
Theory Comput Syst (2015) 57:287–318
DOI 10.1007/s00224-014-9584-2

Synchronizing Relations on Words

Diego Figueira ·Leonid Libkin

Published online: 14 November 2014
© Springer Science+Business Media New York 2014

Abstract While the theory of languages of words is very mature, our understanding
of relations on words is still lagging behind. And yet such relations appear in many
new applications such as verification of parameterized systems, querying graph-
structured data, and information extraction, for instance. Classes of well-behaved
relations typically used in such applications are obtained by adapting some of the
equivalent definitions of regularity of words for relations, leading to non-equivalent
notions of recognizable, regular, and rational relations. The goal of this paper is to
propose a systematic way of defining classes of relations on words, of which these
three classes are just natural examples, and to demonstrate its advantages compared
to some of the standard techniques for studying word relations. The key idea is that
of a synchronization of a pair of words, which is a word over an extended alpha-
bet. Using it, we define classes of relations via classes of regular languages over a
fixed alphabet, just {1, 2} for binary relations. We characterize some of the standard
classes of relations on words via finiteness of parameters of synchronization lan-
guages, called shift, lag, and shiftlag. We describe these conditions in terms of the
structure of cycles of graphs underlying automata, thereby showing their decidabil-
ity. We show that for these classes there exist canonical synchronization languages,
and every class of relations can be effectively re-synchronized using those canoni-
cal representatives. We also give sufficient conditions on synchronization languages,
defined in terms of injectivity and surjectivity of their Parikh images, that guarantee
closure under intersection and complement of the classes of relations they define.

The current article is the full version of [19].

D. Figueira · L. Libkin (�)
University of Edinburgh, 10 Crichton street, Edinburgh EH8 9AB, UK
e-mail: libkin@inf.ed.ac.uk

Diego Figueira
e-mail: dfigueir@inf.ed.ac.uk

mailto:libkin@inf.ed.ac.uk
mailto:dfigueir@inf.ed.ac.uk

288 Theory Comput Syst (2015) 57:287–318

Keywords Word relations · Regular · Rational · Recognizable

1 Introduction

Foundations of formal language theory have been largely developed in the 1960s and
1970s, and used heavily in practically all areas of computer science. The field itself
stayed somewhat dormant for a while, but that changed over the past 10–15 years
due to new application areas requiring techniques that could not have been foreseen
30 or 40 years earlier. Among consumers of results in formal language theory are
verification (for instance, automata-based approaches to model-checking are now
part of standard industrial verification tools [7, 25]) and data management (standards
for describing and querying XML documents, for instance, are rooted in both word
and tree automata [27, 31], and emerging graph data models are borrowing many
formal language concepts [3]).

Of interest to us in this paper are relations on words. That is, for a given finite
alphabet A, we deal with binary relations R ⊆ A

∗ × A
∗. Their study goes back to

Elgot, Mezei, Nivat in the 1960s [17, 28] with much subsequent work done later
(see, e.g., surveys [9, 15]). The standard notions of regularity that generate the same
class of languages —recognizability by finite monoids, definability by automata, or
by regular expressions— give rise to different classes of relations, called recogniz-
able, regular, and rational relations. Their properties may differ significantly from
properties of regular languages: for instance, rational relations are not closed under
intersection and it is even undecidable whether the intersection of two such lan-
guages is non-empty. Recognizable relations are just unions of products of regular
languages; examples of regular relations are prefix, equality, or equal length of words;
and examples of rational relations are suffix, subword (for instance, bb is a subword
of aabbaa), and subsequence (bb is a subsequence of abaaba: letters need not be
consecutive).

There has been renewed interest in relations on words as of late. One motivation
comes from verification of safety and liveness properties of parameterized systems,
where such relations describe transitions [1, 12, 23, 32]. Another comes from graph
databases, which are actively studied as a suitable model for RDF data, social net-
works data, and others [3]. Paths in graph databases are described by their labels, and
need to be compared, for instance, for their degree of similarity, e.g., their edit dis-
tance [4, 6, 26]. Yet another example is the study of formal models underlying IBM’s
tools for information extraction [18].

Many of the basic questions that arise in these new applications, however, are not
the kind of questions that had been addressed previously. Just to give an example, it
is well known that checking nonemptiness of the intersection of a rational relation
and a regular relation is an undecidable problem. But what about really used rational
relations such as subword, suffix, subsequence (as opposed to artificial codings of the
halting problem) – can we test if their intersection with regular relations is nonempty?
However natural these questions are, they were answered only recently [5].

An even more basic question relates to the very choice and structure of the main
classes of relations: recognizable, regular, and rational. They appeared in a somewhat

Theory Comput Syst (2015) 57:287–318 289

ad hoc way, just as analogs of different ways of defining regularity of languages, but
is there another way to explain these, and perhaps other classes as well? This is the
main point of our paper: we argue that there is a natural way to study relations on
words, and we do it by explaining how positions in words are synchronized.

As an example of synchronization, consider words w1 = ababb and w2 =
baaaba. We can represent this pair as a single word over {a, b}, by shuffling w1 and
w2, i.e., interspersing letters of w1 among letters of w2. For each position in the shuf-
fle, we remember which word it came from – this is indicated by the symbols 1 or 2
above the letters in the figure.

When we read the letters marked i, for i = 1, 2 we get the word wi . The
word over {1, 2} provides a synchronization of the pair (w1, w2) – in our example,
12212112212. We show that the commonly occurring classes of relations over words
follow the same principle:

1. to decide whether (w1, w2) is in the relation, one runs an automaton over the
shuffle;

2. classes of relations are then determined by the classes of allowed synchroniza-
tions.

For instance, recognizable relations are given by synchronizations from 1∗2∗,
length-preserving regular relations by synchronizations from (12)∗, arbitrary reg-
ular relations by synchronizations from (12)∗(1∗|2∗), and rational relations by
synchronizations from (1|2)∗.

For relations, we have proper inclusions recognizable � regular � rational [9],
making them very different from languages. This raises the question: since every
recognizable language is regular, and yet 1∗2∗ is not contained in (12)∗(1∗|2∗), there
must be multiple ways of synchronizing relations to obtain even known classes. What
are these ways, and how can they be characterized? And will those characterizations
lead to new naturally appearing classes?

These are the questions we answer. We define three parameters of regular lan-
guages in (1|2)∗: the shift says how often we switch between 1s and 2s, the lag says
how big the difference between the numbers of 1 and 2 is allowed to get, and shift-
lag combines the two in a certain way. Then finite shift characterizes recognizability,
while finite shiftlag characterizes regularity of relations. Finite lag, which appears to
be a natural measure then, captures another known class of relations.

We provide automata characterizations of classes of synchronization languages in
terms of the structure of cycles in the graph representations of automata. All these
turn out to be decidable. This shows one advantage of dealing with relations in terms
of their synchronizations. For instance, it is known that checking whether a given

290 Theory Comput Syst (2015) 57:287–318

rational relation is regular, is an undecidable problem (assuming the input is a trans-
ducer, i.e., an automaton with output [9]). However, if the input to the problem is a
synchronization language, then it is decidable whether the relations it describes are
all regular.

Another advantage of describing relations by their synchronizations is the ability
to find classes closed under intersection or complementation (rational relations, for
instance, are not). We do it by imposing decidable conditions on Parikh images of
synchronization languages to guarantee closure properties of classes of relations they
give rise to.

We also look at re-synchronization of relations. For each class of relations, there
may be many different regular synchronizing languages over {1, 2}. We show that in
the standard cases, there exist canonical synchronizing languages, and relations can
be effectively resynchronized using those canonical languages.

2 Recognizable, Regular, and Rational Relations

We start with some basic notations. Throughout the paper, A stands for a finite alpha-
bet, N = {1, 2, . . . } for the set of positive natural numbers, and N0 for N ∪ {0}. The
set of all words over A is denoted by A

∗, and the length of w in A
∗ is denoted by |w|.

If w = a1 . . . an, then w[i, j] stands for the subword ai . . . aj ; in particular, w[i] is
the letter ai .

Recall that there are three standard ways of defining regular languages:

– Recognizability by finite monoids: the set A∗, equipped with the concatenation
operation (denoted by ‘·’, whose unit is the empty word ‘ε’) is a monoid. A set
L ⊆ A

∗ is recognizable if there is a finite monoid M and a homomorphism
〈A∗, ·, ε〉 → M so that L = f −1(M0) for some M0 ⊆ M .

– Definability by finite automata, say NFAs.
– Definability by regular (sometimes called rational) expressions, i.e., those built

from the empty word and alphabet letters using union, concatenation, and the
Kleene star.

Classical formal language theory tells us that these definitions generate the same
class of languages, known as regular languages. We now adapt them to binary
relations on words.

Recognizable relations Since 〈A∗, ·, ε〉 is a monoid, A∗ × A
∗ has the structure of

a monoid too. We can thus define recognizable relations as sets R ⊆ A
∗ × A

∗ for
which there is a finite monoid M and a morphism f : A

∗ × A
∗ → M such that

R = f −1(M0) for some M0 ⊆ M . This class will be denoted by REC.

Regular relations Let ⊥ 	∈ A be a new alphabet letter. A pair (w1, w2) of words
from A

∗ can be encoded by a single word of length max(|w1|, |w2|) over the alpha-
bet (A ∪ {⊥}) × (A ∪ {⊥}): its ith letter is the pair containing the ith letter of
w1 and the ith letter of w2, with ⊥ used when i is greater than the length of
w1 or w2. For example, the encoding for the words of the figure of page 3 is

Theory Comput Syst (2015) 57:287–318 291

(a, b)(b, a)(a, a)(b, a)(b, b)(⊥, a). A regular relation R is given by an automaton
over this alphabet: it contains pairs (w1, w2) whose encodings are accepted by the
automaton. The class of regular relations is denoted by REG.

Rational relations There are two equivalent ways of defining them. One uses regular
expressions, which are now built from pairs in (A ∪ {ε}) × (A ∪ {ε}) using the same
operations of union, concatenation, and Kleene star. Alternatively, rational relations
can be defined by means of 2-tape automata, that have 2 heads for the tapes and one
additional control; at every step, based on the state and the letters it is reading, the
automaton can enter a new state and move some (not necessarily all) tape heads. The
class of rational relations is denoted by RAT.

Relations in REC are exactly the finite unions of products of regular languages
over A [9, 17]. Examples of relations in REG \ REC are prefix, equality, or equal
length. Examples of relations in RAT \ REG are suffix, given by

(⋃
a∈A(ε, a)

)∗ ·(⋃
a∈A(a, a)

)∗; subword:
(⋃

a∈A(ε, a)
)∗ · (⋃

a∈A(a, a)
)∗ · (⋃

a∈A(ε, a)
)∗, and

subsequence:
(⋃

a∈A(ε, a) ∪ (a, a)
)∗.

Note that unlike in the case of languages, where the three notions coincide, we
have REC � REG � RAT. The classes REC and REG are closed under intersection;
however the class of rational relations is not. In fact, one can find R ∈ REG and
S ∈ RAT so that R∩S 	∈ RAT. However, if R ∈ REC and S ∈ RAT, then R∩S ∈ RAT.

Relations in REC and REG inherit all the closure/decidability properties of regu-
lar languages. If R ∈ RAT, then each of its projections is a regular language, and can
be effectively constructed. Hence, the nonemptiness problem is decidable for RAT.
However, testing nonemptiness of the intersection of two rational relations is unde-
cidable. We refer to [9, 14, 30] for basic information on these relations and their
decision problems.

3 Synchronizations of Relations

We now formalize the idea of synchronizations informally described in the introduc-
tion. We write k for the set {1, . . . , k}. A synchronization of a pair (w1, w2) of words
in A

∗ is a word over 2×A so that the projection on A of positions labeled i is exactly
wi , for i = 1, 2 (see the figure on page 3). Every word w in (2×A)∗ is a synchroniza-
tion of a uniquely determined pair (w1, w2), where wi is the sequence of A-letters
corresponding to the symbol i in the first position of 2×A. We denote such (w1, w2)

by �w� and extend it to languages S ⊆ (2 × A)∗ by �S� = {�w� | w ∈ S}.
For two words u = a1 · · · an ∈ A

∗ and v = b1 · · · bn ∈ B
∗, we write u ⊗ v for the

word (a1, b1) · · · (an, bn) ∈ (A× B)∗. The main idea of our approach to relations on
words comes from two different ways of viewing words in (2 × A)∗.

– Every word w ∈ (2 × A)∗ is a synchronization of a pair �w� = (w1, w2).
– Every word w ∈ (2 × A)∗ is of the form u ⊗ v with u ∈ 2∗ and v ∈ A

∗.

This makes it possible to define relations consisting of pairs �w� with restricted
synchronizations, i.e., w = u ⊗ v and u belongs to a given language L ⊆ 2∗.

292 Theory Comput Syst (2015) 57:287–318

Formally, if L ⊆ 2∗, we say that u ⊗ v is L-controlled if u ∈ L; a language
is L-controlled if all its words are. We now look at relations given by L-controlled
synchronizations, i.e., for a regular language L ⊆ 2∗, let

REL(L) = {�S� | S is a regular L-controlled language} (1)

If C is a class of relations over A
∗, then L ⊆ 2∗ is a synchronization for C if

REL(L) ⊆ C , that is, all relations given by L-controlled synchronizations belong to
C . We remark that a similar approach to defining relations was used in [21], although
the questions considered were completely different.

Procedurally, each relation in REL(L) is obtained as follows:

1. Choose an automaton over 2 × A;
2. consider words u ⊗ v it accepts so that u ∈ L,
3. view v as a synchronization of (w1, w2) and add the pair to the relation.

This view suggests natural candidates for capturing classes REC,REG, and RAT.
For REC, relations are unions of products of regular languages, so synchronizations
are of the form 1∗2∗: one starts by going over the first word, and then over the second.
For REG, they are from (12)∗(1∗|2∗): we first go over two words letter-by-letter, and
then write out the rest of the longer word. For RAT, there are no restrictions. Indeed,
we can show the following.

Proposition 1 (I) REL(1∗2∗) = REC.
(II) REL(12)∗ · (1∗|2∗) = REG.

(III) REL(1|2)∗ = RAT.

Proof (I)-[⊇] The fact that REL(L) contains any union of products of regular
languages (and hence that REC ⊆ REL(L)) is straightforward. Note that
REL(L) is closed under finite union, and for any two regular languages
L1, L2 we have that L1 × L2 ∈ REL(L) because (1 ⊗ L1) · (2 ⊗ L2) is an
L-controlled language.

(I)-[⊇] On the other hand, let R ∈ REL(L), defined by a L-controlled language
S. Let S be described by an NFA AS with statespace Q, initial state q0 and

final states F . Let L
q,q ′
i be the language consisting of all words v ∈ A

∗ so
that there is a partial run of AS on i ⊗v starting in state q and ending in state

q ′. Note that L
q,q ′
i is regular. Hence, R = �S� = ⋃

q∈Q,q ′∈F L
q0,q

1 × L
q,q ′
2 ,

and thus any relation in REL(L) is a finite union of products of languages.
Therefore, REL(L) ⊆ REC.

(II)-[⊇] Let R ⊆ A
∗ × A

∗ be a regular relation, represented by an NFA A over
the alphabet (A ∪ {⊥})2, where (u1, u2) is in R if and only if u′

1 ⊗ u′
2 ∈

L(A), where u′
i ∈ (A ∪ {⊥})∗ is the result of padding ui with a suffix of

max(|u1|, |u2|)−|ui | letters ⊥. Let Q be the statespace of A. We produce an
NFA A′ over 2×A so that �L(A′)� = R and L(A′) is L-controlled. Let Q′ =
2 × Q. For any transition (q, (a, b), q ′) of A, where a, b 	= ⊥, we have two
transitions ((1, q), (1, a), (2, q)) and ((2, q), (2, b), (1, q ′)) in A′; and for

Theory Comput Syst (2015) 57:287–318 293

any transition (q, (⊥, b), q ′) (resp. (q, (a, ⊥), q ′)) of A, we have a transition
((1, q), (2, b), (1, q ′)) (resp. ((1, q), (1, a), (1, q ′))) in A′. It follows that a
pair (u, v) is accepted by the relation represented by L(A′) if, and only if,
(u, v) is in �L(A′)�. Further, it is plain that by the behavior of A (i.e., once
it reads a letter (a, ⊥) for a ∈ A, it reads only ⊥ in the second component,
and likewise for the first component) A′ must be L-controlled.

(II)-[⊇] Let A be an NFA over 2 × A so that L(A) is L-controlled, with statespace
Q. Note that Q can be partitioned into four sets Q1, Q2, Q

′
1, Q

′
2, so that the

transition relation δ of A is such that

δ ⊆
⋃

i∈2
Qi×{i}×A×(Q\Qi) ∪

⋃

i∈2
Q′

i×{i}×A×Q′
i (†)

that is, all outgoing transitions from Qi, Q
′
i read letters from {i} × A, and

there is an alternation between Q1 and Q2 until a state from Q′
i is reached,

and after that it stays only in Q′
i . We can build an automaton A′ over

(A ∪ {⊥})2 representing the same relation as follows. For every two tran-
sitions (q1, (1, a), q2) and (q2, (2, b), q ′) of A where qi ∈ Qi , we have
a transition (q1, (a, b), q ′) in A′; for every transition (q1, (1, a), q ′

1) where
q1, q

′
1 ∈ Q1 ∪ Q′

1, we have a transition (q1, (a, ⊥), q ′
1) in A′; and for

every transition (q2, (2, b), q ′
2) where q2, q

′
2 ∈ Q2 ∪ Q′

2, we have a transi-
tion (q2, (⊥, b), q ′

2) in A′. By (1), it follows that A′ represents the relation
�L(A)�.

(III) Note that L = (1|2)∗ = 2∗ imposes no constraint on REL(L). That is,
REL(L) is the set of all relations �S� so that S ⊆ 2 × A is regular. Any
automaton A over 2 × A can be alternatively seen as a two-tape automa-
ton A′, having one head on each tape, where a transition (q, (i, a)q,′) in
A corresponds to a transition in A′ from q to q ′ reading letter a from tape
i. Conversely, any two-tape automaton A′ can be converted into an NFA
A over 2 × A. For both directions, the set of relations accepted by A′ is
�L(A)�. These are precisely the relations in RAT, and hence the statement
follows.

It is easy to see that REL(L) is closed under union, alphabetic morphisms,
and inverse alphabetic morphisms, and that L1 ⊆ L2 implies REL(L1) ⊆ REL

(L2).

Remark 1 One may ask why we need to take both S and L regular in the definition (1)
of REL(L). The reason why S needs to be regular is that even with regular L (e.g., 1∗),
REL(L) would otherwise contain non-rational relations (e.g., {(anbn, ε) | n ∈ N}).
If, on the other hand, L is not regular, strange things may happen. For instance, it
could be that all relations in REL(L) are finite, although L is infinite. Indeed, take
L as the set of all words 1p for prime p. Note that there is no infinite regular L-
controlled language, since it would imply that an infinite number of distinct primes

294 Theory Comput Syst (2015) 57:287–318

is semi-linear. Thus, all regular L-controlled languages are finite, and REL(L) is the
set of all finite relations on A

∗ × {ε} so that the first component is of prime length.

4 Synchronizations for Recognizable, Regular, and Rational Relations

We have seen examples of languages characterizing the classes of recognizable, regu-
lar, and rational relations, but those are not unique. There are trivial examples such as
REL(1∗2∗) = REL(2∗1∗) = REC, and REL((12)∗(1∗|2∗)) = REL((21)∗(1∗|2∗)) =
REG, but others as well, e.g., the fact that REL(1∗2∗1∗2∗) is the same class as REC,
or REL(((12)∗1(12)∗2)∗(1∗|2∗)) = REG.

What kind of parameters guarantee that L ⊆ 2∗ synchronizes relations in a class
C , for the classes we study here? That is, what parameters guarantee that with the
synchronization language L, we are guaranteed that the resulting relations are in C ?

We now answer this question, but first we need some definitions. Given a word
w over some finite alphabet, and a letter a in the alphabet, we define #a(w) as the
number of occurrences of a in w. Given a word w ∈ 2∗, a position i ≤ |w|, and
δ ∈ N, we say i is

– δ-lagged if |#1(w[1, i]) − #2(w[1, i])| = δ;
– ≥δ-lagged if |#1(w[1, i]) − #2(w[1, i])| ≥ δ;
– ≤δ-lagged if |#1(w[1, i]) − #2(w[1, i])| ≤ δ.

That is, these parameters show by how much the numbers of 1s and 2s in w ∈ 2∗
differ.

A shift of w is a position i ∈ {1, . . . , |w| − 1} so that w[i] 	= w[i + 1]. Two shifts
i < j are consecutive if there is no shift l so that i < l < j .

Let shift(w) be the number of shifts of w, let lag(w) be the maximum lag of
a position in w, and let shif tlag(w) be the maximum n ∈ N so that w contains
n consecutive shifts which are >n-lagged. We lift these notions to languages by
taking maxima, e.g., shif t (L) = maxw∈L shif t (w), and likewise for lag(L) and
shif tlag(L). If words of arbitrarily large lag (shift, or shiftlag) occur in L, we write
shif t (L) = ∞ (and likewise for the other parameters).

Observe that finite shift and finite lag imply that shiftlag is finite, but the con-
verse is not true: for L = (12)∗1∗ we have shif tlag(L) < ∞ and yet lag(L) =
shif t (L) = ∞.

It turns out that finiteness of the shiftlag parameter corresponds to synchronizing
regular languages, and finiteness of shift corresponds to synchronizing recogniz-
able languages. An arbitrary regular L ⊆ 2∗ is guaranteed to synchronize rational
languages.

As for the finite lag, it corresponds to a class of languages that is known as well.
The class REGbld of bounded length discrepancy relations [20, 30] is defined as
follows. Recall the definition of rational relations using two-tape automata. For a
rational relation to be in REGbld it is required that there be δ ≥ 0 so that in accepting
runs of such automata, the heads for the two tapes are never more than δ positions
apart. It also follows from [20, 30] that REGbld is the class

⋃
k∈N0

REL(Lk), for

Theory Comput Syst (2015) 57:287–318 295

Lk = (12)∗(1k|2k). Note that REL(L0) is the class of length preserving relations. A
closely related class R≤ = {(w1, w2) ∈ A

∗ × A
∗ | |w1| ≤ |w2|} [24] can be equally

defined by REL((12|2)∗).
Now we can state the characterization result.

Theorem 1 Let L ⊆ 2∗ be a regular language. Then:

(I) L synchronizes recognizable relations iff shift(L) < ∞,
(II) L synchronizes regular relations iff shiftlag(L) < ∞,

(III) L synchronizes relations in REGbld iff lag(L) < ∞,
(IV) L synchronizes rational relations.

In order to prove Theorem I, we first need two lemmas.

Lemma 1 For every s ≥ 1, we have REL((1∗2∗)s) = REC.

Proof This is a consequence of a synchronization theorem, Theorem 3-(II), which
implies that for every (1∗2∗)s-controlled language S there is a (1∗2∗)-controlled lan-
guage S′ so that �S� = �S′�. This fact, in conjunction with Proposition 1-(I), shows
the statement.

In the lemma below, we extend the notion of concatenation to classes of relations
in the natural way, i.e., element-wise.

Lemma 2 For every δ ∈ N, we have REL(L≤δ−lag) � REG and REL(L≤δ−lag) ·
REC = REG.

Proof Note that any relation R ∈ REL(L≤δ−lag) only contains pairs (u, v) so that
−δ ≤ |u| − |v| ≤ δ. Hence the regular relation {(u, ε) | u ∈ A

∗} is not in
REL(L≤δ−lag), and thus REL(L≤δ−lag) 	= REG. On the other hand, we have that
any R ∈ REL(L≤δ−lag) is regular, since it can be recognized by a nondeterministic
automaton on two tapes with a look-ahead of δ, which can be simulated in the states
of the automaton. Hence, REL(L≤δ−lag) � REG.

Since the concatenation of a regular relation and a recognizable relation is regular
[9], we are only left to show REG ⊆ REL(L≤δ−lag) ·REC. It is easy to see from their
automata description that every regular relation R ∈ REG can be factored into a finite
union of relations R1 ·R2 so that R1 is (12)∗-controlled and R2 is (1∗|2∗)-controlled.
Since (12)∗ ∈ REL(L≤δ−lag) for δ = 1, it follows that REG ⊆ REL(L≤1−lag) · REC.
Note that for every δ ≤ δ′ we have L≤δ−lag ⊆ L≤δ′−lag. Then, by the above and
monotonicity, REG ⊆ REL(L≤δ−lag) · REC for every δ ≥ 1.

We can now prove the theorem.

Proof (of Theorem 1) (II)-(if) Let n ∈ N so that shif tlag(L) < n. Since L is
regular, this implies that there is some δ′ where all shifts of every w ∈ L are
≤δ′-lagged for some δ′, except perhaps the last n − 1 shifts.

296 Theory Comput Syst (2015) 57:287–318

Claim 1 There is some δ′ so that for all w ∈ L and for all shifts i of w that are not
among the last n − 1 shifts, we have that they are ≤δ′-lagged.

Proof Remember that L is regular. Let AL be an NFA accepting the language L

with a state space Q. Let δ′ = n(|Q| + 1) + 1. Suppose, by means of contradiction,
that there is w ∈ L with a shift i ∈ {1, . . . , |w|} that is >δ′-lagged, so that there are
at least n − 1 shifts to the right of i. Let us assume, without any loss of generality,
that #1(w[1, i]) − #2(w[1, i]) > δ′. Figure 1 contains an example. Since w ∈ L, let
ρ : {0, . . . , |w|} → Q be an accepting run of AL on w. Let i′ ≤ i be

– the largest shift i′ < i that is ≤n-lagged, if there is any, or
– i′ = 1 otherwise.

Note that in [i′, i] there cannot be more than n shifts, since otherwise w would have
n consecutive >n-lagged shifts contradicting shiftlag(w) < n. Also, in [i′, i] there
must be k = δ′ − n positions i′ ≤ i1 < · · · < ik ≤ i so that for every j ∈
{1, . . . , k − 1}

#1(w[ij + 1, ij+1]) − #2(w[ij + 1, ij+1]) = 1, (2)

where, by definition of δ′, k = n|Q| + 1 (cf. Figure 1). Remember that there are no
more than n shifts in [i′, i] and i is itself a shift; hence, since k > n|Q|, there must be
|Q| + 1 such positions ij1 < · · · < ij|Q|+1 so that there is no shift in [ij1 , ij|Q|+1 − 1].
Then, there must be two distinct positions ij , ij ′ ∈ {ij1 , . . . , ij|Q|+1}, ij < ij ′ , so that
ρ(ij) = ρ(ij ′) and there is no shift in [ij , ij ′ − 1] (cf. Fig. 1). We show that we can
then “pump” the subword of w inside [ij , ij ′] to obtain a larger word w′ ∈ L that has
n shifts >n-lagged, that is, where shiftlag(w′) ≥ n. Indeed, for any l ∈ N, we have
that

w′ = w[1, ij] · (w[ij + 1, ij ′])l · w[ij ′ + 1, |w|] ∈ L.

Note that w′ has as many shifts as w. Moreover, shift i in w corresponds now to shift
î = i + (l − 1) · |[ij + 1, ij ′]| in w′, and we have

#1(w
′[1, î]) − #2(w

′[1, î]) > (l − 1) + δ′

Fig. 1 Example, where w has a prefix 1111121111112 after which it has n − 1 shifts, n = 4, δ′ = 9, and
|Q| = 1. Shift positions are circled

Theory Comput Syst (2015) 57:287–318 297

since for every iteration of w[ij + 1, ij ′] we add more letters 1 than letters 2, as a
consequence of (2).

If we take l = |w| + 1, we then have that

– w′ has at least n shifts in [î, |w′|], because w has at least n shifts in [i, |w|] and
w′[î, |w′|] = w[i, |w|], and

– #1(w
′[1, î]) − #2(w

′[1, î]) > |w| + δ′.

Therefore, the last n shifts of w′ are all >n-lagged, contradicting shiftlag(L) < n.
The contradiction comes from assuming that for all δ′ there is w ∈ L and a >δ′-
lagged shift i of w that is not among the last n − 1 shifts.

As a consequence of the above Claim 1, there must be some δ′′ where all the
positions occurring before the last n shifts are ≤δ′′-lagged.

Claim 2 There is some δ′′ so that for all w ∈ L and all i so that w has at least n

shifts in [i, |w|], we have that i is ≤δ′′-lagged.

Proof Let δ′ be as in Claim 1. Take any position i so that there are at least n shifts
in [i, |w|]. Take also the two positions i1 ≤ i ≤ i2 so that

– i2 is a shift,
– i1 is a shift or i1 = 1, and
– there are no shifts in [i1 + 1, i2 − 1].
By Claim 1, it follows that both i1 and i2 are ≤δ′-lagged. Since w[i1 + 1, i2] is a
string of only 1’s or only 2’s, it cannot be that |w[i1 + 1, i2]| > 2δ′, as otherwise
either i1 or i2 would not be ≤δ′-lagged. It then follows that i must be ≤2δ′-lagged.
Hence, taking δ′′ = 2δ′, the statement follows.

A direct consequence of Claim 2 is that there is some δ′′ so that

L ⊆ L≤δ′′−lag · (1∗|2∗)n (3)

because (1∗|2∗)n contains all words with at most n shifts, and L≤δ′′−lag is the (reg-
ular) language of all words with ≤δ′′-lagged positions. Since REL(L′) = REC
for L′ = (1∗|2∗)n by Lemma 1, we obtain that REL(L′′) = REG for L′′ =
L≤δ′′−lag · (1∗|2∗)n by Lemma 2. Finally, as stated in (3), we have that L ⊆ L′′ where
REL(L′′) = REG. Applying monotonicity, we then have REL(L) ⊆ REG.

(II)-(only if) Suppose that shif tlag(L) = ∞. Note that this means that for every
s, δ ∈ N there is some w ∈ L that has s consecutive shifts >δ-lagged (because in
particular there is some w ∈ L so that shif tlag(w) > max(s, δ)). We build an
L-controlled relation S ⊆ (2 × A)∗ so that �S� ∈ RAT \ REG.

Let A be any two-letter alphabet {a, b}. Let S ⊆ (2 × {a, b})∗ consisting of all
words u ⊗ v ∈ (2 × {a, b})∗ so that u ∈ L, and for every i ∈ {1, . . . , |v|},
– v[i] = a if i is a shift of u, and
– v[i] = b otherwise.

298 Theory Comput Syst (2015) 57:287–318

It is plain that S is a regular L-controlled relation since L is regular, and hence that
�S� ∈ REL(L) is a rational relation. Next we show that �S� 	∈ REG.

Note that every pair in the relation has almost the same number of a’s:

For every (u′, v′) ∈ �S�, −1 ≤ #a(u
′) − #a(v

′) ≤ 1. (†)

Suppose, by means of contradiction, that �S� is regular and therefore, by Propo-
sition 1, �S� ∈ REL(L′) for L′ = (12)∗(1∗|2∗). Hence, there must be some
L′-controlled relation S′ ⊆ (2 × {a, b})∗ so that �S′� = �S�. Let AS be an NFA
accepting S with statespace Q, and let AS′ be an NFA accepting S′ with statespace
Q′.

Let s = 2|Q′| + 2, and let us define the constant K = s2|Q|. We hence define
δ = 2K . There must then be some w = u ⊗ v ∈ S with s consecutive shifts that are
>δ-lagged. Let 1 ≤ i1 < · · · < is ≤ |u| be the shifts in question. Let us assume,
without any loss of generality, that w is minimal in length and that #1(u[1, i1]) −
#2(u[1, i1]) > δ.

Due to minimality of w, it can be shown through a pumping argument, that the
lengths of w[i1, is] and of w[is + 1, |w|] are bounded by a function on s and |Q|.

Claim 3 |w| − i1 ≤ s2|Q| = K .

Proof Let ρ : [0, |w|] → Q be an accepting run of AS on w. For any l ∈ s we have
that u[il + 1, il+1] is a string of 1’s or a string of 2’s.

Suppose that u[il +1, il+1] is a string of 2’s, and suppose that the string has length
greater than |Q|. Then there are two distinct elements i, j ∈ [il + 1, il+1] so that i <

j , u[i] = u[j] = 2 and ρ(i) = ρ(j). We then have that w′ = w[1, i]·w[j +1, |w|] ∈
S and it has s consecutive >δ-lagged shifts, because we only removed positions
labeled with 2. But this is not possible by minimality of w. Hence, u[il + 1, il+1]
cannot contain more than |Q| elements 2, and thus

#2(u[i1 + 1, is]) ≤ (s − 1)|Q|. (4)

Now suppose that u[il + 1, il+1] is a string of 1’s, and suppose that the string has
length greater than s|Q|. Then, there are two distinct elements i, j ∈ [il + 1, il+1]
so that u[i] = u[j] = 1, ρ(i) = ρ(j) and i − j ≤ |Q|. We then have that w′ =
w[1, i] · w[j + 1, |w|] ∈ S. Further, w′ has s consecutive >δ-lagged shifts, because
although we removed some positions marked with 1, we left sufficiently many (at
least (s − 1)|Q|) to make sure that, by (4),

#1(u[i1 + 1, i] · u[j + 1, il+1]) − #2(u[i1 + 1, i] · u[j + 1, il+1]) ≥ 0,

and hence that there are still s shifts >δ-lagged in w′. However, this is not possible
by minimality of w. Hence, u[il + 1, il+1] cannot contain more than s|Q| positions
labeled 1, and thus

#1(u[i1 + 1, is]) ≤ (s − 1)s|Q|. (5)

Then, by (4) and (5), the length of u[i1, is] is bounded by (s−1)|Q|+(s−1)s|Q|+1.
A simpler consequence of the minimality of w is that

|[is + 1, |w|]| ≤ |Q|. (6)

Theory Comput Syst (2015) 57:287–318 299

Then, summing up, [i1, |w|] is bounded by

|Q|︸︷︷︸
by (6)

+ (s − 1)|Q|︸ ︷︷ ︸
by (4)

+ (s − 1)s|Q|︸ ︷︷ ︸
by (5)

+1 = s2|Q| + 1.

Thus, |w| − i1 ≤ s2|Q| = K .

Since δ = 2K < #1(u[1, i1])−#2(u[1, i1]) and #2(u[i1+1, |w|]) ≤ K by Claim 3,
we have that

#1(u) − #2(u) > K. (7)

Let w′ = u′ ⊗ v′ ∈ S′ be the corresponding word in S′, so that �w� = �w′�. Let
ρ′ : [0, |w′|] → Q′ be an accepting run of AS′ on w′. Note that u′ can be factored
into u′ = u′

1 · u′
2 with u′

1 ∈ (12)∗ and u′
2 ∈ 1∗. (The other possibility, u′

2 ∈ 2∗, is
only easier.)

Notice that u[|u| − K, |u|] contains s shifts, by Claim 3, and in particular s/2
shifts labeled with 1. Therefore, w[|u| −K, |u|] contains at least s/2 letters (1, a) by
definition of S. By (7), we have that |u′

2| ≥ K . Thus, u′
2 must contain at least s/2

positions labeled with a. Since s/2 = |Q′| + 1, there must be two distinct positions
|u′

1| < i < j ≤ |w′| labeled with a so that ρ′(i) = ρ′(j). Consider then w′′ =
w′[1, i] · (w′[i + 1, j])4 · w′[j + 1, |w′|]. Note that w′′ ∈ S′. By property (4), we
had that �w′� has the same quantity of a’s (plus-minus one) in the first and second
components. Therefore, �w′′� has at least two more a’s in its first component than
in its second component. Hence, due to property (4), it cannot be that �w′′� ∈ �S�,
and thus �S� 	= �S′�. The contradiction comes from assuming that there exists an
L′-controlled language S′ so that �S′� = �S�. Hence, �S� 	∈ REG.

(I)-(if) Let shift(L) < n. Note that L′ = (1∗2∗)n contains all words with less than
n shifts. Hence, L ⊆ L′. By Lemma 1, REL(L′) = REC, and since L ⊆ L′, it
follows that REL(L) ⊆ REC by monotonicity.

(I)-(only if) Suppose shift(L) = ∞. We exhibit a relation of REL(L) which is not
in REC. We use the same relation as a previous part of this proof, but we repeat
it here for the reader’s convenience. Let A be any two-letter alphabet {a, b}. Let
S ⊆ (2× {a, b})∗ consisting of all words u ⊗ v ∈ (2× {a, b})∗ so that u ∈ L, and
for every i ∈ {1, . . . , |v|},
– v[i] = a if i is a shift of u, and
– v[i] = b otherwise.

It is plain that S is a regular L-controlled relation since L is regular, and hence that
�S� ∈ REL(L) is a rational relation. Next we show that �S� 	∈ REC.

Note that every pair in the relation has almost the same number of a’s:

For every (u, v) ∈ �S�, −1 ≤ #a(u) − #a(v) ≤ 1. (‡)

By means of contradiction, suppose that �S� ∈ REC. Then, by Proposition 1-(I),
there is a 1∗2∗-controlled language S′ ⊆ (2× {a, b})∗ so that �S′� = �S�. Let AS′ be
an NFA recognizing S′ with statespace Q′. Let u⊗v ∈ S be a word so that u has more
than |Q′| shifts, and hence �u ⊗ v� has more than |Q′| letters a (that is, the the sum of

300 Theory Comput Syst (2015) 57:287–318

occurrences of a’s in both components is greater than |Q′|). Since �S′� = �S� there
is some w′ = u′ ⊗ v′ ∈ S′ so that �u′ ⊗ v′� = �u ⊗ v�. Let ρ′ : [0, |w′|] → Q′ be an
accepting run of AS′ on w′. Note that u′ has at most one shift. Let i be the only shift
of u′ (if u′ has no shifts the reasoning is only easier). Since v′ has more than than |Q′|
a’s, there must be two positions j1, j2 of w′ so that ρ′(j1) = ρ′(j2), v′[j1] = v′[j2] =
a and either 1 ≤ j1 < j2 ≤ i or i < j1 < j2 ≤ |w′| (as a consequence of S′ being
1∗2∗-controlled). Note then that w′[1, j1] · (w′[j1 +1, j2])n ·w′[j2 +1, |w′|] ∈ S′ for
every n ∈ N. Take n = 4, and let w′′ = w′[1, j1] ·(w′[j1 +1, j2])4 ·w′[j2 +1, |w′|] ∈
S′. Note that �w′′� has at least two more a’s in one component than in the other,
because w′ has at most a difference of one a between its components, due to (‡).
Hence, w′′ is in contradiction with (‡), and it cannot be that �S′� = �S�. Therefore,
�S� 	∈ REC and thus REL(L) 	⊆ REC.

(III) This is direct by definition of REGbld.
(IV) This is direct from definition of REL(L) and Proposition 1-(III).

We conclude the section with a couple of examples of applications of the main
result. First, we show that REL((112)∗) 	⊆ REG. Indeed, note that for every s, δ, the
word w = (112)δ+s is in (112)∗ and the last s shifts of w are ≥δ-lagged. Hence,
there must be some L-controlled regular language S ⊆ (2 × A)∗ so that �S� is not a
regular relation.

As another example, we get more ways of synchronizing regular relations: given
L1 = (1k · 2k)∗, L2 = (1∗ · 2∗)k for some fixed k, we have REL(Li) ⊆ REG (in fact,
REL(L2) ⊆ REC).

Finally, we consider the (r/s)-synchronized relations [30, p.660] studied in [13].
This class can be defined as REL(Lr/s), where

Lr/s = (1r2s)∗
(⋃

r ′<r

(1r ′
2∗) |

⋃

s′<s

(1∗2s′
)
)
. (8)

It is easy to see that shif tlag(Lr/s) = ∞ whenever r 	= s, and hence that (r/s)-
synchronized relations (with r 	= s) are not in REG.

4.1 Automata Theoretic Characterizations

We characterized classes of relations via conditions imposed on their synchronization
languages: finite shift, lag, or shiftlag. Now we show that these conditions them-
selves can be characterized using automata, or more precisely, the underlying labeled
graphs of automata. It turns out that the structure of the cycles provides the desired
characterizations.

Since in this section we deal with synchronization languages, we consider
automata over the alphabet {1, 2}. For a given NFA A, we consider the transition
graph GA of A as the usual representation of the transition relation, where GA is
a directed graph where states are vertices and edges are labeled by transitions. A
path is a finite sequence of edges of GA so that the arriving vertex of each edge is
equal to the departing vertex of the next one. A cycle is a path whose first and last

Theory Comput Syst (2015) 57:287–318 301

vertices are equal. A simple cycle is a cycle whose only repetition of vertex is the
first and last ones. Given a cycle C of GA, we define #a(C) as the number of edges
in C labeled with transitions reading letter a. In a heterogeneous cycle C we have
#1(C) > 0 and #2(C) > 0; otherwise a cycle is homogeneous. A cycle C is balanced
if #1(C) = #2(C), otherwise it is unbalanced (these definitions are closely related to
the notions of balanced/unbalanced oriented cycles in digraphs, cf. [22]). Note that
all balanced cycles are also heterogeneous.

Recall that the trim automaton is the result of removing all states which are not
reachable from the initial state, and all states from which no final state is reachable.

Theorem 2 For any trim NFA A over the alphabet 2, and its transition graph GA,

(I) shif tlag(L(A)) = ∞ iff

– GA contains a heterogeneous unbalanced cycle, or
– GA contains a path from a homogeneous to a heterogeneous cycle,

(II) shif t (L(A)) = ∞ iff GA has a heterogeneous cycle,
(III) lag(L(A)) = ∞ iff GA has an unbalanced cycle.

Proof Let Q be the statespace of A. Given w ∈ L(A) and an accepting run ρ :
[0, |w|] → Q of A on w, the path P on GA induced by w, ρ is defined as the
sequence of edges e1 · · · e|w| of GA, so that ei is the edge between ρ(i − 1) and ρ(i)

labeled with (ρ(i − 1), w[i], ρ(i)).

(I)-(if) Let n ∈ N. We show that assuming one of the two properties is met, there
is some w ∈ L(A) with shif tlag(w) ≥ n.

If GA has a heterogeneous cycle Chet with #1(Chet) 	= #2(Chet), one can iterate
this cycle to obtain a word w with shiftlag(w) > n. In other words, suppose that
w ∈ L(A) with an accepting run ρ : [0, |w|] → Q so that the path P induced by
w, ρ contains a heterogeneous unbalanced cycle Chet between the positions i ≤ j

where we assume, without any loss of generality, #1(Chet) > #2(Chet) > 0. Since
this means that ρ(i − 1) = ρ(j), we have that

wm = w[1, i − 1] · (w[i, j])m · w[j + 1, |w|] ∈ L(A)

for every m ∈ N, and #1(w[i, j]) > #2(w[i, j]) > 0 because #1(Chet) > #2(Chet) >

0. Hence, if we take m = |w| + 2n, it is easy to see that wm has n consecutive shifts
that are >n-lagged. Thus, shif tlag(wm) ≥ n.

If, on the other hand, there is a path from a homogeneous cycle Chom to a het-
erogeneous cycle Chet in GA, then we show that we can iterate both cycles enough
times to obtain a word w ∈ L(A) so that shif tlag(w) > n. Suppose w ∈ L(A) with
an accepting run ρ : [0, |w|] → Q, so that the path P induced by w, ρ contains both
cycles, where Chom occurs before Chet . That is, there are 0 < i < j ≤ i′ < j ′ ≤ |w|
so that

– ρ(i) = ρ(j) and Chom is the cycle induced by w[i, j], ρ|[i−1,j], and
– ρ(i′) = ρ(j ′) and Chet is the cycle induced by w[i′, j ′], ρ|[i′−1,j ′].

302 Theory Comput Syst (2015) 57:287–318

Note that for any m, l ∈ N we have

wm,l = w[1, i] · (w[i + 1, j])m · w[j + 1, i′]
︸ ︷︷ ︸

um

· (w[i′ + 1, j])l · w[j ′, |w|]
︸ ︷︷ ︸

vl

∈ L(A).

If we take m = (n + 2)|w| and l = n, we obtain that

– |#1(um) − #2(um)| > (n + 1)|w|,
– |vl | ≤ n|w|, and
– shift(vl) > n.

Therefore, wm,l = um · vl is so that shiftlag(wm,l) ≥ n.
Thus, if any of the conditions in (I) is met, we must have that shiftlag(L(A)) = ∞.

(I)-(only if) Suppose now that shiftlag(L(A)) = ∞. We choose n = 2|Q| + 1,
and show that any accepting run of A on w ∈ L(A) so that shiftlag(w) ≥ n must
induce a path P containing either

(i) a heterogeneous cycle Chet with #1(Chet) 	= #2(Chet), or
(ii) a homogeneous cycle Chom and a heterogeneous cycle Chet , so that Chom

occurs before Chet in P .

Note that once this is verified, the statement follows.

Let ρ : [0, |w|] → Q be an accepting run of A on w so that shiftlag(w) > n.
Consider the path P on GA induced by ρ, w. By definition of shiftlag(w) > n, there
must be n consecutive >n-lagged shifts 1 ≤ a1 < a2 < · · · < an ≤ |w| in w.
Without any loss of generality, assume that

#1(w[1, a1]) − #2(w[1, a1]) > n, (†)

and that for every odd index i, w[ai] = 1 and for every even index i, w[ai] = 2.
Since n > 2|Q|, it follows that there must be ai < aj < al with ρ(ai) = ρ(aj) =
ρ(al), and thus there must be a heterogeneous cycle inside P (the one defined
between positions i + 1 and l). Further, by (†), there are positions 0 ≤ b1 < · · · <

bn ≤ a1 so that #1(w[bi + 1, bi+1]) − #2(w[bi + 1, bi+1]) = 1 for every i ∈ n − 1.
Since n > |Q|, there must be two bi < bj so that ρ(bi) = ρ(bj). Hence the cycle C

of P induced by w[bi + 1, bj], ρ|[bi ,bj] necessarily verifies

#1(C) > #2(C). (‡)

Now there are two possibilities.

– If #2(C) > 0 then C is heterogeneous and with #1(C) 	= #2(C) by (‡), verifying
condition (i).

– The other possibility is that C is homogeneous. Since there is a path from C to a
heterogeneous cycle Chet , the condition (ii) is met.

(II)-(if) Suppose that GA contains a heterogeneous cycle Chet . Then, there must
be some word w ∈ L(A) with an accepting run ρ : [0, |w|] → Q so that the
path P induced by w, ρ contains Chet between positions i ≤ j of P . Therefore
ρ(i − 1) = ρ(j), and wn = w[1, i − 1] · (w[i, j])n · w[j + 1, |w|] ∈ L(A)

Theory Comput Syst (2015) 57:287–318 303

for any n ∈ N. Note that as a consequence of Chet being heterogeneous, w[i, j]
contains at least one letter 1 and one letter 2. Thus, wn contains at least n shifts,
and therefore shift(L(A)) = ∞.

(II)-(only if) Suppose that shift(L(A)) = ∞, that is, for every n ∈ N there is a
word w ∈ L(A) so that shift(w) > n. Take n = 2|Q|, and let w ∈ L(A) so that
shif t (w) > n.

There must be more than |Q| shifts in w with the same letter i ∈ 2. Without any loss
of generality, suppose there are shifts 1 ≤ i1 < · · · < i|Q|+1 ≤ |w| so that w[ij] = 1
for all j ∈ {1, . . . , |Q|+1}. Then there must be two ij1 < ij2 so that ρ(ij1) = ρ(ij2).
Hence, the word w[ij1 + 1, ij2] has length ≥ 2, and contains at least one letter 1 (the
last letter) and at least one letter 2 (the first letter, as otherwise ij1 would not be a shift
with letter 1). It then follows that the path on GA induced by w[ij1 +1, ij2], ρ|[ij1 ,ij2]
is indeed a heterogeneous cycle.

(III) This is shown in [30, Lemma 6.7, p. 603].

Corollary 1 Checking whether REL(L(A)) ⊆ REG, REL(L(A)) ⊆ REC or whether
REL(L(A)) ⊆ REGbld

2 can be done in polynomial time in the size of A.

Note that Corollary 1 does not mean that it is decidable whether a relation R ∈
RAT is in REG (in fact, this problem is undecidable [9, Theorem 8.4-(vi)]). What
one can check is whether a synchronized relation has a “safe” control, in the sense
that it synchronizes regular relations. Hence, for any relation R controlled by L(A),
if REL(L(A)) ⊆ REG then R ∈ REG, but the opposite does not necessarily hold.
For example, if we take L′ = (1|2)∗, we have that RELL′ 	⊆ REG but the universal
relation A

∗ × A
∗ is obviously in REG.

5 Resynchronizing Relations

We saw that different languages in 2∗ can generate the same class relations, and yet
for the commonly used classes, we have synchronization languages that somehow
look canonical: for instance, (12)∗(1∗|2∗) for REG. Thus, we now address the ques-
tion whether we can resynchronize relations using those canonical synchronization
languages, and if so, can we do it effectively?

To pose this formally, suppose two different languages S, S′ ⊆ (2×A)∗ controlled
by L,L′ ⊆ 2∗ respectively represent the same relation, i.e., �S� = �S′�. Then we say
that S is an L-resynchronization of S′. Given a class C of regular languages over 2,
we say that L0 ∈ C is a canonical representative of C if for every L ∈ C and every
L-controlled language S there exists an L0-resynchronization of S. In other words,
for every L ∈ C and R ∈ REL(L), there is an L0-controlled S′ ∈ (2 × A)∗ so that
�S′� = R. If, in addition, there is a recursive procedure that constructs such an L0-
resynchronization of S, then we say that L0 is an effective canonical representative
of C .

Let RLall be the class of all regular languages over 2, and let RLfinparam stand for
the class of regular languages L ⊆ 2∗ with finite parameter param, where param is

304 Theory Comput Syst (2015) 57:287–318

lag, or shift, or shiftlag. We also let RLlag≤δ denote the class of all regular languages
L ⊆ 2∗ with lag(L) ≤ δ.

Example 1 Take, for example, L1 = (1122)∗1∗2∗ and L2 = (12)∗(1∗|2∗), and a
L1-controlled relation S1. Since shiftlag(L1) < ∞, �S1� ∈ REG by Theorem 1. Fur-
ther, since by Proposition 1-(II) REL(L2) = REG, there must be some L2-controlled
relation S2 so that �S2� = �S1�. In other words S2 is the L2-resynchronization
of S1. Since REL(L2) = REG in fact L2 is a canonical representative of
RL

fin
shiftlag.

Theorem 3 (Resynchronization theorem) (I) (12)∗(1∗|2∗) is an effective canon-
ical representative of RLfinshiftlag;

(II) 1∗2∗ is an effective canonical representative of RLfinshift;

(III) there is no canonical representative of RLfinlag;

(IV) (12)∗(1≤δ|2≤δ) is an effective canonical representative of RLlag≤δ;
(V) 2∗ is an effective canonical representative of RLall.
If the relations are given as NFA, the synchronization procedures are in exponen-

tial time.

For the proof of the Theorem above wee need to introduce some standard
notions. The shuffle sh(U, V) of two languages U, V ⊆ A

∗ is the set of all words
u1 · v1 · · · uk · vk so that u1 · · · uk ∈ U , v1 · · · vk ∈ V . The strongly connected com-
ponents (henceforth SCC) of GA are its maximal strongly connected subgraphs. An
SCC is heterogeneous if it contains a heterogeneous cycle; an SCC is homogeneous
if it contains a cycle and all cycles it contains are homogeneous; otherwise, an SCC
without cycles (that is, a single vertex) is an edgeless SCC. The condensation of GA

(written con(GA)) is the directed acyclic graph (henceforth DAG) induced by the
SCC’s of GA. This is the DAG where nodes are SCC’s of GA and there is an edge
labeled (q, (i, a), q ′) from vertex v to (a different) vertex v′ if q belongs to the SCC
of v, q ′ belongs to the SCC of v′ and there is an edge labeled (q, (i, a), q ′) from q to
q ′ in GA (in other words, (q, (i, a), q ′) is a transition of A).

For the proof of Theorem 3 we use the following lemma.

Lemma 3 (Bounds for shif tlag, shif t , lag) Given an NFA A over the alphabet 2
with statespace Q,

(I) if shiftlag(L(A)) < ∞, then shiftlag(L(A)) ≤ |Q|;
(II) if shift(L(A)) < ∞, then shift(L(A)) ≤ |Q|;

(III) if lag(L(A)) < ∞, then lag(L(A)) ≤ |Q|.

Proof Assume without any loss of generality that A is trim. Given a set of ver-
tices S, let A|S be the NFA whose set of initial states is S, and its transition relation
corresponds to the subgraph of GA induced by all the vertices reachable from S.

(I) By Theorem 2-(I) every SCC S of GA is so that

Theory Comput Syst (2015) 57:287–318 305

(a) S is edgeless, or
(b) S is homogeneous and all SCC’s S′ reachable from S are homogeneous

or edgeless, or
(c) S is heterogeneous, and all simple cycles C in S are so that #1(C) =

#2(C).

Let us analyze each case separately. Let S1, . . . , Sn be the set of SCC’s
reachable from S (excluding S).

(a) Then, shiftlag(L(A|S)) ≤ 1 + shiftlag(L(A|S1∪···∪Sn)).
(b) Then, any word w accepted by A|S is contained in (1∗2∗)≤l , where l is

the number of SCC’s in GA|S . Therefore, shift(L(A|S)) ≤ l and therefore
shiftlag(L(A|S)) ≤ l.

(c) We then have that any word w in L(A|S) is of the form w = u · v where
u ∈ ⋃

i≤|S|(sh(1i , 2i))∗ and v ∈ L(A|S1∪···∪Sn). Recall that sh(1i , 2i)

represents the set of shuffles of 1i and 2i (i.e., all the words over 2 having
exactly i 1’s and i 2’s). Note that

– there are no positions >|S|-lagged in u, and
– position |u| is 0-lagged in w.

Thus, shiftlag(L(A|S)) ≤ max(|S|, shiftlag(L(A|S1∪···∪Sn))).

Combining (a), (b) and (c), and by the fact that con(GA) is a DAG, we
obtain that shiftlag(L(A)) ≤ |Q|.

(II) By Theorem 2-II there are no heterogeneous cycles in GA, and every SCC
S of GA is hence homogeneous or edgeless. Shifts can hence only occur in
transitions between SCC’s in GA (i.e., transitions that involving states from
two different SCC’s). Since the condensation of GA is a DAG, there are not
more than |Q| different SCC that an accepting run of A for a word can go
through. Hence, shift(L(A)) < n, where n is the number of SCC’s of A minus
one. Since n ≤ |Q|, the statement follows.

(III) By Theorem 2-III all cycles C in GA are so that #1(C) = #2(C). By means of
contradiction, suppose that there is some w ∈ L(A) with lag(w) > |Q|, and
an accepting run ρ : [0, |w|] → Q of A on w, where Q is the statespace of A.
Further, suppose that w is minimal in length; that is, any word w′ shorter than
w is so that lag(w′) ≤ |Q|. Since |w| > |Q|, let 0 ≤ i < j ≤ |w| be any two
indices so that ρ(i) = ρ(j). Note that the path induced by w[i, j − 1], ρ|[i,j]
is a cycle C, and by hypothesis it must be so that #1(C) = #2(C). Therefore,
#1(w[i, j − 1]) = #2(w[i, j − 1]). Consider then the word w′ = w[1, i − 1] ·
w[j, |w|]. We have that w′ ∈ L(A) and that lag(w′) = lag(w) because we
removed a subword with equal number of letters 1 and 2. This is an absurd by
minimality of w. Thus, it cannot be that lag(L(A)) > |Q| and the statement
follows.

We are now in conditions to prove Theorem 3.

306 Theory Comput Syst (2015) 57:287–318

Proof of Theorem 3 We start by showing (II) and (IV) because we use these items in
the proof of (I).

(II) Let S ⊆ (2 × A)∗ be an L-controlled regular language with shift(L) < ∞. We
assume, without any loss of generality, that L = {u | u ⊗ v ∈ S}. Let A be an
NFA recognizing S with statespace Q, initial state q0 and set of final states QF .
Note that, since S is L-controlled, one can build in linear time an automaton
AL recognizing L, having the same statespace Q (the transformation consists
in replacing every transition (q, (i, a), q ′) with (q, i, q ′)). Hence, by Lemma 3-
(II), shift(L) ≤ |Q|.

Let us call 1-edge (resp. 2-edge) an edge of GA labeled with a transition reading
the letter 1 (resp. 2) in its first component. Note that every SCC of GA is homoge-
neous or edgeless by Theorem 2-(II). Hence, if a SCC has only 1-edges, we call it a
1-SCC. Otherwise (if it has only 2-edges), we call it a 2-SCC. For the purpose of this
proof, it is indifferent whether we categorize edgeless SCC’s as 1-SCC’s or 2-SCC’s,
but just to fix nomenclature, let us call them 1-SCC’s. Hence, every SCC in GA is a
1-SCC or a 2-SCC.

Note that any path on GA induces a (possibly empty) path on con(GA) (cf. Fig. 2).
By acyclicity there are at most exponentially many paths in con(GA).

For any (possibly empty) path P in con(GA) and final state q ∈ QF , let SP,q be
the set of all words w ∈ S with an accepting run of A ending in q and inducing the
path P in con(GA). Hence,

S =
⋃

{SP,q | P is a path of con(GA) and q ∈ QF }.

Fig. 2 Example of path in GA and corresponding path in con(GA). For simplicity, we assume that the
alphabet is singleton A = {a}, and we therefore omit ‘a’ in the transitions

Theory Comput Syst (2015) 57:287–318 307

We conclude the proof by showing that for every path P in con(GA) and q ∈ QF

we can build, in polynomial time, a (1∗2∗)-controlled automaton AP,q so that
�L(AP,q)� = �SP,q�.

Claim 4 For every path P in con(GA) and q ∈ QF , an automaton AP,q so that

– �L(AP,q)� = �SP,q� and
– L(AP,q) is (1∗2∗)-controlled

is computable in polynomial time in |A|.

Proof We can assume, without any loss of generality, that P is not empty, and
contains

– a vertex corresponding to a 1-SCC, or a 1-edge, and
– a vertex corresponding to a 2-SCC, or a 2-edge,

since otherwise SP,q would be trivially (1∗2∗)-controlled and an automaton can be
easily built in polynomial time in |A|.

Let GP,q be the transition graph of the NFA recognizing SP,q , which is the result
of removing from A

– all the states from SCC’s that are not in P and its associated transitions, and
– all transitions (q, (i, a), q ′) not appearing in P , so that q, q ′ do not belong to the

same SCC.

Note that con(GP,q) is a directed chain, where there is at most one edge traveling
between two vertices from different SCC’s; the shape of GP,q is depicted in the
top picture of Fig. 3 (the path in this Figure is unrelated to the path of the previous
Figures). Let statesq0,q(P) be the sequence of states appearing in P , prefixed with
q0 and suffixed with q; that is, if

P = (v1, (q1, (i1, a1), q
′
1), v2), . . . , (vn, (qn, (in, an), q

′
n), vn+1),

then statesq0,q(P) = q0, q1, q
′
1, . . . , qn, q

′
n, q. The idea is that statesq0,q(P) repre-

sents the sequence of states that any accepting run of the automaton recognizing SP,q

has to go through (there could, however, be some repetitions of states if the incoming
and outgoing state of a SCC are the same in P). For example, in the path P depicted
in Fig. 2, we have statesq0,q6 = q0, q1, q5, q5, q6, q6, note that it includes, for every
SCC, the incoming and outgoing states (q0, q1 for the first, q5, q5 for the second, and
q6, q6 for the third SCC). In the top picture of Fig. 3, the vertices in statesq0,q(P)

are depicted as bullets. Consider the graph GP,q,1 as the result of

1. removing all 2-edges from GP,q ,
2. removing all vertices without incoming or outgoing edges that remain, and
3. associating vertices to make it a connected graph, so that the relative appearance

of the 1-SCC’s and 1-edges given by P is preserved.

This construction is shown in Fig. 3. Let v1, v
′
1 be the first and last vertices in

the construction of GP,q (cf. Fig. 3). That is, v1 corresponds to the first vertex in

308 Theory Comput Syst (2015) 57:287–318

Fig. 3 Example of construction of G′
P,q from GP,q . The SCC are abstracted as grey boxes, labeled “1-

SCC” or “2-SCC” depending on the sort of SCC they are. Edges are also labeled depending on whether
they are 1-edges or 2-edges. Dotted lines are used to identify two vertices as being the same

statesq0,q(P) that has an outgoing 1-edge in GP,q , and v′
1 corresponds to the last

vertex in statesq0,q(P) that has an incoming 1-edge in GP,q .
We define GP,q,2 and v2, v

′
2 analogously to GP,q,2 and v1, v

′
1, but removing

1-edges instead (cf. Fig. 3). Now, let G′
P,q be the transition graph resulting from

composing GP,q,1 with GP,q,2 by associating v′
1 with v2 (cf. Fig. 3). Let us define

the automaton AP,q as having the transition relation defined by G′
P,q , where the

initial state is v1 and the set of final states is {v′
2}. We then have that AP,q is

(1∗2∗)-controlled and �L(AP,q)� = �SP,q�.

The statement follows directly from the previous claim, defining

S′ =
⋃

P,q

L(AP,q)

for every path P of con(GA) and q ∈ QF , and defining AS′ as the union of all
automata AP,q ’s. Then, S′ is a (1∗2∗)-resynchronization of S, and AS′ can be built in
exponential time.

We now show another claim concerning (1∗2∗)-controlled languages, that will be
useful in the proof of (I).

Claim 5 For any (1∗2∗)-controlled automaton A one can build, in polynomial time,
(12)∗-controlled automata Ahead

1 , . . . , Ahead
t as well as (1∗|2∗)-controlled automata

Atail
1 , . . . , Atail

t so that

�L(A)� =
⋃

i∈t
�L(Ahead

i) · L(Atail
i)�.

Proof In the scope of this proof, let Q be the statespace of A, with initial state qinit

and set of final states QF . Let us define the automaton A′ over the same alphabet as
A with the statespace Q × Q × 2, with a transition

– ((q1, q2, 1), (1, a), (q ′
1, q2, 2)) if (q1, (1, a), q ′

1) is a transition of A and q2 ∈ Q,
and

– ((q1, q2, 2), (2, a), (q1, q
′
2, 1)) if (q2, (2, a), q ′

2) is a transition of A and q1 ∈ Q.

Theory Comput Syst (2015) 57:287–318 309

Note that for every q1, q1, q
′
1, q

′
2 ∈ Q, A′[(q1, q2, 1), (q ′

1, q
′
2, 1)] is (12)∗-controlled.

Also, note that for every q ′
1, q2, q

′
2 ∈ Q and qf ∈ QF ,

L(A′[(qinit , q2, 1)(q2, q
′
2, 1)])

︸ ︷︷ ︸
Lhead

1

· (L(A[q ′
2, qf]) ∩ ({2} × A)∗)

︸ ︷︷ ︸
Ltail

1

and

L(A′[(qinit , q2, 1)(q ′
1, qf , 1)])

︸ ︷︷ ︸
Lhead

2

· (L(A[q ′
1, q2]) ∩ ({1} × A)∗)

︸ ︷︷ ︸
Ltail

2

are (12)∗(1∗|2∗)-controlled, and that automata recognizing Lhead
i , Ltail

i can be
obtained in polynomial time.

From the definition of Lhead
i and Ltail

i and the previous observation, we show that
for any word w ∈ Lhead

i · Ltail
i there is some w′ ∈ L so that �w� = �w′�, and vice

versa.
Observe that for any q1, q

′
1, q2, q

′
2 ∈ Q, w ∈ L(A′[(q1, q2, 1)(q ′

1, q
′
2, 1)]) if, and

only if, wodd ∈ L(A[q1, q
′
1])∩ ({1}×A)∗ and weven ∈ A[q2, q

′
2]∩ ({2}×A)∗, where

wodd (resp. weven) is the subword of w of odd (resp. even) positions.
From any accepting run of A′[(qinit , q2, 1), (q2, q

′
2, 1)] on w1 and an accepting

run of A[q ′
2, qf] on w2 ∈ ({2} × A)∗ one can build an accepting run of A on

(w1)odd · (w1)even · w2, where �(w1)odd · (w1)even · w2� = �w1 · w2�. Similarly, from
an accepting run of

A′[(qinit , q2, 1), (q ′
1, qf , 1)]

on w1 and an accepting run of w2 ∈ ({1} × A)∗ on A[q ′
1, q2] one can build an

accepting run of A on (w1)odd · w2 · (w1)even, where �(w1)odd · w2 · (w1)even� =
�w1 · w2�. Indeed, note that in both cases, (w1)odd = (w1){1}×A and (w1)even =
(w1){2}×A.

Conversely, for every accepting run of A on w, let w′ be the interleaving of
w{1}×A[1, m] and w{2}×A[1, m], where m = min(|w{1}×A|, |w{2}×A|) (more formally,
it is the word w′ ∈ sh(w{1}×A[1, m], w{2}×A[1, m]) so that w′ ∈ (({1} × A) · ({2} ×
A))∗). If |w{1}×A| ≤ |w{2}×A| then for some q2, q

′
2 ∈ Q and qf ∈ QF there is an

accepting run of A′[(qinit , q2, 1), (q2, q
′
2, 1)] on w′, and accepting run of A[q ′

2, qf]
on w[2m + 1, |w|] ∈ ({2} × A)∗. Similarly, if |w{1}×A| > |w{2}×A| then for some
q2, q

′
1 ∈ Q and qf ∈ QF there is an accepting run of A′[(qinit , q2, 1)(q ′

1, qf , 1)] on
w′, and accepting run of A[q ′

1, q2] on w[2m + 1, |w|] ∈ ({1} × A)∗. In both cases,
observe that �w′ · w[2m + 1, |w|]� = �w�.

Summing up, for every pair (u, v) ∈ A
∗ × A

∗, there is a word w ∈ Lhead
i · Ltail

i

with �w� = (u, v) for some i ∈ 2 if, and only if, there is some w′ ∈ L(A) with
�w′� = (u, v).

Hence, defining L′ as the union of all the above Lhead
1 · Ltail

1 and Lhead
2 · Ltail

2
languages for all possible q2, q

′
2, q

′
1 ∈ Q and qf ∈ QF , it follows that �L(A)� =

�L′�. Since every Lhead
i is (12)∗-controlled and every Ltail

i is (1∗|2∗)-controlled, and

310 Theory Comput Syst (2015) 57:287–318

since automata for these languages can be built in polynomial time, the statement
follows.

(IV) This follows from [30, Proposition 6.9, pp. 604–605]. Although in the cited
work the complexity is not given, it follows from the proof that it can be built
in exponential time. In fact, note that it suffices to build an automaton whose
every state has a buffer of lag(L) letters.

(I) Let S be an L-controlled regular language S ⊆ (2 × A)∗ with shiftlag(L) <

∞. Let A be an NFA recognizing S with statespace Q, initial state q0 and set
of final states QF .

Note that since the projection of S onto 2 is inside L, we can apply Theorem 2-(I)
to A, obtaining that there are no paths from homogeneous SCC’s to heterogeneous
SCC’s in GA (and there are no heterogeneous cycles C with #1(C) 	= #2(C)). Let
Qhom be the set of all vertices of GA that are reachable from a vertex of a homoge-
neous SCC. Note that Qhom includes all vertices in homogeneous SCC’s, plus some
vertices from edgeless SCC’s. Also, note that the subgraph of GA induced by Qhom

has no heterogeneous cycles. Let Qhet = Q\Qhom. Hence, Qhet includes all vertices
in heterogeneous SCC’s and some vertices in edgeless SCC’s. Also, by the property
before, the subgraph of GA induced by Qhet is connected. Figure 4 contains an exam-
ple. Further, any path P̂ in GA is of the form (1) P̂ · (q, τ, q ′) · P̂ ′, (2) P̂ , or (3) P̂ ′,
where

– P̂ is a (possibly empty) path of the subgraph of GA induced by Qhet ,
– P̂ ′ is a (possibly empty) path of the subgraph of GA induced by Qhom,
– q ∈ Qhet , q ′ ∈ Qhom, and τ is a transition of A.

Fig. 4 Example of GA with the subgraphs induced by Qhom and Qhet . For simplicity we assume that
A = {a} and we hence omit the letter a when depicting edges labeled by (i, a)

Theory Comput Syst (2015) 57:287–318 311

Let Ahet be A restricted to Qhet , and let Ahom be A restricted to Qhom. For every
pair of states qhet ∈ Qhet and qhom ∈ Qhom, let Lqhet ,qhom

be the union of all

L(Ahet [q0, qhet]) · {(i, a)} · L(Ahom[qhom, qf])
for every qf ∈ QF and (i, a) ∈ 2 × A so that (qhet , (i, a), qhom) is a transition of A

(if there is no such (i, a), let Lqhet ,qhom
= ∅). We remind the reader that Ahet [q, q ′]

(resp. Ahom[q, q ′]) where q or q ′ are not in Qhet (resp. Qhom) denotes the automaton
accepting the empty language. Let Lhom = ⋃

qf ∈QF
L(Ahom[q0, qf]) and Lhet =

⋃
qf ∈QF

L(Ahet [q0, qf]). It follows that

S = Lhom ∪ Lhet ∪
⋃

qhet∈Qhet ,qhom∈Qhom

Lqhet ,qhom
.

We show that we can build, in exponential time, a (12)∗(1∗|2∗)-controlled automaton
for each of these languages. Since the case of Lqhet ,qhom

is more general than Lhom
and Lhet, we will only prove this case.

Note that by definition of Ahet and Ahom, and since GA has no unbalanced het-
erogeneous cycles, for every qhet ∈ Qhet , qhom ∈ Qhom, qf ∈ QF we have that
both lag(L(Ahet [q0, qhet])) < ∞ and shift(L(Ahom[qhom, qf])) < ∞. Hence, by
Lemma 3,

– lag(L(Ahet [q0, qhet])) ≤ n,
– shift(L(Ahom[qhom, qf])) ≤ n,

for n = |A|.
By the already shown item (II), let Ahom

qhom,qf
be a (1∗2∗)-controlled automa-

ton so that �L(Ahom[q0, qhom])� = �L(Ahom
q0,qhom

)�. By item (IV), let Ahet
q0,qhet

be a
(12)∗(1≤n|2≤n)-controlled automaton so that �L(Ahet [q0, qhet])� = �L(Ahet

q0,qhet
)�.

These automata can be built in exponential time.
We finally show that a (12)∗(1∗|2∗)-controlled automaton for Lqhet ,qhom

can be
built from Ahet

q0,qhet
and all the Ahom

qhom,qf
’s for all qf ∈ QF in polynomial time, and

thus the statement follows.

Claim 6 A (12)∗(1∗|2∗)-controlled automaton for Lqhet ,qhom
can be built from

Ahet
q0,qhet

and all the Ahom
qhom,qf

’s in polynomial time.

Proof From Ahom
qhom,qf

(which is 1∗2∗-controlled) one can easily build 1∗-

controlled automata Bhom−1∗
1 , . . . , Bhom−1∗

t and 2∗-controlled automata

Bhom−2∗
1 , . . . , Bhom−2∗

t in polynomial time so that

L(Ahom
qhom,qf

) =
⋃

i∈t

(
L(Bhom−1∗

i) · L(Bhom−2∗
i)

)
.

Also, it is easy to see that from Ahet
q0,qhet

(which is (12)∗(1≤n|2≤n)-controlled)

one can build (12)∗-controlled automata A
het−(12)∗
1 , . . . , A

het−(12)∗
s , 1≤n-controlled

automata Ahet−1∗
1 , . . . , Ahet−1∗

s and 2≤n-controlled automata Ahet−2∗
1 , . . . , Ahet−2∗

s

312 Theory Comput Syst (2015) 57:287–318

in polynomial time, so that

L(Ahet
q0,qhet

) =
⋃

i∈s

(
L(A

het−(12)∗
i) · L(Ahet−1∗

i) · L(Ahet−2∗
i)

)
.

We then have that

where L�,qhet ,qhom
= {(�, a) | (qhet , (�, a), qhom) in A}. Note that, for � = 1 we have

Since L′
1,i,j is 1∗2∗-controlled, we can apply the previous Claim 5 on

L′
1,i,j obtaining (12)∗-controlled automata Ahead

1 , . . . , Ahead
m and (1∗|2∗)-controlled

automata Atail
1 , . . . , Atail

m so that

�L′
1,i,j � =

⋃

k∈m
�L(Ahead

k) · L(Atail
k)�.

in polynomial time. Defining L′′
1,i,j = ⋃

k∈m L(Ahead
k) · L(Atail

k), we obtain that
L′′

1,i,j is (12)∗(1∗|2∗)-controlled, and an automaton for L′′
1,i,j can be computed in

polynomial time. Thus,

where note that L′′′
1 = ⋃

i∈t,j∈s L(A
het−(12)∗
j) · L′′

1,i,j is (12)∗(1∗|2∗)-controlled, and
an automaton for L′′′

1 can be built in polynomial time.
For � = 2 we apply a similar reasoning,

Theory Comput Syst (2015) 57:287–318 313

this time taking

L′
2,i,j = L(Ahet−1∗

j) · L(Bhom−1∗
i) · L2,qhet ,qhom

· L(Ahet−2∗
j) · L(Bhom−2∗

i).

and obtaining, through Claim 5, a (12)∗(1∗|2∗)-controlled language L′′′
2 so that

Hence,

�Lqhet ,qhom
� =

⋃

�∈2
�L′′′

� �

and an automaton recognizing
⋃

�∈2 L′′′
� can be built in polynomial time.

(III) For any L ∈ RL
fin
lag with lag(L) = k, consider the singleton language L′ =

{1k+1} ∈ RL
fin
lag. Note that any nonempty L′-controlled relation cannot have

a L-resynchronization. Thus, there cannot be a canonical representative of
RL

fin
lag.

Note that, however, the class RL
fin
lag ∪ {(12)∗(1∗|2∗)} has (12)∗(1∗|2∗) as an

effective canonical representative by item (I).

(V) This is straightforward since 2∗ contains all languages over 2, and therefore all
relations are 2∗-controlled.

6 Closure via Parikh Images

It is well known that the class REG is effectively closed under Boolean operations.
Although RAT is a natural generalization of REG, it is not a Boolean algebra (let alone
an effective one), not being closed under intersection or complement [9]. Even testing
whether a rational relation is regular, or whether it has an empty intersection with a
regular relation is undecidable [9]. Since regular relations are characterized via finite
shiftlag, it is natural to ask whether infinite shiftlag somehow describes “dangerous”
classes of relations. That is, does this mean for example that for any L ⊆ 2∗ with
shiftlag(L) = ∞ the intersection problem is undecidable for REL(L)? The answer
to this question is negative: take for instance L = (122)∗ with shiftlag(L) = ∞.
However, it is not hard to see that REL(L) is effectively closed under intersection.

This raises the question of whether there are classes C ⊆ RAT that are natural,
expressive, and well-behaved, that is, so that

– REC � C ,
– C is effectively closed under union, intersection and complementation (i.e., is an

effective Boolean algebra); and
– C corresponds to a natural condition on the language.

314 Theory Comput Syst (2015) 57:287–318

Note that REG is one such example. Here we address the question from our per-
spective in terms of control languages. The idea is to show sufficient conditions of
synchronization languages L so that REL(L) is effectively closed under intersec-
tion, or an effective boolean algebra. We state those in terms of Parikh images of
languages.

Recall that the Parikh image of a word w ∈ k∗, written �(w), is the vector of
N

k
0 whose ith component contains #i (w), the number of occurrences of i in w. The

Parikh image of a language L is �(L) = {�(w) | w ∈ L}. It is well known that for
regular and context-free languages L, sets �(L) are exactly the semi-linear sets in
N

k
0, see [29].
A language L ⊆ k∗ is

– Parikh-injective if the function � : L → N
k
0 is injective, and

– Parikh-surjective if the function � : L → N
k
0 is surjective.

Example 2 – (12)∗(1∗|2∗) and 1∗2∗ are Parikh-injective, while (1|2)∗ is not.
– It can easily be shown that L = w∗

1 · w∗
2 · · · w∗

� ⊆ k∗ is Parikh-injective if � ≤ k

and {�(w1), . . . , �(w�)} generate a linear subspace of (N0)
k of dimension �.

For example, (122)∗(112)∗ is Parikh-injective.
– (12)∗(1∗|2∗), 1∗2∗, and (1|2)∗ are Parikh-surjective, but (122)∗(112)∗ is not

Parikh-surjective.
– It is easy to see that Lr/s as defined in (8) is Parikh-injective and Parikh-

surjective for any choice of r, s. For example, if r = 1, s = 2, then Lr/s =
(122)∗(2∗|1∗2|1∗), which is Parikh-injective and Parikh-surjective, since , as
shown in Fig. 5, every element of (N0)

2 is covered, and there is only one way to
reach any element of (N0)

2.

We now analyze the (effective) closure of classes REL(L) under Boolean opera-
tions. It turns out that closure under union is free, but for closure under intersection
and complement, the newly introduced criteria serve as sufficient conditions.

Theorem 4 Let L ⊆ 2∗ be a regular language. Then

Fig. 5 Example of a Parikh-injective and Parikh-surjective language

Theory Comput Syst (2015) 57:287–318 315

(I) REL(L) is effectively closed under union, alphabetic morphisms, and inverse
alphabetic morphisms;

(II) if L is Parikh-injective, then REL(L) is effectively closed under intersection;
(III) if L is both Parikh-injective and Parikh-surjective, then REL(L) is effectively

closed under complement.

Proof (I) Let S1, S2 ⊆ (2 × A)∗ be two L-controlled relations. It is immediate
that the language S∪ = S1 ∪ S2 is L-controlled. We then have that �S1� ∪
�S2� = �S∪�. The fact that it is closed under (inverse) alphabetic morphisms
is immediate from the definition of REL(L).

(II) Let S1, S2 ⊆ (2 × A)∗ be two L-controlled relations. It is immediate that the
language S∩ = S1 ∩ S2 is L-controlled and �S∩� ⊆ �S1� ∩ �S2�. We show
that �S1� ∩ �S2� ⊆ �S∩�. Suppose that (u, v) ∈ �S1� ∩ �S2�. Then, there
must be w1 ∈ S1 and w2 ∈ S2 so that �w1� = �w2� = (u, v). Note that the
projection onto the first component of w1 must be equal to the projection onto
the first component of w2 since L is Parikh-injective. Then, we must have that
w1 = w2 and thus (u, v) ∈ �S∩�.

(III) Let S ⊆ (2×A)∗ be an L-controlled relation. Let Sc be the complement of S

and let �S�c be the complement of �S�. We show the following,

�S�c = �Sc ∩ (L ⊗ A
∗)�,

where L ⊗ A
∗ denotes the set of all words u ⊗ v where |u| = |v|, u ∈ L and

v ∈ A
∗.

[⊆] Suppose (u, v) 	∈ �S�. We show that there must be some w ∈ Sc ∩ (L ⊗A
∗)

so that (u, v) = �w�. Since L is Parikh-injective, there must be at most one word
w′ ∈ L so that �(w′) = (|u|, |v|). Since the Parikh image of L is the whole
universe N

2
0, there must be at least one word w′ ∈ L so that �(w′) = (|u|, |v|).

Hence, there is exactly one word w′ ∈ L so that �(w′) = (|u|, |v|). Let w =
u′ ⊗ v′ ∈ (2×A)∗ be the only word so that u′ = w′ and �w� = (u, v). Note that
w 	∈ S (otherwise (u, v) would be in �S�) and that its projection onto the first
component (i.e., w′) is in L. Therefore, w ∈ Sc ∩ (L ⊗ A

∗).
[⊇] Suppose now that w ∈ Sc ∩ (L ⊗ A

∗). We show that �w� 	∈ �S�. Assume,
by means of contradiction, that �w� ∈ �S�. Then, there is some w′ ∈ S so that
�w′� = �w�. It cannot be that w′ = w, as it would be in contradiction with w ∈
Sc ∩ (L ⊗A

∗). Since L is Parikh-injective, and both w and w′ are L-controlled,
it must be that w = w′, as otherwise �w′� 	= �w�, which is not possible as
already observed. The contradiction comes from assuming that �w� ∈ �S�. Thus,
�w� 	∈ �S� and �S�c ⊇ �Sc ∩ (L ⊗ A

∗)�.

Corollary 2 If L ⊆ 2∗ is Parikh-injective and Parikh-surjective, then REL(L) is an
effective boolean algebra, closed under alphabetic morphisms and inverse alphabetic
morphisms.

316 Theory Comput Syst (2015) 57:287–318

Observe that in this context, REG and REC are simply two examples of the
(infinitely) many such well-behaved classes.

Example 3 – REC and REG are effective boolean algebras since they corre-
spond to REL(1∗2∗) and REL((12)∗(1∗|2∗)), where 1∗2∗, (12)∗(1∗|2∗) are
Parikh-injective and Parikh-surjective.

– REL((122)∗(112)∗) is effectively closed under intersection.
– It was shown in [13] that the class of (r/s)-synchronized relations is an effective

Boolean algebra. Our results provide an alternative proof, since Lr/s is Parikh-
injective and Parikh-surjective.

Observation Theorem 4 cannot be generalized to finite unions of Parikh-injective
languages, since for instance REL(L) for L = ((12)∗1∗)|(1∗(12)∗) is not closed
under intersection. In fact, its intersection problem is undecidable. This follows from
the fact that REL(L) contains the suffix relation and all regular relations (where the
first component is longer than the second). By [5, Theorem V.1], this problem is
undecidable.

7 Future Work

We presented a new way of looking at relations on words, and this new perspective
opens up several directions. An obvious one is to extend results to k-ary relations,
for k > 2. We know that exact analogs of Proposition 1, Theorem 1, and Theorem 2
continue to hold. Other directions are as follows.

Containment One of the classical language-theoretic problems is language con-
tainment, which in this case is formulated as follows: given L1, L2 ⊆ 2∗, is
REL(L1) ⊆ REL(L2)? We would like to understand decidability/complexity issues
for containment.

Two-wayness Another way to extend the framework is by using two-way automata.
Then, instead of having a synchronization language over the alphabet {1, 2}, we have
it over the alphabet {1, 2, 1̄, 2̄}, where i, ī are interpreted as moving the ith head to
the right or to the left respectively. For example, in this context, REL(1∗2̄∗) contains
the relation {(w, wr) ∈ A

∗ × A
∗ | w is the reverse of wr}.

Model theory approach One way of capturing regularity is by standard model-
theoretic techniques: one can find (so-called universal automatic) first-order struc-
tures over �∗ so that definable relations are regular (or nice subclasses of regular)
relations. For instance, using the binary predicates for prefix and equal length, and
unary predicates for each letter a ∈ � checking if the last letter of a word is a, we
get one such structure [10]. By virtue of translation into automata, such structures are
decidable, and their model-theoretic properties have been investigated [8]. We would
like to extend this investigation and connect definability in infinite structures over
�∗ with different classes of relations of the form REL(L).

Theory Comput Syst (2015) 57:287–318 317

Context-free relations Another natural extension is to look for other classes of
relations, say analogs of context-free languages. In particular, one can look at a gen-
eralization of rational relations, the pushdown relations of [16], which are those
recognized by multi-tape automata with a stack or, equivalently, by a context-free
grammar. In view of our approach here, this is not the only way of generalizing REC,
REG, and RAT with pushdown automata. Indeed, in our framework, the simplest way
to generalize these relations with the power of context-free languages, is to consider
—instead of REL(L)— the class RELCF (L) as the set of all relations �S�, for any
L-controlled context-free language S ⊆ (2 × A)∗.

In this framework we can show that RELCF (2∗), the context-free analog of ratio-
nal relations, is the class of pushdown relations of [16]. Analogs of recognizable and
regular relations are RELCF ((12)∗(1∗|2∗)) and RELCF (1∗2∗). Those properly con-
tain REG and REC, respectively, are contained in RELCF (2∗), but are incomparable
with each other as well as with RAT. We want to conduct a further study of those,
perhaps extending to visibly pushdown languages [2] due to their appeal in both
verification and modeling XML.

We also would like to use the structural approach to look for better behaved classes
of relational word transducers for verification purposes, and for classes of relations
that can be effectively used in querying graph data. Finally, we would like to use it to
identify classes of well behaved relations over data words [11] and study logics over
them, extending the approach of [5, 6] with data.

Acknowledgments Work partially supported by EPSRC grants G049165 and J015377.

References

1. Abdulla, J., Jonnson, B., Nilsson, M., Saksena, M.: A survey of regular model checking. In:
(CONCUR’03), pp. 35–48 (2003)

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: (STOC’04), pp. 202–211 (2004)
3. Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput. Surv. 40(1) (2008)
4. Anyanwu, K., Sheth, A.: ρ-queries: enabling querying for semantic associations on the semantic web.

In: 12th International World Wide Web Conference (WWW’03), pp. 690–699 (2003)
5. Barceló, P., Figueira, D., Libkin, L.: Graph logics with rational relations and the generalized

intersection problem. In: (LICS’12), pp. 115–124 (2012). doi:10.1109/LICS.2012.23
6. Barceló, P., Libkin, L., Lin, A.W., Wood, P.T.: Expressive languages for path queries over graph-

structured data. ACM Trans. Database Syst. 37(4), 31 (2012)
7. Ben-Ari, M.: Principles of the Spin model checker. Springer (2008)
8. Benedikt, M., Libkin, L., Schwentick, T., Segoufin, L.: Definable relations and first-order query

languages over strings. J. ACM 50(5), 694–751 (2003)
9. Berstel, J.: Transductions and Context-Free Languages. B. G. Teubner (1979)

10. Blumensath, A., Grädel, E.: Automatic structures. In: LICS, pp. 51–62 (2000)
11. Bojańczyk, M.: Automata for data words and data trees. In: 21st International Conference on

Rewriting Techniques and Applications (RTA), vol. 6, pp. 1–4 (2010)
12. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: (CAV’00), pp. 403–

418. Springer-Verlag, London (2000)
13. Carton, O.: The growth ratio of synchronous rational relations is unique. Theor. Comput. Sci. 376(1–

2), 52–59 (2007)
14. Carton, O., Choffrut, C., Grigorieff, S.: Decision problems among the main subfamilies of rational

relations 40(2), 255–275 (2006)

http://dx.doi.org/10.1109/LICS.2012.23

318 Theory Comput Syst (2015) 57:287–318

15. Choffrut, C.: Relations over words and logic: A chronology. Bull EATCS 89, 159–163 (2006)
16. Choffrut, C., Culik II, K.: Properties of finite and pushdown transducers. SIAM J. Comput. 12(2),

300–315 (1983)
17. Elgot, C.C., Mezei, J.E.: On relations defined by generalized finite automata. IBM J. Res. Dev. 9(1),

47–68 (1965). doi:10.1147/rd.91.0047
18. Fagin, R., Kimelfeld, B., Reiss, F., Vansummeren, S.: A formal framework for information extraction.

In: (PODS’13) (2013). to appear
19. Figueira, D., Libkin, L.: Synchronizing relations on words. In: (STACS’14), vol. 25, pp. 93–104.

Leibniz-Zentrum für Informatik, Lyon (2014). doi:10.4230/LIPIcs.STACS.2014.518
20. Frougny, C., Sakarovitch, J.: Synchronized rational relations of finite and infinite words. Theor.

Comput. Sci. 108(1), 45–82 (1993)
21. Harju, T., Mateescu, A., Salomaa, A.: Shuffle on trajectories: The schützenberger product and related

operations. In: MFCS, pp. 503–511 (1998)
22. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press (2004)
23. Jonsson, B., Nilsson, M.: Transitive closures of regular relations for verifying infinite-state systems.

In: (TACAS’00), pp. 220–234. Springer-Verlag (2000)
24. Leguy, J.: Transductions rationnelles décroissantes. ITA 15(2), 141–148 (1981)
25. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers (1993)
26. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple

building blocks of complex networks. Science 298(5594), 824–827 (2002)
27. Neven, F.: Automata, Logic, and XML. In: (CSL’02), pp. 2–26 (2002)
28. Nivat, M.: Transduction des langages de Chomsky. Ann. Inst. Fourier 18, 339–455 (1968)
29. Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966)
30. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)
31. Schwentick, T.: Automata for XML - a survey. J. Comput. Syst. Sci. 73(3), 289–315 (2007)
32. To, A.W., Libkin, L.: Algorithmic metatheorems for decidable LTL model checking over infinite

systems. In: (FOSSACS’10), pp. 221–236 (2010)

http://dx.doi.org/10.1147/rd.91.0047
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.518

	Synchronizing Relations on Words
	Abstract
	Introduction
	Recognizable, Regular, and Rational Relations
	Recognizable relations
	Regular relations
	Rational relations

	Synchronizations of Relations
	Synchronizations for Recognizable, Regular, and Rational Relations
	Automata Theoretic Characterizations

	Resynchronizing Relations
	Closure via Parikh Images
	Observation

	Future Work
	Containment
	Two-wayness
	Model theory approach
	Context-free relations

	Acknowledgments
	References

