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Abstract An edge dominating set in a graph G = (V , E) is a subset S of edges such
that each edge in E − S is adjacent to at least one edge in S. The EDGE DOMINAT-
ING SET problem, to find an edge dominating set of minimum size, is a basic and
important NP-hard problem that has been extensively studied in approximation algo-
rithms and parameterized complexity. In this paper, we present improved hardness
results and parameterized approximation algorithms for EDGE DOMINATING SET.
More precisely, we first show that it is NP-hard to approximate EDGE DOMINATING
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SET in polynomial time within a factor better than 1.18. Next, we give a parameter-
ized approximation schema (with respect to the standard parameter) for the problem
and, finally, we develop an O∗(1.821τ )-time exact algorithm where τ is the size of a
minimum vertex cover of G.

Keywords Edge dominating set · Parameterized complexity · Approximation
algorithms

1 Introduction

As one of the basic problems in Garey and Johnson’s work on NP-completeness [15],
EDGE DOMINATING SET has received high attention in history. It is NP-hard even
in planar or bipartite graphs of maximum degree 3 [24]. Due to its theoretical and
practical interests, many algorithms have been developed in order to tackle it. There
is a simple 2-approximation algorithm for EDGE DOMINATING SET in unweighted
graphs. It is not hard to verify that any maximum matching in the graph is an
edge dominating set of size at most double of the minimum size. Carr et al. [6]
proved a (2 + 1

10 )-approximation algorithm for WEIGHTED EDGE DOMINATING SET

(the generalization of EDGE DOMINATING SET where weights are assigned to the
edges of the input graph and the objective becomes to determine a minimum total-
weight edge dominating set), the ratio of which was later improved to 2 by Fujito
and Nagamochi [14]. Improved results have also been obtained in sparse graphs [5]
and in dense graphs [19]. However, providing an approximation algorithm with
ratio (strictly) smaller than 2, or proving that such algorithm does not exist (under
some likely complexity hypothesis) still remains as an open problem. Chlebik and
Chlebikova [8] proved that it is NP-hard to approximate it within any factor better
than 7

6 . Assuming the unique game conjecture (UGC), [19] showed some inapprox-
imability results on dense instances, a corollary of which is that for every ε > 0
EDGE DOMINATING SET is inapproximable within ratio 3/2 − ε (under UGC).

In terms of parameterized complexity, EDGE DOMINATING SET, with parame-
ter k being the size of the solution, is fixed-parameter tractable (FPT). Fernau [12]
gave an O∗(2.6181k)-time algorithm that has been subsequently improved by Fomin
et al. [13] downto O∗(2.4181k) and by Binkele-Raible and Fernau [1] downto
O∗(2.3819k). Currently, the best result is the O∗(2.3147k)-time algorithm by Xiao
et al. [21]. When the graph is restricted to be of maximum degree 3, the result can
be further improved to O∗(2.1479k) [22]. There is also a long list of contributions to
exact algorithms for EDGE DOMINATING SET, such as the O∗(1.4423|V |)-time algo-
rithm by Raman et al. [18], the O∗(1.4082|V |)-time algorithm by Fomin et al. [13],
the O∗(1.3226|V |)-time algorithm by Rooij and Bodlaender [20], and finally the
O∗(1.3160|V |)-time algorithm by Xiao and Nagamochi [23].

In this paper, we study parameterized approximation for EDGE DOMINATING SET.
A parameterized approximation algorithm is a technique combining parameteriza-
tion and approximation for getting approximation algorithms with fixed-parameter
running time. In this way, we may be able to achieve approximation ratios unachiev-
able (or yet unachieved) in polynomial time via fixed-parameter running times that
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are smaller than the running times of exact algorithms. We may also be able to use
this technique to handle W[1]-hard problems which unlikely have fixed-parameter
tractable algorithms. The interested reader can be referred to [4, 10, 17] for more
about this issue. Let the parameter k be the size of the solution to our problem. In the
FPT framework, we want to design algorithms with running time f (k)|I |O(1) that
decide whether there is a solution of size at most k or not, where f is a computable
function. In approximation algorithms, we are interested in designing polynomial-
time algorithms to find a solution of size g(k), where g is a computable function.
In parameterized approximation, we wish to design algorithms with running time
f (k)|I |O(1) that either find an approximate solution of size g(k) or report that there is
no solution of size k. Clearly, any fixed-parameter tractable problem allows parame-
terized approximation algorithms for any computable function g. However, this may
not hold for W[1]-hard problems. For example, the dominating set problem (find a
set S of k vertices in graph G = (E, V ) such that each vertex in V − S is adjacent to
at least one vertex in S) does not allow parameterized approximation algorithms for
g(k) of the form k + c with fixed constant c [10]. For EDGE DOMINATING SET, we
are interested in designing parameterized approximation algorithms, which produce
edge dominating sets of size at most (1+ε)k (or assert that there is no solution of size
k) in f (k, ε)|I |O(1) time for some computable function f . Of course, the goal is to
find such an algorithm for a function f which is smaller than the O∗(2.3147k)-time
(exact) FPT algorithm by Xiao et al. [21]. This issue has already been considered
for other FPT problems, in particular for the MIN VERTEX COVER problem. In
[2, 3] several parameterized approximation algorithms running faster than (exact)
FPT algorithms and achieving ratios better than the ratio 2 (achievable in polynomial
time) are given. Note that [3] asks as open question if similar results can be achieved
for EDGE DOMINATING SET.

The remaining parts of this paper are organized as follows. In Section 2, we give
an improved hardness result for EDGE DOMINATING SET by showing that it is not
5
√

5 − 10 + ε < 1.18 approximable in polynomial time unless P=NP. In Sections 3
and 4 we tackle parameterized approximation algorithms, answering positively to the
open question in [3]. More precisely, in Section 3, we first give a simple algorithm to
present the basic ideas, and then improve this algorithm in Section 4. We conclude the
article in Section 5 by devising a parameterized algorithm for EDGE DOMINATING

SET where the parameter is the vertex cover number of the graph.

2 An Improved Polynomial-Time Lower Bound

In this section, we give some new hardness results for EDGE DOMINATING SET,
which are based on a reduction preserving approximation from the famous MIN VER-
TEX COVER problem (find a minimum subset S of vertices in a graph such that each
edge has at least one endpoint in S) to EDGE DOMINATING SET.

Before, recall some existing results between MIN VERTEX COVER and EDGE

DOMINATING SET. The first two are rather folklore: there exist two simple approxi-
mation preserving reductions between MIN VERTEX COVER and EDGE DOMINATING

SET transforming a polynomial-time ρ-approximation algorithm for one of them into
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a polynomial-time 2ρ-approximation algorithm for the other one. Let G = (V , E) be
a simple graph and let M∗ ⊆ E and C∗ ⊆ V be a minimum edge dominating set and
a minimum vertex cover of G, respectively. We will use τ = |C∗| to denote the size
of a minimum vertex cover of G. Since, it is well known that M∗ can be supposed to
be a maximal matching, we get τ = |C∗| � |M∗|. Also V (M∗), the set of endpoints
of M∗, forms a vertex cover of G and then 2|M∗| � τ . Thus:

τ � |M∗| � τ

2
. (1)

Now, from any ρ-approximation algorithm for MIN VERTEX COVER given by V ′, we
can polynomially find an edge dominating set E′ by taking at most one arbitrary edge
incident to each vertex of V ′. Thus, using (1) we get: |E′| � |V ′| � ρ×τ � 2ρ|M∗|.
Conversely, from any ρ-approximation algorithm for EDGE DOMINATING SET given
by M ′, we can construct a vertex cover V ′ = V (M ′) of G by taking the endpoints
of M ′. Hence, using (1) we deduce: |V ′| = 2|M ′| � 2ρ|M∗| � 2ρ × τ .

In Theorem 1 just below, we improve the expansion 2ρ of the reduction to
2ρ − 1. Dealing with weighted versions of these two problems, it is proved in [6]
that weighted MIN VERTEX COVER can be approximated as well as weighted EDGE

DOMINATING SET.

Theorem 1 For any ρ � 1, if there is a polynomial-time ρ-approximation
algorithm for EDGE DOMINATING SET, then there exists a polynomial-time
(2ρ − 1)-approximation algorithm for MIN VERTEX COVER.

Proof We will show that for each instance G = (V , E) of MIN VERTEX COVER,
we can construct at most |V | instances Gi = (Vi, Ei) (where |Vi | � 3|V |) of
EDGE DOMINATING SET such that a (2ρ − 1)-approximation solution to G can
be found in polynomial time based on a ρ-approximation solution to each Gi . For
each positive integer 1 � i � |V |, the graph Gi = (Vi, Ei) is a graph con-
structed from G in the following way: Vi = V ∪ {aj , a

′
j : j ∈ {1, . . . , i}} and

Ei = E ∪ Fi ∪ Hi , where Fi = {(aj , a
′
j ) : j ∈ {1, . . . , i}} and Hi = {(v, aj ) :

v ∈ V, j ∈ {1, . . . , i}}. Informally, Gi contains a copy of G, an induced matching
Fi and a complete bipartite graph between the vertices of G and the left part of the
induced matching Fi . In Fig. 1 an illustration of the construction of Gi for i = 2 is
given.

We first show that a ρ-approximation solution to Gτ implies a (2ρ − 1)-
approximation solution to G, where τ is the size of a minimum vertex cover
of G.

Let M∗
τ and C∗

τ be a minimum edge dominating set and a minimum vertex cover
of Gτ respectively. Since Gτ contains τ independent edges Fτ , we know that |M∗

τ | �
τ . On the other hand, a perfect matching between C∗ and {a1, · · · , aτ } is an edge
dominating set of size τ of Gτ . We so have:

|M∗
τ | = τ. (2)

Let Mτ be a ρ-approximation edge dominating set of Gτ and Uτ = V (Mτ ) ∩ V (G).
We can see that Uτ is a vertex cover of G. Since Mτ is an edge dominating set of Gτ
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Fig. 1 An illustration of the
construction of Gi for i = 2

and Fτ is a set of τ independent edges in Gτ , we know that V (Mτ ) contains at least τ

vertices in V (Fτ ). Therefore, we have:

|Uτ | � 2|Mτ | − τ. (3)

By combining the fact that |Mτ | � ρ|M∗
τ | together with (2) and (3), we get:

|Uτ | � 2|Mτ | − τ � 2ρ|M∗
τ | − τ = (2ρ − 1)τ. (4)

Therefore, Uτ is a vertex cover of size at most (2ρ − 1)τ of G.
However, we cannot construct Gτ in polynomial time directly, since it is NP-hard

to compute the size of the minimum vertex cover τ . To handle this problem, we
compute Mi and Ui for each Gi with i ∈ {1, · · · , |V (G)|}, and return Ui∗ such that
|Ui∗ | � min|V (G)|

i=1 {|Ui |} and i∗ ∈ {1, · · · , |V (G)|}. Hence, by (4), Ui∗ is a vertex
cover of G with size |Ui∗ | � |Uτ | � (2ρ − 1)τ .

It is NP-hard to approximate MIN VERTEX COVER within any factor smaller than
10

√
5 − 21 by a result of Dinur and Safra [9]. By this result and Theorem 1, we get

the following corollary.
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Corollary 1 For any ε > 0, EDGE DOMINATING SET is not (5
√

5 − 10 +
ε)-approximable in polynomial time unless P = NP .

Note that under UGC, since MIN VERTEX COVER cannot be approximated to
within 2 − ε for any ε > 0 [16], we get that for any ε > 0, EDGE DOMINATING SET

is not (3/2 − ε)-approximable in polynomial time, which is the same lower bound
recently achieved in [19].

3 A Simple Parameterized Approximation Schema

In this section, we design a simple parameterized approximation schema for EDGE

DOMINATING SET. As mentioned in Introduction, this algorithm contains the basic
idea upon which the improved algorithms in Section 4 is built.

3.1 Constrained Edge Dominating Set

First of all, we introduce a CONSTRAINED EDGE DOMINATING SET problem and
present some properties for it. Given a graph G = (V , E) and a prescribed subset
V1 ⊆ V of non-isolated vertices, an edge dominating set M is called a constrained
edge dominating set of G, if V1 ⊆ V (M). In the CONSTRAINED EDGE DOMINATING

SET problem, we are asked to find a constrained edge dominating set of minimum
size. CONSTRAINED EDGE DOMINATING SET is a natural generalization of EDGE

DOMINATING SET where V1 = ∅. We show a simple approximation algorithm for
CONSTRAINED EDGE DOMINATING SET.

Lemma 1 For an instance (G, V1) of CONSTRAINED EDGE DOMINATING SET, let
M1 be a maximum matching in the induced graph G[V1], M2 be a maximum matching
in the induced graph G[V − V1], and M3 be a set of |V1 − V (M1)| edges such
that each edge in M3 is incident on a different vertex in V1 − V (M1). Edge set
M ′ = M1∪M2∪M3 is a constrained edge dominating set with size |M ′| � (2−ρ1)ν,
where ν is the size of a minimum constrained edge dominating set M∗ and ρ1ν is the
number of edges in M∗ with both endpoints in V1.

Proof Let α1, α2 and α3 be, respectively, the numbers of edges of M∗ with both
endpoints in V1, one endpoint in V1 and the other one in V − V1, and both endpoints
in V −V1. Since V1 ⊆ V (M∗), we have 2α1 +α2 = |V1| = 2|M1|+ |M3|. Since M1
is a maximum matching in G[V1], |M1| � α1. Note finally that for each edge in M2
at least one of its endpoints has to be in V (M∗), and then α2 + 2α3 � |M2|.

From these inequalities, we obtain 2|M1|+|M2|+|M3| � 2|M∗|, and then |M ′| �
(2 − ρ1)ν since |M1| � α1 = ρ1ν.

Note that Lemma 1 is a special case of Lemma 3 in the next section (but we prefer
to give a proof of both lemmas for readability). Note also that Lemma 1 implies a 2-
approximation algorithm for CONSTRAINED EDGE DOMINATING SET, with a better
ratio obtained when the set V1 is large.
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3.2 A Parameterized Approximation Schema for EDGE DOMINATING SET

As already mentioned in introduction, deciding whether a graph contains an edge
dominating set of size k can be done in O∗(2.3147k) time by the parameterized algo-
rithm presented in [21]. Here we design a parameterized approximation algorithm for
it. It is based on the following property:

Property 1 Suppose that there are a set V1 and an edge dominating set M such that
V1 ⊆ V (M), |M| � k and |V1| = k + ρ′k. Then the number of edges in M that have
both endpoints in V1 is at least ρ′k.

Indeed, if there were α < ρ′k edges in M with both endpoints in V1, then the
number of vertices in V1 would be at most 2α + (|M| − α) � |M| + α < k + ρ′k =
|V1|, a contradiction. Together with Lemma 1, this means (taking M = M∗) that the
computed edge set M ′ is of size at most (2 − ρ′)k.

Then, our goal is to find such a large set V1. As in several articles devising FPT
algorithms for EDGE DOMINATING SET, we can use the fact that V (M∗) for a mini-
mum edge dominating set M∗ is a vertex cover of G. For each edge in the graph, at
least one endpoint of it is in V (M∗). Then, we can use a branching algorithm to con-
struct a set V1 of size up to k+ρ′k such that V1 is part of the vertex set of a minimum
edge dominating set V (M∗) in G. We iteratively select an edge (a, b) in the current
graph and branch into two branches by including either a or b into V1 and delete it
from the graph until the size of V1 is k+ρ′k or the remaining graph has no edge. This
process produces at most 2k+ρ′k vertex sets V1 of size at most k + ρ′k in O∗(2k+ρ′k)
time and at least one of them is contained in V (M∗). For each of the vertex sets V1,
we use the algorithm in Lemma 1 to compute M ′ and return a smallest one. Using
Property 1, the returned edge set is an edge dominating set of size at most (2 − ρ′)k
if |M∗| � k (note that if in a leaf of the search tree we have a set V1 ⊆ V (M∗) with
|V1| < k + ρ′k, this means that the remaining graph is empty and the output solu-
tion is then optimal by Lemma 1). By taking ρ′ = 1 − ρ, we deduce the following
result.

Lemma 2 For any ρ > 0, there exists a (1+ρ)-approximation algorithm to k-EDGE

DOMINATING SET running in O∗(2(2−ρ)k) time for 0 � ρ � 1.

When ρ = 0, Lemma 2 implies that k-EDGE DOMINATING SET can be solved
in O∗(4k) time, which is far away from the current best parameterized algorithm
of running time O∗(2.3147k). To reduce the gap, we will improve the running time
bound of our parameterized approximation schema in the next section.

4 Improved Parameterized Approximation Schemata

In the algorithm presented in Section 3.2, in order to search V1 we may need to
branch on each edge. One way to reduce the running time is to reduce the number of
branchings in the algorithm. This approach has been used for (exact) FPT algorithms
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to obtain improved running times. We will use some of these improved branch-
ings, but we need to combine them with approximability. We first deal with these
approximation properties in Section 4.1 and then present the improved parameterized
approximation algorithm in Section 4.2.

4.1 More Approximation Algorithms for CONSTRAINED EDGE DOMINATING SET

Given a graph G = (V , E). We consider a partition (V1, V2, V3) of the vertex set V

such that:

• Each connected component of the induced graph G[V2] is a clique; and
• There is no edge between a vertex in V2 and a vertex in V3.

Once the set V1 is given, we can find in linear time the set of connected components
of G[V − V1] which are cliques and which constitute V2. Let us now give more
properties of our problems based on this partition.

We consider an instance (G = (V , E), V1) of CONSTRAINED EDGE DOMINATING

SET. Let M∗ be a minimum constrained edge dominating set of (G = (V , E), V1)

and ν = |M∗|.
We denote by α1 (resp., α2, α3) the number of edges in M∗ with both endpoints

in V1 ∪ V2 (resp., with one endpoint in V1 and one in V3, both endpoints in V3). This
partitions the edge set E into three sets, hence, ν = α1 + α2 + α3.

Moreover, since the connected components of G[V2] are cliques and V (M∗) is a
vertex cover of G, we know that V (M∗) contains at least |Ci | − 1 vertices in each
clique Ci of G[V2]. Assume that there are p cliques C1, · · · , Cp in G[V2] among
which q cliques Q1, · · · , Qq are such that V (Qi) ⊆ V (M∗). Then V (M∗) ∩ V2 =
|V2| − p + q. In other words, we have:

2α1 + α2 = |V (M∗) ∩ (V1 ∪ V2)| = |V1| + |V2| − p + q. (5)

We are ready now to specify an approximation algorithm for CONSTRAINED EDGE

DOMINATING SET (Algorithm ApproxPoly1 in Fig. 2), which is a generalization of
the algorithm in Lemma 1.

Lemma 3 Edge set M =ApproxPoly1(G) is a constrained edge dominating set of
(G, V1) with size |M| � (2 − ρ1)ν, where ρ1ν = α1 is the number of edges in M∗
with both endpoints in V1 ∪ V2.

Proof We first show that M is a constrained edge dominating set. It is easy to see
that M ′ = M1 ∪M2 ∪M3 is an edge dominating set and each vertex in V1 will appear
in at least one edge in M1 ∪ M3. When we remove an edge e = (u, c′

i ) ∈ M ′
1 with

c′
i ∈ V ′

2 from M ′, we know by Step 3 of the algorithm that every other neighbor w of
u is saturated by M1. Hence, the edge (u, w) incident to u is still dominated and then
M is still an edge dominating set. Furthermore vertex u is not in V1 and we know that
M is a constrained edge dominating set.

Now we prove the claim on the size of M . By the construction, we know that the
size of the maximum matching in G[V1 ∪ V2 ∪ V ′

2] is at least α1 + p − q (take the α1
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Fig. 2 Algorithm ApproxPoly1

edges of M∗ in V1 ∪ V2, and add the p − q edges between an unsaturated vertex in a
clique of G[V2] and the corresponding vertex c′

i). Then, we get |M1| � α1 + p − q.
Since each edge in M1−M ′

1 contains two vertices in V1∪V2, each edge in M3∪M ′
1

contains one vertex in V1 ∪ V2, and all of these vertices are different, it holds that

2|M1| + |M3| − |M ′
1| = 2(|M1| − |M ′

1|) + (|M3| + |M ′
1|) � |V1| + |V2|.

Therefore:

|M1|+|M3|−|M ′
1| � |V1|+|V2|−p+q−α1 = 2α1+α2−α1 = α1+α2. (by(5))

(6)
Note that there are at most α2 + 2α3 different vertices in V (M∗) ∩ V3. Then:

|M2| � α2 + 2α3. (7)

Summing (6) and (7), we get |M| = |M1|+ |M2|+ |M3|− |M ′
1| � α1 +2α2 +2α3 =

(2 − ρ1)ν.

Note that Lemma 1 is a special case of Lemma 3 where the vertex set V2 is an
empty set. Lemma 3 shows that we do not need to branch on each clique component
in G[V − V1] in order to search the vertex set of a constrained edge dominating set.

To improve the running time of our parameterized approximation schema, we also
need to consider a particular case of the graph where in the partition (V1, V2, V3)

each connected component of G[V3] is a path of length 2.
Let N be the number of these paths in G[V3]. Considering a minimum constrained

edge dominating set M∗, we denote by:

• N1 the set of paths in G[V3] such that there is an edge in M∗ between a vertex in
V1 and the central vertex of the path; set n1 = |N1|;

• N2 the set of paths in G[V3] such that there is an edge of the path in M∗; set
n2 = |N2|; and



Theory Comput Syst (2015) 56:330–346 339

• N3 the set of remaining paths in G[V3]; set n3 = |N3|.
Observe that some paths of G[V3] may be counted twice (one with N1 and one
with N2, if M∗ is not a matching); so, N � n1 + n2 + n3. Note that for each of
the n3 remaining paths, M∗ has to take two edges (between V1 and the endpoints of
the path) to cover the edges of the path. In other words, α2 � 2n3 + n1. Moreover,
by definition, n2 � α3.

Consider Algorithm ApproxPoly2 (Fig. 3) on an instance (G, V1) of CON-
STRAINED EDGE DOMINATING SET.

Lemma 4 Edge set M =ApproxPoly2(G) is a constrained edge dominating set
of (G, V1) with size |M| � ν + n3.

Proof The fact that M is a constrained edge dominating set can be obtained similarly
as in the proof of Lemma 3. We only need to prove the claim on the size of M .

Let us denote by γ1 (resp., γ2) the number of edges of M1 that have both endpoints
in V1 ∪ V2 (resp., one endpoint in V1, the other one being a central vertex of a path in
V3). Then, |M1| = γ1 + γ2 + |M ′

1|.
By the construction, we know that the size of the maximum matching in G[V1 ∪

V2 ∪ V ′
2 ∪ V ′

3] is at least α1 + n1 + p − q. Then we get: |M1| = γ1 + γ2 + |M ′
1| �

α1 + n1 + p − q. We also have 2γ1 + γ2 + |M ′
1| + |M3| � |V1| + |V2|, which is

equivalent to γ1 + |M3| � |V1| + |V2| − γ1 − γ2 − |M ′
1|. Therefore:

γ1+|M3| � |V1|+|V2|−p+q−α1−n1 = 2α1+α2−α1−n1 = α1+α2−n1 (by(5))

(8)

Fig. 3 Algorithm ApproxPoly2
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Note that γ2 + |M2| = N , N � n1 + n2 + n3 � n1 + α3 + n3 and ν = α1 + α2 + α3.
We get:

|M| = |M1| + |M2| + |M3| − |M ′
1| = γ1 + γ2 + |M2| + |M3| = γ1 + |M3| + N

� α1 + α2 − n1 + N (by (8))

� ν + n3.

that concludes the proof of the lemma.

4.2 An Improved Parameterized Approximation Schema

Now we are able to give the improved parameterized approximation schema
ApproxFPT for k-EDGE DOMINATING SET as well as k-CONSTRAINED EDGE

DOMINATING SET. As explained earlier, the principle is to search the vertex set V1
by using some ‘good’ branchings. Then, in each leaf of our search tree, we will use
the approximation algorithms devised in Section 4.1 (either directly, or after some
other steps).

We consider a k-constrained edge dominating set (G, V1) with partition I =
(V1, V2, V3) of the vertex set. Let t = |V1| + |V2| − p (where p is the number of
cliques in G[V2]). When t � (2−ρ)k (0 � ρ � 1), there are at least (1−ρ)k edges in
any optimal solution M∗ with both endpoints in V1∪V2. Therefore, Lemma 3 implies
that a (1 + ρ)-approximation solution to k-CONSTRAINED EDGE DOMINATING SET

can be found in polynomial time, if t � (2 − ρ)k. We will use a branch-and-search
method to move vertices from V3 to V1 ∪ V2 and therefore to increase the parameter
t . Note that for each vertex v ∈ V3, it is either in V (M∗) or not. For the second case,
all neighbors of v should be in V (M∗) since V (M∗) is a vertex cover of the graph.
Then, we can branch on v by either moving v into V1 (this means v ∈ V (M∗)) or by
moving the neighbor set N(v) of v in G[V3] into V1 (this means v 
∈ V (M∗)) and
moving all newly created clique components in G[V3] into V2. When v is a vertex of
degree � 3 in G[V3], we can branch with recurrence:

C(t) � C(t + 1) + C(t + 3), (9)

where C(t) is the worst size of the search tree in the algorithm when the current value
of |V1| + |V2| − p is t . When the maximum degree of G[V3] is at most 2, we may
only get:

C(t) � C(t + 1) + C(t + 2),

by branching on a maximum degree vertex. In fact, there are some techniques to
branch on a component H in G[V3] with a recurrence not worse than (9), if H is not
a path of length 2 [20, 21, 23].

For a path p1p2p3p4 . . . of length at least 3, we can branch on p3 by including
it into V1 or including its neighbors p2 and p4 into V1. For the first branch, we will
also move a clique component p1p2 into V2. Then we can get:

C(t) � C(t + 2) + C(t + 2), (10)

which is better than (9).
For a cycle of length at least 5, we branch on an arbitrary vertex in the cycle and

then branch on the generated paths in each branch and finally we can get a recurrence
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not worse than (9). For a cycle c1c2c3c4 of length 4, we can also branch with (10)
by including either {c1, c3} or {c2, c4} into V1. For the details about the proof of this
fact, reader is referred to [20, 21, 23].

It turns out that only for a component of path of length 2 in G[V3] we cannot
branch with a recurrence as good as (9). We will call a branching with recurrence at
least as (9) a good branching.

The main steps of the improved parameterized approximation schema Approx-
FPT are listed in Fig. 4.

Theorem 2 Let ρ� � 0.21 be such that 1.466 = 1.619(1−ρ�). Then, for any ρ with
0 � ρ � 1, ApproxFPT is a (1 + ρ)-approximation algorithm running in time
O∗(2.374(1−ρ)k) if ρ � ρ� and in time O∗(1.466(2−ρ)k) if ρ � ρ�.

Proof In order to prove the running time claimed, we will prove more generally that
in an instance I the algorithm works in time:

• O∗(1.466(2−ρ)k−t (I )) if ρ � ρ∗;

Fig. 4 Algorithm ApproxFPT
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• O∗(1.466(1−ρ)k−t (I )1.619(1−ρ)k) if ρ � ρ∗.

Then, the result follows since t (I ) � 0 and 1.466 × 1.619 < 2.374.
Note also that the positive root of 1 = x−1 + x−3 is 1.4655 . . . < 1.466 and that

of 1 = x−1 + x−2 is 1.6180 . . . < 1.619.
Consider so the different steps of the Algorithm ApproxFPT:

• Step 1: when branching, in one branch (1 − ρ)k − t (I ) reduces by at least 1, and
in the other branch (1 − ρ)k − t (I ) reduces by at least 3, so the recurrence is
verified.

• Steps 2 and 3: the running time is polynomial, which verifies the claim since
when we branch we have t (I ) � (2 − ρ)k (the validity for ρ � ρ∗ follows
from the fact that in this case 1.466 � 1.619(1−ρ)k , hence a polynomial is indeed
O∗(1.466−k1.619(1−ρ)k)).

• Step 4: we directly compute the running time in this node. We build a tree where
at each branching t (I ) increases by 1 in one branch and by two in the other
branch. We stop when t (I ) reaches 2(1 − ρ)k (or before if V3 becomes empty).
Then, the number of leaves in this tree is (at most) 1.6192(1−ρ)k−t (I ). For ρ � ρ∗,
1.6191−ρ � 1.466; so, the bound on the running time is valid. For ρ � ρ∗, since
t (I ) � (1 − ρ)k, 1.6192(1−ρ)k−t (I ) � 1.619(1−ρ)k1.466(1−ρ)k−t (I ). Then, the
running time in this node verifies the claim.

• Step 5: the running time is polynomial and verifies the claim.
• Step 6: the running time is O∗(22(1−ρ)k/3) = O∗(1.6(1−ρ)k) which verifies the

claim since in this step t (I ) � (1 − ρ)k.
• Step 7: let z = ∑(1−ρ)K−N

i=0

(
N
i

)
. The running time is O∗(z). Let P = (1−ρ)k−

N . Then z = ∑P
i=0

(
(1−ρ)k−P

i

)
. But P = (1 − ρ)k − N � (1 − ρ)k/3. Then

z � 1.619(1−ρ)k [21]. This verifies the claim since t (I ) � (1 − ρ)k.

Let us now prove the approximation ratio claimed. Since Algorithms
ApproxPoly1(G) and ApproxPoly2(G) will return a constrained edge dom-
inating set, ApproxFPT(G, k, ρ) will also return a constrained edge dominating
set.

In order to prove the ratio claimed, we assume that the size ν of the optimal
solution is not greater than k and consider all the possible cases.

• If t = |V1| + |V2| − p � (2 − ρ)k, then we have 2α1 + α2 � t � α1 +
α2 + α3 + (1 − ρ)k and, consequently, α1 � (1 − ρ)k. Using Lemma 3, we get
|ApproxPoly1(G)| � (1 + ρ)k.

• Assume ρ ≥ 1/2. If α2 > k, then the size of the optimal solution is greater than
k. Else, we have that |ApproxPoly2(G)| � k + n3 � k + α2/2 � 3k/2 �
(1 + ρ)k.

• In Step 4, we consider the two stop conditions V3 = ∅ and t � 2(1 − ρ)k

in Step 4(b). For the former, we know from Lemma 4 that ApproxPoly2(G)

returns an optimal solution. For the latter, in the current graph we have k + α1 �
t > 2(1 − ρ)k, and 2ρk > k − α1 � α2 (by k � ν ≥ α1 + α2). Then n3 �
α2/2 < ρk and Lemma 4 gives |ApproxPoly2(G)| � k + n3 � (1 + ρ)k.
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• In Step 5, we have N � (1−ρ)k. But n1 +n2 +2n3 � ν � k, meaning that n3 �
k−N � ρk. Again, Lemma 4 gives |ApproxPoly2(G)| � k+n3 � (1+ρ)k.

• In Step 6, for each branch V3 = ∅ and ApproxPoly2(G) returns the optimal
solution under the current condition.

• For the last step, let G be the graph before executing any operations in Step 7
and n3 be the size of N3 in G. Let S1 be N3 if |N3| � (1 − ρ)k − N , and S1
be a subset of N3 of size (1 − ρ)k − N otherwise. Then, S1 is a subset of size
at most (1 − ρ)k − N that will be considered in Step 7. We only need to show
that in the branch where S1 is considered, we can get a feasible solution within
the approximation ratio. Let G′ be the graph after removing S1 out of V3 (before
running ApproxPoly2(G)) in Step 7 and n′ be the size of N3 in G′. By def-
inition, we have that n3 + N � ν � k, and then n3 � k − N . Note that
n′

3 � max(0, n3 − ((1 − ρ)k − N) � ρk. Therefore, |ApproxPoly2(G′)| �
k + n′

3 � (1 + ρ)k.

The proof of the lemma is now completed.

5 Parametrization by the Vertex Cover Number

Since the size of any vertex cover in a graph is at least the size of any matching
in this graph, any parameterized algorithm for EDGE DOMINATING SET working in
O(f (k)|I |O(1)) time also works in O(f (τ)|I |O(1)) time, where τ is the size of the
minimum vertex cover of the graph. Hence, it is possible to solve EDGE DOMINATING

SET within time O∗(2.3147τ ) by using the algorithm in [21]. In this section we show
that this result can be improved down to O∗ (1.821τ ).

To this aim, let us consider the algorithm FPTτ presented in Fig. 5, which outputs
a minimum edge dominating set in graph G. Let α � 0.2864 be such that 2.3147α =(

1
αα(1−α)1−α

)
.

Theorem 3 FPTτ (G) computes a minimum edge dominate set in O∗(1.821τ ) time.

Proof We first show that the algorithm returns a minimum edge dominating set. If
there exists an edge dominating set of size at most (1 − α)τ(G), it will be found
in Step 2 of the algorithm. Suppose now that this is not the case, and let M ′ be an
arbitrary maximal matching. Note that each edge of M ′ has at least one of its endpoint
in V ∗. In other words, |V ∗ ∩ V (M ′)| � |M ′|, meaning that

|V ∗ \ V (M ′)| � |V ∗| − |M ′| � ατ.

Therefore, the set V ∗ \ V (M ′) is of size at most ατ and will be considered in Step 3.
We look at the case that V1 = V ∗ \ V (M ′). Now V2 = V ∗ ∩ V (M ′). Moreover, we
have the two following properties:

1. V2 ∪ S1 is a vertex cover of G;
2. V2 ∪ S1 is included in V (M ′).
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Fig. 5 Algorithm FPTτ

To see the first property, remark that S2 is an independent set. Moreover, V1 is also
an independent set (if there were an edge in V1 then, one of its endpoints should be in
V (M ′), a contradiction with the considered case). Finally, there is no edge between
a vertex of V1 and a vertex of S2 by definition of S1.

We already know that V2 ⊆ V (M ′). Each vertex v ∈ S1 is adjacent to a vertex
w ∈ V1. Since w 
∈ V (M ′), we know that necessarily v ∈ V (M ′). The second
property follows.

From the first property we deduce that the set M ′(V1) is an edge dominating set.
Let m1 = |M(V1)|. We have |M ′(V1)| = m1 + (|V2| + |S1| − 2m1). But M ′ has
m′

1 � m1 edges with both endpoints in V2 ∪ S1. By the second property, |M ′| �
m′

1 + (|V2| + |S1| − 2m′
1) � m1 + (|V2| + |S1| − 2m1) = |M ′(V1)|, which implies

that M ′(V1) is a minimum edge dominating set.
We now analyze the running time of Algorithm FPTτ . Step 1 can be done in

O∗ (1.2738τ ) time [7]. If an edge dominating set has been found in Step 2, then the
running time is:

O∗ (
2.3147(1−α)τ

)
= O∗ (

1.821τ
)
.

Otherwise, by Stirling’s Formula, we know that the number of subsets of V ∗ of size

at most ατ is O∗
((

1
αα(1−α)1−α

)τ) = O∗(1.821τ ).

6 Conclusion

We provide in this article new insights on the approximability of EDGE DOMINAT-
ING SET. Our parameterized approximation algorithm first apply some steps of a
branching algorithm, and then exploit the specificity of obtained instances to get an
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approximate solution on them. This is rather different from the notions of fidelity pre-
serving transformation recently introduced in [11] where informally the instance is
first reduced in an approximate way (and then an (exact) FPT algorithm is applied).
In particular, our approximation algorithm relies on the branching steps; this is not
the case in the approach of [11] and applying this latter approach for EDGE DOM-
INATING SET is an interesting open question mentioned in [11]. Moreover, our
algorithm has complexity O∗(γ k

ρ ) for a ratio ρ where γ1 = 2.374 (exact algorithm)
and γ2 = 1.466. Since achieving a ratio 2 is polynomial, one could hope to find
approximation algorithms where γρ → 1 when ρ → 2, which we leave as open
question.

References

1. Binkele-Raible, D., Fernau, H.: Enumerate and measure: improving parameter budget management.
In: Raman, V., Saurabh, S. (eds.): Proc. International Symposium on Parameterized and Exact Com-
putation, IPEC’10, volume 6478 of Lecture Notes in Computer Science, pp. 38–49. Springer-Verlag
(2010)

2. Bourgeois, N., Escoffier, B., Paschos, V.Th.: Approximation of MAX INDEPENDENT SET, MIN

VERTEX COVER and related problems by moderately exponential algorithms. Discret. Appl. Math.
159(17), 1954–1970 (2011)

3. Brankovic, L., Fernau, H.: A novel parameterised approximation algorithm for minimum vertex cover.
Theor. Comput. Sci. 511, 85–108 (2013)

4. Cai, L., Huang, X.: Fixed-parameter approximation: conceptual framework and approximability
results. In: Bodlaender, H.L., Langston, M.A. (eds.): Proc. International Workshop on Parameterized
and Exact Computation, IWPEC’06, volume 4169 of Lecture Notes in Computer Science, pp. 96–
108. Springer-Verlag (2006)

5. Cardinal, J., Langerman, S., Levy, E.: Improved approximation bounds for edge dominating set in
dense graphs. Theoret. Comput. Sci. 410(8-10), 949–957 (2009)

6. Carr, R., Fujito, T., Konjevod, G., Parekh, O.: A (2+ 1
10 )-approximation algorithm for a generalization

of the weighted edge-dominating set problem. J. Comb. Optim. 5, 317–326 (2001)
7. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoret. Comput. Sci. 411

(40-42), 3736–3756 (2010)
8. Chlebik, M., Chlebikova, J.: Approximation hardness of edge dominating set problems. J. Comb.

Optim. 11(3), 279–290 (2006)
9. Dinur, I., Safra, M.: The importance of being biased. Proc. STOC’02, 33–42 (2002)

10. Downey, R.G., Fellows, M.R., McCartin, C., Rosamond, F.A.: Parameterized approximation of
dominating set problems. Inform. Process. Lett. 109(1), 68–70 (2008)

11. Fellows, M.R., Kulik, A., Rosamond, F.A., Shachnai, H.: Parameterized approximation via fidelity
preserving transformations. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.): Proc.
ICALP’12, volume 7391 of Lecture Notes in Computer Science, pp. 351–362. Springer-Verlag
(2012)

12. Fernau, H.: Edge dominating set: efficient enumeration-based exact algorithms. In: Bodlaender, H.L.,
Langston, M.A. (eds.): Proc. International Workshop on Parameterized and Exact Computation,
IWPEC’06, volume 4169 of Lecture Notes in Computer Science, pp. 142–153. Springer-Verlag (2006)

13. Fomin, F.V., Gaspers, S., Saurabh, S., Stepanov, A.A.: On two techniques of combining branching
and treewidth. Algorithmica 54(2), 181–207 (2009)

14. Fujito, T., Nagamochi, H.: A 2-approximation algorithm for the minimum weight edge dominating
set problem. Discret. Appl. Math. 118, 199–207 (2002)

15. Garey, M.R., Johnson, D.S.: Computers and intractability. A guide to the theory of NP-completeness.
W.H. Freeman, San Francisco (1979)

16. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε. J. Comput. System
Sci. 74(3), 335–349 (2008)

17. Marx, D.: Parameterized complexity and approximation algorithms. Comput. J. 51(1), 60–78 (2008)



346 Theory Comput Syst (2015) 56:330–346

18. Raman, V., Saurabh, S., Sikdar, S.: Efficient exact algorithms through enumerating maximal indepen-
dent sets and other techniques. Theory Comput. Syst. 41(3), 563–587 (2007)

19. Schmied, R., Viehmann, C.: Approximating edge dominating set in dense graphs. Theoret. Comput.
Sci. 414(1), 92–99 (2012)

20. van Rooij, J.M.M., Bodlaender, H.L.: Exact Algorithms for Edge Domination. Algorithmica 64(4),
535–563 (2012)

21. Xiao, M., Kloks, T., Poon, S.-H.: New parameterized algorithms for the edge dominating set problem.
Theor. Comput. Sci. 511, 147–158 (2013)

22. Xiao, M., Nagamochi, H.: Parameterized edge dominating set in graphs with degree bounded by 3.
Theor. Comput. Sci. 508, 2–15 (2013)

23. Xiao, M., Nagamochi, H.: A refined exact algorithm for edge dominating set. In: Agrawal, M., Barry
Cooper, S., Li, A. (eds.): Proc. Theory and Applications of Models of Computation, TAMC’12,
volume 7287 of Lecture Notes in Computer Science, pp. 360–372. Springer-Verlag (2012)

24. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. App. Math. 38(3), 364–372
(1980)


	New Results on Polynomial Inapproximabilityand Fixed Parameter Approximability of Edge Dominating Set
	Abstract
	Introduction
	An Improved Polynomial-Time Lower Bound
	A Simple Parameterized Approximation Schema
	Constrained Edge Dominating Set
	A Parameterized Approximation Schema for edge dominating set

	Improved Parameterized Approximation Schemata
	More Approximation Algorithms for constrained edge dominating set
	An Improved Parameterized Approximation Schema

	Parametrization by the Vertex Cover Number
	Conclusion
	References


