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Abstract How and why people form ties is a critical issue for understanding the fab-
ric of social networks. In contrast to most existing work, we are interested in settings
where agents are neither so myopic as to consider only the benefit they derive from
their immediate neighbors, nor do they consider the effects on the entire network
when forming connections. Instead, we consider games on networks where a node
tries to maximize its utility taking into account the benefit it gets from the nodes it
is directly connected to (called direct benefit), as well as the benefit it gets from the
nodes it is acquainted with via a two-hop connection (called two-hop benefit). We
call such games Two-HopGames. The decision to consider only two hops stems from
the observation that human agents rarely consider “contacts of a contact of a contact”
(3-hop contacts) or further while forming their relationships. We consider several
versions of Two-Hop games which are extensions of well-studied games. While the
addition of two-hop benefit changes the properties of these games significantly, we
prove that in many important cases good equilibrium solutions still exist, and bound
the change in the price of anarchy due to two-hop benefit both theoretically and in
simulation.
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1 Introduction

How and why people form ties is a critical issue for understanding the fabric of social
networks. In various models, including public good games (see e.g., [8, 12, 17] and
the references therein), stable matching (see e.g., [6, 16]), and others [5], it is often
assumed that people make strategic decisions or form friendships/partnerships based
on the benefit they derive from their immediate neighbors, independent of the rest
of the network. On the opposite end of the spectrum, many game-theoretic models
such as [15] and its many extensions (see [7] and references therein) consider players
that form a network with the goal of maximizing their influence over nodes that can
be far away from them, i.e., caring not just about their local neighborhood but about
their position in the entire network. In many settings, however, agents are neither so
myopic as to consider only the benefit they get from their immediate connections
alone, nor do they form relations considering the effects on the whole network. For
example, one of the aspects people consider when forming a relationship is the two-
hop benefit they can get from the friends of such a friend. This is especially important
in the world of business, but also occurs naturally when forming everyday friend-
ships and collaborations: we judge people by the company they keep, and become
better friends with those whose friends we like as well. Inspired by such settings, we
consider games on networks where a node tries to maximize its utility taking into
account the benefit it gets from the nodes it is directly connected to (called direct ben-
efit), as well as the benefit it gets from the nodes it is acquainted with via a two-hop
connection (called two-hop benefit). We will call such games Two–Hop Games.

Before formally defining Two–Hop games, we point out a difference between two
concepts - one being the ability to form a relationship with someone, and another
being the ability to extract benefit out of a direct or two-hop acquaintance. The ability
to form a relationship indicates whether two agents can interact directly with each
other (due to geographical proximity, etc.) The ability to extract benefit out of a
direct or two-hop acquaintance instead tells us about how compatible the agents are
with each other. We distinguish between these two concepts by having two arbitrary
undirected graphs:

– Connection Graph(GC): The edges in this graph denote which pairs of agents are
able to form connections/relationships with each other.

– Friendship Graph(GF ): The edges in this graph indicate whether two agents are
compatible with each other. If they are compatible, then they can derive benefit if
they are connected either directly or via a two-hop connection. Thus GF governs
the utility extracted from acquaintances (the formation of which is governed by
GC).

Two–Hop Games Now we will formally define Two-Hop games. Each Two-Hop
game is defined by the following: We have a Connection Graph (GC) and a Friend-
ship Graph (GF ) as described above, both having the same node set. These nodes are
the players of the game. We want to model the case where different friendships and
relationships can be of different strength. Thus the strategy of a node, say u, consists
of choosing to contribute to each of its adjacent edges (uv) in GC , with an amount
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0 ≤ xuv
u ≤ 1. The total contribution that a node can make is limited by a constant

k. The contribution xuv
u represents the effort u puts into its relationship with v. Note

that we restrict the contributions of u to edges adjoining u in GC , as those are the
nodes that u can connect to directly. We can represent the strategy of u in a com-
pact way using a vector xu = (xuv

u ) with number of components equal to the degree
of u in GC . As usual, x−u = (x1, · · · , xu−1, xu+1, · · · , xn) denotes the strategies
of all other nodes except u. We restrict

∑
(uv)�u xuv

u = min(k, du) where du is the
degree of u in GC . The limit of k represents the fact that any person has only finite
time/resources at his disposal to form acquaintances, and thus can contribute at most
k effort in total. The objective of a node u is to maximize its utility given by

Uu(xu, x−u) =
∑

(uw)∈GF ∩GC

ruw

(
xuw
u , xuw

w

)

+
∑

(uw) ∈ GF

(uv), (vw) ∈ GC

suvw

(
xuv
u , xuv

v , xvw
v , xvw

w

)
(1)

The function ruw(xuw
u , xuw

w ) represents the strength of the direct relationship
between u and w: this depends only on the effort that u and w put into the rela-
tionship. The function suvw(xuv

u , xuv
v , xvw

v , xvw
w ) represents the strength of a bond

between u and w formed due to a mutual friend v. The strength of such a two-hop
acquaintance can potentially depend on all the intermediate efforts on the 2-link path.
Thus the utility of a node u is the total strength of its (direct and 2-hop) relationships
with all of its neighbors in GF , i.e., the nodes who actually benefit node u. Note that
the two-hop benefit over all two-hop paths between u and w adds up: a larger num-
ber of mutual friends increases how much people can influence each other, a larger
number of internal referrals increases the chances that a job-seeker gets an interview,
etc. We are interested in the following two types of Two-Hop games.

– Sum Two–Hop Games (S2H Games):

ruv

(
xuv
u , xuv

v

) = xuv
u + xuv

v (2)

suvw

(
xuv
u , xuv

v , xvw
v , xvw

w

) = α · (
xuv
u · xvw

v + xvw
w · xuv

v

)
(3)

We call 0 ≤ α ≤ 1 the two-hop benefit factor. It represents the intuitive notion
that a two-hop acquaintance between u and w via v should yield less benefit than
a direct acquaintance. Equation (2) defines the strength of a relationship as the
addition of strengths in each direction: strength in the direction u → v is given
by xuv

u , and in the reverse direction given by xuv
v . Similarly the term xuv

u · xvw
v in

(3) represents the strength of the two-hop acquaintance between u and w via v

in the direction u → v → w (e.g., how likely information is to pass from u to w

via v). The term xvw
w · xuv

v is the strength of this indirect relationship in the other
direction.

If not for the 2-hop effect, S2H Games would be a simple variation of network
contribution games [5] (see Section 2 for further details) and it is not difficult
to show that in such a game, a Nash Equilibrium always exists and its Price of
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Anarchy is 1. As we show in this paper, however, the addition of 2-hop benefit
changes the properties of this game.

– Min Two–Hop Games (M2H Games):

ruv

(
xuv
u , xuv

v

) = min
(
xuv
u , xuv

v

)
(4)

suvw

(
xuv
u , xuv

v , xvw
v , xuw

w

) = α · min
(
xuv
u , xuv

v

) · min
(
xvw
v , xvw

w

)
(5)

In M2H games, a relationship is only strong if both participants contribute a lot
of effort. As before, the strength of a 2–hop effect is the product of the strengths
of the two relationships in the 2–link path, attenuated by a factor α ∈ [0, 1].

Without the 2-hop effect, this game is essentially a fractional version of k-
stable matching (see Section 2 for details). As discussed in Section 2, existing
work on stable matching immediately implies various results about the existence
and quality of equilibrium for such a game. However, just as with S2H games,
the addition of 2-hop benefit greatly changes the properties of this game.

To assess the quality of a solution M in S2H and M2H games, we will use social
welfare, given by U(M) = ∑

u Uu(xu, x−u). For S2H games, we will focus on the
existence and the quality of Nash Equilibria (NEs). For M2H games, however, using
the concept of 2-strong Nash Equilibrium, also called pairwise equilibrium [21],
makes more sense to consider than the concept of Nash equilibrium. A pairwise equi-
librium (PE) is a solution stable with respect to deviations by any pair of players, as
well as any single player. This is consistent with previous work on such games: if we
think of integral versions of these games (where xuv

u is constrained to be in {0, 1})
as network formation games, then S2H corresponds to a game where a node can uni-
laterally form a link and reap the benefits of this link, while M2H corresponds to a
game in which both endpoints of a link are needed to form this link. Traditionally
pairwise equilibria have been used to analyze the latter types of games [5, 13] simply
due to the fact that any single-player deviation would not be able to create a new link.
Similarly, in our fractional version of M2H, it is reasonable to expect for a pair of
people (u, v) to increase the level of their friendship at the same time, thus increasing
min(xuv

u , xuv
v ). Thus for M2H games, we study pairwise equilibria and investigate

their quality compared to the optimal solution. We call the ratio between the quality
of the worst pairwise equilibrium and the optimal solution 2-PoA to differentiate it
from the PoA (price of anarchy) with respect to Nash Equilibria.

Our Contribution We define Two-Hop games, which are natural generalizations of
well-studied games. As mentioned above, S2H games without any two-hop benefit
reduce to simple network contribution games; thus they are potential games, an inte-
gral NE always exists for them, and they have Price of Anarchy (PoA) of 1. As we
show in Section 3, despite the introduction of two-hop benefit, a NE always exists for
general S2H games. However, an integral NE may no longer exist, and S2H games
are not potential games (except for some special cases: see Theorem 4).

The introduction of two-hop benefit also changes the behavior of PoA. For the
important special cases of GF ⊆ GC (I can connect to all of my friends) and GC ⊆
GF (I can only connect to friends), we show a tight PoA bound of 1+ αk, and in the
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very nice case when GF and GC are complete graphs, the PoA is 1+αk
1+α(k−1) . As we

show in Theorem 5, in general for S2H games PoA decreases as the overlap between
GF and GC increases, i.e., PoA decreases as nodes get more opportunities to form
acquaintances with nodes they are compatible with. For example, if every node has at
least k/2 nodes which are its neighbors in both GF and GC , then the PoA is at most
1 + 2αk. Note that for the most reasonable values of α the PoA bounds above are
rather small. For example, we can often assume that a single direct friendship brings
more benefit than connecting to someone solely because of the 2-hop contacts being
made; this is quantified by assuming that α ≤ 1

k
since any node can have at most k

friends. For this range of α, the above PoA bounds becomemerely 2 and 3.We further
consider weighted S2H games (See Section 3.2) in which different acquaintances
can potentially yield different intrinsic benefit, and show that the results obtained for
S2H games also hold for weighted games when GF ⊆ GC .

Because of its connection to many-to-many stable matching, it is not difficult to
show that for M2H games without 2-hop benefit an integral pairwise equilibrium
(PE) always exists, and 2-PoA is at most 2. For general M2H games with 2-hop
benefit, however, we show that an integral PE may not exist (existence of a fractional
PE for this and related games is an important open question). For the cases when PE
does exist, our main result for M2H games proves that 2-PoA for the important case
of GC ⊆ GF is at most 2 + 2αk, which for the “reasonable” range of α ∈ [0, 1/k]
mentioned above evaluates to at most 4.

For weighted versions, we also carried out simulations by scattering nodes uni-
formly in a unit square and experimented with different classes of weight functions
which depend on the distance between the nodes. We found that although the worst-
case PoA bounds could be quite high, the average quality of equilibria was very
close to the optimum. We also found that although integral NE may not exist for
S2H games, in our simulations for majority of the instances it did exist, and simple
dynamics converged to it extremely quickly in almost all instances. Our simulations
also showed that as two-hop benefit decreases, nodes transition from forming small
interconnected clusters to forming more of a “backbone” tree-like network.

Remark Instead of assuming a limit of k on the contributions that each node can
make, we can instead consider the case when the limits are different for each node,
say ku for node u. In this case all of our results hold with k replaced by maxu ku,
except the cases 1 and 3 of Theorem 5, where we will mention the difference in the
bounds in the discussion following the proof.

2 Related Work and Impact of Two-Hop Benefit

Network formation games, and games on networks more generally, have been stud-
ied extensively. In many network formation games, nodes connect to each other with
the goal of maximizing their utility, which depends on their position in the whole net-
work. For example, it may depend on the average distance to the rest of the nodes, or
on various other notions of centrality and node “importance”. [15] studies the setting
where nodes try to minimize their average distance to the other nodes by building
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network links, however the fixed link cost for each link they decide to build acts as a
damping factor. [15] goes on to analyze how the existence and the quality (Price of
Anarchy) of Nash equilibria varies with respect to the connection cost of establish-
ing each new link. The authors in [13] analyzed the bilateral connection version (i.e.,
building a link requires both endpoints to cooperate) of the above model in [15] and
bounded the efficiency of pairwise (2-strong Nash) equilibria along with the range
of link costs to guarantee the existence of such equilibria. The authors in [22] con-
sider the scenario where each node has a budget for purchasing links and different
preferences for connecting to different nodes, with nodes trying to purchase adjacent
edges to connect to the nodes that matter the most. The version considered in [7] is
similar to [22] except that the nodes aim for maximizing their betweenness central-
ity. For further examples of the approach where nodes have the goal of maximizing
their utility based on their position in the whole network, see [3, 9, 14, 19] and the
references in [7].

On the other hand, in many models of the network formation games, the agents
are concerned only about the direct benefit they derive from their immediate neigh-
bors. One such class of models is stable matching and its variants. Stable matching
was introduced in [16] under the basic setting of nodes partitioned into two sets (i.e.,
a bipartite graph), with each node having preferences over the nodes from the other
set, and each node desiring to get matched (i.e., get assigned) to at most one node
from the other set as high as possible in its preference list. The stable matching prob-
lem investigates the possibility of stable outcomes (called stable matchings) in this
setting, where stability corresponds to no two nodes prefering each other over their
present partners. Different variants of stable matching problems have been studied
intensively over the last few decades. On the algorithmic side, existence, efficient
algorithms, and improvement dynamics for stable matchings over bipartite graphs
have been of interest (for references, see standard textbooks such as [18, 23, 25]).
Many-to-one and many-to-many versions of stable matching have also been studied
in the literature and it has been shown that stable matchings exist when the underlying
graph is bipartite [6, 26, 27]. Another example of network formation games where
the agents are concerned only about the benefit derived from their immediate neight-
bours are network contribution games introduced in [5]. Here authors study 2-strong
Nash equilibria under the setting of each node having a constraint on the total budget
it can invest on adjoining edges in order to maximize its utility. For more examples,
see [2, 4, 8, 11, 12, 17].

However, in this paper we are interested in settings where agents may neither
be concerned about the actions of remote nodes nor be so myopic as to consider
only the benefit they derive from their immediate neighbors. Two-Hop games fall
under this category. The decision to consider only two hops stems from the obser-
vation that human agents rarely consider “contacts of a contact of a contact” (3-hop
contacts) or further while forming their relationships. As mentioned above, we dis-
tinguish between the ability of a pair of agents to interact directly (represented by the
connection graph GC) and their capability of being able to derive benefit if they are
connected directly or via a two-hop connection (represented by the friendship graph
GF ). The friendship graph GF can be seen as a social context which dictates the ben-
efits obtained by the nodes by playing a game on the connection graph GC . Some
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other work which explores different forms of social context are [10] and [20]. In this
work, the cost of a node in a resource-sharing game depends on its own cost and the
costs of its “friends”, where friend nodes are its neighbors in an underlying social
network.

Let us describe the impact that introducing two-hop benefit with social context
can have. Without two-hop benefit, the utility of a node u in S2H games becomes

Uu(xu, x−u) =
∑

(uv) ∈ u

(uv) ∈ GC ∩ GF

(
xuv
u + xuv

v

)
(6)

This is most closely related to one of the models for network contribution games
considered in [5] where the authors also consider that the utility obtained by a node
from contributing an edge is given by cuv · (xuv

u + xuv
v ) where cuv > 0 is an edge-

specific constant. S2H games without two-hop benefit can be seen as a variation of
this game where we have cuv = 1 if (uv) ∈ GC ∩ GF and 0 otherwise, however we
place an additional upper bound of 1 on xuv

u ’s along with a limit
∑

(uv)∈u xuv
u = k.

In [5], when the utility function of a node u is given by
∑

(uv)∈u cuv(xuv
u + xuv

v ), the
authors prove that a (integral) Nash Equilibrium always exists and that the PoA is 1.
Here by integral NE we mean that xuv

u ’s are restricted to {0, 1}. Although we place an
additional constraint of xuv

u ≤ 1, using similar techniques it is easy to show that for
S2H games with α = 0 (i.e., no two-hop benefit) an integral NE always exists and
PoA is 1. With addition of two-hop benefit, we can view S2H games as an extension
of such network contribution games: we show that a NE still exists (although it may
not be integral), and that the PoA does not increase by too much.

For M2H games, if we do not have any two-hop benefit then the utility of a node
becomes

Uu(xu, x−u) =
∑

(uv)∈GF ∩GC

xuv =
∑

(uv)∈GF ∩GC

min(xuv
u , xuv

v ) (7)

For k = 1, the version of this with edge weights becomes equivalent to stable match-
ing. More precisely, it becomes the “correlated” version of stable matching [1] for
which a stable matching is known to exist for arbitrary graphs, and the 2-PoA (quality
of stable matching compared to the optimum one) is bounded by 2 [4]. For k > 1, this
becomes a many-to-many version of stable matching, where each node is allowed to
match with k partners. Many-to-one and many-to-many versions of stable matching
have been studied in the literature and it has been shown that stable matchings exist
when the underlying graph is bipartite [6, 26, 27]. In fact, many bilateral network
formation games can also be interpreted in the stable matching framework. However,
to the best of our knowledge the correlated version of many-to-many stable match-
ing has not been studied before. Nevertheless, it is easy to show using the techniques
from [4] that existence of integral stable matching and the same bound on 2-PoA
still holds. This even holds for fractional stable matching, by which we mean that a
node u is allowed to choose an adjacent edge with a fractional amount 0 ≤ xuv

u ≤ 1
such that

∑
(uv)�u xuv

u = k, and an edge (uv) is present in a matching with fraction
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min(xuv
u , xuv

v ). This is a precise generalization of the usual notions of stable match-
ing and pairwise equilibrium, since a single node can destroy or weaken an edge, but
both endpoints are required to form or strengthen an edge. With the introduction of
two-hop benefit, an integral pairwise equilibrium may no longer exist; however we
show that the quality of pairwise equilibrium remains good in the instances when
they do exist.

3 Sum Two–Hop Games

Recall that in S2H games, the utility Uu(xu, x−u) of a node u is obtained by
substituting (2) and (3) into (1) which gives us

Uu(xu, x−u) =
∑

(uv)∈GC∩GF

(
xuv
u + xuv

v

)

+α ·
∑

(uv), (vw) ∈ GC

s.t. (uw) ∈ GF

(
xuv
u · xvw

v + xvw
w · xuv

v

)
(8)

We introduce some more notation which will prove useful later. Define the
quantities Uout

u (xu, x−u) and Uin
u (xu, x−u) as:

Uout
u (xu, x−u) =

∑

(uv)∈GF ∩GC

xuv
u + α ·

∑

(uw) ∈ GF

(uv), (vw) ∈ GC

xuv
u · xvw

v (9)

Uin
u (xu, x−u) =

∑

(uv)∈GF ∩GC

xuv
v + α ·

∑

(uw) ∈ GF

(uv), (vw) ∈ GC

xvw
w · xuv

v (10)

Note that

Uu(xu, x−u) = Uout
u (xu, x−u) + Uin

u (xu, x−u) (11)

Uout
u (xu, x−u) can be interpreted as the share of the utility of node u that u gets by

virtue of its own contributions, i.e., this is the share of utility Uu(xu, x−u) in which
the contributions made by u play a role. Similarly, Uin

u (xu, x−u) can be interpreted
as the share of the utility Uu(xu, x−u) independent of the contributions made by u.
Let us define Uout (M) for any solution M as

∑
u Uout

u (xu, x−u) and Uin(M) as∑
u Uin

u (xu, x−u). Furthermore, it can be observed that

U(M) = 2 · Uout (M) = 2 · Uin(M) (12)

Without any two-hop benefit, there always exists an integral pure NE for S2H
games (i.e., a NE in which all the contributions are either 0 or 1) and they are exact
potential games. Integral NE’s represent an important combinatorial case where the
contributions of the agents take fixed values, i.e., either I am or I am not a friend
of someone. Such solutions make sense in some applications in which a relationship
either exists or does not (e.g., having a physical network link between two parties),
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but for less tangible relationships such as friendships, fractional solutions make sense
as well. For our game, even after introducing two-hop benefit (i.e., α > 0), we
can prove that a NE always exists for S2H games using Proposition 20.3 of [24].
However, all NE may be fractional, and this ceases to be a potential game.

Theorem 1 For S2H games, a pure Nash Equilibrium always exists.

Proof We begin the proof by defining some notation. Let du denote the degree of
node u in GC . If v1, v2, . . . , vdu are neighbors of u in GC then the strategy space of
u is a set of du-dimensional vectors given by:

Su = {xu : 0 � xu � 1 and
∑

(uvi )�u

xuvi
u = min{k, du}} (13)

where by 0 and 1 we denote the vectors with all components zero and one respec-
tively. Let S denote S1 × S2 × . . . × Sn. Define a preference relation 	u for a node
u on the set S as follows: For x, y ∈ S, we have y 	u x whenever the utility of the
node u in the outcome y is at least as much as its utility in the outcome x.

We will prove that a NE exists for S2H games using Proposition 20.3 of [24].
Proposition 20.3 of [24] states that we have a (pure) Nash Equilibrium whenever the
strategy space Su of each node is a non-empty, compact, convex set and the preference
relation 	u continuous and quasi-concave on Su for each node u. We will explain the
terms as we will encounter them in the proof. We will prove the existence of NE by
showing that each of these conditions hold for S2H games.

– Su is a non-empty, compact and convex set for each node u:
If there are no isolated nodes in GC , as we have assumed already, then the set Su

is not empty as seen from (13). Since Su is also a closed and bounded set, it is
also a compact set. From (13), we can also see that it is a convex set.

– The preference relation 	u is continuous for each node u:
Let {xk}∞k=0 denote a sequence of strategy profiles x1, x2, · · · with each strategy
profile in the sequence {xk}∞k=0 belonging to set S. Now let us define by what is
meant by preference relation 	u for a node u being continuous on S (definition
taken from Section 1.7 of [24]). Suppose there are two strategy profile sequences
{xk}∞k=0 and {yk}∞k=0 converging to x ∈ S and y ∈ S respectively such that
xk 	u yk for all k. If this also implies x 	u y for any two such sequences of
strategy profiles then the preference relation 	u is said to be continuous. Recall
that xk 	u yk means Uu(xk) ≥ Uu(yk). Now for S2H games, the utility function
Uu(x) is continuous in x. This continuity implies x 	u y where x, y ∈ S are
limits of two sequences {xk}∞k=0 and {yk}∞k=0 such that xk 	u yk for all k. Thus
for any node u, the preference relation 	u is continuous.

– The preference relation 	u is quasi-concave on Su: Let us define Bu(xu, x−u) =
{yu ∈ Su : (yu, x−u) 	u x}. Informally, if we fix x−u then the set Bu(xu, x−u)

is the set of strategies for u for which u gets at least as much utility as it gets
by playing xu. The preference relation 	u is said to be quasi-concave on Su if
Bu(xu, x−u) is convex for each x ∈ S. Thus to prove that 	u is quasi-concave
on Su, we have to prove that if (yu, x−u) 	u x and (zu, x−u) 	u x hold true then
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(λyu + (1 − λ)zu, x−u) 	u x holds true (where 0 ≤ λ ≤ 1). This follows from
the linearity of Uu(xu, x−u) in xu given x−u, i.e.,

Uu(λyu + (1 − λ)zu, x−u)

=
∑

(uv)∈GC∩GF

(λ(yuv
u + xuv

v ) + (1 − λ)(zuv
u + xuv

v ))

+
∑

(uv), (vw) ∈ GC

s.t. (uw) ∈ GF

αλ(yuv
u · xvw

v + xuv
v · xvw

w )

+
∑

(uv), (vw) ∈ GC

s.t. (uw) ∈ GF

α(1 − λ)(zuv
u · xvw

v + xuv
v · xvw

w )

= λ · Uu(yu, x−u) + (1 − λ) · Uu(zu, x−u)

≥ λ · Uu(x) + (1 − λ) · Uu(x) ≥ Uu(x) (14)

Hence the preference relation 	u is quasi-concave on Su for each node u.

Thus we have shown that for each node u, its strategy space Su is a non-empty,
compact, convex set and the preference relation 	u is continuous and quasiconcave
on Su. Thus by proposition 20.3 of [24], a (pure) NE exists for S2H games.

Theorem 2 There are instances of the general S2H game which do not admit any
integral pure Nash equilibrium.

Proof We will describe the construction of an instance of S2H games for arbitrary
k such that an integral NE does not exist for such instances. Figure 1 shows such an
instance but for k = 2. To construct an instance for arbitrary k, consider three nodes
u, v, w such that the edges (uv), (vw) and (wu) exist in GC but not in GF , i.e.
(uv), (vw), (uw) ∈ GC \ GF . We will call the triangle formed by (uv), (vw), (uw)

as the central triangle. The node u is further connected to k nodes outside the central
triangle in GC , with these edges also belonging to GF . We will call these nodes as
satellite nodes of u (e.g., in Fig. 1, nodes u1 and a are satellite nodes of u). Similarly
v and w will have their own k satellite nodes. Among these satellite nodes, we select
nodes u1, · · · , uk−1 and connect them further to k nodes using edges inGC ∩GF . We
will call these k nodes as subordinate nodes of the satellite node under consideration
(e.g., Fig. 1, satellite node u1 has y and z as its subordinate nodes). Each node of
the central triangle is connected in GF to all the subordinate nodes of its satellite
nodes, however these edges do not belong to GC . Note that there exists a special
satellite node for each node of the central triangle such that it has no subordinate
nodes. For example satellite node a is such a node corresponding to u. Each vertex
of the central triangle is further connected in GF to satellite nodes of the vertex of
the central triangle in clockwise direction. These edges belong to GF but not in GC .
For example, node u is connected to satellite nodes of v (only in GF but not in GC).
To summarize the notation for Fig. 1, the solid edges belong to GC ∩ GF , semi-solid
edges belong toGC and dotted edges belong toGF . We choose 1/k < α < 1/(k−1).
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Fig. 1 An integral NE does not exist for S2H game. Example shown for k = 2. Note 1/k < α < 1/(k−1)

Now let us prove that an integral NE does not exist for such a construction. In
this proof, by u → v we will mean xuv

u = 1. Since we are considering only integral
contributions, a satellite node, say u1, has to choose k edges for its contributions
from k + 1 adjoining edges. Thus u1 makes a full contribution to at least k − 1
subordinate nodes of u1. Now we claim that a vertex of the central triangle, say u,
always contributes 1 to the edges leading to all its satellite nodes, except a, in any
candidate solution for NE. To prove this claim, we show that if there is any satellite
node, say u1 (except a), such that x

uu1
u = 0 then u can always increase its utility by

making x
uu1
u = 1 by making its contribution to some other edge 0. To see it, notice

that:

– Node u cannot contribute to (ua) and not to (uu1) because in such a case, by
making xua

u = 0 node u can lose utility by 1 and it can more than compensate for
this loss by making xuu1 = 1 as it increases its utility by at least 1 + α(k − 1).
This is because now u obtains an additional direct benefit of 1 by contributing
to (uu1) and also gets the two-hop benefit of α(k − 1) obtained from the two-
hop paths of nature u → u1 → p where p is a subordinate node of u1 as u1
contributes 1 to at least k − 1 of its subordinate nodes.

– Node u would rather prefer contributing to (uu1) instead of (uw) because node
u does not obtain any utility by contributing to (uw) as there is no direct or two-
hop benefit to be obtained by contributing to (uw). There is no benefit for u in
contributing to (uw) because (uw) /∈ GF and no node connected to w in GF

(solid or dotted edges) has a two-hop path from u in GC . Thus u can always
make x

uu1
u = 1 instead of contributing to (uw) and get the additional utility of

1 + α(k − 1) as explained in the previous case.
– Suppose node u contributes 1 to edge (uv) and not to (uu1). Then in this case

by reducing contribution to (uv) to 0, node u can lose only two-hop benefit as
(uv) ∈ GC \ GF , thus there being no direct benefit obtained by contributing to
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(uv). The two-hop benefit that node u can lose is at most αk because of destroy-
ing paths of the nature u → v → p since there are at most k such paths. Thus,
if u removes its contribution from (uv) and instead contributed to (uu1) then it
gets a utility of 1 + α(k − 1) (as explained in the previous case) which more
than compensates for its loss of at most αk utility due to our assumption that
1/k < α < 1/(k − 1).

Thus node u makes a contribution of 1 to the edges leading to all of its satellite nodes
except a in any candidate solution for NE. Similarly, node v (and node w) makes a
contribution of 1 to the edges leading to all of its satellite nodes except b (except c)
in any candidate solution for NE. Thus to examine the possibility of NE, we only
need to examine where the vertices of the central triangle make their remaining one
contribution. In fact, the only choices for the remaining contribution for node u are
edges (ua) and (uv) (and not edge (uw)) because it can always choose to contribute
1 to edge (ua) to get a direct benefit of 1 instead of contributing to edge (uw) from
which it gets no utility as argued above. Similarly the only choices for the remaining
contribution for node v (node w) are edges (vb), (vw) (edges (wu), (wc)). Now we
will show that no combination of these choices is possible in a candidate solution for
NE. For convenience we will call edges (uv), (vw), (uw) as the edges of the central
triangle. Consider the following cases:

– u chooses (ua), v chooses (vb) and w chooses (wc). In such a case, u would
prefer to remove its contribution from (ua) to contribute to (uv) instead. This is
because in this process u gains the two-hop benefit of αk > 1 from the satel-
lite nodes of v which is more than the utility of 1 that it loses by removing its
contribution to (ua).

– Suppose none of the edges (ua), (vb), (wc) were chosen for the remaining con-
tributions, i.e. u chooses (uv), v chooses (vw), w chooses (wu). In this situation,
by contributing to (vw), node v gets an utility (only two-hop benefit) of α(k −1)
by virtue of establishing two-hop paths to (k − 1) satellite nodes of w where w

makes its (k − 1) contributions (i.e., nodes w1, ·, wk−1). However, by remov-
ing its contribution to (vw) and instead choosing to contribute to (vb) gets v an
utility of 1 which is more than the utility of α(k − 1) it loses by removing its
contribution to (vw). This is because we have assumed α < 1/(k − 1).

– Other then the above two cases, at least one and at most two edges from
(ua), (vb), (wc) are chosen for the remaining contributions by nodes u, v, w. To
cover both these cases, without the loss of generality assume that (ua) is cho-
sen and (wc) is not chosen whereas (vb) may or may not be chosen. This means
that u chooses (ua) and w chooses (wu) to contribute. Now if v has chosen (vb)

then as explained in the first case above, u can remove its contribution to (ua)

and choose to contribute to (vw) instead, increasing its utility in this process.
Otherwise, if v has chosen (vw) to contribute then v can remove its contribution
from (vw) to contribute to (vb) instead to increase its utility as explained in the
second case above.

Thus we have shown that none of the combinations of choices for the remaining
contributions of nodes u, v, w can lead to an integral NE, which was the only step
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remaining to be proven for non-existence of integral NE in this construction. Hence
we have proven that there may not exist an integral NE for S2H games.

Theorem 3 The general S2H game is not a potential game.

Proof We give an instance where better-response dynamics can cycle, thus estab-
lishing that this is not a potential game. Figure 2 shows such an instance of S2H
games. In this instance, we have k = 2. Now we will describe the construction and
later prove that such a cycle of states exists for this instance.

Figure 2 consists a cycle of vertices p—q—u—v—w—p. We call this cycle C1.
The total number of vertices in C1 is 5 (although the proof works with C1 hav+ing
any odd number of vertices greater than 3.) We further stitch one more cycle C2
through these vertices by connecting each vertex to a vertex two positions ahead of
it in C1. Since we have chosen the total number of vertices in C1 as an odd number
greater than 3, this process ensures that connecting this way indeed creates another
cycle. All the edges of C1 and C2 are in GC \ GF . Each of the vertices of C1, say u,
is connected in GC \ GF to two special nodes u1, u2 which we call as satellite nodes
of u. Similarly other vertices of C1 have their own satellite nodes with analogous
notation (not all of these are pictured in the figure). Each satellite node is further
connected in GC \ GF to another node (for example u1 is connected to a) which
we will call subordinate nodes of the satellite node under consideration. So, the total
number of nodes in the example is 5 · 5 = 25. Now let us describe the edges in GF .
Each vertex of C1 is connected in GF \GC to subordinate nodes of its satellite nodes.
For example, u is connected to a and b. In addition, each vertex of C1 is connected in

Fig. 2 Example showing that the S2H game is not a potential game. Example shown for k = 2. Note
that this is a partially drawn figure: not all the adjoining edges of the nodes of the central pentagon are
shown except for the node u. Also, both the nodes p and q have a subgraph attached to them outside the
central pentagon, analogous to subgraph formed by the nodes u1, u2, a, b around the node u.The complete
example is a symmetric figure. In this example, it is possible for the nodes to exhibit a cycle of better
responses, thus leading to the conclusion that the S2H game is not a potential game
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GF \ GC to satellite nodes of two vertices of C1 in clockwise direction, for example,
node q is connected to u1, u2, v1, v2 (again, not all such edges are shown in the
figure). In Fig. 2, the edges that are in GC \ GF are shown in solid pattern and the
edges that are in GF \GC are shown in dotted pattern. Note that since GF ∩GC = ∅,
no node can obtain any direct benefit from connecting to a neighbor.

Let us choose the initial strategies of the nodes. We choose the strategies of satel-
lite and subordinate nodes as follows: For the lack of choice, u1 contributes 1 to both
(uu1) and (u1a). Let every satellite node follow analogous strategies. Consider a sub-
ordinate node, say a. Again for the lack of choice, a contributes 1 to (u1a). Let other
subordinate nodes follow analogous strategies. We choose the initial strategies of the
vertices of C1 as follows: let all the vertices of C1 except p and q contribute 1 to the
edges leading to their satellite nodes. However, let node q contribute 1 to edges (qu),
(qv) and let node p contribute to edges (pp1), (pu). Let us call this initial state as S0.
Beginning with S0, we will show that better-response dynamics can lead to a cycle
of states.

– In the first state transition, let u remove its contributions from edges (uu1), (uu2)

and contribute 1 to (uv), (uw) instead. Observe that if u completely removes its
contribution from the edge (uu1) then it loses an utility of α. This is because it
loses the two-hop benefit obtained from the path u → u1 → a. However if u

chooses to contribute to (uv) then it increases its utility by 2α because of the the
two-hop benefit obtained from the paths u → v → v1 and u → v → v2. Using
this, we conclude that if u removes its contributions from edges (uu1), (uu2) and
contribute 1 to (uv), (uw) instead, then u increases its utility by 2(2α−α) = 2α.
Let us call this state S1.

– However, the transition from S0 to S1 destroys all the benefit node p had been
getting in S0 by contributing to edge (pu). This is because in state S1 node p

does not obtain any direct benefit by contributing to (pu) as (pu) ∈ GC \ GF

and it also does not obtain any two-hop benefit in S2 by contributing to (pu) as
the node u does not contribute to any edge (ut) s.t. (ut) ∈ GF (See (8) to see
how two-hop benefit is computed). Rather than getting no benefit by contributing
to (pu), node p would move this contribution to edge (pp2). This is because in
this process p increases its utility by α due to a two-hop benefit of α obtained by
establishing two-hop path directed to the subordinate node of p2 via p2. For the
similar reason, node q would prefer moving its contribution from edge (qu) to
edge (qq1). Thus in the next transition, nodes p and q move their contributions
from the edges leading from them to u to edges (pp2) and (qq1) respectively.
Let us call this state S2.

– Notice that the state S2 is isomorphic to S0 in the sense that in S2 nodes q and u

play the roles that p and q respectively played in S0.

Thus we have shown that better-response dynamics can cycle in S2H games, and thus
S2H games are not potential games.

However, we now give a family of instances for which S2H games are exact poten-
tial games and an integral NE exists. Proving that the total utility changes in a fixed
proportion to the change in the utility of a node u when u changes its strategy is the
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crucial component of proving that a game has an exact potential function. Thus to
prove that a family of S2H games has an exact potential function, it would be suf-
ficient to ensure that when a node u changes its strategy, the change in the utility
of neighbors is proportional to the change in the utility of node u. This occurs, for
example, if GF is the complete graph, since then all nodes are affected by all others,
and thus the change in utility for me is similar to the change in utility for the other
nodes in the graph. In fact, as we show in the following Theorem 4, it is even enough
that GF always joins all pairs of nodes which have a potential two-hop path in GC .
In other words, if we let dC(u, v) denote the distance between u and v in GC , then
the following holds.

Theorem 4 If du ≥ k for all nodes and if the condition dC(u, v) ≤ 2 implies (uv) ∈
GF for all the pairs of nodes then the S2H game is an exact potential game and an
integral NE exists.

Proof First we will prove the potential game part of the theorem. The condition
“dC(u, v) ≤ 2 implies (uv) ∈ GF ” tells us that

(uv) ∈ GC ⇒ (uv) ∈ GF (15)

(uv), (vw) ∈ GC ⇒ (uw) ∈ GF (16)

Thus the utility of node u given by (8) takes the following simpler form where the
summations just depend on GC :

Uu(xu, x−u) =
∑

(uv)∈GC

(
xuv
u + xuv

v

)

+α ·
∑

(uv), (vw) ∈ GC

w �= u

(
xuv
u · xvw

v + xvw
w · xuv

v

)
(17)

We have introduced the versions of Uout
u (xu, x−u) and Uin

u (xu, x−u) in (9) and
(10). The versions of these quantities after applying the constraints given by (15) and
(16) are:

Uout
u (xu, x−u) =

∑

(uv)∈GC

xuv
u + α ·

∑

(uv), (vw) ∈ GC

w �= u

xuv
u · xvw

v (18)

= min(k, du) + α ·
∑

(uv), (vw) ∈ GC

w �= u

xuv
u · xvw

v (19)

Uin
u (xu, x−u) =

∑

(uv)∈GC

xuv
v + α ·

∑

(uv), (vw) ∈ GC

w �= u

xuv
v · xvw

w (20)
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We have also defined Uout (M) = ∑
u Uout

u (xu, x−u). Note that (18) represents that
part of the utility of u (given by (17)) which depends on the contributions made by u,
whereas (20) is the remaining part which does not depend on contributions made by
u. Thus in a NE, a node umust choose a strategy that maximizesUout

u (xu, x−u) given
the contributions of other nodes. Also, using (12) we have U(M) = 2 · Uout (M).
Thus in order to look at the behaviour of U(M) after a node changes its strategy, it is
sufficient to look at the behaviour of Uout (M) and in turn at Uout

u (xu, x−u) for every
node.

Notice that Uout
u (xu, x−u) depends only on the contributions of u and its neigh-

bors. Thus when the node p changes its strategy, Uout
u (xu, x−u) changes only for p

and for those nodes which are neighbors of p. Let set N(p) denote the set of neigh-
bors of p. Now let us investigate how Uout

u (xu, x−u) changes for p and the nodes in
N(p):

– First let us consider node p. Suppose p changes its strategy from xp to yp. Using
(19), we get the following:

Uout
p (yp, x−p) − Uout

p (xp, x−p)

=
∑

(pv), (vw) ∈ GC

w �= p

αy
pv
p · xvw

v −
∑

(pv), (vw) ∈ GC

w �= p

αx
pv
p · xvw

v

=
∑

v∈N(p)

αy
pv
p

∑

w ∈ N(v)

w �= p

xvw
v −

∑

v∈N(p)

αx
pv
p

∑

w ∈ N(v)

w �= p

xvw
v

=
∑

v∈N(p)

α(y
pv
p − x

pv
p ) · (min(k, dv) − xpv

v )

=
∑

v∈N(p)

α(y
pv
p − x

pv
p ) · min(k, dv)

+
∑

v∈N(p)

α
(
x

pv
p − y

pv
p

)
xpv
v

Also note that the theorem statement assumes that min(k, dv) = k for every
node. Thus the first summation in the above equation reduces to zero giving us

Uout
p (yp, x−p) − Uout

p (xp, x−p) =
∑

v∈N(p)

α
(
x

pv
p − y

pv
p

)
xpv
v (21)

– Now consider the nodes in N(p). Using (19) to sum the quantity Uout
u (xu, x−u)

over all the neighbors of u before and after p changes its strategy. The terms
that change are the terms which depend on the contributions of p. Hence the
cumulative change in the utilities of node in N(p) after p changes its strategy is
given by:

∑

v∈N(p)

αxvp
v

∑

z∈N(p),z �=v

y
pz
p −

∑

v∈N(p)

αxvp
v

∑

z∈N(p),z �=v

x
pz
p
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However
∑

z∈N(p),z �=v y
pz
p = k − y

pv
p and similarly

∑
z∈N(p),z �=v x

pz
p = k −

x
pv
p . Using this in the above equation, the change in the value of cumulative

Uout
u (xu, x−u) of the neighbors of p is given by

∑

v∈N(p)

αxvp
v

(
k − y

pv
p

) −
∑

v∈N(p)

αxvp
v

(
k − x

pv
p

) =
∑

v∈N(p)

αxvp
v

(
x

pv
p − y

pv
p

)

(22)

As argued before, Uout
u (xu, x−u) changes only for p and its neighbors.

Thus using (21) and (22) we can conclude that Uout (M) increases by 2·(
Uout

p (yp, x−p) − Uout
p (xp, x−p)

)
and thus U(M) increases by 4 ·

(
Uout

p (yp, x−p)−
Uout

p (xp, x−p)
)
using (12). This proves that if du ≥ k for all nodes and if the condi-

tion dC(u, v) ≤ 2 implies (uv) ∈ GF for all the pairs of nodes then the S2H game is
a potential game and U(M) and �(M) = U(M)/4 is an exact potential function.

Now we will prove how the existence of potential function implies the existence
of an integral NE in this case. Notice that the above analysis also applies verbatim if
we restrict the contribution variables xuv

u to take the values only from the set {0, 1}.
Hence a potential function exists and implies the existence of an integral NE for the
integral version of the game. Let us denote this integral NE by M . We will now
show that this integral NE is also a NE if we allow the contributions to be fractional.
To prove this, we show that in the fractional case, given x−u, there exists at least
one strategy xu for node u such that the contributions of u are integral and choosing
xu maximizes the utility of node u. Thus in M , if u could improve its utility when
fractional contributions are allowed then in fact u could have also improved its utility
by choosing a strategy in which contributions are integral. This would contradict our
initial assumption of M being an NE for the integral version of the game and in turn
prove that M is also an NE when fractional contributions are allowed. Thus now the
only part that is to be proved is to show that in the fractional case, given x−u, there
exists at least one strategy xu for node u such that the contributions of u are integral
and choosing xu maximizes the utility of node u.

As mentioned before, in a NE M , a node u must choose a strategy that maximizes
Uout

u (xu, x−u) given x−u. From (18), Uout
u (xu, x−u) can alternatively be expressed as

Uout
u (xu, x−u) =

∑

(uv)∈GC

xuv
u ·

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 +
∑

(vw) ∈ GC

w �= u

xvw
v

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(23)

Let us denote
∑

(vw)∈GC,w �=u xvw
v by cv . Notice that since x−u are fixed, the terms

cv’s are constants. Thus applying the constraints of S2H games, the problem of
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maximizing Uout
u (xu, x−u) for u becomes a problem of choosing a strategy xu which

solves the following optimization problem

maximize
∑

(uv)�u,(uv)∈GC

xuv
u · cv

s.t. 0 ≤ xuv
u ≤ 1 and

∑

(uv)∈u

xuv
u = min(k, du)

It is easy to see that if we sort the elements in {cv : (uv) ∈ u, (uv) ∈ GC} in
descending order and choose the top min(k, du) terms from the sorted array and set
the contributions xuv

u ’s of node u corresponding to these terms as 1, with other con-
tributions set to 0 then this strategy solves the above problem. Note that this strategy
is integral, i.e., the contributions are chosen from the set {0, 1}. As argued before,
given fixed x−u, the strategies that maximize Uu(xu, x−u) are exactly the strategies
that maximize Uout

u (xu, x−u), and thus we have shown that there exists a strategy xu
that maximizes Uu(xu, x−u) such that all the contributions of u are integral. As dis-
cussed before, this was the remaining step to be proven in order to show that M is
also an NE when fractional contributions are allowed, and hence we have proved our
claim.

3.1 Price of Anarchy

To begin with, we give a quick overview of the results of this section. We know
that without any two-hop benefit, the PoA of S2H games is 1. We will first show
that with two-hop benefit, PoA can become unbounded for arbitrary GF and GC if
GF ∩ GC = ∅. However we will later prove that as the overlap between GF and
GC increases then the PoA for S2H games decreases and for the interesting cases of
GF ⊆ GC and GC ⊆ GF , PoA becomes 1+αk. Increasing the overlap between GF

and GC can be interpreted as nodes getting more opportunities to become directly
acquainted with the nodes they are compatible with.

Claim For S2H games, PoA can be infinite if GF ∩ GC = ∅.

Proof Figure 3 shows an instance of S2H games such that GF ∩ GC = ∅ and the
PoA is infinite. In this instance, we have k = 1, and three nodes u, v, w are connected
to a central node z in GC . However, GF consists of only (uv). Thus GF ∩ GC = ∅.
For analyzing this example, we will take p → q to mean x

pq
p = 1. It can be verified

that whenever we have z → w, u → z and v → z then it is a NE and has zero utility.
However an optimum solution is u → z, z → v, w → z which has utility 2α. Thus
the PoA is infinite for this instance.

Now we will show that as the overlap between GF and GC increases then the
PoA for S2H games decreases and for the interesting cases of GF ⊆ GC and GC ⊆
GF , PoA becomes 1 + αk. First, we formally quantify what we mean by overlap
between GF and GC . Let Fv denote the degree of v in GF ∩ GC . We define overlap
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Fig. 3 The example showing that the PoA for S2H games can be infinite when GC ∩ GF = φ

betweenGF andGC as ρ(GF , GC) = minv Fv . We now give PoA bounds for several
interesting cases:

Theorem 5 For the S2H game,

1. For arbitrary GF and GC , PoA ≤ 1 + αk · k
min(k,ρ(GF ,GC))

. Thus when there is
a large overlap between GF and GC , say ρ(GF , GC) ≥ k/2 then we have PoA
≤ 1 + 2αk.

2. Furthermore, if GC ⊆ GF or GF ⊆ GC then PoA ≤ 1 + αk.
3. For the special case of GF = GC = Kn, we have PoA = 1+αk

1+α(k−1) .

First, we give a brief outline of the proof of Theorem 5. For arbitrary GF and GC ,
the PoA bound will follow by simple observations on the minimum utility obtained
by a node in a NE and its maximum attainable utility. This PoA bound can be large
for a small overlap because even if a node is capable of getting little direct benefit
because of its small degree in GF ∩ GC (which is a lower bound on minimum utility
obtained by it in a NE), it can still get a large two-hop benefit (hence large maximum
attainable utility) by connecting to a lot of its friends via GC \ GF . However this
changes in GC ⊆ GF because GC \ GF = ∅. This also changes with GF ⊆ GC

because here if a node can get a large two-hop benefit by connecting to a lot of friends
in GC then it must have a lot of frinds, and therefore its degree in GF ∩ GC must
be high. Thus these cases result in a much improved bound on PoA regardless of the
overlap size. Now we will proceed to prove each of the above cases in details.

Proof (Theorem 5) Using (12), PoA can be expressed as

PoA = max
Mis a NE

Uout (OPT )

Uout (M)
(24)

Recall that we have defined Fu as |{(uv) ∈ u : (uv) ∈ GF ∩ GC}|, i.e. Fu quantifies
the degree of u in GF ∩ GC . Let us define qu as min(k, Fu). Since Fu is at least as
much as the overlap ρ(GF , GC), we have:

qu = min(k, Fu) ≥ min(k, ρ(GF , GC)) (25)
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Lemma 1 In any NE, Uout
u (xu, x−u) ≥ qu.

Proof (Lemma 1) Notice from (10) that Uin
u (xu, x−u) is independent of the strategy

chosen by u. Thus a node u in a NE must choose a strategy which maximizes Uout
u .

Now if Uout
u (xu, x−u) < qu in some NE M then u can simply make xuv

u = 1 for
any qu edges from the set {(uv) � u : (uv) ∈ GF ∩ GC} to increase Uout

u (xu, x−u)

and in turn increasing its utility. This contradicts M being an NE, hence proving that
Uout

u (xu, x−u) ≥ qu in any NE.
Having proved Lemma 1, now let us continue the proof of Theorem 5. Let us

consider the first case, i.e., suppose GF and GC are arbitrary. Consider a NE M . We
already have Uout

u (xu, x−u) ≥ qu in any NE M . Now let us calculate the maximum
value that Uout

u (xu, x−u) can take in any solution. An upper bound on the value of
the two-hop benefit component of Uout

u (xu, x−u) in any solution is given by

α
∑

(uw) ∈ GF

(uv), (vw) ∈ GC

xuv
u · xvw

v ≤ α
∑

(uv)∈GC

⎡

⎣xuv
u

∑

(vw)∈GC

xvw
v

⎤

⎦

≤ α
∑

(uv)∈GC

xuv
u · k ≤ αk2

(26)

Thus the two-hop benefit component of Uout
u (xu, x−u) in any solution can be at most

αk2. We also know that the direct benefit component ofUout
u (xu, x−u) in any solution

can be at most qu using the definition of qu. Thus we get Uout
u (xu, x−u) ≤ qu + αk2

in any solution. We already know using Lemma 1 that Uout
u (xu, x−u) ≥ qu in a NE.

The ratio of these two bounds is 1 + αk · k/qu. Using (25), we get that this ratio is
less than 1 + αk · k/min(k, ρ(GF , GC)). Using this in (24), we get

PoA ≤ 1 + αk · k

min(k, ρ(GF , GC))
(27)

Now suppose we have GC ⊆ GF . Let us compute an upper bound on the value
of Uout

u (xu, x−u) in any solution. When GC ⊆ GF , an upper bound on the two-hop
benefit component of Uout

u (xu, x−u) in any solution is given by

α
∑

(uw) ∈ GF

(uv), (vw) ∈ GC

xuv
u · xvw

v ≤ α
∑

(uv)∈GC

[xuv
u

∑

(vw)∈GC

xvw
v ] ≤ αk ·

∑

(uv)∈GC

xuv
u

(28)

But since GC ⊆ GF , every adjoining edge of u in GC is also in GF . Thus∑
(uv)∈GC

xuv
u ≤ qu. Using this in (28), we conclude that the value of two-hop benefit

component of Uout
u (xu, x−u) in any solution can be at most αk ·qu. We already know

that direct benefit component of Uout
u (xu, x−u) ≤ qu using the definition of qu. Thus

Uout
u (xu, x−u) ≤ qu(1 + αk) in any solution (in particular an optimum solution).
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We also know that Uout
u (xu, x−u) ≥ qu in a NE from Lemma 1. Combining these

observations, we have

PoA ≤ 1 + αk (29)

Now suppose GF ⊆ GC . Let us compute an upper bound on the value of
Uout

u (xu, x−u) in any solution. Now the value of the two-hop benefit component of
Uout

u (xu, x−u) in any solution can be bounded as follows:

α
∑

(uw)∈GF

∑

(uv),(vw)∈GC

xuv
u xvw

v ≤ α
∑

(uw)∈GF

∑

(uv),(vw)∈GC

xuv
u ≤ α

∑

(uw)∈GF

k

⇒ α
∑

(uw)∈GF

∑

(uv),(vw)∈GC

xuv
u xvw

v ≤ αFuk (30)

Combining this with (26), we get that when GF ⊆ GC the two-hop benefit compo-
nent of Uout

u (xu, x−u) in any solution is upper bounded by min(αk2, αkFu) which
can also be expressed as αkqu using (25). We already know that direct benefit com-
ponent of Uout

u (xu, x−u) ≤ qu in any solution using the definition of qu. Thus we
have Uout

u (xu, x−u) ≤ qu(1 + αk) in any solution (in particular an optimum solu-
tion). We also know that Uout

u (xu, x−u) ≥ qu in a NE from Lemma 1. Combining
these observations, we have

PoA ≤ 1 + αk (31)

When GF = Kn and GC = Kn, we have qu = min(k, n − 1). The value of
Uout

u (xu, x−u) in a NE can be lower bounded by

Uout
u (xu, x−u) =

∑

(uv)∈GF ∩GC

xuv
u + α ·

∑

(uw) ∈ GF

(uv), (vw) ∈ GC

xuv
u · xvw

v

≥ qu + α ·
∑

(uv)∈GC

xuv
u

∑

(vw)∈GC,w �=u

xvw
v

≥ qu + α ·
∑

(uv)∈GC

xuv
u · (k − 1)

≥ qu + αqu · (k − 1) (32)

When GF = GC = Kn, for an upper bound on Uout
u (xu, x−u) in any solution (in

particular an optimum solution), we can use the upper bound of qu(1 + αk) we had
derived on Uout

u (xu, x−u) for GF ⊆ GC , since GF = GC = Kn is a special case of
GF ⊆ GC . Combining this upper bound with (32), we get

PoA ≤ 1 + αk

1 + α(k − 1)
(33)

Note that if we have different budget constraints ku on the total contributions
of different nodes, instead of a single budget k for everyone, then almost all of
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our results hold with k replaced by kmax = maxu ku. The only exceptions are
that the bound for S2H games with arbitrary GF and GC becomes 1 + αkmax ·

kmax

min(kmin,ρ(GF ,GC))
and the bound when both of them are complete graphs changes to

(1 + αkmin)/(1 + α(kmin − 1)), where and kmin = minu ku.

Theorem 6 The bounds on the price of anarchy in Theorem 5 are asymptotically
tight.

Proof To begin, we will investigate the case when GF and GC can be arbitrary. For
this case, the PoA is upper bounded by 1 + αk · k/min(k, ρ(GF , GC), see Theorem
5. We have already discussed before that PoA can be infinite when ρ(GF , GC) = 0
using Fig. 3. Now we will describe how to construct an instance to demonstrate the
tightness for any non-zero value of ρ(GF , GC).

Consider Fig. 4 where nodes have been divided into five sets A, B, C, D1, D2. Let
set B contain q ≤ k nodes. Let set D1, D2 contain k nodes each. Let set C contain
k − q nodes. Let set A contain the remaining n − 3k nodes. A solid bidirectional
arrow between two sets denotes that all the nodes in one set are connected with all
the nodes in the other set in GF ∩ GC . In Fig. 4, such solid bidirectional arrows
exist between set A and B, set B ∪ C and set D1 ∪ D2. The semi-solid bidirectional
arrow between set A and D1 denotes that all the nodes from set A are connected

Fig. 4 Tight example for PoA of S2H games for arbitrary GF and GC . A solid, semi-solid, and dotted
bidirectional arrow between two sets means these two sets form a complete bipartite graph with edges in
GF ∩ GC , GF \ GC , and GC \ GF respectively. The overlap is given by ρ(GF ,GC) = q and is dictated
by the number of nodes in set B. As described in the proof of Theorem 6, in the worst Nash Equilibrium,
the nodes in set B end up contributing to the edges leading to the nodes in set D2 and no node obtains any
two-hop benefit. This key observation leads to an asymptotically tight bound on the PoA of S2H games
with GF and GC
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with all the nodes in set D1 only in GF but not in GC . The dotted bidirectional
arrow between A and C denotes that all the nodes from A are connected with all
the nodes in C in GC but not in GF . Note that there exist no edges in either GF or
GC between the nodes belonging to the same set. From (8), in S2H games a node
u has an opportunity to obtain two-hop benefit only if it is a vertex of a triangle
uvw such that (uv), (vw) ∈ GC and (uw) ∈ GF but the two-hop benefit it actually
obtains depends on the contributions made by the nodes u, v, w. Thus in Fig. 4, the
only nodes that have an opportunity to obtain two-hop benefit are the nodes from set
A and D1.

Recollect that for an instance, the overlap ρ(GF , GC) is the minimum number of
neighbors a node has in GF ∩GC in that instance. By the construction of the instance
in Fig. 4, the overlap ρ(GF , GC) for this instance is given by the degree of a node in
set A in GC ∩ GF , and thus ρ(GF , GC) = q for this instance. To analyze the PoA
for this instance, we will use the alternate definition of PoA for S2H games given by
(24). Recollect that Uout (M) is given by

∑
u Uout

u (xu, x−u) where Uout (xu, x−u) is
given by (9).

We will now construct two solutions: M∗ and M , such that M∗ is an optimal
solution and M is a NE. We will show that the ratio Uout (M∗)/Uout (M) can be
taken arbitrarily close to the PoA bound in Theorem 5, as desired.

Let solution M∗ be as follows: Any node in set A, D1, D2 has exactly k adjoining
edges in GC , thus it contributes 1 to all these edges. Let each node in B and C

contribute 1 to the k adjoining edges that lead to nodes in D1. Now let us compute
Uout (M∗). Notice that in M∗ each node in B, C, D1, D2 contributes to the edges that
are in GC as well as GF . Hence in M∗, the expression

∑
(uv)∈GF ∩GC

xuv
u evaluates

to k for any node u that belongs to B ∪C∪D1∪D2. However, in M∗ any node u ∈ A

contributes to exactly q edges that are in GF ∩GC , i.e., the edges connecting u to the
nodes in set B. Thus in M∗ the expression

∑
(uv)∈GF ∩GC

xuv
u evaluates to q for any

node u ∈ A. Thus if we sum the expression
∑

(uv)∈GF ∩GC
xuv
u over all the nodes, we

get (n − 3k)q + 3k · k = nq + 3k(k − q). We already mentioned that the only nodes
that have an opportunity to obtain two-hop benefit are the nodes in A and D1. Now
recall that in Fig. 4, for every node u ∈ A and w ∈ D1, we have (uw) ∈ GF . In the
solution M∗ just described above, we have that

xuv
u xvw

v = 1 and(uw) ∈ GF ∀u ∈ A, v ∈ B ∪ C, w ∈ D1 (34)

Hence in M∗, for a node u ∈ A we have
∑

(uw) ∈ GF

(uv), (vw) ∈ GC

xuv
u xvw

v = k2 (35)

Using the above equation, we get that in M∗ the following holds:
∑

u∈A∪D1

∑

(uw) ∈ GF

(uv), (vw) ∈ GC

xuv
u xvw

v = (n − 3k)k2 (36)
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Thus in total,

Uout (M∗) = nq + 3k(k − q) + α(n − 3k)k2

≥ (n − 3k) · (q + αk2) (37)

Nowwe construct a NEM as follows: Let all the nodes have the same strategy they
follow in M∗ except that let the nodes in B and C contribute 1 to the edges leading
to the nodes in D2. Note that in M , for any node u the expression

∑
(uv)∈GF ∩GC

xuv
u

(the direct benefit of u) takes the same value as it has in M∗. However notice that in
M no node obtains two-hop benefit, thus we have

Uout (M) = nq + 3k(k − q) = (n − 3k)q + 3k2 (38)

Now we will show that M is indeed a NE: none of the nodes can change their
strategies to increase their utility. Consider a node in A ∪ D1 ∪ D2. While analyzing
solution M∗, we argued that such a node does not have a choice for strategy in any
solution but to contribute 1 to all the adjoining edges in GC . Thus a node belonging
to sets A ∪ D1 ∪ D2 cannot change its strategy. A node u ∈ B ∪ C cannot receive
any 2-hop benefit, and so it simply tries to maximize the direct benefit that depends
on its contributions, i.e., Uout

u . Since it cannot get any 2-hop benefit, from this node’s
point of view contributing to any k edges gives the same utility, and so M is a NE.

Using (37) and (38), we get

Uout (M∗)
Uout (M)

≥ 1 + αk · k/q

1 + 3k2
(n−3k)q

(39)

Note that in this instance we had q = min(k, ρ(GF , GC)). Thus from (39), by
increasing n, we can construct instances to reach within arbitrary precision of the
upper bound on PoA given by 1 + αk · k/min(k, ρ(GF , GC).

Now let us prove that the upper bound of 1 + αk on PoA for GF ⊆ GC and
GC ⊆ GF is tight. To prove this, we will describe an instance with GF = GC , thus
covering both cases GF ⊆ GC and GC ⊆ GF . The scheme of such an instance
is depicted in Fig. 5. This instance consists of two complete tripartite graphs, with
each partition consisting of k nodes. Sets A1, B1, C1 constitutes one of the tripartite
graphs and sets A2, B2, C2 constitutes another tripartite graphs. Sets A1 and A2 also
constitute a complete bipartite graph. Similarly sets B1, B2 (and sets C1, C2) consti-
tute a complete bipartite graph. To analyze the PoA for this instance, we will use the
alternate definition of PoA for S2H games given by (24). Recollect that Uout (M) is
given by

∑
u Uout

u (xu, x−u) where Uout
u (xu, x−u) is given by (9).

The direct benefit component of Uout
u (xu, x−u) is given by

∑
(uv)∈GC∩GF

xuv
u

which can be at most k in any solution. From (26) the two-hop benefit compo-
nent has an upper bound of αk2 in any solution. Combining these observations,
Uout

u (xu, x−u) ≤ k(1+ αk) in any solution (in particular an optimum solution). This
implies that for our instance if we could find a solution in which every node obtains
an utility of exactly k(1+ αk) then it is an optimum solution. Now we will construct
such a solution. Let all the nodes in set A1 contribute 1 to all the edges leading to
the nodes in set B1. Note that this does not violate the constraint of S2H games that∑

(uv)∈Gc
xuv
u = k as each partition consists of exactly k nodes. Also, let all the nodes
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Fig. 5 Tight example for PoA for the S2H game when GF = GC . Solid bidirectional arrow between two
sets means these two sets form a complete bipartite graph. The key observation for this example is that
in the worst Nash Equilibrium, all the nodes in set A1 contribute to the edges leading to set A2 and vice
versa with analogous contributions for the nodes in the sets B1, B2, C1, C2. Thus in the worst NE, no node
obtains any two-hop benefit. This observation leads to the bound of 1 + αk being tight

in set B1 (set C1) contribute 1 to all the edges leading to the nodes in set C1 (set A1).
Let the nodes in sets A2, B2, C2 make analogous contributions. Let us denote this
solution by M∗. Since GF = GC , the two-hop benefit component of a node u in M∗
is given by

α ·
∑

(uv), (vw) ∈ GC

w �= u

xuv
u · xuv

v =α ·
∑

(uv)�u

xuv
u ·

∑

(vw)∈GC,w �=u

xvw
v =α ·

∑

(uv)�u

xuv
u · k=αk2

In the above series of equalities, the second equality follows from the first one using
the fact that in the solution M∗, at most one endpoint of an edge contributes to
it. It is straightforward to see that the direct-benefit component of Uout

u (xu, x−u)

which is given by
∑

(uv)∈GC∩GF
xuv
u is exactly k for each node in solution M∗. Thus

Uout
u (xu, x−u) for each node u is k(1 + αk) in the solution M∗. As argued before,

this proves that M∗ is an optimum solution. Thus Uout (M∗) = nk(1 + αk).
Now we will construct a NE, denoted by M , in which each node u obtains

Uout
u (xu, x−u) exactly equal to k. Thus we will have Uout (M) = nk. Combining it

with Uout (M∗) = nk(1+ αk) proves the tightness of PoA bound of 1+ αk. Now let
us construct such a NE M . To construct M , let all the nodes in A1 contribute 1 to all
the edges leading to nodes in A2 and vice versa. Let the nodes in all other partitions
make analogous contributions. Now let us prove that M is a NE. Since the network is
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symmetric, to prove that M is a NE, it is sufficient to show changing its strategy can-
not increase utility for any one node. Hence without loss of generalization, consider a
node u ∈ A1. The only part of the utility Uu(xu, x−u) (See (8)) which depends on the
contributions of u is expressed by Uout

u (xu, x−u). Hence to prove that the utility of u

cannot increase by changing its strategy, it is sufficient to prove that Uout
u (xu, x−u)

cannot increase by changing its strategy.
As argued before, the direct benefit component of Uout

u (xu, x−u) can be at most
k in any solution. In M , the direct benefit component of Uout

u (xu, x−u) is exactly k.
Hence if u can at all improve its utility by changing its strategy, then after changing
the strategy, the two-hop benefit component of Uout

u (xu, x−u) must go positive from
its value of 0 in M . Now we will show that this cannot happen, which will prove that
u cannot change its strategy. To see this, notice that whenever u changes its strategy in
M , it must happen that it decreases its contributions on some of the edges leading to
nodes in A2 and increases its contributions on some of the edges leading to nodes in
B1 or C1. Let (uv) be among such edges where u increases its contribution. Without
loss of generalization, let v ∈ B1. However its contribution to (uv) cannot make the
two-hop benefit component of Uout

u (xu, x−u) positive because in M the node v ∈ B1
does not make any contributions to edges of the type (vw) such that (uw) ∈ GF

(See (9)). This holds irrespective of u’s other contributions. Thus any change in the
strategy of u cannot make the two-hop benefit component of Uout

u (xu, x−u) positive
which was the only remaining part while proving the tightness of PoA bound of
1 + αk. Thus we have proved that the PoA bound of 1 + αk is tight for GF ⊆ GC

and GC ⊆ GF .

3.2 Weighted S2H Games

Sometimes a person can have different levels of intrinsic interest in different acquain-
tances. We incorporate this scenario into S2H games by having a positive weight f uv

on each edge (uv) ∈ GF . We call this extension asWeighted S2H Games. The utility
of a node Uu(xu, x−u) in Weighted S2H games is given by:

Uu(xu, x−u) =
∑

(uv)∈GC∩GF

(
xuv
u + xuv

v

)
f uv

+α
∑

(uw) ∈ GF

(uv), (vw) ∈ GC

(
xuv
u xvw

v + xvw
w xuv

v

)
f uw

(40)

It is not difficult to see that the argument for the existence of NE for Weighted S2H
games is the same as the argument for the existence of NE of S2H games. Also,
despite having arbitrary weights on the edges of GF , whenever we have GF ⊆ GC

the PoA proves to be at most 1 + αk as it was in the absence of weights. Here by
GF ⊆ GC , we mean that the unweighted version of GF is a subset of GC . Because
of having arbitrary positive weights on the edges of GF we do not treat the case of
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GF = GC = Kn (i.e., the unweighted GF is equal to Kn) separately but view it as a
special case of GF ⊆ GC . Thus we get the following results:

Theorem 7 For Weighted S2H games, a Nash Equilibrium always exists.

Theorem 8 For Weighted S2H games, whenever GF ⊆ GC we have PoA ≤ 1 + αk.

Proof Theorem 8 We first introduce some notation. Analogous to (9) and (10) we
define Uout

u (xu, x−u) and Uin
u (xu, x−u) for Weighted S2H games:

Uout
u (xu, x−u) =

∑

(uv)∈GF ∩GC

f uv · xuv
u + α ·

∑

(uw) ∈ GF

(uv), (vw) ∈ GC

f uw · xuv
u · xvw

v

(41)

Uin
u (xu, x−u) =

∑

(uv)∈GF ∩GC

f uv · xuv
v + α ·

∑

(uw) ∈ GF

(uv), (vw) ∈ GC

f uw · xvw
w · xuv

v

(42)

The definitions of Uout (M), Uin(M) are the same as the ones in Section 3.1. We
also have Uu(xu, x−u) = Uout

u (xu, x−u) + Uin
u (xu, x−u). Lemma 12 also holds for

Weighted S2H games. Let du be the degree of node u in GC . Let Eu denote the edge
set adjoining u in GF ∩ GC . Define Wu as

Wu = max
S⊆Eu s.t. |S|≤min(k,du)

∑

(uv)∈S

f uv (43)

In other words, if we compute the cumulative weight of the member edges for each
of the subsets of Eu with at most min(k, du) edges then Wu is the maximum value
of cumulative weight of member edges for any such set. This is the maximum direct
benefit that node u could possibly attain from its incident edges. Now we will prove
Lemma 2 and Lemma 3 which will help us prove Theorem 8.

Lemma 2 For Weighted S2H games, Uout
u (xu, x−u) ≥ Wu in any NE.

Proof Lemma 2 Notice from (41) and (42) that Uout
u (xu, x−u) is the only part of

the utility obtained by u that depends on the contributions made by u whereas
Uin

u (xu, x−u) is independent of the contributions of u. Hence a node u in a NE M

must choose a strategy that maximizes Uout
u (xu, x−u) given the strategies played by

the other nodes. If in M , we have Uout
u (xu, x−u) < Wu then the node u can increase

Uout
u (xu, x−u) (and in turn its utility asUin

u (xu, x−u) doesn’t change) by simply mak-
ing a contribution of 1 to the edges that add up to Wu. This is a contradiction hence
we have proved our claim.

Lemma 3 For Weighted S2H games, whenever GF ⊆ GC , Uout
u (xu, x−u) ≤ Wu

(1 + αk).
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Proof Lemma 3 Recall that
∑

(uv)�u xuv
u ≤ min(k, du). Using this constraint and the

definition of Wu, we have that for any solution
∑

(uv)∈GF ∩GC
f uv · xuv

u ≤ Wu. Now
we claim that for any solution

α ·
∑

(uw) ∈ GF

(uv), (vw) ∈ GC

f uw · xvw
v · xuv

u ≤ αkWu (44)

Note that the above inequality combined with the observation
∑

(uv)∈GF ∩GC
f uv ·

xuv
u ≤ Wu proves the lemma. To show that this inequality always holds, consider the

quantity cuw defined as:

cuw =
∑

v:(uv),(vw)∈GC

xuv
u xvw

v (45)

Since the total contributions of any node are at most k and each xvw
v ≤ 1, then clearly

cuw ≤ ∑
(uv)�u xuv

u ≤ k for every u, w. Now consider fixing node u, and summing
cuw over allw such that (u, w) ∈ GF . This equals

∑
(uv)�u[xuv

u

∑
(vw)�v xvw

v ], which
is at most k2.

Now let us prove that (44) holds. The left hand side of (44) can be rewritten as

α ·
∑

(uw) ∈ GF

(uv), (vw) ∈ GC

f uw · xvw
v · xuv

u = α ·
∑

(uw)∈GF

f uw ·
∑

(uv), (vw) ∈ GC

w �= u

xuv
u xvw

v

= α ·
∑

(uw)∈GF

f uwcuw (46)

Since each cuw is bounded by k and their sum is bounded by k2, the above quality
is maximized when cuw is set to k for the k edges (u, w) ∈ GF with maximum
value f uw, and set to 0 otherwise. Since GF ⊆ GC , then these are exactly the edges
considered in Wu, and so the above quality is bounded by αkWu, as desired.

From Lemma 3, we have that in an optimum solution, Uout
u (xu, x−u) ≤ Wu

(1+αk) for any node u. Combining this with Lemma 2 we get that PoA for Weighted
S2H games is at most 1 + αk, proving Theorem 8.

Although we proved the upper bound of 1 + αk on the PoA for the weighted
S2H games with GF ⊆ GC , the same result does not easily extend to the case of
GC ⊆ GF . This is because when GC ⊆ GF , the weights on the edges in GF \ GC

make it difficult to bound the two-hop benefit obtained by the nodes along the lines
of (30), unlike the unweighted version.
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4 Min Two-Hop (M2H) Games

Recall that M2H games are a natural extension of fractional stable matching games
obtained by introducing two-hop benefit. Denoting min(xuv

u , xuv
v ) by xuv , the utility

Uu(xu, x−u) of a node u in M2H games can be written as:

Uu(xu, x−u) =
∑

(uv)∈GC∩GF

xuv + α ·
∑

(uv), (vw) ∈ GC

(uw) ∈ GF

xuv · xvw (47)

We will call the first summation in (47) as direct benefit of node u and the term
with the coefficient of α in (47) as two-hop benefit of node u. Recall from Section 1
that we use the concept of pairwise equilibria (PE’s) to assess the quality of a solution
in M2H games, denoting the ratio between the worst PE and the optimal solution as
2-PoA. Recall that in an integral PE all the contributions are either 0 or 1. An integral
PE exists for M2H games without two-hop benefit (see Related Work). With two-hop
benefit, we construct an instance of M2H games which does not admit any integral
pure NE by adapting Example 1 from [11] which is an instance of stable roommates
problem such that no stable matchings exist. We also give 2-PoA bounds in Thm 10
for some important cases to assess the quality of PE’s whenever they exist.

Theorem 9 There exist instances of M2H games that do not admit any integral
pairwise equilibrium.

Proof To construct an instance of M2H games where an integral PE does not exist,
consider a pentagon constituted by nodes u, v, w, y, z (see Fig. 6). We will refer to
this pentagon as the central pentagon. All the edges of the central pentagon are in
GC ∩ GF . These and the other edges that are in GC ∩ GF are shown in solid pat-
tern in Fig. 6. Each vertex of the central pentagon has three other nodes connected
to it in GF ∩ GC which we will refer as the satellite nodes of the vertex under con-
sideration. For example va , vb and vc are the satellite nodes of the vertex v. Each
satellite node is connected to 3 further nodes which we will refer as subordinate nodes
of the satellite node under consideration. In Fig. 6, for convenience we have shown
the subordinate nodes va1, va2, va3 of only one satellite node va , see the expanded
view of the balloon pointed by the dark arrow. All other balloons consist of analogous
connections networks. A vertex of the central pentagon is connected in GF \ GC to
all the subordinate nodes of its satellite nodes. These and the other edges that are in
GF \ GC are shown in dotted pattern. In addition, a vertex of the central pentagon is
also connected in GF \ GC to exactly one satellite node of the vertex of the central
pentagon in clockwise direction. For example, vertex u is connected in GF \ GC to
va , vertex v is connected in GF \ GC to wa and so on. We set k = 4 and choose
0 < α < 1. Now we will show that an integral PE does not exist for this instance.

To begin with, notice that for the lack of choice, all the satellite nodes and subor-
dinate nodes contribute 1 to all the adjoining edges in GC . Due to these nodes having
a fixed strategy in any solution, we need not analyze these nodes for changing the
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Fig. 6 Example showing that an integral PE may not exist for M2H game. Example shown for k = 4.
Each “petal” in the figure (e.g., the ones around va , vb , and vc represent a gadget which is illustrated on
the top right of the figure for node va . In this example, it is possible to show that the only candidates for an
integral PE are the solutions where the node v contributes 1 to the edges (vav), (vbc), (vcv) (and analogous
observations hold for the nodes u, w, y, z). Now each node of the central pentagon has a remaining budget
of 1 for which they face a choice between the two adjoining edges of the central pentagon. The proof of
Theorem 9 uses this observation along with the structure of the example to prove that no integral PE can
exist for this example

strategy. Thus we will be concerned about the strategies of only the nodes that are
the vertices of the central pentagon. Now we claim that in any candidate solution for
an integral PE, node v will contribute 1 to edges (vva), (vvb) and (vvc). This is for
the following reason: its contribution to each of these edges, say (vva), fetches it a
direct benefit of 1 and a two-hop benefit of 3α as xvva · xvava1 = xvva · xvava2 =
xvva · xvava3 = 1 (refer to (47) to see how two-hop benefit is calculated). Thus con-
tributing to (vva) fetches v an utility of 1+3α in every solution. However contributing
to edge (vu) (or edge (vw)) can fetch u an utility of at most 1 (or 1 + α). Thus in
any candidate solution for PE, v will contribute 1 to edges (vva), (vvb) and (vvc).
Analogous conclusions hold for the other vertices of the central pentagon. Hence to
examine the possibility of an integral PE, we only need to look at the last remaining
contribution that these vertices make. For the remaining contribution, each vertex of
the central pentagon has to choose between two edges of the central pentagon that
it is part of. Recall that it cannot contribute on the dotted edges as the dotted edges
are in GF but not in GC . Given these choices for the remaining contributions for the
vertices of the central pentagon, now we will show that any of the resulting solutions
cannot be an integral PE. To see this, let us make a simple observation that after each
vertex of the central pentagon chooses one of the adjoining edges of the pentagon
to make its last contribution, there is at least one vertex such that if it contributes to
edge e of the central pentagon then the other endpoint does not contribute to it.
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Without loss of generality, say this vertex is v and it contributes to (vw) but w

does not contribute to (vw). Thus v does not get any direct or two-hop benefit by
contributing to (vw) by using (47). Now we have two cases: u contributing to (uv)

or (uz). We will show that both cases do not lead to an integral PE.

– u contributes to (uv): Here v can choose to contribute to (uv) instead of (vw),
thus making xuv = min(xuv

u , xuv
v ) = 1 to gain a direct benefit of 1 whereas its

previous contribution to (vw) fetched v no utility. Thus this case does not result
in an integral PE.

– u contributes to (uz): Here we will show that both u and v can instead choose to
contribute to (uv) and increase their utility, thereby proving that this case does
not lead to an integral PE. By contributing to (uz) node u cannot get any two-
hop benefit as there is no other neighbor of z in GC from which there is an
edge to u in GF (Refer (47) to see when a node can obtain two-hop benefit).
However, it can get a direct benefit of 1 if z also happens to be contributing to
(uz), resulting in xuz = min(xuz

u , xuz
z ) = 1. Thus its contribution (uz) can fetch

node u an utility of at most 1. Now suppose u and v choose to contribute to (uv),
making xuv = min(xuv

u , xuv
v ) = 1. Thus both u and v get a direct benefit of 1

by their contribution to (uv). This leads to an increase in the utility of v as its
earlier contribution to edge (vw) did not fetch any utility to v as argued before.
In addition to the direct benefit of 1, node u also gets a two-hop benefit of α

because now the term xuvxvva becomes 1 and we have (uva) ∈ GF . Thus in this
process, node u gains a total utility of 1 + α which more than compensates for
the utility of 1 that it could have been getting by contributing to (uz). Thus both
u and v improve their utility in this process and hence this case does not lead to
an integral PE.

Hence we have shown that an integral PE does not exist for the instance shown in
Fig. 6 thus proving that an integral PE may not exist for M2H games.

Theorem 10 For the M2H game:

– If GC ⊆ GF then 2-PoA ≤ 2 + 2αk.
– For the special case of GF = GC = Kn, a PE always exists and 2-PoA tends to

1+αk
1+α(k−1) as n → ∞.

Proof Thm 10 , Proof of case GC ⊆ GF ] First let us introduce some notation. Let us
define the quantities P(M) and S(M) for a solution M as:

P(M) =
∑

u

∑

v:(uv)∈GC∩GF

xuv (48)

S(M) =
∑

u

∑

(uw) ∈ GF

(uv), (vw) ∈ GC

αxuvxvw (49)
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The quantity P(M) is the combined direct benefit in M of all the nodes, and S(M)

is the combined two-hop benefit in M of all the nodes. Note that U(M) = P(M) +
S(M). We will prove the 2-PoA bound for GC ⊆ GF in two steps. In the first step,
we will prove that for any optimum solution M∗ and a PE M , we have P(M∗) ≤ 2 ·
U(M). Then in the second step, we will prove that S(M∗) ≤ 2αk ·U(M). Combining
these two steps with the observation U(M∗) = P(M∗) + S(M∗) proves the desired
2-PoA bound.

Now let us proveP(M∗) ≤ 2 · U(M). Let yuv
u ’s (or ruv

u ’s) denote the contribu-
tions made by u in M∗ (or in M). Similarly, let yuv = min(yuv

u , yuv
v ) and ruv =

min(ruv
u , ruv

v ). Tobeginwith, we claim that for an edge (uv) ∈ GF ∩GC s.t. yuv > ruv ,
at least one of its endpoints, say u obtains a direct benefit of exactly min(k, du) in
M (note that no node can obtain a direct benefit of more than min(k, du)). In other
words, for every edge (uv)∈B, at least one of its endpoints belongs to set A where
we define set A and B as follows:

A = {u :
∑

(uv)�u

ruv = min{k, du}}

B = {(uv) ∈ GC ∩ GF : yuv > ruv}
Suppose this claim is not true and that for some edge (uv) ∈ B node u (and
node v) obtains a direct benefit less than min(k, du) (less than min(k, dv)) in the
PE M . Since we have GC ⊆ GF , this implies that

∑
(uw)�u ruw < min(k, du)

and
∑

(vy)�v rvy< min(k, dv). Now combining
∑

(uw)�u ruw< min(k, du) with the
constraint

∑
(uw)�u ruw

u = min(k, du) we get that there must exist an edge in GC

adjoining u, say (uz) s.t. ruz
u > ruz. Similarly, for v, there must exist an adjoining

edge in GC , say (vp) s.t. rvp
v > rvp. Now let us break the analysis intwo two cases:

– Let (uz) = (uv) but (vp) �= (uv): Since (uz) = (uv) we have min(ruv
u , ruv

v ) <

ruv
u , i.e. ruv

v < ruv
u . We already have r

vp
v > r

vp
p . Now, let v decrease r

vp
v by

an infinitesimal quantity ε and increase r
vp
v by ε. Notice that since r

vp
v >

min(rvp
v , r

vp
p ) decreasing r

vp
v by a tiny constant does not change the utility of v.

However since ruv
v < ruv

u , increasing ruv
v by ε increases ruv (i.e., min(ruv

u , ruv
v ).

Given that (uv) is also in GF , in this process the direct benefit of v increases,
increasing the utility of v in turn. This contradicts our assumption of M being a
PE.

– Let (uz) �= (uv) and (vp) �= (uv): The analysis of this case is similar to the
previous case, except that both u and v simultaneously will be able to increase
their contributions to (uv) by a tiny constant (this is permitted as for (uv) ∈ B

we have ruv < 1) and both will be able to increase their utility. This contradicts
our assumption of M being a PE.

Hence we have proved that for every edge (uv) ∈ B, at least one of its endpoints
belongs to A. Because of this, the following inequality must hold:

∑

(uv)∈B

yuv ≤
∑

u∈A

∑

(uv) � u

(uv) ∈ B

yuv (50)
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Now consider the edges (uv) ∈ GF ∩ GC which are not in B.
∑

(uv)∈B

yuv +
∑

(uv) ∈ GF ∩ GC

(uv) �∈ B

yuv ≤
∑

u∈A

∑

(uv) � u

(uv) ∈ B

yuv +
∑

(uv) ∈ GF ∩ GC

(uv) �∈ B

yuv

=⇒
∑

(uv)∈GF ∩GC

yuv ≤
∑

u∈A

∑

(uv)�u

yuv +
∑

u�∈A

∑

(uv) � u

(uv) �∈ B

yuv

(51)

Let us analyze the terms that appear on the right hand side of (51):

– First let us consider the terms
∑

(uv)�u yuv for u ∈ A. We know that this is in
total at most min{k, du}, since this is the largest amount u can contribute to all
the incident edges. However, by definition of A, we also know that min{k, du} =∑

(uv)�u ruv . Thus, this term is at most
∑

(uv)�u ruv . This is at most the direct
benefit obtained by u in M since GC ⊆ GF and hence is at most Uu(ru, r−u).

– Now consider the terms
∑

(uv)�u (uv) �∈ Byuv for u �∈ A. Since we are only
summing over edges not in B, and by definition of B this means that yuv ≤ ruv ,
then the above term is at most

∑
(uv)�u ruv . As argued in the previous case, this

upper bound is at most Uu(ru, r−u) for GC ⊆ GF .

Using the above, we get
∑

(uv)∈GF ∩GC

yuv ≤
∑

u∈A

Uu(ru, r−u) +
∑

u/∈A

Uu(ru, r−u)

=⇒ P(M∗)/2 ≤ U(M)

Hence we have proved that P(M∗) ≤ 2·U(M) for M2H games wheneverGC ⊆ GF .
Now let us prove that S(M∗) ≤ 2αk · U(M) for M2H games whenever GC ⊆

GF . Consider the two-hop benefit obtained in M∗ by a particular node u. It can be
bounded as

∑

(uv) � u, (vw) � v

(uw) ∈ GF , w �= u

αyuvyvw ≤
⎛

⎝
∑

(uv)�u

αyuv

⎞

⎠
∑

(vw)�v

yvw ≤
⎛

⎝
∑

(uv)�u

yuv

⎞

⎠ · αk

(52)

Because GC ⊆ GF , we have that
∑

(uv)�u yuv is at most the direct benefit obtained
by u in M∗. Thus summing the above bound over all the nodes, we get S(M∗) ≤
αkP (M∗). We have already proved that P(M∗) ≤ 2 ·U(M). Thus we have S(M∗) ≤
2αkU(M).

Thus we have proved that whenever GC ⊆ GF , we have P(M∗) ≤ 2 · U(M)

and S(M∗) ≤ 2αkU(M). Combining these observations with U(M∗) = P(M∗) +
S(M∗), we get the desired 2-PoA bound of 2 + 2αk.
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Proof (Thm 10, Proof of case GC = GF = Kn) Now consider the case of GF =
GC = Kn. For the existence of a PE, it can be verified that every node making a
contribution of k/(n − 1) to every adjacent link is a PE. Now we give a brief outline
of how to prove the bound on 2-PoA. We will assume that n is large enough, in
particular at least 2k. Thus every node has degree of at least 2k − 1. First we prove
that when GF = GC = Kn, for a pairwise equilibrium, if two nodes u and v satisfy∑

(uw)�u xuw < k and
∑

(vw)�v xvw < k respectively then xuv = 1. We use this
claim to bound the cardinality of the set T defined by T = {u : ∑

(uw)�u xuw < k}.
Then using this bound on cardinality, we bound the utility U(M) obtained in a PE M

from which the 2-PoA bound will follow. Now we will proceed to the proof.
We claim that when GF = GC = Kn, for a pairwise equilibrium, if two nodes u

and v satisfy
∑

(uw)�u xuw < k and
∑

(vw)�v xvw < k respectively then xuv = 1. To
see this, notice that whenever

∑
(uw)�u xuw < k, there exists an edge (uz) such that

xuz
u > xuz

z and thus u can decrease its contribution xuz
u without affecting its utility.

Such an edge exists because otherwise if xuz
u ≤ xuz

z holds for all the adjoining edges
of u then

∑
(uw)�u min(xuw

u , xuw
w ) will become equal to min(k, du) using the fact that∑

(uw)�u xuw
u = k. Thus whenever

∑
(uw)�u xuw < k, there exists an edge adjoin-

ing u such that u can can decrease its contribution xuz
u without affecting its utility.

Suppose for v also similar inequality holds, i.e.
∑

(vw)�v xvw < k. In such a case, if
the mutual consent xuv is less than 1 then u and v can increase their contributions to
(uv) without decreasing the utility obtained because of their contributions from other
edges. This would be a contradiction to our assumption of pairwise equilibrium. Thus
we have proved the claim that for GF = GC = Kn, in any PE, if two nodes u and v

satisfy
∑

(uw)�u xuw < k and
∑

(vw)�v xvw < k respectively then xuv = 1. We will
call an edge (uv) with mutual consent xuv = 1 as “full” edge. We have just proved
that all the nodes belonging to the set T = {u : ∑

(uw)�u xuw < k} form a clique
in the sense that all the edges between such nodes are full. Each node in this set can
have at most k − 1 full edges adjoining it because if it were k for any node u in set
T then we will have

∑
(uw)�u xuw = k, contradicting the criterion for a node to be

included in T . Thus, |T | ≤ k.
Let us denote the cardinality of T by q, which is at most k as argued above. For

large n, the cardinality of T̄ (complement of T ) will also be at least k. For each node
u in T̄ , the direct benefit component of Uu(xu, x−u) is exactly k. Thus the cumulative
direct-benefit component of the nodes in T̄ is given by k · |T̄ |. Now the two-hop
benefit component of a node u in T̄ would be

α
∑

(uv) � u

v ∈ T̄

xuv
∑

(vw)�v,w �=u

xvw + α
∑

(uv) � u

v ∈ T

xuv
∑

(vw)�v,w �=u

xvw

≥ α
∑

(uv) � u

v ∈ T̄

xuv · (k − 1) + α
∑

(uv) � u

v ∈ T

xuv · (q − 2)

The above inequality holds because for a node v ∈ T̄ we have
∑

(vw)�v xvw = k

and for a node v ∈ T we have
∑

(vw)�v xvw ≥ q − 1. Expressing q − 2 as (k − 1) −
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(k − q + 1), a lower bound on the two-hop benefit component of a node u in T̄ can
be further expressed as

α
∑

(uv)�u

xuv(k − 1) − α
∑

(uv) � u

v ∈ T

xuv(k − q + 1) = αk(k − 1) − α
∑

(uv) � u

v ∈ T

xuv(k − q + 1)

(53)

Adding it over all the nodes in T̄ , the cumulative two-hop benefit obtained by
nodes in T̄ is lower bounded by

αk(k − 1) · |T̄ | − α
∑

(uv) � u

u ∈ T̄ , v ∈ T

xuv(k − q + 1) ≥ αk(k − 1) · |T̄ | − αq(k − q + 1)2

(54)

The above inequality holds because for any node in T , it is contributing q − 1 to
edges to other nodes in T , and thus can only contribute at most k − q + 1 to edges
to nodes in T̄ . Thus, the total contributions on edges between T and T̄ are at most
q(k − q + 1).

Adding it to the cumulative direct benefit component k · |T̄ | of all the nodes in T̄ ,
the total utility of all the nodes in T̄ , and thus the utility U(M) of a PE M is lower
bounded by

U(M) ≥ k|T̄ | + αk(k − 1) · |T̄ | − αq(k − q + 1)2 (55)

It is easy to see that an upper bound on the utility U(M∗) of an optimum solution
M∗ is given by

U(M∗) ≤ n(k + αk2) (56)

From (55) and (56), we obtain

U(M)

U(M∗)
≥ |T̄ |

n
· 1 + α(k − 1)

1 + αk
− αq(k − q + 1)2

n(k + αk2)
(57)

As n grows, |T̄ |/n → 1 and the second term in the above bound decreases,
thus we get

2-PoA → 1 + αk

1 + α(k − 1)
as n → ∞ (58)

5 Empirical Findings

We begin by presenting the models and the settings used for the simulations we car-
ried out for our experiments. Then we will present the findings that we obtained,
relating them to the theoretical results for Weighted S2H and Weighted M2H games.
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Let us start by describing the base model that we use for the simulations. In the
base model, we consider networks of 100 nodes placed uniformly at random inside
a unit square. Thus each node corresponds to a point (x, y) inside a unit square.
Each node has an edge joining to every other node in the network. These edges
have weights f uv which depend on the distance d(u, v) between the nodes. We will
specifically consider the following three kinds of weight functions:

1. Inverse: For the inverse weight function, we set f uv = 1/d(u, v).

2. Exponential: For the exponential weight function, we set f uv = e−d(u,v)−e−√
2

1−e−√
2

.

The weight function has been normalized to take value 1 when d(u, v) = 0 and 0
when d(u, v) = √

2, with
√
2 being the largest distance between any two nodes

located in a unit square.
3. Linear: For the linear weight function, we set f uv = 1 − d(u, v)/

√
2. Again,

the weight function has been normalized to take value 1 when d(u, v) = 0 and 0
when d(u, v) = √

2.

The attenuation with respect to distance becomes steeper as the weight functions
change from linear to exponential to inverse. In the model that we consider for sim-
ulations, we allow the variables xuv

u to take values only from {0, 1}, i.e. we allow the
system to converge only to integral equilibria. We set k = 3. The nodes in this base
model engage in either S2H or M2H games.

Now we describe the settings for the simulations. For each new instance of simu-
lations, we start by placing 100 nodes uniformly at random inside a unit square. Then
in the second step, the values of its contributions are set for each node u. Here we
explore two possibilities: for a node u, either we choose any other three nodes ran-
domly and make u contribute (with a contribution of 1) to the edges joining to these
nodes or we make u’s contributions as 1 on the edges joining u to the three clos-
est nodes. Note that as k = 3, a node can contribute 1 corresponding to only three
adjoining edges. After this initial assignment of the variables, a random permutation
of nodes is generated in the third step. In each iteration of the instance the nodes are
examined in the order given by this permutation. When a node u gets examined, we
execute a better response for node u (if a better response exists for node u) where a
node u increases its contribution xuv

u to 1 on some edge (uv) by removing its contri-
bution on some other edge. Note that this better response is executed for M2H games
only if it is a better response also for node v, since for M2H games we are interested
in pairwise deviations.

If none of the nodes have any better response, then it means we have found a
NE (PE) for Weighted S2H (Weighted M2H) games. We run the simulations for a
large number of iterations, typically 500−1000. We found that whenever an instance
converged, it took a much less number of iterations, typically of the order of 10
iterations. Hence we consider that an instance is not likely to converge if it fails to
converge within 500 iterations.

We will evaluate the simulations based on two criteria:

– Existence of an (integral) equilibrium: If a simulation instance converges within
1000 iterations, it implies we have found a NE if it was an instance of Weighted
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S2H games (or a PE for Weighted M2H games). However, if a simulation
instance does not converge, then it may or may not have an equilibrium. Based on
how many instances converged for a model under consideration, we can evaluate
the likelihood of an instance for that model to have an equilibrium.

– Price of Anarchy: If we are considering an instance of Weighted S2H games
that converges (to a NE M) then the utility U(M) of the resultant NE is given
by adding the utilities obtained by all the nodes. Computationally it is diffi-
cult to compute the worst NE as well as optimum solution in our settings.
However if we take the ratio of U(M) to an upper bound U(M∗) on the value of
an optimum solution then we have a bound on the quality on the resultant NE.
We will slightly abuse the notation to call this ratio as the price of anarchy in
this section. Thus in this section, price of anarchy means the quality of the solu-
tion to which the simulation converged. An upper bound onU(M∗) for Weighted
S2H games is given by

∑
u 2(1+ αk) · (wu1 + wu2 + wu3) where wu1, wu2, wu3

are the maximum 3 values of weight functions among the weights of the edges
adjoining a node u. To see why this is an upper bound, notice that the maximum
utility that a node u can obtain is given by 2(1+ αk) · (wu1 + wu2 + wu3) as per
(40). We will see that the average value of the equilibria whenever the instances
converged is close to the value of an optimum solution. For the instances of
Weighted M2H games, we evaluate the upper bound on U(M∗) in the similar
way except that the upper bound on U(M∗) is given by

∑
u(1 + αk) · (wu1 +

wu2 + wu3). We will examine how the average value of the equilibria obtained
varies with α.

Now we present the results of the simulations in Section 5.1 and Section 5.2.

5.1 Existence of an (Integral) Equilibrium

Although in Section 3 we gave an instance of S2H games where an integral NE
does not exist, we found that in simulations better-response dynamics converge to
an integral NE almost all of the time, at least for the types of graph structures that
are considered in the simulation settings. To give specific numbers, we found that
for linear, exponential, and inverse weight functions, we have convergence for 99 %,
97 % and 73 % of the simulation instances for Weighted games. Moreover, the con-
vergence, when it occurs, is extremely fast: all the instances either converged within
10 rounds, or did not converge within 500 iterations. The same is not true for
Weighted games: over 65 percent of our instances did not converge to a PE even after
5000 rounds. Thus, in the settings that we examine, we found that we are much more
likely to have an (integral) NE in games (with extremely fast convergence to a sta-
ble solution) compared to Weighted games. See Fig. 7 and Fig. 8 for some typical
outcomes. We explore these outcomes in details later.

5.2 Price of Anarchy

The quality of NEs that our simulations converged to was extremely close to
the quality of the an optimal solution, usually within a few percent of the centralized
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Fig. 7 Typical pairwise equilibria computed for the Weighted M2H games with linear weight function
and (Left) α = 1/2 (Middle) α = 1/8 (Right) α = 1/16

optimal solution, indicating that our theoretical bounds are truly only for the worst
case, not average case. Table 1 shows the average values of the equilibria obtained
for our simulations when the weight functions are linear. The values for exponential
and inverse weight functions also showed similar trends. We can see that on average,
the value of the equilibria obtained is very close to the value of an optimum solution.
The values are also consistent with worst-case PoA being 1 + αk, which decreases
as α decreases. As α decreases, the NEs and optimum solutions both converge to
nodes following the strategy of contributing to edges leading to their closest neigh-
bors. Thus there is less tendency to deviate from the strategy in OPT, resulting in
better equilibria.

As α decreases or as the weight functions become steeper from linear to expo-
nential to inverse, we also observed that nodes increasingly form a “backbone”-type
network by connecting to the closest nodes. We explain this as follows: As α

decreases, the contribution of two-hop benefit to node utility starts losing its signifi-
cance. When α is small, nodes simply attempt to connect to their closest k nodes and
little clustering takes place, instead forming a backbone-type of network. This effect
is especially pronounced in M2H games (see Fig. 7). In Fig. 7, for α = 1/2, two-hop
benefit plays a significant part in the utility obtained by a node. Because of the bidi-
rectional nature of contributions, the structures that can increase two-hop benefit for

Fig. 8 Typical NE computed for the Weighted S2H games with linear weight function (Left) and
exponential weight function (Middle) and inverse weight function (Right) with α=1/6
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Table 1 Average value of equilibria obtained with α for n = 100, k = 3 for linear weight functions. PoA
here refers to the ratio between the computed NE and the optimum solution

α Average PoA (with std deviation) Average PoA (with std deviation)

Weighted S2H games Weighted M2H games

1/2 1.033 (0.0021) 1.043 (0.0063)

1/4 1.031 (0.0018) 1.037 (0.0049)

1/6 1.029 (0.0016) 1.032 (0.0040)

1/8 1.028 (0.0025) 1.030 (0.0043)

a node in M2H games are cliques – as it is easy to see in a clique, a node is a part of
maximum possible k(k − 1) two-hop paths. However, for α = 1/8 and α = 1/16 in
Fig. 7, two-hop benefit plays increasingly insignificant role in node utility, thus the
outcome is a backbone-type network as predicted. It would be interesting to inves-
tigate further if a phase transition occurs as α decreases, where the clustering effect
suddenly disappears, or whether it disappears gradually.

We plot the effect of increasing the steepness of weight functions in Fig. 8, where
as the weight functions become steeper the nodes increasingly form a “backbone”-
type of network by connecting to the k closest nodes. Although the rationale is
similar to the effect of decreasing α with M2H games, there are slight differences
between Figs. 7 and 8 as they correspond to equilibria of S2H and M2H games
respectively. For steeper weight functions with S2H games, two-hop benefit plays
a significant part in node utility but it manifests in a slightly different way than
M2H games. In S2H games, the nature of contributions is unidirectional, thus a node
has no control over incoming (one-hop or two-hop) paths. Thus if a node u were
to contribute on an edge (uv) where the other endpoint v has already contributed,
then u can be a part of at most (k − 1) outgoing two-hop paths through node v.
However, if a node u were to contribute on an edge (uv) such that v does not con-
tribute to (uv), then u can be a part of k outgoing paths through node v. Thus in
S2H games, in order to obtain a higher two-hop benefit as encouraged by a less
steep (linear) weight function, nodes tend to contribute to edges where the other
endpoint does not contribute, thus reducing the tendency of nodes to form cliques
and also making the edges that get contributed close to 2kn. This leads to a dense
network with higher connectivity in a typical outcome, as shown in Fig. 8 for lin-
ear weight functions. Note that such a typical outcome also has higher number of
unidirectional (orange-blue) edges as predicted. When the weight functions become
steeper, two-hop benefit contribution to node utility becomes increasingly insignifi-
cant, thus nodes tend to contribute to the edges leading to closest k neighbors. If v

is among k closest neighbors of u then u is also highly likely to be among k closest
neighbors of v because of the nature of node distribution (random in a unit square)
– thus it is highly likely that an edge that gets contributed to, gets contributed from
both its endpoints as two-hop benefit becomes insignificant. This can be observed in
increasing percentage of blue-colored edges (denoting contribution from both end-
points) in Fig. 8 as weight functions change from linear to exponential to inverse



750 Theory Comput Syst (2015) 57:711–752

(increasing their steepness). Most of the contributed edges being bidirectional with
nodes connecting to k closest neighbors also means a typical outcome in S2H games
with steep weight function (e.g., inverse weight function) resembles to a typical out-
come with small α in M2H games as observed from the rightmost subfigures of
Fig. 7 and Fig. 8.

Let us summarize the simulation results. We investigated Weighted S2H and
Weighted M2H games with nodes scattered uniformly at random inside a unit square.
We used three different classes of weight functions – linear, exponential and inverse
with the attenuation of weight function becoming steeper with distance as they
change from linear to exponential to inverse. We found that for Weighted S2H games,
we are much more likely to have an (integral) NE compared toWeightedM2H games.
The quality of NEs that our simulations converged to was extremely close – usu-
ally within a few percent – of the centralized optimal solution. We also saw that as
α decreases or as the weight functions go from linear to exponential to inverse, the
nodes stop forming “clusters” and instead form a “backbone”-type network resulting
from their connecting to the closest possible neighbors.

6 Conclusion

Most game theoretic versions of network formation games consider agents deriv-
ing benefit either from their immediate neighborhood or from the entire network. In
many settings, however, the agents are neither so myopic as to only consider their
benefit from direct connections, nor so far-sighted as to consider their benefit from
the entire network, including their connections to agents which are 3 or more hops
away. Motivated by this, we defined Two-Hop games where nodes try to maximize a
combination of direct benefit (i.e., benefit obtained from their immediate neighbor-
hood) and two-hop benefit (i.e., benefit obtained from two-hop neighborhood). We
considered two specific versions of two-hop games, namely S2H and M2H games,
which can be interpreted as natural extensions of well-studied games. We studied
both these versions while distinguishing between the ability of two nodes to form
connections (represented by the Connection Graph GC) and the ability of two nodes
to be of mutual benefit (represented by the Friendship Graph GF ).

For both S2H games and M2H games, we showed that the introduction of two-hop
benefits significantly changes their properties. Among other results, we showed that
for S2H games a fractional Nash Equilibrium still exists (although an integral Nash
equilibrium may not exist after introducing two-hop benefit) and the price of anarchy
(PoA) significantly reduces as the overlap betweenGF andGC increases, converging
to 1 + αk for several important cases. For M2H games, the corresponding bound on
the PoA was 2 + 2αk. Here α is the two-hop benefit factor, with higher values of α

indicating higher contribution of two-hop benefit to node utility. For some intuitive
simulation settings, we also found that the actual quality of equilibria of converged
instances was very close to the optimum, although the theoretical worst-case bounds
could be much higher. We also observed in our simulations that as the contribution of
two-hop benefit decreases, nodes tend to form backbone-like structure by connecting
to k closest neighbors.
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There are several important open questions that should be considered in future
work. One immediate and important question that is still unanswered is whether
a fractional pairwise equilibrium exists for M2H games, as we know that some
instances of M2H games do not admit an integral pairwise equilibrium. Similarly,
as S2H also do not admit integral Nash equilibria in some instances, it would be
interesting to know if good quality approximate equilibria exist for S2H and M2H
games. Long-term challenges include considering different utility structures for
two-hop games and exploring the effect of two-hop benefit on other well-studied
games.
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