ {(0, 0), (1, 1), (0, 1), (1, 0)}.
We make the following case distinction:

– Suppose that EJ = {(0, 0), (1, 1)}. We show that (b) holds. That is, for all
x ∈ Prop, there is a unique u ∈ {0, 1} such that P J (x, u) holds. Since
EJ = {(0, 0), (1, 1)} and the constraint

∀x, u, u′(P (x, u) ∧ P(x, u′) → E(u, u′))

is true in J , we have that for all x ∈ Prop, there exists at most one element
u ∈ {0, 1} such that P J (x, u).

Hence, in order to prove (b), it remains to show that for all x ∈ Prop, there
exists u ∈ {0, 1} such that P J (x, u) holds. Let x be an element of Prop. Suppose
for contradiction that there is no u ∈ {0, 1} such that P J (x, u). By (2), this
implies that there is no u such that P J (x, u). Let J3 be the instance obtained
by adding the tuple P J (x, 0) to J . We prove that t is true in J3. Suppose that
P J3(y, v) and P J6(y, v′) hold. We have to show EJ3(v, v′). If y �= x, this follows
from the definition of J3 and the fact that t is true in J .

Next suppose that y = x. That is, P J3(x, v) and P J3(x, v′) hold. Recall
that there is no u such that P J (x, u). Hence, by definition of J3, P J3(x, v) and
P J3(x, v′) imply v = v′ = 0. Since EJ = {(0, 0), (1, 1)} and EJ = EJ3 , we
have EJ3(v, v′). This finishes the proof that t is true in J3.

Next, it follows from the definition of J3 that I ⊕ J3 ⊆ I ⊕ J . Since J is a
repair, J3 = J . This contradicts our assumption that there is no u ∈ {0, 1} such
that P J (x, u). This finishes the proof that (b) holds.
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– Next suppose that (0, 1) or (1, 0) belongs to EJ . Without loss of generality, we
may assume that (0, 1) belongs to EJ .

There must be an element x0 such that P J (x0, 0) and P J (x0, 1) hold. Indeed,
if there is no such element, then we can let J4 be the instance obtained by remov-
ing the tuple E(0, 1) from J . Then, since there is no x0 such that P J (x0, 0) and
P J (x0, 1), t is satisfied in J4. We also have that I ⊕ J4 ⊆ J ⊕ J . As J is a ⊕-
repair, this implies that J = J4. That is, E(0, 1) does not belong to J , which is a
contradiction. Hence, there is x0 such that P J (x0, 0) and P J (x0, 1).

Now, since P(x0, 1) ∧ P(x0, 0) holds in J and the tgd

∀x, u, u′(P (x, u) ∧ P(x, u′) → E(u, u′))

is satisfied in J , we have that E(1, 0) belongs to J . Therefore, EJ =
{(0, 0), (1, 0), (0, 1), (1, 1)}.

We show that for all x ∈ Prop and for all u ∈ {0, 1}, P(x, u) belongs to J .
Take x ∈ Prop and u ∈ {0, 1}. Define J5 as the instance obtained by adding the
tuple P(x, u) to J . Since t is true in J and EJ = {(0, 0), (1, 0), (0, 1), (1, 1)}, t

remains true in J5. It is clear that I ⊕J5 ⊆ I ⊕J . As J is a ⊕-repair, this implies
that J = J5. In other words, P(x, u) belongs to J . This finishes the proof of the
claim.

Suppose first that (a) holds. That is, for all x ∈ Prop and for all u ∈ {0, 1},
P(x, u) belongs to J . We show that q is true in J . Let xi1 ∨ xi2 ∨ xi3 be a conjunct
of φ. Since (a) holds, P(xi1, 0), P(xi2, 0) and P(xi3, 0) belong to J . By (†), this
implies that q is true in J .

Next suppose that (b) holds. That is, for all x ∈ Prop, there is a unique u ∈ {0, 1}
such that P J (x, u) holds. Hence, we may choose a valuation V : Prop → {0, 1}
such that for all x ∈ Prop and for all u ∈ {0, 1},

V (x) = u iff P J (x, u).

Since φ does not belong to POSITIVE 1-IN-3-SAT, it is not the case that exactly one
variable is true in every clause. Therefore, there exists a conjunct xi1 ∨ xi2 ∨ xi3 of φ

such that

(V (xi1), V (xi2), V (xi3)) /∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
Moreover, by definition of V , P(xi1, V (xi1)), P(xi2, V (xi2)) and P(xi2, V (xi3))

belong to J . It follows from (†) that q is true in J .

Extensions: egds and Semi-LAV All complexity upper bounds described in this
section hold for the more general case of sets of GAV tgds and egds. Note that if �

is a set of GAV tgds and egds, then an instance I may not have any superset-repair
w.r.t. �. Still, if a superset-repair exists, then it is unique, and it can be computed in
polynomial time using the chase procedure. The existence of a superset-repair can be
tested in polynomial time as well (c.f. Theorem 6.1 below).

In [24], the class of semi-LAV sets of dependencies was introduced; it contains
properly the class of all sets of GAV tgds, as well as the class of all weakly acyclic sets
of LAV tgds. It was shown in [24] that the ⊕-repair checking problem for semi-LAV
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sets of tgds is still solvable in polynomial time (however, this is no longer true if egds
are allowed [2]). For �-consistent query answering, where � ∈ {subset, superset, ⊕},
the complexity for semi-LAV sets of tgds is the same as the complexity for sets of
GAV tgds. The lower bounds naturally transfer, and the upper bounds follow from
the fact that repair checking is in polynomial time, together with Theorems 6.1 and
6.2 in the next section, since every semi-LAV set of tgds is, by definition, weakly
acyclic.

6 Weakly Acyclic Sets of tgds (and egds)

In this section, we study the consistent query answering problem for conjunctive
queries and weakly acyclic sets of tgds and egds. We begin by considering universal
superset-repairs. Recall that, according to Proposition 3.7, every instance has at most
one universal superset-repair, up to isomorphism.

Theorem 6.1 Let � be a weakly acyclic set of tgds and egds. If an instance has a
superset-repair w.r.t. �, then it has a universal superset-repair. Moreover, there is a
polynomial time algorithm that, given an instance I , tests whether it has a superset-
repair w.r.t.� and if so, computes the (unique up to isomorphism) universal superset-
repair of I .

Proof We rely on known results from data exchange. We say that an instance J is a
solution for an instance I w.r.t. � if I ⊆ J and J satisfies �. Thus, a superset-repair
of I is a solution of I such that no strict subset is a solution for I . In [23], it was shown
that if � is a fixed weakly acyclic set of tgds and egds, then there is a polynomial-
time algorithm that, given an instance I , tests whether it has a solution w.r.t. �, and
if so, computes a solution J satisfying the following additional properties:

(i) For each solution J ′ of I , there is a homomorphism h : J → J ′ that is the
identity on values from the active domain of I .

(ii) For each solution J ′′ satisfying the above condition (i), we have that J ⊆ J ′′.

This solution J is is known as the “core universal solution” of I [18], and is unique
up to isomorphism.

Let J be the core universal solution of I w.r.t �. Since I ⊆ J and J satisfies
�, it remains to show that (a) J is a superset-repair of I , i.e., there is no J ′ � J

that contains I and satisfies �, and (b) J is a universal superset-repair of I . The
first item follows immediately from the above properties (i) and (ii): any such J ′
would satisfy condition (i), thereby contradicting the fact that J satisfies condition
(ii) above. The second item follows from the fact that J satisfies condition (i) and
from the preservation of conjunctive queries under homomorphisms.

Recall from Example 3.5 that, in general, an instance might not have a 1-universal
subset-repair (hence, a 1-universal ⊕-repair) w.r.t. a weakly acyclic set of tgds.

Next, we move to the consistent query answering problem. One of the key obser-
vations for obtaining an upper bound for the complexity of the ⊕-consistent answers
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is that the size of every ⊕-repair of an instance I is polynomial in the size of I . The
proof relies on the solution-aware chase, which was introduced in the context of peer
data exchange [32].

Theorem 6.2 Let � be a weakly acyclic set of tgds and egds. There is a polynomial
p(x) such that for all instances I and for all ⊕-repairs J of I with respect to �, the
size of J is bounded by p(|I |), where |I | is the size of I .

Proof Let � be a weakly acyclic set of tgds and egds. The proof relies on the
algorithm described in the proof of Lemma 3.4 in [20]. Specifically, the proof of
that lemma yields a polynomial p(x) and an algorithm that works as follows. Given
instances K and L such that K ⊆ L and L � �, the algorithm computes an instance
f (K,L) such that K ⊆ f (K, L) ⊆ L, f (K, L) � �, and the size of f (K,L) is
bounded by p(|K|).

Fix an ⊕-repair I0 of I . We show that the size of I0 is bounded by p(|I |). We
can use the algorithm described in Lemma 3.4 in [20] to produce an instance J :=
f (I ∩ I0, I0) satisfying the following. The size of J is bounded by p(|I ∩ I0|),
I ∩ I0 ⊆ J ⊆ I0 and J � �. In particular, the size of J is bounded by p(|I |).

In order to show that the size of I0 is bounded by p(|I |), it is sufficient to show
that I0 = J . Since I0 is a ⊕-repair of I , this is equivalent to proving that J |= � and
I ⊕ J ⊆ I ⊕ I0.

We already know that J |= �. It remains to show that I ⊕ J ⊆ I ⊕ I0. Let
R(a) be a fact in I ⊕ J . We prove that R(a) belongs to I ⊕ I0. Suppose first that
R(a) belongs to J\I . We know that J ⊆ I0. Hence, if R(a) belongs to J\I , then
R(a) belongs to I0\I . This implies that R(a) belongs to I ⊕ I0. Next, assume that
R(a) belongs to I\J . We have to show that R(a) ∈ I ⊕ I0. Since R(a) belongs to
I , this means that we have to prove that R(a) /∈ I0. Suppose for contradiction that
R(a) belongs to I0. Then R(a) belongs to I ∩ I0. Recall that I ∩ I0 ⊆ J . Putting
this together with R(a) ∈ I ∩ I0, we obtain that R(a) belongs to J , which is a
contradiction.

Our main result concerning consistent query answering w.r.t. a weakly acyclic set
of tgds is a �

p

2 lower bound both for subset-repairs and for ⊕-repairs. A �
p

2 lower
bound had been obtained earlier for the problem of finding the ⊕-consistent answers
w.r.t. a set of functional dependencies and universal constraints [32].

Theorem 6.3 Let � be a weakly acyclic set of tgds and egds and let q be a
conjunctive query.

1. The superset-consistent query answering problem for q w.r.t. � is in PTIME.
2. The ⊕-consistent (subset-consistent) query answering problem for q w.r.t. � is

in �
p

2 .
3. There is a set � of weakly acyclic tgds and a conjunctive query q such that both

the ⊕-consistent and the subset-consistent query answering problems for q w.r.t.
� are �

p

2 -complete.
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Proof Part 1 is an an immediate consequence of Theorem 6.1. It also follows from
Proposition 2.8 and results in [17] concerning the tractability of the certain answers
of conjunctive queries in data exchange w.r.t. weakly acyclic sets of tgds and egds.
Part 2 follows from Theorem 6.2 and the fact that both the ⊕-repair and the subset-
repair checking problems with respect to any set of tgds and egds is in coNP. For
Part 3, we give a weakly acyclic set � of tgds and a Boolean conjunctive query q

with the following properties: for every quantified Boolean formula φ of the form
∀p1 . . .∀pn∃q1 . . . ∃qkψ, where ψ is a conjunction of clauses containing 3 literals,
we can construct in polynomial time an instance Iφ so that the following statements
are equivalent:

1. φ is true ;
2. subset-Con (q, Iφ, �) = �;
3. ⊕-Con(q, Iφ, �) = �.

Evaluating such formulas is known to be a �
p

2 -complete problem [30].
We introduce the following tgds:

φ1 = Q(q, v) → ∃sA(s),

φ2 = A(s) ∧ Q′(q) → ∃vQ(q, v),

φ3 = Q(q, v) ∧ Q(q, v′) → E(v, v′),
φ4 = P(p, v) ∧ P(p, v′) → E(v, v′),

φa1a2a3(X1, X2, X3) = Ra1a2a3(x1, x2, x3) ∧ A(s) ∧
X′

1(x1) ∧ X′
2(x2) ∧ X′

3(x3) →
∃v1, v2, v3(X1(x1, v1) ∧ X2(x2, v2)

∧X3(x3, v3) ∧ Ta1a2a3(v1, v2, v3)),

where ai ∈ {0, 1} and Xi ∈ {P,Q}, for i = 1, 2, 3. We now let

� = {φ1, φ2, φ3, φ4} ∪
{φa1a2a3(X1, X2, X3) | ai ∈ {0, 1}, Xi ∈ {P,Q}}.

We also let q be the query ∃sA(s). Note that � is a weakly acyclic set. Indeed, the
only special edges are from positions in Q′, P ′ and R; however, there is no incoming
edge to a position in Q′, P ′ or R.

The intuition behind the relation symbols is as follows. The relation P ′ encodes
the universally quantified variables p1, . . . , pn of φ, while Q′ encodes the existen-
tially quantified variables q1, . . . , qk of φ. Furthermore, P encodes truth values for
p1, . . . , pn, while Q encodes truth values for q1, . . . , qk . We use the symbol E to
simulate equality; it will consist of the tuples (0, 0) and (1, 1). The tgds φ3 and φ4
express that each variable gets assigned at most one truth value.

In what follows, we will use x, x1, x2, x3, . . . to denote literals. If x is a positive
literal, we define the inverse sign of x, denoted by is(x), to be 0. If x is a negative
literal, we define is(x) to be 1. Thus, is(x) denotes the opposite of the sign of the
literal x. For a1, a2, a3 ∈ {0, 1}, we will use a relation Ra1a2a3 to encode clauses of
the form x1∨x2∨x3 such that is(xi) = ai . The relation Ta1a2a3 consists of those truth
assignments that make true the clauses of the form x1 ∨ x2 ∨ x3, where is(xi) = ai .
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The symbol A acts as guard. It is activated (that is, becomes non-empty) as soon
as one variable in {q1, . . . , qk} gets assigned a truth value (see the tgd φ1). Once
A has been activated, it makes sure that each variable in {q1, . . . , qk} is assigned a
truth value (as expressed by the tgd φ2). Hence, either no variable in {q1, . . . , qk}
gets assigned a truth value or all variables in {q1, . . . , qk} get assigned a truth value.
Moreover, when A is non-empty, the tgds of the form φa1a2a3(X1, X2, X3) express
that the truth assignment is such that each clause of the form x1 ∨ x2 ∨ x3 occurring
in φ is true under the truth assignment.

Consider a quantified Boolean formula φ of the form

∀p1, . . . , pn∃q1, . . . , qkψ,

where ψ is a conjunction of clauses of the form

xi1 ∨ xi2 ∨ xi3,

with 1 ≤ i ≤ l and xij ∈ {pa, ¬pa, qb, ¬qb | 1 ≤ a ≤ n, 1 ≤ b ≤ k}.
We construct now an instance Iφ so that the following statements are equivalent:

1. φ is true ;
2. subset-Con (q, Iφ, �) = �;
3. ⊕-Con(q, Iφ, �) = �.

We define Iφ = I by

AI = {1},
(Q′)I = {qi | 1 ≤ i ≤ k},
(P ′)I = {pi | 1 ≤ i ≤ n},

P I = {(pi, v) | 1 ≤ i ≤ n, v ∈ {0, 1}},
QI = {(qi, v) | 1 ≤ i ≤ k, v ∈ {0, 1}},
EI = {(0, 0), (1, 1)},

T I
a1a2,a3

= {(v1, v2, v3) | ∀1 ≤ i ≤ 3, vi ∈ {0, 1},
(v1, v2, v3) �= (a1, a2, a3)},

RI
a1a2a3

= {(x1, x2, x3) | x1 ∨ x2 ∨ x3 is a clause of ψ and

∀1 ≤ i ≤ 3, is(xi) = ai}.
In order to prove that the instance I has the required properties, it suffices to show
that

subset-Con(q, I, �) = � ⇒ φ is true, (4)

φ is true ⇒ ⊕-Con(q, I, �) = �. (5)

We start by showing (4).

Claim 2 If the subset-consistent answer of q is true, then φ is true.

Proof of Claim Suppose that the consistent answer of q is true and let VP : {pi | 1 ≤
i ≤ n} → {0, 1} be a valuation. We have to find a valuation VQ : {qi | 1 ≤ i ≤ k} →
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{0, 1} such that ψ is true under VP ∪ VQ. We define an instance J in the following
way:

AJ = ∅,

(Q′)J = (Q′)I ,
(P ′)J = (P ′)I ,

P J = {(pi, VP (pi)) | 1 ≤ i ≤ n},
QJ = ∅,

EJ = EI ,

T J
a1a2a3

= T I
a1a2a3

,

RJ
a1a2a3

= RI
a1a2a3

.

The formulas of � are satisfied in J . Hence, there is a subset-repair J0 of I such that
I ⊕ J0 ⊆ I ⊕ J . This implies that (Q′)J0 = (Q′)I , (P ′)J0 = (P ′)I , EJ0 = EI ,
T J0 = T I , RJ0 = RI , QJ0 ⊆ QI and P J ⊆ P J0 .

As the subset-consistent answer of q is true, we have AJ0 �= ∅. Take i ∈
{1, . . . , k}. Since AJ0 �= ∅, (Q′)J0(qi) holds and φ2i is true in J0, there exists vi such
that QJ0(qi, vi) holds. As QJ0 ⊆ QI , vi belongs to {0, 1}.

We define a valuation VQ : {qi | 1 ≤ i ≤ k} → {0, 1} such that for all i ∈
{1, . . . , k}, we have

VQ(qi) = vi .

We show that ψ is true under V := VP ∪ VQ. Consider a clause xi1 ∨ xi2 ∨ xi3
of ψ . For all 1 ≤ j ≤ 3, define aj by is(xij ). By definition of RI , we have

RI
a1a2a3

(xi1, xi2, xi3). Since RI
a1a2a3

= R
J0
a1a2a3 , we also have R

J0
a1a2a3(xi1, xi2, xi3).

If j ∈ {1, 2, 3} and xij = pl for some 1 ≤ l ≤ n, we define Xj as P . Otherwise,
we define Xj as Q. By definition of (P ′)J and (Q′)J , we have (X′

j )
J (xij ). Since

(X′
j )

J ⊆ (X′
j )

J0 , this implies (X′
j )

J0(xij ).
Putting everything together we obtain that

RJ0
a1a2a3

(xi1, xi2, xi3) ∧ (X′
1)

J0(xi1) ∧ (X′
2)

J0(xi2) ∧ (X′
3)

J0(xi3). (6)

Since � is true in J0, φa1a2a3(X1, X2, X3) holds in J0. Putting this together with (6)
and the fact that AJ0 �= ∅, there exists v1, v2 and v3 such that

X
J0
1 (xi1, v1) ∧ X

J0
2 (xi2, v2) ∧ X

J0
3 (xi3, v3) ∧ T J0

a1a2a3
(v1, v2, v3).

We show that for all 1 ≤ j ≤ 3,

vj = V (xij ). (7)

Take j ∈ {1, 2, 3}. Suppose first that Xj = Q. Since φ3i is true in J0 and
EJ0 = {(0, 0), (1, 1)}, there is a unique vj such that QJ0(xij , vj ) and vj ∈ {0, 1}.
By definition of V , we have QJ0(xij , V (xij )). Hence, vj = V (xij ). The case where
XJ = P is similar and this finishes the proof of (7).

Since T
J0
a1a2a3(v1, v2, v3) and T

J0
a1a2a3 = T I

a1a2a3
, we have (v1, v2, v3) �=

(a1, a2, a3). It follows from (7) that

(V (xi1), V (xi2), V (xi3)) �= (a1, a2, a3).
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By definition a1, a2 and a3, this means

(V (xi1), V (xi2), V (xi3)) �= (is(x1), is(x2), is(x3)).

Together with the definition of the inverse sign is, we obtain that xi1 ∨ xi2 ∨ xi3 is
true under the valuation V .

Next we prove that (5) holds.

Claim 3 If φ is true, then the ⊕-consistent answer of q is true.

Proof of Claim Assume that φ is true and let J be a ⊕-repair of I . Suppose for
contradiction that AJ = ∅. As φ1 is true in J , this implies that QJ = ∅.

We start by showing that (P ′)J = (P ′)I . Let J1 be the instance obtained from J

by replacing (P ′)J by (P ′)I . Since � is satisfied in J and AJ = ∅, � is satisfied in
J1 as well. Moreover, it follows from the definition of J1 that I ⊕ J1 ⊆ I ⊕ J . Since
J is a ⊕-repair of I , this implies J = J1. Hence, (P ′)J = (P ′)I . Similarly, we can
show that (Q′)J = (Q′)I .

Next we prove that

either EJ = EI or EJ = {(0, 0), (1, 1), (1, 0), (0, 1)}. (8)

In order to show (8), we start by proving that

EI ⊆ EJ ⊆ {(0, 0), (1, 1), (1, 0), (0, 1)}. (9)

We define J2 as the instance obtained from J by replacing EJ by (EJ ∪ EI ) ∩
{(0, 0), (1, 1), (1, 0), (0, 1)}. We can check that � is satisfied in J2. Moreover, we
have that I ⊕ J2 ⊆ I ⊕ J . Since J is a ⊕-repair of I , this means that J = J2. In
particular,

EJ = (EJ ∪ EI ) ∩ {(0, 0), (1, 1), (1, 0), (0, 1)}.
This implies that (9) holds.

Now in order to derive (8) from (9), it is sufficient to prove that EJ (0, 1)

implies EJ (1, 0) and EJ (1, 0) implies EJ (0, 1). We only show that EJ (0, 1) implies
EJ (1, 0); the other implication is similar.

Assume that EJ (0, 1). We claim that there exists 1 ≤ i ≤ n such that P J (pi, 0)

and P J (pi, 1). Suppose for contradiction that there is no such a i. Let J3 be the
instance obtained from J by replacing EJ by EJ \{(0, 1)}. Since there is no i such
that P J (pi, 0) and P J (pi, 1), φ4i is true for all 1 ≤ i ≤ n. As QJ = ∅, φ3i is also
true for all 1 ≤ i ≤ k. It follows that � is true in J3. As I ⊕ J3 � I ⊕ J , this
contradicts the fact that J is a ⊕-repair of I . Hence, there exists 1 ≤ i0 ≤ n such that
P J (pi0 , 0) and P J (pi0 , 1).

Since P J (pi0 , 1)∧P J (pi0 , 0) holds and φ4i0 is true in J , we must have EJ (1, 0).
This finishes the proof that EJ (0, 1) implies EJ (1, 0); hence the proof of (8).

– Suppose first that EJ = EI . Since for all 1 ≤ i ≤ n, φ4i is true in J , there is at
most one value vi ∈ {0, 1} such that P J (pi, vi). Hence, we can pick a valuation
VP : {pi | 1 ≤ i ≤ n} → {0, 1} such that for all 1 ≤ i ≤ n,

P J (pi, vi) implies vi = Vp(pi).
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Since φ is true, there exists a valuation VQ : {qi | 1 ≤ i ≤ k} → {0, 1} such that
ψ is true under the valuation VP ∪ VQ.

Next we define the instance J1 in the following way:

AJ1 = {1},
(P ′)J1 = (P ′)I ,
(Q′)J1 = (Q′)I ,

EJ1 = EI ,

P J1 = P J ,

QJ1 = {(qi, Vq(qi)) | 1 ≤ i ≤ k},
T J1

a1a2a3
= T I

a1a2a3
,

RJ1
a1a2a3

= RI
a1a2a3

.

Using the fact that ψ is true under the valuation VP ∪ VQ, it is possible to check
that � is true in J1. Moreover, as QJ = ∅ and AJ = ∅, we can also show that
I ⊕ J1 ⊆ I ⊕ J . Since J is a ⊕-repair of I , we can conclude that J = J1. This
implies that AJ �= ∅, which is a contradiction.

– Suppose finally that EJ = {(0, 0), (1, 1), (1, 0), (0, 1)}. We define an instance
J1 in the following way:

AJ1 = {1},
(P ′)J1 = (P ′)I ,
(Q′)J1 = (Q′)I ,

EJ1 = EJ = {(0, 0), (1, 1), (1, 0), (0, 1)},
P J1 = P I ,

QJ1 = QI ,

T J1
a1a2a3

= T I
a1a2a3

,

RJ1
a1a2a3

= RI
a1a2a3

.

Using the fact that EJ1 = {(0, 0), (1, 1), (1, 0), (0, 1)}, we can check that � is
true in J1. Next, as EJ = {(0, 0), (1, 1), (1, 0), (0, 1)}, we also have I ⊕ J1 ⊆
I ⊕ J . Since J is a ⊕-repair of I , this implies that J = J1. Hence, AJ �= ∅,
which is a contradiction.

7 Arbitrary tgds (and egds)

In this section, we obtain results about arbitrary sets of tgds that contrast sharply with
our earlier results about weakly acyclic sets of tgds. We begin by pointing out that our
previous techniques are not of help in the study of arbitrary sets of tgds. First, as seen
in Example 3.4, there is a (non-weakly acyclic) set of LAV tgds � and an instance I

such that I has superset-repairs w.r.t. � (hence also ⊕-repairs w.r.t. �) of arbitrarily
large sizes that cannot be bounded by any function in the size of the original instance.
This contrasts with the state of affairs for weakly acyclic sets of tgds and egds in
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Theorem 6.2. Furthermore, recall Theorem 4.6, which states that if � is any set of
LAV tgds, then given any instance we compute in polynomial time an n-universal
superset-repair w.r.t. �, for any fixed n ≥ 1 (even though a universal superset-repair
may not exist). But, by Proposition 3.8, in cases where � consists of arbitrary tgds,
an n-universal superset-repairs may not be effectively computable even for n = 1.

We present now the results concerning the consistent query answering problem.
We begin with the subset-consistent query answering and the superset-consistent
query answering problems.

Theorem 7.1 The following statements are true.

1. If � is a set of tgds and q is a conjunctive query, then the subset-consistent query
answering problem for q w.r.t. � is in �

p

2 .
2. There is a set of tgds � and a conjunctive query q such that the subset-consistent

query answering problem for q w.r.t. � is �
p

2 -complete.
3. There is a set of tgds � and a conjunctive query q such that the superset-

consistent query answering problem for q w.r.t. � is undecidable.

Proof We already mentioned the �
p

2 upper bound of subset-consistent query
answering in Section 2; the lower bound was shown in Theorem 6.3, even for a
weakly acyclic set of tgds.

As regards superset-repairs, it was shown in [28] that there is a (non-weakly
acyclic) set � of tgds and egds such that the following problem is undecidable: given
an instance I , is there an instance J |= � such that I ⊆ J ? Since every such instance
J contains a superset-repair for I , we have that checking whether a given instance
has a superset-repair with respect to � is an undecidable problem as well. By tak-
ing q = ∃x P (x), where P is a fresh relation, it follows that the superset-consistent
query answering problem is also undecidable. The egds of � can be eliminated by a
standard construction: we add another binary relation E to the schema and extend �

with GAV tgds stating that E is a congruence, i.e., an equivalence relation such that
every other relation in the schema is closed under substitution of equals by equals
with respect to the equivalence relation E. Alternatively, a proof of this undecidabil-
ity result can be obtained by adapting the proof of Theorem 7.2 given later on in this
section.

We now come to the main result, which asserts that there is a set � of tgds and a
conjunctive query q such that computing the ⊕-consistent answers of q w.r.t. � is an
undecidable problem. As mentioned in the Introduction, this improves a result in [3]
asserting that there is a set of universal first-order sentences and a universal query
(in fact, the negation of a conjunctive query) such that computing the ⊕-consistent
answers is an undecidable problem.

Theorem 7.2 There is a set � of tgds and a conjunctive query q such that the ⊕-
consistent query answering problem for q w.r.t. � is undecidable.
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The remainder of this section is devoted to the proof of Theorem 7.2. We start with
the following lemmas.

Lemma 7.3 Let � be a set of tgds and egds. Suppose that R is a relational symbol
that does not appear on the right-hand side of any tgd in �. Then for all ⊕-repairs
J of an instance I , RJ ⊆ RI .

Proof Let J be a ⊕-repair of I . We define the instance K such that RK = RJ ∩ RI

and for all relational symbols S �= R, SK = SJ . Since J � � and R never appears
on the right-hand side of a tgd in �, � remains true in K . It also follows from the
definition of K that I ⊕ K ⊆ I ⊕ J . Since J is a ⊕-repair, this implies that K = J .
In particular, RJ is equal to RK(= RJ ∩ RI ). That is, RJ ⊆ RI .

Lemma 7.4 Let � be a set of tgds and let q be a query of the form

q1 ∨ · · · ∨ qk ∨ ¬r1 ∨ · · · ∨ ¬rl, (10)

where q1, . . . , qk, r1, . . . , rl are conjunctive queries over a schema R. There is a set
�′ of tgds and a conjunctive query q ′, both over a schema R′ ⊇ R, such that for
every instance I over R, we can compute in polynomial time an instance I ′ over R′
satisfying

⊕-Con(q, I, �) = ⊕-Con(q ′, I ′, �′).

Proof Suppose that q is a query of the form

q1 ∨ · · · ∨ qk ∨ ¬r1 ∨ · · · ∨ ¬rl,

where q1, . . . , qk, r1, . . . , rl are conjunctive queries.
Let A and B be fresh relation symbols. We define R′ as the schema R ∪ {A, B}.

For all 1 ≤ i ≤ k, if qi = ∃xiφi(xi ), we let ti be the tgd given by

φi(xi) → ∃sB(s).

Next, if ri = ∃yiψi(yi) for 1 ≤ i ≤ l, we define t as the tgd

A(s) ∧ ψ1(y1) ∧ · · · ∧ ψl(yl) → ∃uB(u),

with s not occurring in y1, . . . , yl . We define �′ as the set

� ∪ {t, ti | 1 ≤ i ≤ k}
and we let q ′ be the conjunctive query ∃sA(s). Let I be an instance over R. We define
I ′ such that AI ′ = {1}, BI ′ = ∅ and for all R ∈ R, RI ′ = RI . We have to show that

⊕ -Con(q, I, �) = � iff ⊕ -Con(q ′, I ′, �′) = �. (11)

We start by proving the direction from left to right of (11). Assume that
⊕-Con(q, I, �) is true. Let J ′ be a ⊕-repair of I ′ with respect to �′. We have to
show that ∃sA(s) is true in J ′. We define J ′

0 as the instance obtained from J ′ by
adding the fact A(1). It suffices to show that J ′ = J ′

0.

Let J be the instance over R such that for all R ∈ R, RJ = RJ ′
. J is a ⊕-repair

of I with respect to �. Since ⊕-Con(q, I, �) is true, q is true in J . Therefore, q is
also true in J ′.
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We show that this implies that t is true in J ′
0. We make the following case

distinction:

– Suppose that for some 1 ≤ i ≤ k, qi is true in J ′. Hence, there exists a such that
φi(a) holds in J ′. Since �′ is true in J ′, ti given by

φi(xi) → ∃sB(s)

is true in J ′. It follows that ∃sB(s) is true in J ′; hence, in J ′
0. This implies that

the tgd t is true in J ′
0.

– Next suppose that for some 1 ≤ i ≤ n, ¬ri is true in J ′. Since ri is false in
J ′, ri is also false in J ′

0. So there are no yi such ψi(yi ) holds in J ′
0. Hence, the

left-hand side of t is never satisfied in J ′
0. In particular, t is true in J ′

0.

Since A does not occur in � ∪ {ti | 1 ≤ i ≤ k} and that set of tgds is true in J ′,
� ∪ {ti | 1 ≤ i ≤ k} is also true in J ′

0. Together with J ′
0 � t , we obtain J ′

0 � �′. It
is clear that I ′ ⊕ J ′

0 ⊆ I ′ ⊕ J ′. Since J ′ is a ⊕-repair of I ′ with respect to �′, this
implies J ′

0 = J ′ and this finishes the proof that q ′ is true in J ′.
Next we prove the implication from right to left of (11). Assume that

⊕-Con(q ′, I ′, �′) is true. Suppose for contradiction that q is false in a ⊕-repair J of
I with respect to �. Let J ′ be the instance such that AJ ′ = ∅, BJ ′ = ∅ and for all
R ∈ R, RJ ′ = RJ . In order to finish the proof, it suffices to show that J ′ is a ⊕-
repair of I ′ with respect to �′. Indeed, q ′ is clearly false in J ′, which contradicts the
fact that ⊕-Con(q ′, I ′, �′) is true.

Now we prove that J ′ is a ⊕-repair of I ′ with respect to �′. There exists a ⊕-
repair K ′ of I ′ with respect to �′ such that I ⊕K ′ ⊆ I ⊕ J ′. We prove that J ′ = K ′.
Let K be the instance over R such that for all R ∈ R, RK = RK ′

. K is a ⊕-repair of
I with respect to � and I ⊕ K ⊆ I ⊕ J . Since J is a ⊕-repair of I with respect to
�, K = J . It follows that for all R ∈ R, RJ ′ = RK ′

.
In order to prove that J ′ = K ′, it remains to show that BJ ′ = BK ′

and AJ ′ = AK ′
.

Since BJ ′ = BI ′
and I ′ ⊕ K ′ ⊆ I ′ ⊕ J ′, we have BK ′ = BI ′ = BJ ′

.
Suppose for contradiction that AJ ′ �= AK ′

. Since AJ ′ = ∅, AI ′ = {1} and I⊕K ′ ⊆
I ⊕ J ′, this can only happen if AK ′ = {1}. Recall that q is false in J . In particular,
for all 1 ≤ i ≤ l, ri is true in J . That is, for all 1 ≤ i ≤ l, there exists a tuple bi such
that ψi(bi ) is true in J ; hence, in J ′ and in K ′. This implies that

A(1) ∧ ψ1(b1) ∧ · · · ∧ ψl(bl)

is true in K ′. Since K ′ is a ⊕-repair with respect to �′, t given by

A(s) ∧ ψ1(y1) ∧ · · · ∧ ψl(yl) → ∃uB(u),

is true in K ′. Therefore, ∃uB(u) is true in K ′. This contradicts the fact that
BK ′ = ∅.

Note that Lemma 7.4 remains true if we consider subset-repairs, instead of ⊕-
repairs. In the case of superset-repairs, we do not know whether the lemma holds.

Theorem 7.2 will be proved via a reduction from the halting problem for two-
register machines. In describing two-register machines, we follow the definition used
in [6].
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A two-register machine (2RM) is similar to Turing machines, except that, instead
of a tape, it has two registers r1, r2. Each register contains a natural number. A 2RM
is programmed by a numbered sequence α0, . . . , αl of instructions. Each instruction
αi is either an addition or a subtraction. An addition has the form +(rg, j), with
rg a register number and j ≤ l an instruction number. Its semantics is: add one to
register rg and move to instruction αj . A subtraction has the form −(rg, j, k) with
rg a register number and j, k ≤ l instruction numbers. Its semantics is: if content of
register rg is zero, then move to instruction αj ; otherwise, subtract one from register
rg and move to instruction αk .

An instantaneous description (ID) of a 2RM M is a triple (s, t, i) with i ≤ l an
instruction number and m, n ≥ 0 natural numbers representing the content of the
registers r1 and r2. The unique successor of an ID (s, t, i) is the ID (s′, t ′, i′) such
that

• if αi = +(1, j), then s′ = s + 1, t ′ = t , i′ = j ;
• if αi = +(2, j), then s′ = s, t ′ = t + 1, i′ = j ;
• if αi = −(1, j, k) and s �= 0, then s′ = s − 1, t ′ = t , i′ = j ;
• if αi = −(1, j, k) and s = 0, then s′ = s, t ′ = t , i′ = k;
• if αi = −(2, j, k) and t �= 0, then s′ = s, t ′ = t − 1, i′ = j ;
• if αi = −(2, j, k) and t = 0, then s′ = s, t ′ = t , i′ = k.

The ID (0, 0, l) is called final. If M = (α0, . . . , αl) is a 2RM, then the run of M

is the sequence (Di)i≥1 of ID’s such that D0 = (0, 0, 0) and Di+1 is the successor of
Di , for all i ≥ 1. The run is halting if it contains the ID (0, 0, l). The halting problem
for 2RM is to determine whether the run of a given 2RM is halting.

Theorem 7.5 [8] The halting problem for two-register machines is undecidable.

In the proof of Theorem 7.2, we also make use of the following property of 2RMs.

Lemma 7.6 Given a 2RM M = (α0, . . . , αl), we can compute a 2RM M ′ such that
the successor of the ID (0, 0, l) in M ′ is itself and

the run of M is halting iff the run of M ′ is halting.

Proof Let M = (α0, . . . , αl) be a 2RM. We define M ′ = (β0, . . . , βl+4) as the
following 2RM:

βi = αi,

βl = −(1, l + 2, l + 4),

βl+1 = αl,
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βl+2 = +(1, l + 1),

βl+3 = +(2, l + 1),

βl+4 = −(2, l + 3, l + 4),

where 0 ≤ i < l. By definition of M ′, the successor of ID (0, 0, l +4) is (0, 0, l +4).
Hence, it remains to show that the run of M is halting iff the run of M ′ is halting.
This is implied by the following property: for all IDs a and b such that a �= (0, 0, l)

and b is the successor of a in M , there exists a sequence a0 . . . an of ID such that

a0 = a, an = b and ai+1 is the successor of the ID ai in M ′, (12)

where 1 ≤ i < n.
Let b be the successor in M of an ID a = (s, t, i) such that a �= (l, 0, 0). We prove

the existence of a sequence a0 . . . an satisfying (12). If i �= l, then the sequence a0a1
with a0 = a and a1 = b satisfies (12).

Next suppose that i = l. We make the following case distinction. Assume first
that s �= 0. Then the successor ID of a = (s, t, l) in M ′ is (s − 1, t, l + 2). It also
follows from the definition of M ′ that the successor ID of (s − 1, t, l + 2) in M ′ is
(s, t, l + 1). Since βl+1 = αl , the successor ID of (s, t, l + 1) in M ′ is b. Hence, the
sequence a0 . . . a3 with a0 = a, a1 = (s − 1, t, l + 2), a2 = (s, t, l + 1) and a3 = b

satisfies (12).
Assume now that s = 0. Since a �= (0, 0, l), this means that t �= 0. By definition

of M ′, the successor ID of a = (0, t, l) in M ′ is a1 = (0, t, l + 4). Since t �= 0, the
successor ID of a1 in M ′ is a2 = (0, t − 1, l + 3). Next, the successor ID of a2 in M ′
is a3 = (0, t, l + 1). Since βl+1 = αl , the successor ID of (0, t, l + 1) in M ′ is b. The
sequence a0 . . . a4 with a0 = a and a4 = b satisfies (12).

We now proceed with the proof of Theorem 7.2.

Proof of Theorem 7.2 We shall give a reduction from the halting problem for 2RMs.
For this, we define a set �′ of tgds and a conjunctive query q ′ such that for every
2RM M , we can compute an instance I ′ such that

the run ofMis halting ⇐⇒ ⊕-Con(q ′, I ′, �′) �= �. (13)

The idea is that each ⊕-repair of IM encodes the run of a subset of the instructions
in M (due to the symmetric difference semantics, we cannot prevent instructions
from being dropped). The run of M will be halting if and only if some ⊕-repair of
IM contains the final ID of M . Hence, if q is a conjunctive query expressing that the
final ID occurs, then the run of M is halting if and only if q is true in some ⊕-repair
of I . That is, the run of M is halting if and only if ⊕-Con(¬q, IM, �) �= �. The
problem is that ¬q is not a conjunctive query, and this is where we use Lemma 7.4.

By Lemma 7.4, in order to find �′ and q ′ satisfying (1), it suffices to find a set �

of tgds and a query q of the form 10 (as stated in Lemma 7.4) such that for all 2RM
M , we can compute an instance I satisfying

the run of M is halting ⇐⇒ ⊕-Con(q, I, �) �= �. (14)
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Let � be the set of the following tgds:

φ+
1 = S(s, t, i) ∧ R1,+(i, j) → ∃s′Succ(s, s′)

ψ+
1 = S(s, t, i) ∧ R1,+(i, j) ∧ Succ(s, s′) → S(s′, t, j)

φ+
2 = S(s, t, i) ∧ R2,+(i, j) → ∃t ′Succ(t, t ′)

ψ+
2 = S(s, t, i) ∧ R2,+(i, j) ∧ Succ(t, t ′) → S(s, t ′, j)

φ−
1 = S(s, t, i) ∧ R1,−(i, j, k) ∧ Succ(s′, s) → S(s′, t, j)

φ=
1 = S(s, t, i) ∧ R1,−(i, j, k) ∧ Zero(s) → S(s, t, k)

φ−
2 = S(s, t, i) ∧ R2,−(i, j, k) ∧ Succ(t ′, t) → S(s, t ′, j)

φ=
2 = S(s, t, i) ∧ R2,−(i, j, k) ∧ Zero(t) → S(s, t, k)

φAnc
1 = Anc(u, s) ∧ Succ(s, s ′) → Anc(u, s′)

φAnc
2 = Succ(s, s′) → Anc(s, s′)
φf = Final(j) ∧ S(s, t, j) ∧ Zero(s) ∧ Zero(t) → ∃sF (s)

Let q be the query ∃sAnc(s, s) ∨ ¬(∃sF (s)). The intuition behind the relation sym-
bols is as follows. We use S to encode IDs: the fact S(s, t, i) corresponds to the
ID where s is the content of the first register, t is the content of the second regis-
ter and i is an instruction number. We use the relation Succ to encode the successor
relation on an initial segment of the natural numbers, while Anc encodes the strict
natural ordering on that initial segment. The relation Anc is the transitive closure of
Succ, as expressed by the tgds φAnc

1 and φAnc
2 . We represent the initial and the final

instructions of the machine with the relations Zero and Final. The relation Zero

will consist of the singleton 0, while Final will consist of the singleton l (where l+1
is the number of instructions of the machine).

The relations R1,+, R1,−, R2,+ and R2,− encode the instructions of the machines.
A fact Rn,+(i, j) expresses that the instruction αi is equal to +(n, j). Similarly, a
fact Rn,−(i, j, k) expresses that the instruction αi is the subtraction −(n, j, k).

The tgd φ+
1 expresses that if the ID is (s, t, i) and instruction αi needs to add one

to the first register, then the initial segment of the natural numbers that we consider
should at least contain the successor of s. The tgd ψ+

1 expresses that if the ID is
(s, t, i), the instruction αi is +(1, j), and s′ is equal to s + 1, then we move to the ID
(s′, t, j). The tgds φ+

2 and ψ+
2 have similar meanings.

The tgd φ−
1 expresses that if the ID is (s, t, i), the instruction αi is −(1, j, k), and

s′ is equal to s − 1 (in particular, s �= 0), then we move to the ID (s ′, t, j). The tgd
φ=

1 expresses that if the ID is (s, t, i), the instruction αi is +(1, j) and s is equal to
0, then we move to the ID (s, t, k).

Finally, F acts as an indicator for termination. It becomes non-empty, when the
instance contains an ID of the form (0, 0, l). This is expressed by the tgd φf . The
query q is false in an instance if and only if the relation F is non-empty and the
ancestor relation does not contain any tuple of the form (s, s). Intuitively, this means
that the instance contains an ID of the form (0, 0, l) and that the successor relation
does not contain any cycle.
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We associate an instance IM with each 2RM. Let M = (α0, . . . , αl) be a 2RM. By
Lemma 7.6, we may assume that the successor of the ID (0, 0, l) is itself. We define
an instance I := IM as follows:

SI = {(0, 0, 0)},
RI

1,+ = {(i, j) | αi = +(1, j)},
RI

1,− = {(i, j, k) | αi = −(1, j, k)},
RI

2,+ = {(i, j) | αi = +(2, j)},
RI

2,− = {(i, j, k) | αi = −(2, j, k)},
ZeroI = {0},

F inalI = {l},
SuccI = ∅,

AncI = ∅,

F I = ∅,

BI = ∅.

We start by proving the implication from left to right of (14). Assume that the
run of M is halting. Let (sn, tn, in)n≤ω be the run of M . There exists m such that
(sm, tm, im) = (0, 0, l). Let n0 be the maximum of the set {sn, tn | 0 ≤ n ≤ m}. We
define an instance J0 as follows

SJ0 = {(sn, tn, in) | 0 ≤ n ≤ m},
R

J0
1,+ = RI

1,+,

R
J0
1,− = RI

1,−,

R
J0
2,+ = RI

2,+,

R
J0
2,− = RI

2,−,

ZeroJ0 = {0},
F inalJ0 = {l},
SuccJ0 = {(s, s + 1) | 0 ≤ s < n0},
AncJ0 = {(s, t) | 0 ≤ s < t ≤ n0},

F J0 = {1},
BJ0 = ∅.

The query q is false in J0. Hence, if J0 is a ⊕-repair, this implies that
⊕-Con(¬q, I,�) �= �.

We prove that J0 is a ⊕-repair. It is a simple exercise to check that � is true in J0.
Next let K0 be an instance such that K0 � � and I ⊕K0 ⊆ I ⊕J0. We have to prove
that J0 = K0.
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First, for all relational symbols T ∈ {R1,+, R1,−, R2,+, R2,−, Zero, F inal}, we
have T J0 = T I . Since I ⊕ K0 ⊆ I ⊕ J0, this implies that for all T ∈ {R1,+, R1,−,

R2,+, R2,−, Zero, F inal},
T K0 = T I = T J0 .

Next, we show that SJ0 = SK0 and SuccJ0 = SuccK0 . Since SI ⊆ SJ0 , SuccI ⊆ SJ0

and I ⊕ K0 ⊆ I ⊕ J0, we have

SK0 ⊆ SJ0 and SuccK0 ⊆ SuccJ0 . (15)

Next we prove by induction on n that for all 0 ≤ n ≤ m,

(sn, tn, in) ∈ SK0 and

{(s, s + 1) | 0 ≤ s + 1 ≤ f (n)} ⊆ SuccK0 , (16)

where f (n) is the maximum of the set {sj , tj | 0 ≤ j ≤ n}. Suppose first that
n = 0. Recall that (s0, t0, i0) = (0, 0, 0). Since (0, 0, 0) belongs to SI ∩ SJ0 and
I ⊕ K0 ⊆ I ⊕ J0, (0, 0, 0) also belongs to SK0 .

For the induction step, suppose that (16) holds. The ID (sn+1, tn+1, in+1) is the
unique successor of (sn, tn, in).

– Suppose that in is an addition. Without loss of generality, we may assume that in
is of the form +(1, j). Hence, (sn+1, tn+1, in+1) is equal to (sn + 1, tn, j). First,
we show that

(s, s + 1) | 0 ≤ s + 1 ≤ f (n + 1)} ⊆ SuccK0 . (17)

Since tn+1 = tn and sn+1 = sn + 1, it follows from the definition of f (n) and
f (n+1) that either f (n+1) = f (n) or f (n+1) = sn +1. If f (n+1) = f (n),
then (17) follows immediately from the induction hypothesis.

Suppose next that f (n+1) = sn+1. Let s be such that 0 ≤ s+1 ≤ sn+1. We
have to show that (s, s + 1) belongs to SuccK0 . If s + 1 ≤ sn, then by definition
of sn, s +1 ≤ f (n). By induction hypothesis, (s, s +1) belongs to SuccK0 . Next
suppose that s+1 = sn+1. We have to show that (sn, sn+1) belongs to SuccK0 .

By induction hypothesis, S(sn, tn, in) belongs to K0. Moreover, by defini-
tion of R

J0
1,+, R1,+(in, j) belongs to J0. We observed earlier that R

J0
1,+ = R

K0
1,+.

Hence, R1,+(in, j) belongs to K0. Hence,

S(sn, tn, in) ∧ R1,+(in, j)

is true in K0. The formula φ+
1 given by

S(s, t, i) ∧ R1,+(i, j) → ∃s′Succ(s, s′),

is true in K0. Hence, there is s′ such that Succ(sn, s
′) belongs to K0. Recall that

SuccK0 ⊆ SuccJ0 . By definition of SuccJ0 , SuccK0(sn, s
′) implies s′ = sn + 1.

This means that (sn, sn + 1) belongs to SuccK0 . This finishes the proof of (17)
Next we prove that S(sn+1, tn+1, in+1) belongs to K0. We showed in the

previous paragraph that

S(sn, tn, in) ∧ R1,+(in, j) ∧ Succ(sn, sn + 1)
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is true in K0. Recall that ψ+
1 given by

S(s, t, i) ∧ R1,+(i, j) ∧ Succ(s, s′) → S(s′, t, j)

is true in K0. It follows that S(sn + 1, tn, j) belongs to K0. That is,
S(sn+1, tn+1, in+1) belongs to K0.

– Suppose that in is a subtraction. Without loss of generality, we may assume that
in is of the form −(1, j, k).

Since in is a subtraction, f (n + 1) = f (n). Hence, using the induction
hypothesis, we obtain

{(s, s + 1) | 0 ≤ s + 1 ≤ f (n + 1)} ⊆ SuccK0 .

Next we prove that (sn+1, tn+1, in+1) belongs to K0. By definition of R
J0
1,−,

R1,−(in, j, k) belongs to J0. Recall that R
J0
1,− = R

K0
1,−. Hence, R1,−(in, j, k)

belongs to K0.
Suppose first that sn �= 0. Therefore, (sn+1, tn+1, in+1) is equal to (sn −

1, tn, j). By induction hypothesis, S(sn, tn, in) belongs to K0 and (sn − 1, sn)

belongs to SuccK0 . It follows that

S(sn, tn, in) ∧ R1,−(in, j, k) ∧ Succ(sn − 1, s + n)

holds in K0. Since φ−
1 given by

S(s, t, i) ∧ R1,−(i, j, k) ∧ Succ(s′, s) → S(s′, t, j)

is true in K0, S(sn − 1, tn, j) belongs to K0. That is, (sn+1, tn+1, in+1) belongs
to K0.

Next assume that sn = 0. Hence, (sn+1, tn+1, in+1) is equal to (0, tn, k). By
definition of ZeroJ0 , Zero(0) holds in J0. Together with ZeroJ0 = ZeroK0 , we
obtain ZeroK0(0). Therefore,

S(0, tn, in) ∧ R1,−(in, j, k) ∧ Zero(0)

holds in K0. Since φ=
1 given by

S(s, t, i) ∧ R1,−(i, j, k) ∧ Q0(s) → S(s, t, k)

is true in K0, S(0, tn, k) belongs to K0. That is, (sn+1, tn+1, in+1) belongs to K0.

This finishes the proof that (16) holds for all 0 ≤ n ≤ m.
It follows from (16) that SJ0 ⊆ SK0 and SuccJ0 ⊆ SuccK0 . Together with (15),

we obtain SJ0 = SK0 and SuccJ0 = SuccK0 .
Next we show that AncK0 = AncJ0 . Recall that φAnc

1 and φAnc
2 are true in K0.

Together with SuccJ0 = SuccK0 , we obtain that AncJ0 ⊆ AncK0 . Since AncI = ∅
and I ⊕ K0 ⊆ I ⊕ J0, this implies AncJ0 = AncK0 .

In order to finish the proof that K0 = J0, it remains to show that FK0 = FJ0 . We
established earlier that SK0 = SJ0 . In particular, (sm, tm, im) = (0, 0, l) belongs to
SK0 . We also proved that ZeroK0 = ZeroJ0 = {0} and FinalK0 = FinalJ0 = {l}.
Hence,

Final(l) ∧ S(0, 0, l) ∧ Zero(0) ∧ Zero(0)
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holds in K0. The formula φf given by

Final(j) ∧ S(s, t, j) ∧ Zero(s) ∧ Zero(t) → ∃sF (s)

is true in K0. This implies that FK0 �= ∅. Moreover, since FI ⊆ FJ0 and I ⊕ K0 ⊆
I ⊕ J0, we have FK0 ⊆ FJ0 . Recall that FJ0 is a singleton. Together with FK0 �= ∅,
we obtain FK0 = FJ0 .

We prove the implication from right to left of (14). Suppose that the consistent
answers of q with respect to I and � is false. Hence, there is an instance J that is a
⊕-repair of I and such that q is false in J . That is,

J � ¬∃sAnc(s, s) and FJ �= ∅. (18)

We start by proving

RJ
i,j ⊆ RI

i,j , (19)

ZeroJ = ZeroI = {0}, (20)

FinalJ = FinalI = {l} (21)

(0, 0, 0) ∈ SJ . (22)

Inclusion (19) follows from Lemma 7.3. Next we prove (20); that is, ZeroJ =
ZeroI . The inclusion ZeroJ ⊆ ZeroI follows from Lemma 7.3. Since ZeroI = {0},
ZeroJ = ∅ or ZeroJ = ZeroI . Suppose for contradiction that ZeroJ = ∅. Let
J3 be the instance such that FJ3 = ∅, and, for all relational symbols R distinct
from F , RJ3 = RJ . Since ZeroJ = ∅, the set � remains true in RJ3 . Moreover,
I ⊕ J3 ⊆ I ⊕ J . Since J is a ⊕-repair, J3 = J . In particular, FJ = ∅. This
contradicts (18) and finishes the proof of (20).

The proof that (21) holds is similar to the proof of (20). In order to prove (22),
suppose for contradiction that (0, 0, 0) does not belong to SJ . Let J2 be the instance
such that SJ2 = ∅, FJ2 = ∅ and for all relational symbols R distinct from S and F ,
RJ2 = RJ . We can check that � is true in J2 and I ⊕ J2 ⊆ I ⊕ J . Hence, J = J2.
In particular, FJ = ∅. This contradicts (18). Therefore, (0, 0, 0) belongs to SJ . This
finishes the proof of (19), (20), (21) and (22).

The proof of the implication from right to left of (14) is basically divided in two
parts. First we prove that we may identify the relation Succ with the successor rela-
tion on a well-chosen initial segment of the natural numbers. Second, we show how
we may associate the run of M with the facts of the form S(s, t, i).

We start by associating a natural number with each value occurring in S. Let N be
the set {s | ∃s′, SJ (s, s′) or SJ (s′, s)}. We pick a map f : N → N ∪ {⊥} such that
for all s ∈ N ,

– if there is s ′ such that SuccJ (s, s′), then SuccJ (s, f (s)),
– otherwise, f (s) = ⊥.

We show that there is a smallest natural number n0 such that f n0+1(0) = ⊥ where
f n0+1(0) is obtained by applying f (n0 + 1) times to 0. Suppose for contradiction
that there is no n such that f n(0) = ⊥. Since J is finite, there is a sequence s1, . . . , sn
such that for all 1 ≤ i ≤ n − 1, SuccI (si , si+1) and Succ(sn, s1). Since φAnc

1 and

Theory Comput Syst (2015) 57: –843 891 887



φAnc
2 are true in J , we obtain that AncJ (s1, s1). This contradicts (18). Hence, there

is a smallest natural number n0 such that f n0+1(0) = ⊥.
We define U as the set {f n(0) | 0 ≤ n ≤ n0}. Without loss of generality, we

may identify the element f n(0) (where 0 ≤ n ≤ n0) with the natural number n. By
definition of f and since φAnc

1 and φAnc
2 are true in J , we have

{(s, s + 1) | 0 ≤ s < n0} ⊆ SuccJ (23)

{(s, t) | 0 ≤ s < t ≤ n0} ⊆ AncJ (24)

Claim 4 (a) SJ = {(s, t, i) ∈ SJ | 0 ≤ s, t ≤ n0},
(b) SuccJ = {(s, s + 1) | 0 ≤ s < n0},
(c) AncJ = {(s, t) | 0 ≤ s < t ≤ n0}.

Proof of Claim Let J5 be the instance such that SJ5 is equal to {(s, t, i) ∈ SJ |
0 ≤ s, t ≤ n0}, SuccJ5 is equal to {(s, s + 1) | 0 ≤ s < n0}, AncJ5 is equal
to {(s, t) | 0 ≤ s < t ≤ n0} and for all relational symbols R /∈ {S, Succ, Anc},
RJ5 = RJ . In order to prove (a), (b) and (c), we have to show that J = J5.

First, we show that � is true in J5.
By definition of SuccJ5 and AncJ5 , the formulas φAnc

1 and φAnc
2 are true in J5.

Next, as FJ5 = FJ and FJ �= ∅ (see (18)), φf is also true in J5. Now we prove

that φ−
1 is true in J5. Suppose that SJ5(s, t, i), R

J5
1,−(i, j, k) and SuccJ5(s′, s) hold.

We have to show that SJ5(s′, t, j) holds. By definition of J5 and by inclusion (23),
this implies SJ (s, t, i), RJ

1,−(i, j, k) and SuccJ (s′, s). Since φ−
1 is true in J , we

have SJ (s′, t, j). Now, as SJ5(s, t, i) and SuccJ5(s′, s), s′ and t are natural numbers
between 0 and n0. Putting that together with the fact that SJ (s′, t, j), we obtain
SJ5(s′, t, j). This finishes the proof that φ−

1 is true in J5. The proofs that φ=
1 , φ−

2 ,
φ=

2 , ψ+
1 and ψ+

2 are true in J5 are similar.

Next we prove that φ+
1 is true in J5. Suppose that SJ5(s, t, i) and R

J5
1,+(i, j) hold.

In particular, s and t belong to {n | 0 ≤ n ≤ n0}. We have to find s′ such that
SuccJ5(s, s′). By definition of J5, SJ5(s, t, i) and R

J5
1,+(i, j) imply SJ (s, t, i) and

RJ
1,+(i, j). Since φ+

1 is true in J , there exists s′′ such that SuccJ (s, s′′). The problem
is that there is no guarantee that s′′ is a natural number between 0 and n0.

Since s has a successor s′′ in J , we know by definition of f and n0 that s < n0.
Hence, SuccJ5(s, s + 1). By (23), this implies SuccJ (s, s + 1). We may conclude
that φ+

1 is true in J5. The proof that φ+
2 is true in J5 is similar. This finishes the proof

of the Claim.
It follows from the definition of J5 and inclusions (23) and (24) that I⊕J5 ⊆ I⊕J .

Since J is a ⊕-repair, this means that J = J5. Hence, (a), (b) and (c) hold.

The next step is to show how the relation S encodes the run of M . For that purpose,
we introduce the notion of reachability. We say that a tuple S(s′, t ′, j) in J is 1-step
reachable from a tuple S(s, t, i) in J if

– either RJ
1,+(i, j), s′ = s + 1 and t = t ′,
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– or RJ
2,+(i, j), t ′ = t + 1 and s = s′,

– or RJ
1,−(i, j, k) for some k, s′ = s − 1 and t = t ′,

– or RJ
1,−(i, k, j) for some k, Zero(s), s = s ′ and t = t ′,

– or RJ
2,−(i, j, k) for some k, t ′ = t − 1 and s = s′,

– or RJ
2,−(i, k, j) for some k, Zero(s), s = s ′ and t = t ′.

Since ZeroJ = {0} and RJ
i,j ⊆ RI

i,j (where i ∈ {1, 2} and j ∈ {+, −}), we obtain

ifS(s′, t ′, j)is 1-step reachable fromS(s, t, i),

the successor of the ID (s, t, i) is (s′, t ′, i′). (25)

A tuple S(j, s′, t ′) is reachable from a tuple S(s, t, i) if the pair
(S(s, t, i), S(j, s′, t ′)) belongs to the transitive closure of the 1-step reachability
relation.

Now let m0 be the maximum of the set

{s, t | S(s, t, i) is reachable from S(0, 0, 0)}.

We show that

(i) SJ = {S(s, t, i) | S(s, t, i) is reachable from S(0, 0, 0)},
(ii) SuccJ = {(s, s + 1) | 0 ≤ s < m0},

(iii) AncJ = {(s, t) | 0 ≤ s < t ≤ m0}.
Let J6 be the database such that SJ6 is equal to {S(s, t, i) |
S(s, t, i) is reachable from S(0, 0, 0)}, SuccJ6 is equal to {(s, s + 1) | 0 ≤ s < m0},
AncJ6 is equal to {(s, t) | 0 ≤ s < t ≤ m0} and for all relational symbols
R /∈ {S, Succ, Anc}, RJ6 = RJ .

We can check that � remains true in the instance J6. By definition of J6, we also
have I ⊕ J6 ⊆ I ⊕ J . Hence, J = J6; that is, (i), (ii) and (iii) hold.

Next we prove that there exists sm, tm and jm such that

SJ (sm, tm, jm), Zero(sm), Zero(tm) and Final(jm). (26)

Suppose for contradiction that there are not such sm, tm and jm. Consider the instance
J7 obtained from J by removing the tuples of the form FJ (s). The tgds of � remains
true in J7. Moreover, I ⊕J7 ⊆ I ⊕J . Since J is a ⊕-repair, J = J7. That is, FJ = ∅,
which contradicts (18). Therefore, there exists sm, tm and jm satisfying (26).

We proved earlier that FinalJ = FinalI and ZeroJ = ZeroI . Hence, sm =
tm = 0 and jm = l. Together with (26), this means that the fact S(0, 0, l) belongs to
J . Since J satisfies (i), the tuple S(0, 0, l) is reachable from (0, 0, 0). That is, there
is a sequence (s0, t0, i0), . . . , (sm, tm, im) such that

– (s0, t0, i0) = (0, 0, 0),
– for all 0 ≤ n < m, S(sn+1, tn+1, in+1) is 1-step reachable from (sn, tn, in),
– (sm, tm, im) = (0, 0, l).
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It follows from (25) and the hypothesis that the ID (0, 0, l) is its unique successor,
that the sequence

(s0, t0, i0), . . . , (sm−1, tm−1, im−1), (0, 0, l), (0, 0, l), . . .

is the run of the machine M . Hence, the run of M is halting.

8 Concluding Remarks

In this paper, we carried out a fairly comprehensive investigation of the data complex-
ity of the consistent query answering problem for conjunctive queries with respect to
classes of constraints that have played a major role in data exchange and data inte-
gration. In the process, we brought into front stage and used extensively the notions
of universal repairs and n-universal repairs, n ≥ 1.

One problem left open by our investigation is the data complexity of the superset-
consistent answers and of the ⊕-consistent answers for conjunctive queries w.r.t. sets
of inclusion dependencies and equality-generating dependencies. As mentioned ear-
lier, this problem has been shown to be undecidable in combined complexity [31]. It
would also be interesting to investigate algorithmic aspects concerning the existence
of universal repairs. Specifically, what can one say about the complexity of the fol-
lowing decision problem: given a set � of dependencies and an instance I , does I

have a �-universal repair w.r.t. �, where � ∈ {⊕, subset, superset}? And similarly
for n-universal repairs, n ≥ 1. Note that results in [26, 27] already imply that there
is a set � of tgds for which the problem of checking whether a given instance has a
universal superset-repair is undecidable.

Finally, the results presented give rise to challenging complete classification prob-
lems that, if resolved, may take the form of a dichotomy or a trichotomy theorems.
For example, is it true that for every set � of GAV tgds and every conjunctive query
q, the ⊕-consistent answers of q are either in PTIME or coNP-complete? Even for
just key constraints only partial results towards such a dichotomy theorem have been
obtained so far [19, 21, 29, 36, 37].
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