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Abstract We explore the complexity of counting solutions to conjunctive queries,
a basic class of queries from database theory. We introduce a parameter, called the
quantified star size of a query φ, which measures how the free variables are spread in
φ. As usual in database theory, we associate a hypergraph to a query φ. We show that
for classes of queries for which these associated hypergraphs admit good decomposi-
tions, e.g., bounded width generalized hypertree decompositions, bounded quantified
star size exactly characterizes the subclasses of hypergraphs for which counting the
number of solutions is tractable. In the case of bounded arity, this allows us to fully
characterize the classes of hypergraphs for which counting the solutions is tractable.
Finally, we also analyze the complexity of computing the quantified star size of a
conjunctive query.
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1 Introduction

Conjunctive queries are a fundamental class of queries from database theory. Equiv-
alent to Select-Project-Join queries, they are the most basic class of database queries
and at the same time play an important role in practice. Furthermore, as Kolaitis and
Vardi [26] showed, conjunctive queries are intimitely connected to constraint sat-
isfaction problems, a central area from artificial intelligence. These features make
conjunctive queries the best-studied type of database queries.

A CQ-instance (A, φ) consists of a query φ, which is a logical first-order {∃, ∧}-
formula, also called primitive positive formula, and a finite structure (i.e., database)
A. The query result is

φ(A) := {a | (A, a) |= φ(x)},

that is, the set of assignments that make the query φ true.
The focus of most research on conjunctive queries has been the Boolean conjunc-

tive query problem (short CQ) which is, given an instance, to decide if the query
result of the instance is empty or not. This problem is well known to be NP-complete
and thus the main interest of study has been to identify tractable subclasses, so-called
“islands of tractability”, where CQ is tractable, i.e., can be solved in polynomial time.

One main direction in finding tractable classes of CQ-instances has been impos-
ing structural restrictions on the queries—or often more exactly on the hypergraph
associated to it—while the database is assumed to be arbitrary. In a seminal
paper Yannakakis [33] proved that ACQ, the restriction of CQ to acyclic queries,
is tractable. The main idea behind other structural restrictions is to extend this
result by generalizing it to “nearly acyclic” queries. This has lead to many dif-
ferent decompositions for graphs and hypergraphs and associated width measures
(see e.g., [10, 18, 30]). The common approach for these decompositions is to
group together vertices or edges (of the graphs or hypergraphs) into clusters of
some fixed constant size and to arrange these clusters into a tree satisfying certain
conditions. The resulting width measures are often sought to have two desirable
properties:

– For every k the class of queries of width k should be tractable, i.e., CQ should be
solvable in polynomial time.

– Given an instance, it should be possible to decide if there is a decomposition of
width k and construct one if it exists.

While decomposition techniques without the first property do not make any sense
in the context of conjunctive queries, the second property is sometimes relaxed.
For some decomposition techniques one does not actually need the decomposition
to solve CQ [8], a promise of the existence is enough. For other decomposi-
tions one only knows approximation algorithms that construct decompositions of a
width that is near the optimal width, which is enough to guarantee tractability of
CQ [2, 28].

More recently there has also been interest in enumerating all solutions to
conjunctive queries and in the corresponding counting question #CQ which is,
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given a CQ-instance, to determine the size of the query result. For enumera-
tion of the query answers it turns out that the picture is less clear than for
decision [3, 6, 21]. Also the situation for counting is more subtle: For quanti-
fier free queries—which correspond to queries without projections in the database
perspective—most commonly considered structural restrictions yield tractable count-
ing problems (see, e.g., [31]). While this is nice, it is not fully satisfying, because
quantifiers—which correspond to projections in database theory—are very natu-
ral and essential in database queries. While introducing projections does not make
any difference for the complexity of CQ, the situation for #CQ is dramatically
different. In [31] it is shown that even one single existentially quantified vari-
able is enough to make counting answers to CQ-instances #P-hard, even when
the associated hypergraph of the query is a tree (which implies width 1 for
all commonly considered decomposition techniques). It follows that the decom-
position techniques used for CQ are not enough to guarantee tractability for
counting.

In a previous paper [15] the authors of this paper have proposed a way out of
this dilemma for counting by introducing a parameter called quantified star size
for acyclic conjunctive queries. This parameter measures how the free variables
are spread in the query. We associated to a query φ(x) the list x of free vari-
ables, thus extending the hypergraph H = (V , E) associated to φ(x) with a set
S ⊆ V . Then the quantified star size is the size of a maximum independent set
consisting of vertices from the set S in some specified subhypergraphs of H. It
turns out that, under a widely believed assumption from parameterized complexity,
this measure precisely characterizes the tractable subclasses of acyclic conjunctive
queries.

1.1 Overview of the Results

1.1.1 Counting Solutions to Queries

In this paper we extend the results of [15] from acyclic queries to classes of queries
defined by commonly considered decomposition techniques. To do so we general-
ize the notion of quantified star size from acyclic queries to general conjunctive
queries. We show that every class of conjunctive queries that allows efficient count-
ing must be of bounded quantified star size—again under the same assumption
from parameterized complexity. We then go on showing that for all decomposition
techniques for conjunctive queries commonly considered in the literature, combin-
ing them with bounded quantified star size leads to tractable counting problems.
The key feature that makes this result work is the organization of atoms and vari-
ables into a tree of clusters that is prominent in all decomposition methods for
CQ known so far. Combining the results we get an exact characterization of the
subclasses of CQ-instances that allow tractable counting for commonly considered
classes defined by decomposition techniques. Let us illustrate these results for the
example of generalized hypertree decomposition [18], which is one of the most gen-
eral decomposition methods and one of the most studied too [18, 20, 30]. We have
that, under the assumption that FPT �= #W[1], for any (recursively enumerable)
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class C of hypergraphs of bounded generalized hypertreewidth the following state-
ments are equivalent:

– #CQ for instances in C can be solved in polynomial time
– C is of bounded quantified star size.

In our considerations, the arity of atoms of queries is not a priori bounded.
In this setting, there is no known ultimate measure resulting from a decompo-
sition method that fully characterizes tractability even for the decision problem
CQ. This explains why our characterizations are stated for each decomposition
method.

For bounded arity however, the situation is different. It is known that being of
bounded treewidth completely characterizes tractability for decision [22, 24] and
counting [12] for quantifier free instances. Combining [22, 24] and our results from
above we derive a complete characterization of tractability for #CQ in terms of tree
width and quantified star size of the underlying hypergraph for the bounded arity
case.

Note that our results are for counting with set semantics, i.e., we count each solu-
tion only once. Counting for bag semantics in which multiple occurences of identical
tuples are counted has already been essentially solved in [31].

1.1.2 Discovering Quantified Star Size

To exploit tractability results of the above kind it is helpful if the membership in a
tractable class can be decided efficiently, i.e., in our case if computing the quantified
star size of an instance is tractable. Therefore, we consider this “discovery problem”
of determining the quantified star size of queries in the second part of the paper.

In [15] it is shown that quantified star size of acyclic conjunctive queries can be
determined in polynomial time.

We show that computing the quantified star size of an instance is equivalent
to computing maximum independent sets in hypergraphs. Consequently, we cannot
expect a polynomial time algorithm for computing the quantified star size of gen-
eral CQ-instances. Fortunately, it turns out that for queries φ of generalized hypertree
width k and thus for all more restrictive decomposition techniques like hingetree
width (see [10]) or treewidth, there is an algorithm that computes in time |φ|O(k) the
quantified star size of φ. We show that this is in a sense optimal, because computing
the quantified star size of a given query φ is W[1]-hard parameterized by the gen-
eralized hypertree width of φ. Thus, under the standard assumption FPT �= W[1],
there is no fixed-parameter algorithm for this problem.

Still, if we parameterize the computation of quantified star size by more restric-
tive width measures, computing the quantified star size of conjunctive queries in
some cases becomes fixed-parameter tractable. We prove that this is the case queries
if we parameterize by hingetree width. Because of the connection between quanti-
fied star size and maximum independent set, this result provides a new parameter
of hypergraphs for which computing maximum independent sets is fixed-parameter
tractable. Note that theW[1]-hardness result from above shows that fixed-parameter
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tractability of computing maximum independent sets is unlikely to hold for other
hypergraph decomposition techniques.

We then turn our attention to the approximation of quantified star size. We show
that there is a polynomial time algorithm that, given a query φ and a decomposition of
φ of width k, computes in time independent of k a k-approximation of the quantified
star size of φ.

Summing these results up, quantified star size does not only imply tractable
counting if combined with well known decomposition techniques, but in case the
decomposition is given or can be efficiently computed (treewidth, hingetree width)
or approximated (generalized hypertreewidth), then computing quantified star size is
itself tractable.

We show that this is in a sense optimal, because under the assumption FPT �=
W[1] there is no efficient (fixed paramater tractable in k) algorithm computing the
quantified star size for queries parameterized by generalized hypertree width.

Finally, we investigate the problem of counting solution and computing quantified
star size for queries of bounded fractional hypertree width [23, 28]. This decom-
position method is of a somewhat different nature than the ones studied before so
we treat it individually. We again prove that counting is tractable in this setting and
that the discovery problem can be decided in O(nkO(1)

), i.e., with a slightly bigger
dependency in k than before.

2 Preliminaries

In this section, we introduce the basic definitions and the notation we will use
throughout the paper. We start off with a formal definition of conjunctive queries,
introduce some notions from parameterized complexity and then survey the graph
and hypergraph decompositions we will consider.

2.1 Conjunctive Queries

We give a brief introduction to conjunctive queries. More on the subject and, in
general, on database theory and finite model theory can be found in [1, 27]

A relational vocabulary is a set of relation symbols τ := {R1,R2, . . . ,R�}where
each Ri has an arity ri which we denote by arity(Ri ). A finite (relational) structure
A over τ , a τ -structure for short, is a tuple

(
A,RA

1 , . . . ,RA
�

)
where A is a finite set

called the domain ofA andRA
i ⊆ Ari is a relation of arity ri called the interpretation

of Ri .
We denote structures by calligraphic letters, e.g., A,B, . . .. For the corresponding

domains we use the corresponding roman letters, i.e., A is the domain of A, B the
domain of B and so on.

Let R ∈ τ with arity(R) = r and z̄ be a sequence z1, . . . , zr of (not necessar-
ily distinct) variables. Then, the expression R(z1, . . . , zr ) (short R(z̄)) is called an
atomic formula or atom. The scope var(R(z̄)) of this atom is defined as the set of
variables appearing in (z1, . . . , zr ).
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A quantifier free conjunctive query φ over a vocabulary τ is a logical formula of
the form

φ = Ri1(z̄1) ∧ . . . ∧ Ris (z̄s),

whereRij (z̄1) are atomic formulas withRij ∈ τ . We denote the set of variables of φ

by var(φ) := ⋃
j∈[s] var(Rij (z̄j )). The set of all atoms of φ is denoted by atom(φ).

A conjunctive query φ over τ is a formula φ = ∃x1 . . . ∃xtφ
′ where φ′ is

a quantifier free conjunctive query over τ and xj ∈ var(φ) for all j ≤ t .
The xj are called quantified variables. The set of variables of φ is defined as
var(φ) := var(φ′). The set of free variables of φ is defined as free(φ) :=
var(φ) \ {x1, . . . , xt }. We often write φ(ȳ) where {ȳ} = free(φ), to stress the free
variables.

A conjunctive query instance over τ , short CQ-instance, is a pair � = (A, φ)

where A is a finite τ -structure and φ is a conjunctive query over τ . � is called
quantifier free if the query φ is quantifier free.

Let � = (A, φ) be a quantifier free CQ-instance. An assignment to � is a map-
ping a : var(φ) → A. A partial assignment to � is a mapping a : X → A for
a subset X of var(φ). Let a : X → A and b : Y → A be two partial assign-
ments. We call a and b compatible, in symbols a ∼ b, if they agree on their common
variables, i.e., for all x ∈ X ∩ Y we have a(x) = b(x). Let R(z1, . . . , zr ) be
an atom of φ. We say that a satisfies R(z1, . . . , zr ) if (a(z1), . . . , a(zr )) ∈ RA.
We say that a satisfies � if it satisfies all of its atoms. In this case we write
(A, a) |= φ.

An assignment to a general, not necessarily quantifer free, CQ-instance � =
(A, φ) is a mapping a : free(φ) → A. An assignment a can alternatively be seen as
a tuple of dimension |free(φ)| indexed by the variables free(φ). Consequently, rela-
tions will also be seen either as sets of tuples or as list of assignments. An assignment
a : free(φ) → A satisfies � if there is an assignment a′ : var(φ) → A with a ∼ a′
such that the quantifier free query instance (A, φ′), where we get φ′ by deleting all
quantifiers from φ, is satisfied by a′. Again we write (A, a) |= φ. Observe that a′ is
in general not unique.

The query result φ(A) of a CQ-instance � = (A, φ) is defined as

φ(A) := {a | (A, a) |= φ(x̄)}.
The elements of the query result are called solutions of the query instance or satisfy-
ing assignments or query answers. We call two instances � = (A, φ), �′ = (A′, φ′)
solution equivalent, if free(φ) = free(φ′) and φ(A) = φ′(A′).

Let a : X → A be an assignment and Y ⊆ X. By a|Y we denote the restriction
of a onto Y . Similarly, if R is a relation indexed by X, i.e., such that each a ∈ R
is interpreted as an assignment a : X → A then, πY (R) := {a|Y | a ∈ R} denotes
the projection of R onto Y . Throughout the paper we will make use of the following
classical database operations on relations.

Definition 1 Let R1 and R2 be two relations indexed by the variables X and Y ,
respectively (X and Y being not necessarily disjoints). The natural join of R1 and
R2 is

R1 �
 R2 := {a : X ∪ Y → A | a|X ∈ R1, b|Y ∈ R2}.
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The semi-join ofR1 and R2 is defined as R1 �R2 := πX(R1 �
 R2).

2.2 Model of Computation and Encoding of Instances

The underlying model of computation for our algorithms will be the RAM model
with addition as basic operation and with unit costs measure. We assume the relations
of a finite structureA to be encoded by listing their tuples. Apart from this convention
we will not specify an encoding but only give estimates on its size in O-notation that
will be satisfied by any reasonable encoding.

Let A be a τ -structure. For a relation RA let |RA| denote the cardinality of RA.
Then we define forRA

‖RA‖ := arity(R) · |RA|.
For the vocabulary τ let |τ | be the number of predicate symbols. Finally, let |A| be
the cardinality of a domain A. Then for a structure A over the vocabulary τ with
domain A we define

‖A‖ := |τ | + |A| +
∑

R∈τ

‖RA‖.

Furthermore, we define for a conjunctive query

|φ| :=
∑

φ′∈atom(φ),
R relation symbol of φ′

arity(R).

Finally, for a CQ-instance � = (A, φ) we define

‖�‖ := |φ| + ‖A‖.
Note that for any reasonable encoding, up to constant factors, ‖A‖ is the size of
an encoding of A, |φ| is the size of an encoding of φ and ‖�‖ is the size of an
encoding of �. For a detailed discussion and justification of these conventions see
[16, Section 2.3].

The following lemma states that the basic database operations we considered
above can be performed efficiently.

Lemma 1 ([16]) Given relationsR1 and R2 and Y ⊆ var(R), one can compute

– R1 �
 R2 in time O(‖R1‖ + ‖R2‖ + ‖R1 �
 R2‖),
– πY (R1) in time O(‖R1‖),
– R1 �R2 in time O(‖R1‖ + ‖R2‖).

We will use Lemma 1 throughout the paper, most of the time without explicitly
referencing it.

2.3 Query Problems

The basic computational question on CQ-instances is the Conjunctive query answer-
ing problem.
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Clearly, ‖φ(A)‖ can be exponential in ‖�‖ and thus we cannot have a polynomial
time algorithm. The Boolean conjunctive query problem is defined as follows.

The main focus in this paper will be on the associated counting problem #CQ.

2.4 Parameterized Complexity

This section is a very short introduction to some notions from parameterized
complexity used in the remainder of this paper. For more details see [17].

A parameterized decision problem over an alphabet � is a language L ⊆ �∗
together with a computable parameterization κ : �∗ → N. The problem (L, κ)

is said to be fixed-parameter tractable, or (L, κ) ∈ FPT, if there is a computable
function f : N → N such that there is an algorithm that decides for x ∈ �∗ in time
f (κ(x))|x|O(1) if x is in L.

Let (L, κ) and (L′, κ ′) be two parameterized decision problems over the alphabets
�, resp. 	. A parameterized many-one reduction from (L, κ) to (L′, κ ′) is a function
r : �∗ → 	∗ such that for all x ∈ �∗:

– x ∈ L ⇔ r(x) ∈ L′,
– r(x) can be computed in time f (κ(x))|x|c for a computable function f and a

constant c, and
– κ ′(r(x)) ≤ g(κ(x)) for a computable function g.

It is easy to see that FPT is closed under parameterized many-one reductions.
Let p-Clique be the following parameterized problem.

Here the parameterization κ is simply defined by κ(G, k) := k. The class W[1]
consists of all parameterized problems that are parameterized many-one reducible to
p-Clique. A problem (L, κ) is called W[1]-hard, if there is a parameterized many-
one reduction from p-Clique to (L, κ).

Theory Comput Syst (2015) 57:1202–1249 1209



It is widely believed that FPT �= W[1] and thus in particular p-Clique and all
W[1]-hard problems are not fixed-parameter tractable.

Parameterized counting complexity theory is developed similarly to decision com-
plexity. A parameterized counting problem is a function F : �∗ × N → N, for an
alphabet �. Let (x, k) ∈ �∗ × N, then we call x the input of F and k the parameter.
A parameterized counting problem F is fixed-parameter tractable, or F ∈ FPT, if
there is an algorithm computing F(x, k) in time f (k) · |x|c for a computable function
f : N → N and a constant c ∈ N.

Let F : �∗ × N → N and G : 	∗ × N → N be two parameter-
ized counting problems. A parameterized parsimonious reduction from F to G

is an algorithm that computes, for every instance (x, k) of F , an instance (y, l)

of G in time f (k) · |x|c such that l ≤ g(k) and F(x, k) = G(y, l) for com-
putable functions f, g : N → N and a constant c ∈ N. A parameterized
T -reduction from F to G is an algorithm with an oracle for G that solves any
instance (x, k) of F in time f (k) · |x|c in such a way that for all oracle queries
the instances (y, l) satisfy l ≤ g(k) for computable functions f, g and a constant
c ∈ N.

Let p-#Clique be the following problem.

A parameterized problem F is in #W[1] if there is a parameterized T -reduction
from F to p-#Clique. F is #W[1]-hard, if there is a parameterized T -reduction from
p-#Clique to F . As usual, F is #W[1]-complete if it is in #W[1] and hard for it,
too.

Again, it is widely believed that there are problems in #W[1] (in particular the
#W[1]-complete problems) that are not fixed-parameter tractable. Thus, from show-
ing that a problem F is #W[1]-hard it follows that F can be assumed to be not
fixed-parameter tractable.

We will mainly deal with two parameterized problems that are versions of CQ and
#CQ parameterized by the size of the input query. This parameterization is justified
by the origins from database theory. In a typical database application the query is
usually far smaller than the database, so it makes sense to use the size of the query as a
parameter.
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2.5 Graphs and Hypergraphs Associated to Queries

As remarked before, CQ and #CQ are hard computational problems. One way to
isolate islands of tractability, is to analyze structural aspects of the query. A key idea
for this is to associated graphs and hypergraphs to queries.

A (finite) hypergraph H is a pair (V , E) where V is a finite set and E ⊆ P(V )

where P(V ) is the power set of V . The arity of H is maxe∈E |e|. We associate a
hypergraph H = Hφ = (V , E) to a query φ by setting V := var(φ) and E :=
{var(φt ) | φt ∈ atom(φ)}.

Example 1 Consider the query

φ := ∃u1∃u2∃u3∃u4∃u5∃u6∃u7∃u8

P1(v1, u1) ∧ P2(v2, u1, u2) ∧ P3(v2, v4, u2, u3)

∧P4(v3, v4, v5, u3, u4, u5) ∧ P5(v4, v5, v6, v8)

∧P6(v7, v8, u5, u6) ∧ P2(v6, v9, u7) ∧ P2(v8, v9, u8)

The associated hypergraph is illustrated in Fig. 1.

One also associates graphs to queries as follows: Let φ be a query with the asso-
ciated hypergraph H = (V , E), then one associates to φ the so-called primal graph
HP = (V , Ep) where for every u, v ∈ V we have uv ∈ Ep if and only if there is an
edge e ∈ E with u, v ∈ E.

2.6 Graph and Hypergraph Decompositions

We now introduce several decomposition techniques for graphs and hypergraphs that
will be used in the rest of this paper to analyze the complexity of counting solutions
to queries.

2.6.1 Treewidth

We first present some basic facts on treewidth. All proofs can be found in the survey
by Bodlaender [5] and the references therein.

Fig. 1 The hypergraph
associated to the query φ

of Example 1
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Unless stated otherwise all graphs are nonempty, finite, undirected and simple,
i.e., they have no parallel edges or loops. In contrast, trees are always assumed to be
rooted and thus directed.

The treewidth of a graph G is a measure of how similar G is to a tree. There are
several equivalent definitions for treewidth of which we will first present the one by
Robertson and Seymour [32].

Definition 2 A tree decomposition of a graph G = (V , E) is a pair (T , (χt )t∈T )

where T = (T , F ) is a rooted tree and χt ⊆ V for every t ∈ T satisfying the
following properties:

1. For every v ∈ V there is a t ∈ T with v ∈ χt .
2. For every e ∈ E there is a t ∈ T such that e ⊆ χt .
3. For every v ∈ V the set {t ∈ T | v ∈ χt } induces a subtree of T .

The third property is called the connectedness condition. The sets χt are called blocks
or bags of the decomposition.

We call maxt∈T (|χt |) − 1 the width of the tree composition (T , (χt )t∈T ). The
treewidth tw(G) of G is the minimum width over all tree decompositions of G.

To ease notation we sometimes identify a vertex t ∈ T with the corresponding bag
χt .

We remark that the class of graphs of treewidth 1 consists exactly of all forests,
i.e., the graphs that have trees as their connected components. In particular, trees have
treewidth 1.

Example 2 Given the graph G from Fig. 2, a tree decomposition of G is given in
Fig. 3.

Given a graph G and an integer k, it is NP-complete to decide if G has treewidth
G at most k, but if we take k as a parameter the problem becomes fixed-parameter
tractable.

Fig. 2 The graph G of Example 2
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Fig. 3 A tree decomposition of width 2 of the graph G of Fig. 2

Theorem 1 ([4]) There is a polynomial p and an algorithm that, given a graph
G = (V , E), computes a tree decomposition of G of width k := tw(G) in time at
most 2p(k)|V |.

We will use the following folklore results.

Lemma 2 ([13], Chap. 12) Let G = (V , E) be a graph, C ⊆ V a clique in G and
(T , (χt )t∈T ) a tree decomposition of G. Then there is a bag χt such that C ⊆ χt .

Lemma 3 ([17], Chap. 11) Every graph G of treewidth at most k has a vertex of
degree at most k.

We will also use an alternative definition of treewidth by so-called elimination
orders.

Definition 3 Let G = (V , E) be a graph with |V | = n. A bijection π : V → [n]
is called an elimination order. We say that u is higher-numbered than v with respect
to π if π(u) > π(v). The fill-in graph Gπ of G with respect to π is constructed
iteratively: Starting from G, for i = 1, . . . , |V | we add an edge between all pairs
u, w of neighbors of π−1(i) that are higher-numbered than π−1(i).

The width of π is the minimum integer k such that in Gπ each vertex v ∈ V has
at most k higher-numbered neighbors.

The elimination width elim-width(G) of G is the minimum width over all
elimination orders of G.

Example 3 We consider again the graph G of Fig. 2. An elimination order π is
defined by the sequence A, B, I, H, G, C, D, E, F . The fill-in graph Gπ is shown
in Fig. 4. The width of π is 2.

Elimination orders give the following characterization of treewidth which appears
to be folklore. A proof can be found e.g., in [5].

Lemma 4 For every graph G we have elim-width(G) = tw(G).

Theory Comput Syst (2015) 57:1202–1249 1213



Fig. 4 The fill-in graph Gπ of Example 3 defined by the sequence A,B, I,H,G,C,D,E, F . The edges
added during the construction of Gπ from G are represented as dotted lines

2.6.2 Hypergraph Decomposition Techniques

In this section we present some well known hypergraph decomposition tech-
niques. For more details on hypergraph decompositions see e.g., [10, 18, 30].
For all decomposition techniques defined below, the width of a CQ-instance
� = (A, φ) is simply defined as the width of the hypergraph associated
to φ.

The simplest idea to generalize treewidth to hypergraphs is considering primal
graphs and to define the treewidth of a hypergraph H to be treewidth of its primal
graphHP . By Lemma 2, classes of hypergraphs that have unbounded edge size are of
unbounded treewidth even when the hypergraphs are intuitively very simple. Conse-
quently, treewidth is, for some considerations on hypergraphs, not the right measure
of the complexity of a hypergraph. Thus research focussed on finding decomposi-
tions that work with hypergraphs directly and not with their primal graphs. The base
class of hypergraphs that roughly corresponds to trees in the setting of treewidth are
acyclic hypergraphs which are defined with the help of join trees which organize
the edges of a hypergraph in a tree with a connectivity condition similar to that for
treewidth.

Definition 4 A join tree of a hypergraph H = (V , E) is a pair (T , (λt )t∈T ) where
T = (T , F ) is a rooted tree and for each t ∈ T we have λt ∈ E such that

– for each e ∈ E there is a t ∈ T such that λt = e,
– For each v ∈ V the set {t ∈ T | v ∈ λt } induces a subtree of T .

A hypergraph is called acyclic if it has a join tree.
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When there is no ambiguity, we often identify vertices t ∈ T with their edges λt .

Lemma 5 ([33]) There is a polynomial time algorithm that, given a hypergraph H,
decides if H is acyclic. Moreover, if H is acyclic the algorithm computes a join tree
ofH.

A conjunctive query φ is called acyclic if its associated hypergraph is acyclic.
Acyclic conjunctive queries play an important role in database theory, because of

the following result by Yannakakis [33].

Theorem 2 ([33]) ACQ can be solved in polynomial time.

Theorem 2 served as a starting point to finding more general classes of hyper-
graphs on which CQ is tractable, by trying to identify classes of “nearly” acyclic
hypergraphs. There are lots of different decomposition techniques and associ-
ated width measures for hypergraphs. One of the most general width measures is
generalized hypertree width.

The approach of generalized hypertree decomposition is similarly to that of tree
decompositions: We want to organize a hypergraph into clusters that form a tree with
a connectivity condition. Instead of bags that contain vertices and that must cover all
edges, the basic clusters of generalized hypertree decompositions are guarded blocks
(λt , χt ) where λt contains edges while χt contains vertices. To make sure that the
vertices χt of a guarded block form a sufficiently simple set, we demand that χt is
covered by the edges in λt and that λt is small. To make sure that the decomposition
represents the hypergraph well, we require that every edge must be contained in a set
χt (but not necessarily in a λt ). We now give the exact definition.

Definition 5 A generalized hypertree decomposition of a hypergraph H = (V , E)

is a triple (T , (λt )t∈T , (χt )t∈T ) where T = (T , F ) is a rooted tree and λt ⊆ E and
χt ⊆ V for every t ∈ T satisfying the following properties:

– For every e ∈ E there is a t ∈ T such that e ⊆ χt .
– For every t ∈ T we have χt ⊆ ⋃

e∈λt
e.

– For every v ∈ V the set {t ∈ T | v ∈ χt } induces a subtree of T .

The third property is again called the connectedness condition. The sets χt are called
blocks or bags of the decomposition, while the sets λt are called the guards of the
decomposition. A pair (λt , χt ) is called guarded block.

The width of a decomposition (T , (λt )t∈T , (χt )t∈T ) is maxt∈T (|λt |). The gener-
alized hypertree width of H is the minimum width over all generalized hypertree
decompositions ofH.

Again, we sometimes identify a guarded block (λt , χt ) with the vertex t .

Example 4 Figure 5 shows a generalized hypertree decomposition of width 3 for the
hypergraph from Fig. 1.
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Fig. 5 A generalized hypertree decomposition of width 3 for the hypergraph from Fig. 1. The boxes are
the guarded blocks. In the upper parts the guards are given while the lower parts show the blocks. On the
left part, a name is given to each node

We give the following very easy upper bound for generalized hypertree width.

Observation 3 Let H = (V , E) be a hypergraph such that there are k edges
e1, . . . , ek in E with V ⊆ ⋃k

i=1 ei . Then H has generalized hypertree width
at most k.

Proof We will construct a trivial width k generalized hypertree decomposition
(T , (λt )t∈T , (χt )t∈T ) ofH. The tree T only consists of one single vertex t , the block
of t is χt := V and the guard is λt := {e1, . . . , ek}. It is easily seen that this satisfies
all desired properties of a hypertree decomposition. Furthermore, the decomposition
has width k.

It turns out the generalized hypertree width is strictly more general than treewidth
in the following sense.

Lemma 6 ([18]) For every hypergraph H the generalized hypertree width is less
than or equal to 1+ tw(H). Moreover, for every � there are hypergraphs of treewidth
� and generalized hypertree width 1.

Unfortunately, deciding if a hypergraph has generalized hypertree width at most k
is NP-complete even for k = 3 [20]. This unpleasant result is amended by the fact
that there is an approximation algorithm.

Theorem 4 ([2, 19]) There is an algorithm that, given a hypergraphH of generalized
hypertree width k, constructs a generalized hypertree decomposition of width O(k)

of H in time |H|O(k).

A hypergraph is acyclic if and only if it has generalized hypertree width 1. With
this result the following lemma is easy to prove.

Lemma 7 Let (T , (λt )t∈T , (χt )t∈T ) be a generalized hypertree decomposition of a
hypergraph H. Let H′ = (V , E′) where E′ := {χt | t ∈ T }. Then H′ is acyclic and
(T , (χt )t∈T ) is a join tree of H′.
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Next we state a lemma that in different forms is (implicitly) used in most papers
that deal with the application of hypergraph decomposition techniques to CQ, see
e.g., [19]. The main observation here is that we make explicit that the construction is
solution equivalent.

Lemma 8 Given a CQ-instance � with associated hypergraphH and a generalized
hypertree decomposition of H of width k, one can compute an ACQ-instance � in
time ‖�‖O(k) such that � and � are solution equivalent.

Proof Let � = (A, φ) and let the given generalized hypertree decomposition be
(T ′, (λt )t∈T , (χt )t∈T ). We construct � = (B, ψ) with var(ψ) = var(φ) as follows:
For every t ∈ T the query ψ has an atom ψt with relation symbolRt and var(ψt ) :=
χt . The quantifiers are the same as for φ. For every t ∈ T let φ1, . . . , φs be the atoms
associated to the edges in λt . We have s ≤ k. Let φ′

1, . . . , φ
′
� be the atoms associated

to the edges e with e ⊆ χt . Then we define the relationRB
t as

RB
t := πχt (φ1(A) �
 . . . �
 φs(A)) �
 φ′

1(A) �
 . . . �
 φ′
�(A).

We claim that φ and ψ are solution equivalent. First consider an assignment a that
satisfies all atoms of φ. Then we have for every subset φ′

1, . . . , φ
′
r of atom(φ) that

the assignment a is compatible to an assignment in φ′
1 �
 . . . �
 φ′

r . If follows that
for each t the new atom ψt is satisfied by a. Consequently, φ(A) ⊆ ψ(B).

Let now a be an assignment that satisfies all atoms of ψ . Then a must for each
t satisfy the atoms φ′

i from the construction of RB. But since each edge e of H is
covered by a set χt ′ , every atom in atom(φ) contributes as a φ′

i in the construction of
a φt . Consequently, a satisfies all atoms of φ and thus ψ(B) ⊆ φ(A).

We claim that this construction can be done in time ‖�‖O(k). To see this, observe
that the relation Aλt := πχt (φ1(A) �
 . . . �
 φs(A)) has size at most ‖A‖s ≤
‖A‖k . Since for the φ′

i we have var(φ′
i ) ⊆ χt , it follows that RB

t ⊆ Aλt and thus
consequently ‖RB

t ‖ ≤ ‖A‖k . With Lemma 1 it follows that we can compute RB
t in

time |φ|‖A‖O(k). Thus computing the instance � takes time ‖�‖O(k).

Finally, by Lemma 7 we have that � is acyclic.

The combination of Theorem 2 and Lemma 8 allows to solve CQ-instances in time
‖�‖O(k) provided that a generalized hypertree decomposition of width k is given.
Thus the bottleneck for solving CQ-instances for many proposed decomposition
techniques is the efficient computation of a good decomposition of the instance.

Let us fix some notation: For an edge set λ ⊆ E we use the shorthand⋃
λ := ⋃

e∈λ e. For a decomposition (T , (λt )t∈T , (χt )t∈T ) we write Tt for the
subtree of T that has t as its root and denote by V (Tt ) ⊆ T its vertex set. We
also write χ(Tt ) := ⋃

t ′∈V (Tt )
χt ′ . We use these notations for tree decompositions

as well.
It is sometimes helpful to consider restrictions of generalized hypertree decom-

positions, because those might have better structural or algorithmic properties. A
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number of them have been defined and studied in the past, among others bicon-
nected component, cycle-cutset, cycle-hypercutset, hingetree, hypertree decomposi-
tion (see [30] for a survey). Hingetree decomposition will play a role in this paper
and we define it formally below.

Definition 6 A generalized hypertree decomposition is called hingetree decomposi-
tion if it satisfies the following conditions:

– For each pair t1, t2 ∈ T with t1 �= t2 there are edges e1 ∈ λt1 and e2 ∈ λt2 such
that χt1 ∩ χt2 ⊆ e1 ∩ e2.

– For each t ∈ T we have
⋃

λt = χt .
– For each e ∈ E there is a t ∈ T such that e ∈ λt .

The hingetree width (also called degree of cyclicity) ofH is the minimum width over
all hingetree decompositions ofH.

Note that this is not the original definition from [25] but an alternative, equivalent
definition from [10].

Example 5 The decomposition from Fig. 5 is also a hingetree decomposition since:

– χb1 ∩ χb = {v4, u3} ⊆ {v2, v4, u2, u3} ∩ {v3, v4, v5, u3, u4, u5} ∈ λb1 ∩ λb

– χb2 ∩ χb = {v4, v5, v6, v8} ∈ λb2 ∩ λb

Like treewidth, hingetree width is strictly less general than generalized hypertree
width in the following sense.

Lemma 9 ([18]) For every hypergraph the generalized hypertree width is less than
or equal to the hingetree width. Moreover, there are hypergraphs for which the
generalized hypertree width is strictly less than the hingetree width.

Hingetree width makes up for this lack of generality by the fact that optimal
decompositions can be computed very efficiently.

Lemma 10 ([25]) There is an algorithm that, given a hypergraph H = (V , E),
computes a minimum width hingetree decomposition ofH in time |V | · |E|2.

Since the presented decomposition techniques are all easy to compute, we get the
following lemma.

Lemma 11 (see e.g., [10]) For all of the width measures defined above CQ restricted
to instances � of width k can be solved in time ‖�‖p(k) for a polynomial p.
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3 Quantified Star Size

As proved in [31], even introducing one single existential quantifier in acyclic con-
junctive queries leads to #P-complete counting problems. It follows that bounding
the number of quantified variables does not yield tractable instances. In [15] we have
shown a corresponding #W[1]-hardness result for p-#ACQ: We presented a class of
hard instances for parameterized complexity which have a very simple form.

Lemma 12 ([15]) Let φstar,n := ∃z
∧

i∈[n] Ri (z, yi) and let Cstar := {φstar,n | n ∈
N}. Then p-#CQ is #W[1]-hard for instances restricted to queries in Cstar.

For an alternative proof of Lemma 12 see [29].
A basic observation on the hard instances of Lemma 12 is that their associated

hypergraphs are stars whose center is the single quantified variable. Abstracting this
observation, we shall define the parameter called quantified star size which, when
bounded and combined with known decomposition techniques, leads to tractable
#CQ-instances. This parameter has been introduced in [15] for acyclic queries and
we generalize it here to the general setting. As we will see, not the number of quan-
tified variables in a query is crucial but how they are distributed in the associated
hypergraph.

Before we introduce quantified star size, we make several other definitions.
Let H = (V , E) be a hypergraph and V ′ ⊆ V . A subhypergraph H′ = (V ′, E′)

of H is a hypergraph with E′ ⊆ {e ∩ V ′ | e ∈ E, e ∩ V ′ �= ∅}. The induced sub-
hypergraph H[V ′] of H is the hypergraph H[V ′] = (V ′, E′) where, this time, E′ =
{e ∩ V ′ | e ∈ E, e ∩ V ′ �= ∅}. Let x, y ∈ V , a path between x and y is a sequence of
vertices x = v1, ..., vk = y such that for each i ∈ [k−1] there is an edge ei ∈ E with
vi, vi+1 ∈ ei .

A (connected) component ofH is an induced subhypergraphH[V ′] where V ′ is a
maximal vertex set such that for each pair x, y ∈ V ′ there is a path between x and y

inH. These definitions apply to graphs as well.
We will use the following observation on induced subgraphs of acyclic hyper-

graphs.

Observation 5 Let β be any decomposition technique defined in Section 2.6. Let
H = (V , E) be a hypergraph of β-width k. Then for every V ′ ⊆ V the induced
subhypergraphH[V ′] has β-width at most k.

Proof Let (T , (λt )t∈T , (χt )tinT ) be a β-decomposition of H of width k. For each
guarded block (λt , χt ) compute a guarded block (λ′

t , χ
′
t )with χt := χt ∩V ′ and λt :=

{e ∩ V ′ | e ∈ λ}. It is easy to check that (T , (λ′
t )t∈T , (χ ′

t )tinT ) is a β-decomposition
of width at most k.

Since acyclic hypergraphs are the hypergraphs of generalized hypertree width 1,
we get the following special case.
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Observation 6 If H = (V , E) is an acyclic hypergraph and V ′ ⊆ V , then H[V ′] is
acyclic. More specifically, let (T , (λ)t∈T ) with T = (T , F ) be a join tree of H. Then
(T [T ′], (λt ∩ V ′)t∈T ′) where T ′ := {t ∈ T | λt ∩ V ′ �= ∅} can be made into a join
tree ofH[V ′] by connecting the components of T [T ′] arbitrarily.

Observe that there is no version of Observation 5 or Observation 6 for sub-
hypergraphs instead of induced subhypergraphs. To see this consider an arbitrary
hypergraph H = (V , E). Adding the edge V to E yields an acyclic hypergraph,
independent of the generalized hypertree width ofH.

Definition 7 An S-hypergraph is a pair (H, S) where H = (V , E) is a hypergraph
and S ⊆ V . If H is a graph, we also call (H, S) an S-graph.

The S-hypergraph associated to a CQ-instance � = (A, φ) consists of the hyper-
graph associated to φ and S := free(φ). The primal S-graph of H is defined as
(HP , S).

Definition 8 Let G be a class of S-hypergraphs. By #CQ on G we denote the restric-
tion of #CQ to instances whose associated S-hypergraph is in G . Analogously, by
p-#CQ on G we denote the restriction of p-#CQ to instances whose associated
S-hypergraph is in G .

Definition 9 We call an S-hypergraph S-connected if for every pair of vertices x, y

there is a path x = v1, v2, . . . , vk−1, vk = y such that vi /∈ S for i /∈ {1, k}.

Let us consider some examples of queries that have S-connected S-hypergraphs.

Example 6 Path queries (of arbitrary length), for example

φ(x, y) := ∃t1∃t2∃t3R(x, t1) ∧ R(t1, t2) ∧ R(t2, t3) ∧ R(t3, y)

have as their associated S-hypergraph a path in which only the end vertices are in S.
Thus their S-hypergraph is S-connected.

Example 7 The associated graph of the query φstar,n of Lemma 12 is the star Gn =
(Vn, En) where Vn = {z, y1, . . . , yn} and En = {zy1, . . . , zyn}. Furthermore, the
free variables are Sn = {y1, . . . , yn}. Every vertex in Vn is connected to every other
vertex via z /∈ Sn. Thus (Gn, Sn) is Sn-connected.

Definition 10 An independent set I in a hypergraph H = (V , E) is a set I ⊆ V

such that there are no distinct vertices x, y ∈ I that lie in a common edge e ∈ E.

Note that independent sets defined this way are in the hypergraphs literature often
called strong independent sets. There is also the notion of weak independent set
where we only require that no edge lies completely in the set I . Since we will only
talk about strong independent sets and there is thus no danger of confusing the two
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notions, we will simply talk about independent sets always implying the strongness
implicitly.

Definition 11 The S-star size of an S-connected S-hypergraph is the maximum
size of an independent set consisting of vertices in S only. We say that such an
independent set forms an S-star.

We remark that the S-star size of an S-connected S-hypergraph can equivalently
be expressed as the the size of a maximum independent set inH[S].

Example 8 The S-hypergraphs associated to the path queries of Example 6 have
S-star size 2, because the two end vertices of the paths are independent.

Now consider the Sn-hypergraph (Gn, Sn) from Example 7. The vertices of Sn are
all independent. Consequently, the Sn-star size of (Gn, Sn) is n.

Note that while the quantified star size of instances whose associated hypergraph is
a path is bounded by 2, the S-star size of bounded pathwidth instances is unbounded.
To see this, observe that the Sn-hypergraph (Gn, Sn) from above has pathwidth 1: The
decomposition (P, (χt )t∈T ) where P is the path with vertex set [n] and χi := {z, yi},
is a path decomposition of Gn of width 1.

We want to extend the notion of S-star size to S-hypergraphs that are not necessar-
ily S-connected. To this end, we consider certain S-connected subhypergraphs that
we call S-components. We make the following crucial definition.

Definition 12 Let H = (V , E) be a hypergraph and S ⊆ V . Let C be the vertex set
of a connected component of H[V − S]. Let EC be the set of hyperedges {e ∈ E |
e ∩ C �= ∅} and V ′

C := ⋃
e∈EC

e. ThenH[V ′
C] is called an S-component ofH.

Example 9 Let us consider the S-hypergraph of the query from Example 1. The
associated hypergraph H was already illustrated in Fig. 1. We have S = {v1, ..., v9}.
Then H[V \ S] has three components with the vertex sets C1 := {u7}, C2 := {u8}
and C3 := {u1, . . . , u6}. Thus
– EC1 = {{u7, v6, v9}

}
,

– EC2 = {{u8, v8, v9}
}
, and

– EC3 = {{u1, v1}, {u1, u2, v2}, {u2, u3, v2, v4},
{u3, u4, u5, v3, v4, v5}, {u5, u6, v7, v8}

}
.

Hence, the vertex sets of the components are: V ′
C1

= {u7, v6, v9}, V ′
C2

= {u8, v8, v9}
and V ′

C3
= {u1, u2, u3, u4, u5, u6, v1, v2, v3, v4, v5, v7, v8}. The three resulting S-

components are depicted in Fig. 6.

The following observations are evident from the definition.

Observation 7 To an S-hypergraph (H, S) one can in polynomial time compute all
its S-components.
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Fig. 6 The S-components of the S-hypergraph discussed in Example 9

Observation 8 The only S-component of an S-connected S-hypergraph (H, S) isH.
Moreover, the S-components of S-hypergraphs are S-connected.

Observation 8 allows to extend the definition of S-star size to not necessarily S-
connected hypergraphs.

Definition 13 For an S-hypergraph (H, S) we define S-star size as the maximum
S-star size of its S-components.

Example 10 Let us compute the S-star size of the S-hypergraph of Example 9.
The S-components induced by V ′

C1
and V ′

C2
are completely covered by the edges

{u7, v6, v9}, resp., {u8, v8, v9}. It follows that the S-star size of these S-components
is 1. We have VC3 ∩S = {v1, v2, v3, v4, v5, v7, v8}. There are several maximum inde-
pendent sets of vertices in VC3 ∩ S in the S-component induced by VC3 , all of size 4.
An example is {v1, v2, v3, v7}. It follows that the S-star size of (H, S) is 4

Nowwe can finally come back to CQ-instances and define the promised parameter
quantified star size.

Definition 14 The quantified star size of a conjunctive query is defined as the S-star
size of the associated S-hypergraph. The quantified star size of a CQ-instance is that
of its query.

Example 11 The query from Example 1 has quantified starsize 4 as we have seen
in Example 10. From Example 8 we get that the queries φstar,n of Lemma 12 are of
quantified star size n, which is nearly the size of the query.

4 Quantified Star Size is Sufficient and Necessary for Efficient Counting

In this section we analyze the effect of quantified star size on the complexity of #CQ.
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4.1 An Algorithm for Instances of Bounded Quantified Star Size

In this section we show that the decomposition techniques introduced in Section 2.6
lead to efficient counting when combined with bounded quantified star size. We
proceed with the following rather technical lemma.

Lemma 13 There is an algorithm that, given a CQ-instance � = (A, φ) of quanti-
fied starsize � and a generalized hypertree decompositionΞ = (T , (λt )t∈T , (χt )t∈T )

of � of width k, constructs a CQ-instance � = (B, ψ) in time ‖�‖p(k,�) for a fixed
polynomial p such that

– � and � are solution equivalent,
– � is acyclic, and
– ψ is quantifier free.

In the proof we will use the following lemma from [15]. An edge cover of a
hypergraphH = (V , E) is a set E∗ of edges ofH such that V ⊆ ⋃

e∈E∗ e.

Lemma 14 ([15]) For acyclic hypergraphs the size of a maximum independent set
and a minimum edge cover coincide. Moreover, there is a polynomial time algorithm
that given an acyclic hypergraph H computes a maximum independent set I and a
minimum edge cover E∗ ofH.

Proof of Lemma 13 Given � = (A, φ), we construct � in several steps.
Let H = (V , E) be the hypergraph of φ. Let V1, . . . , Vm be the vertex sets of

the connected components of H[V \ S] and let V ′
1, . . . , V

′
m be the vertex sets of the

corresponding S-components ofH. Clearly, we have Vi ⊆ V ′
i and V ′

i \Vi = V ′
i ∩S =:

Si . Let �i be the CQ-instance whose query φi is obtained by restricting all atoms of
φ to the variables in V ′

i and whose structureAi is obtained by projecting all relations
of A accordingly. The associated hypergraph of φi is H[V ′

i ]. Moreover, H[V ′
i ] has

a generalized hypertree decomposition Ξi of width at most k with a tree Ti that is a
subtree of T (see Observation 5).

Now fix i. To �i we construct a solution equivalent ACQ-instance �′
i = (A′

i , φ
′
i )

as in the proof of Lemma 8: For each t ∈ T we construct an atom φt in the variables
χt . The associated relation is given by

πχt

⎛

⎝
�
 φ′(Ai )

φ′ ∈ atom(φ) :
var(φ′) ∈ λt

⎞

⎠ �

⎛

⎝
�
 φ′(Ai )

φ′ ∈ atom(φi) :
var(φ′) ⊆ χt

⎞

⎠ ,

i.e., by taking the natural join of the relations belonging to the atoms of the guard
λt projected to χt and all relations of the atoms in φi whose variables lie in χt .
The decomposition Ξi has width at most k so this construction can be done in time
‖�‖O(k) as seen in the proof of Lemma 8. The query φ′

i of �′
i is defined as the

conjunction of the φt over all t ∈ Ti and with the same quantified variables as φ. By
Lemma 8, �i and �′

i are solution equivalent, we have ‖�′
i‖ ≤ ‖�i‖O(k) and φ′

i is
acyclic.
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Let Hi be the associated hypergraph of φ′
i , then (Hi , Si) has only one single Si-

component, because all the vertices in Vi are connected inH and thus also inHi .
We claim that the Si-star size of Hi is at most the Si-star size of H[V ′

i ]. To see
this, consider two independent vertices u, v in Hi . The edges e of Hi are equal to
the blocks χt of Ξi . Because u and v are independent in Hi , they do not appear
in a common block χt in Ξi . But then u and v cannot lie in one common edge
in H[Vi], because every edge in H

[
V ′

i

]
is contained in a block χt by definition

of generalized hypertree decompositions. So u and v are independent in H
[
V ′

i

]
as

well. Thus every independent set in Hi is also independent in H
[
V ′

i

]
. So the Si-

star size of Hi indeed is at most the Si-star size of H
[
V ′

i

]
which is at most � by

assumption.
Thus by Lemma 14 the vertices in Si can be covered by at most � edges e1, . . . , e�

in Hi which we can compute in polynomial time. Let α1, . . . , α� be the atoms
corresponding to the edges e1, . . . , e�.

We construct a new atomic formula φ′′
i in the variables Si and an associated

relation R′′
i as follows: For each combination a1, . . . , a� of compatible tuples in

α1
(
A′

i

)
, . . . , α�

(
A′

i

)
let a be the single tuple in πSi

({a1} �
 . . . �
 {a�}). We fix
the free variables in φ′

i to the constants prescribed by a. The result is a CQ-instance
�a with the associated hypergraph H[Vi]. By Observation 6 �a is acyclic and can
thus be solved in polynomial time with Theorem 2. If �a has a solution, add a to the
relation R′′

i . This completes the construction ofR′′
i .

Let A′′
i be the structure containing only the relation R′′

i . By construction, �′′
i :=(

A′′
i , φ

′′
i

)
is solution equivalent to �′

i and thus also to �i . Observe that the instances
�a can be solved in polynomial time by Theorem 2. Moreover, since ‖�′

i‖ ≤
‖�‖O(k), only ‖�‖O(k�) tuples a need to be considered. Thus �′′

i can be constructed
in time ‖�i‖p(k,�) for a polynomial p.

We now return to the original instance � and eliminate the quantified variables in
the query φ. To do so, we add the atom φ′′

i for i ∈ [m] and delete all atoms that contain
any quantified variable. Moreover, we add the relationR′′

i to the structureA. We call
the resulting #CQ instance �′′ = (A′′, φ′′). The overall runtime of the construction is
at most ‖�‖p(k,�). Also �′′ is solution equivalent to �, because

(
A′′

i , φ
′′
i

)
is solution

equivalent to �′
i .

We claim that �′′ has generalized hypertree width at most k. To show this we
construct a generalized hypertree decomposition Ξ ′′ of φ′′ by doing the following:
For each t ∈ T with χt ∩Vi �= ∅ we construct a guarded block

(
λ′

t , χ
′
t

)
by deleting all

edges e with e ∩ Vi �= ∅ from λt and adding the edge Si for φ′′
i . Furthermore we set

χ ′
t = (χt \ Vi) ∪ Si . It is easy to see that the result is indeed a generalized hypertree

decomposition of φ′′ of width at most k.
Finally, we construct an ACQ-instance � := (B, ψ) equivalent to �′′ with

Lemma 8.

We now directly get the desired counting result:

Corollary 1 #CQ on instances � of generalized hypertree width k and quantified
star size � can be solved in time ‖�‖p(k,l) for a polynomial p.
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Proof Use Theorem 4 to construct a generalized hypertree decomposition of width
O(k), then apply Lemma 13 and count with the algorithm of [31] or [15].

4.2 Bounded Quantified Star Size is Necessary

In this section we will show that bounded quantified star size is a necessary restric-
tion for tractable #CQ: Under the assumption FPT �= #W[1], all classes G of
S-hypergraphs for which p-#CQ is fixed-parameter tractable must have bounded
quantified star size. As polynomial time tractability trivially implies fixed-parameter
tractability, it follows that bounded quantified star size must also be necessary for
classes G of S-hypergraphs that allow polynomial time algorithms.

Let G be a class of S-hypergraphs. Remember that by #CQ on G we denote the
restriction of #CQ to instances whose associated S-hypergraph is in G . Analogously,
by p-#CQ on G we denote the restriction of p-#CQ to instances whose associated
S-hypergraph is in G .

We will use the fact that #CQ is already hard for very restricted S-hypergraphs,
namely those of the queries from the class Cstar from Lemma 12.

Theorem 9 Assume FPT �= #W[1], and let G be a recursively enumerable class of
S-hypergraphs. If p-#CQ is fixed-parameter tractable for G , then G is of bounded
S-star size.

Before proving Theorem 9, let us take some time to discuss its assumption,
because we will see this and similar assumptions throughout the rest of this paper.
The reader might feel that it would be more satisfying to prove a version of this
theorem not under the assumption FPT �= #W[1] from parameterized complex-
ity but instead to prove it based on a more standard assumption like FP �= #P.
Clearly, the statement would then have to change from “fixed-parameter tractable”
to “polynomial time tractable”, but this could still be preferable. Unfortunately, it
is unlikely that such a version of Theorem 9 can be proved. One can show that
assuming FP �= #P there are classes of S-graphs on which #CQ is neither in FP
nor #P-complete (see [29, Chapter 5.3]). Thus is seems unlikely that the theory of
#P-completeness suffices to identify the classes of S-hypergraphs on which #CQ is
tractable.

Furthermore, let us remark that if the reader feels uncomfortable with parameter-
ized complexity, he can safely exchange the assumption FPT �= #W[1] against the
so-called exponential time hypothesis which is the following conjecture.

Conjecture 1 (Exponential time hypothesis) 3-SAT cannot be solved in time 2o(n)

where n is the number of variables of the input.

The exponential time hypothesis implies FPT �= W[1] [14, Chapter 17] and thus
also FPT �= #W[1]. Hence Theorem 9 and several other results of this paper could
also be formulated with the assumption that the exponential time hypothesis is true
if the reader prefers an assumption from more classical complexity theory.

We will use the following lemma to prove Theorem 9.
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Lemma 15 Let G be a recursively enumerable class of S-hypergraphs of unbounded
S-star size. Then p-#CQ on G is #W[1]-hard.

Let Gstar be the class of S-graphs (Gn, Sn) where Gn is the star with n leaves and
Sn consists of all vertices but the center of Gn. Note that the S-hypergraphs of the
queries Cstar from Lemma 12 are the S-graphs in Gstar (see Example 7). Since by
Lemma 12 p-#CQ restricted to instances with queries in Cstar is #W[1]-hard, it fol-
lows directly that p-#CQ on Gstar is #W[1]-hard. The idea of the proof of Lemma 15
is to show that Gstar can be embedded in an appropriate way into any class G of
S-hypergraphs of unbounded S-star size to show that p-#CQ on G is #W[1]-hard.

We feel that it is more transparent to show Lemma 15 for the restricted case of
S-connected S-hypergraphs and to sketch afterwards how to generalize the proof to
the general case. Remember that an S-hypergraph (H, S) is called S-connected if for
every pair of vertices x, y there is a path x = v1, v2, . . . , vk−1, vk = y such that
vi /∈ S for i /∈ {1, k}.

Lemma 16 Let G be a recursively enumerable class of S-connected S-hypergraphs
of unbounded S-star size. Then p-#CQ on G is #W[1]-hard.

Proof Let G be a class of S-connected S-hypergraphs of unbounded S-star size.
Remember Cstar := {φstar,n | n ∈ N} is defined with φstar,n = ∃z

∧
i∈[n] Ri (z, yi)

(see Lemma 12). We will show a parameterized parsimonious reduction from p-#CQ,
restricted to instances that have queries in Cstar, to p-#CQ on G . As p-#CQ on the
former class of instances is #W[1]-hard by Lemma 12, the claim will follow.

Let � = (A, φ) be an instance of #CQ restricted to queries in Cstar, i.e., φ has the
form φ = ∃z

∧k
i=1Ri (z, yi). Because G is recursively enumerable and of unbounded

S-star size, there is a computable function g : N → N such that for given k ∈ N one
can in time g(k) compute an S-connected S-hypergraph (H, S) ∈ G of S-star size at
least k. We will embed � intoH = (V , E) to construct a #CQ-instance � := (B, ψ)

of size at most g(k)‖�‖2. The instance � will have the S-hypergraph (H, S) and the
same domain B := A as �.

For each e ∈ E let ψe be an atom with the relation symbol Ee and the set of
variables var(ψe) = e. Let

ψ ′ :=
∧

e∈E

ψe,

then ψ is the query we get from ψ ′ by existentially quantifying all variables in V \S.
This completes the construction of the query ψ .

We now construct the structure B. Let Y = {y1, . . . , yk} ⊆ S be a set of indepen-
dent vertices. Such a set Y must exist, because (H, S) has S-star size at least k. Let d
be an arbitrary but fixed element of A. We define EBe depending on the vertices in e

as follows:

Case 1 Let first e ∈ E be an edge that contains yi for some i ∈ [k]. Observe that
yi is uniquely determined, because no two of the vertices yi share an edge. The
atom ψe has the relation symbol Ee and as variables the vertices of e. We assume
that the order of the variables in ψe is as follows: yi is the first variable, followed
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by the other variables in e ∩ S and after those the variables in e \ S. We define
EBe := {(v2, d, . . . , d, v1, . . . , v1) | (v1, v2) ∈ RA

i }, where RA
i is the relation of Ri

in A. Observe that this forces all variables in (e ∩ S) \ {yi} to be equal to the value d

in satisfying assignments, while the variables in e \ S must all have a common value
v1. Furthermore, because yi is uniquely determined, the relation EBe is well defined.

Case 2 Let now e ∈ E with e ∩ Y = ∅. We assume that the variables in ψe are
ordered such that all variables in S ∩ e appear before those in e \ S. Then we define
EBe := {(d, . . . , d, v1, . . . , v1) | v1 ∈ A}. Again in the satisfying assignments all
variables in e ∩ S are forced to be equal to d, while the variables in e \ S can take an
arbitrary but equal value.

This completes the construction of B and thus that of � = (B, ψ).

Claim 1 |φ(A)| = |ψ(B)|.

Proof Let φ′, resp., ψ ′ be the quantifier free queries we get from φ, resp., ψ by
deleting all quantifiers.

We construct a function B that to an assignment a ∈ φ′(A) constructs an
assignment B(a) := a′ with a′ : V → B. We define

a′(x) :=

⎧
⎪⎨

⎪⎩

a(x), x ∈ Y,

d, x ∈ S \ Y,

a(z), x ∈ V \ Y

.

We claim that B is a bijection from φ(A) to ψ(B). It is easily seen from the con-
struction of ψ that a′ satisfies all atoms of ψ and thus a′ ∈ ψ ′(B). Furthermore, B
is obviously injective. Thus it only remains to prove that B is surjective. To see this,
consider b′ ∈ ψ(B). By construction of �, we have b′(x) = d for all x ∈ S \ Y .
Because H is S-connected, we have that H[V \ S] is connected. From the construc-
tion of � it follows by an easy induction that there is a v1 ∈ A such that b′(x) = v1
for all x ∈ V \ S. We construct an assignment b : var(φ) → A by b(x) := b′(x)

for x ∈ {y1, . . . , yk} and b(z) := v1. Obviously, B(b) = b′. Moreover, from the
construction of � is follows that b ∈ φ′(A). Thus B is a bijection from φ′(A) to
ψ ′(B).

We now construct a mapping B ′ from φ(A) to ψ(B) as follows: For a ∈ φ′(A) we
map a|free(φ) to B(a)|free(ψ). Since B is a bijection, it follows that B ′ is a bijection as
well. This proves the claim.

Obviously, the S-hypergraph associated to ψ is (H, S). Moreover, by construction
we have |ψ | ≤ g(k) and � can be constructed in time at most g(k)‖�‖2, because
H has size at most g(k) and the size of the relations is bounded by |A|2. Thus, with
Claim 1, the construction of � form � is a parameterized parsimonious reduction.
This completes the proof of Lemma 16. �
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We now sketch how to extend Lemma 16 from S-connected S-hypergraphs to
general S-hypergraphs in a straightforward way.

Proof of Lemma 15 (Sketch) The proof follows the same ideas as that of Lemma 16:
We first compute an S-hypergraph H in G of S-star size at least k. Then we choose
an S-component H′ of S-star size at least k in G . We construct the relations EBe
in such a way that in every satisfying assignment every variable not in H is forced
to the value d. For all other variables we construct the relations as in the proof of
Lemma 16. Since H′ is S-connected by Observation 8, the same arguments as in
the proof of Lemma 16 show that the construction is a parsimonious parameterized
reduction.

Proof of Theorem 9 Assume that p-#CQ on G is fixed-parameter tractable. By
Lemma 15 we directly get FPT = #W[1] which contradicts the assumption.

Combining Corollary 1 with Theorem 9 yields a characterization of classes of S-
hypergraphs of bounded generalized hypertree width that allow efficient algorithms
for #CQ.

Theorem 10 Let G be a recursively enumerable class of S-hypergraphs of bounded
generalized hypertree width. Then (assuming FPT �= #W[1]) the following state-
ments are equivalent:

1. #CQ on G is polynomial time tractable.
2. p-#CQ on G is fixed-parameter tractable.
3. G is of bounded S-star size.

Proof 1 → 2 is trivial. 2 → 3 is Theorem 9. Finally, 3 → 1 is Corollary 1.

As a corollary we get that for a wide range of decomposition techniques commonly
considered in the database and artificial intelligence literature, we can charac-
terize the tractable classes of S-graphs by bounded quantified star size. For the
decomposition techniques not defined here see [18].

Corollary 2 Let β be one of the following decomposition techniques: biconnected
component, cycle-cutset, cycle-hypercutset, hingetree, hypertree, or generalized
hypertree decomposition. Let furthermore G be a recursively enumerable class of
S-hypergraphs of bounded β-width. Then (assuming FPT �= #W[1]), the following
statements are equivalent:

1. #CQ on G is polynomial time tractable.
2. p-#CQ on G is fixed-parameter tractable.
3. G is of bounded S-star size.

Proof 1 → 2 is trivial. 2 → 3 follows from Theorem 9. For 3 → 1 observe that
for every β of the claim we have that for every hypergraph H the β-width of H is
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bounded from below by a function in the generalized hypertree width of H. Thus G
has bounded generalized hypertree width and the claim follows with Corollary 1.

5 Queries of Bounded Arity

In this section we show that for bounded arity #CQ we can exactly characterize the
classes of S-hypergraphs that allow polynomial time counting. In this section all
CQ-instances and all S-hypergraphs are always assumed to be of bounded arity.

We will give two different characterizations of S-hypergraphs of bounded arity
that allow tractable #CQ: The first characterization is presented in Section 5.1 and
uses treewidth and S-star size, following the ideas of Section 4. In Section 5.2 we
introduce a notion of elimination width for conjunctive queries. It will allow us to
characterize the S-hypergraphs of bounded arity that allow tractable #CQ with a
single parameter.

5.1 A Characterization by Treewidth and S-star size

In this section we characterize the S-hypergraphs of bounded arity that allow tractable
#CQ by treewidth and S-star size. The result of this section is based on a combination
of the results of Section 4 and a result by Grohe from [22] which is a follow up of
results by Grohe, Schwentick and Segoufin [24]. We state the theorem in our slightly
different wording.

Theorem 11 ([22]) Let G be a recursively enumerable class of hypergraphs of
bounded arity. Assume FPT �= W[1]. Then the following three statements are
equivalent:

1. CQ on G can be decided in polynomial time.
2. p-CQ on G is fixed parameter tractable.
3. There is a constant c such that the hypergraphs in G have treewidth at most c.

Theorem 11 is originally stated even for every fixed vocabulary. Moreover, in [22]
characterizes, more generally, tractability for any class of queries (and not only in
function of their underlying hypergraph) of bounded arity. In this setting a class
of queries is tractable if and only if its cores, certain equivalent subqueries, are
of unbounded treewidth. In particular, this yields tractable classes of queries of
unbounded treewidth. With the more coarse hypergraph view, these unbounded
treewidth cases cannot be captured as witnessed by Theorem 11.

Our goal is to provide a complete characterization of classes of S-hypergraphs
of bounded arity that yield tractability for #CQ. Not too surprisingly, tractability
depends on both treewidth and star size of the underlying S-hypergraph.

Theorem 12 Let G be a recursively enumerable class of S-hypergraphs of bounded
arity. Assume thatW[1] �= FPT. Then the following statements are equivalent:

1. #CQ on G is solvable in polynomial time.
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2. p-#CQ on G is fixed-parameter tractable.
3. There is a constant c such that for each S-hypergraph (H, S) in G the treewidth

of H and the S-star size of H are at most c.

Let us discuss how Theorem 12 and Theorem 10 relate. First, it is not hard to see
that for bounded arity hypergraphs treewidth and generalized hypertree width differ
only by a constant factor. So we could have formulated Theorem 12 with generalized
hypertree width instead of treewidth as well.

The key difference between Theorem 12 and Theorem 10 is that we can show here
that bounded treewidth is not only sufficient for tractable counting but also necessary.
As we already directly get from [31], there are by Lemma 2 families of S-hypergraphs
of unbounded arity, and thus also unbounded treewidth, on which #CQ is tractable,
so treewidth is not the right notion for this case. It is an intriguing question if there
is a width measure that completely characterizes tractable CQ or tractable #CQ for
unbounded arity, similarly to Theorem 11 and Theorem 12 in the bounded arity case.

Before giving the proof of Theorem 12 we make an observation.

Observation 13 If there is a recursively enumerable class G of S-hypergraphs of
unbounded treewidth such that p-#CQ on G is fixed-parameter tractable, then there
is such a class G ′ that is recursive.

Proof Fix a Turing machine M that enumerates G . Let the order in which the S-
hypergraphs of G are enumerated by M be (H1, S1), (H2, S2), . . .. Then define
G ′ as containing the S-hypergraphs (H′

i , S
′
i ) where H′

i is the disjoint union of the
hypergraphsH1, . . . ,Hi and S′

i := ⋃
j∈[i] Si .

We claim that G ′ is recursive. Indeed the definition of G ′ directly gives an algo-
rithm that enumerates the elements of G ′ ordered by size. This yields an algorithm to
decide membership in G ′: Given an input (H, S), enumerate the elements of G ′ until
(H, S) is found or an element that has more vertices than (H, S) is enumerated. The
treewidth of G is trivially unbounded.

Finally, we claim that #CQ on G ′ is fixed-parameter tractable. Given an input� :=
(A, φ) first check if the associated S-hypergraph (H, S) is in G ′. If not, stop. It yes,
the query φ must decompose into subqueries φ1, . . . , φi such that for each j ∈ [i] the
query φj has the S-hypergraph (Hj , Sj ) and the φj have disjoint variable sets. Using
the enumerating machine M we can compute such a decomposition. Now since #CQ
on G is fixed-parameter tractable we can solve the instances �j := (A, φj ) in time
g(|φj |)‖�j‖c for a computable function g and a constant c. It follows that |φ(A)| =∏

j∈[i] |φj (A)| can be computed in time
∑

j∈[i] g(|φj |)‖�j‖c ≤ |φ|g(|φ|)‖�‖c and
thus #CQ on G ′ is fixed-parameter tractable.

Proof of Theorem 12 The direction 1 → 2 is trivial. Furthermore, 3 → 1 follows
directly from Corollary 2. So it remains only to show 2 → 3.

By way of contradiction, we assume that there is a recursively enumerable
class G of S-hypergraphs such that counting solutions to #CQ-instances, whose S-
hypergraph are in G , is fixed parameter tractable, but 3 is not satisfied by G . From
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Theorem 9 we know that the S-starsize of G must be bounded, so it follows that
the treewidth of G is unbounded. With Observation 13 we may assume that G is
recursive.

We construct a class G ′ of hypergraphs as

G ′ := {H | (H, S) ∈ G }.
Clearly G ′ is recursive and of unbounded treewidth. We will show that p-CQ on G ′
is fixed-parameter tractable. This is a contradiction with Theorem 11.

Because G is recursive, there is an algorithm that for eachH in G ′ constructs an S-
hypergraph (H, S) in G . For example, one can simply try all vertex sets S and check
if (H, S) is in G . Let f (H) be the number of steps the algorithm needs on input H.
The function f (H) is well defined and computable. We then define g : N → N by
setting g(k) := maxH(f (H)), where the maximum is over all hypergraphsH of size
k in G ′. The function g is well defined and computable, because G ′ is recursive. Thus
for each H in G ′ we can compute in time g(|H|) an S-hypergraph (H, S) in G .

Now let � = (A, φ) be a CQ-instance with hypergraph H in G ′. To solve it we
first compute (H, S) as above and construct a CQ-instance � = (A, ψ) with (H, S)

as associated S-hypergraph for ψ by adding existential quantifiers for all variables
not in S. Obviously � has solutions if and only if � has one. But by assumption the
solutions of � can be counted in time h(|ψ |)‖�‖O(1) for some computable func-
tion h, so � can be decided in time (g(|φ|) + h(|φ|))‖�‖O(1). Thus p-CQ on G ′ is
fixed-parameter tractable. This is the desired contradiction to Theorem 11.

We remark that Dalmau and Jonsson in [12] characterize the tractable classes of
quantifier free queries for #CQ by bounded treewidth. This result is proved under the
weaker assumption #W[1] �= FPT. Showing a version of this for general #CQ seems
under that assumption is likely hard since our case also contains decision problems
(e.g., #CQ with no free variables).

5.2 A Characterization by Elimination Orders

While the characterization of Theorem 12 is great because it completely characterizes
the tractable classes of S-hypergraphs for #CQ, it has the somewhat unpleasant prop-
erty that we have to bound two different parameters of the hypergraphs instead of just
one. Also, it is not clear how robust and natural the defined classes of hypergraphs
are. In contrast to this, treewidth is a very robust notion that has many equivalent
definitions.

In this section we improve the situation by showing that there is a notion of elimi-
nation width for S-hypergraphs that is equivalent to the combination of treewidth and
S-star size.

Recall the notion of elimination orders from Section 2.6.1.

Definition 15 Let (G, S) be an S-graph. We define an elimination order of an S-
graph π of an S-graph (G, S) as an elimination order of G = (V , E) such that for
each pair v ∈ S, u ∈ V \ S such that uv is an edge in the fill-in graph Gπ we have
π(u) < π(v).
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The elimination width of an S-graph elim-width(G, S) of (G, S) is defined as the
minimum width taken over all elimination orders of (G, S).

The elimination width elim-width(H, S) of an S-hypergraph (H, S) is defined as
the elimination width of its primal S-graph (see Definition 7). By HP,π we denote
the fill-in graph of the primal graphHP of H with respect to π .

Remark 1 Observe that for every S-graph (G, S) we have

elim-width(G, S) ≥ elim-width(G),

because every elimination order of (G, S) is an elimination order of G.

Proposition 1 Let G be a class of S-hypergraphs. Then the following statements are
equivalent:

– The treewidth and the S-star size of the S-hypergraphs in G are bounded by a
constant c.

– The elimination width of the S-hypergraphs in G is bounded by a constant c′.

The proof of Proposition 1 is somewhat lengthy, so we prove it in two individual
lemmas.

Lemma 17 Let (H, S) be an S-hypergraph of elimination width k. Then the
treewidth ofH is at most k and the S-star size of (H, S) is at most k + 1.

Proof From Remark 1 and Lemma 4 it follows directly that the treewidth of H is at
most k. Thus we only have to show the bound on the S-star size of (H, S). To this
end, we define an S-path (P, S) as a path whose end vertices are in S but all other
vertices are not in S.

Claim 2 Let u, v be the end vertices of an S-path (P, S) with P = ux1 . . . x�v. Then
for every elimination order π of (P, S) we have π(v) > π(xi) and π(u) > π(xi) for
all i ∈ [�]. Furthermore, uv is an edge of the fill-in graph Pπ .

Proof We prove this by induction on �. For � = 0 there is nothing to show.
Now let � ≥ 1. Let xj be the vertex for which π is minimal, i.e., π(xj ) ≤ π(xi)

for all i ∈ [�]. By the definition of elimination orders we have π(x1) < π(u) and
π(x�) < π(v), so π(xj ) < min(π(v), π(u)). Let P ′ be the path that we get from P

when deleting xj and connecting xj−1 and xj+1 by an edge. P ′ is a subgraph of the
fill-in graph Pπ and π induces an elimination order on P ′ by π ′(w) := π(w) − 1.
It follows that P ′

π ′ is a subgraph of Pπ . By induction π ′(v) > π ′(xi) and π ′(u) >

π ′(xi) for all i ∈ [�] \ {j} and thus π(v) > π(xi) and π(u) > π(xi) for all i ∈ [�].
Furthermore, by induction uv is an edge of P ′

π ′ and thus also of Pπ . This completes
the proof of the claim.

By definition of S-components, in every S-graph (G, S) every pair u, v ∈ S must
be connected by an S-path.
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Let HP = (V , EP ) be the primal graph of H. Let H′ be an S-component of H
with primal S-graphH′

P = (V ′, E′
P ) and let S′ := S ∩ V ′.

Let π be an optimal elimination order of (H, S) of width k. Then π induces for
every subgraph H′′ an elimination order of H′′ of width at most k. To ease notation
we will not differentiate between π and these induced elimination orders and simply
call π an elimination order of all subgraphs, too.

As already remarked, all pairs u, v ∈ S′ are connected by S-paths in H′
P . The

fill-in graph of every subgraph ofH′
P is a subgraph of the fill-in graphH′

P,π ofH′
P .

Thus by Claim 2 we have that the vertices in S′ form a clique in H′
P,π . Because π

has width k, it follows that |S′| ≤ k + 1. Hence the S-star size ofH′ is at most k + 1.
This completes the proof of Lemma 17.

For the other direction of Proposition 1 we will use the following lemma.

Lemma 18 Let (H, S) be an S-hypergraph of treewidth at most c and S-star size at
most k. Then every S-component ofH contains at most k(c + 1) vertices from S.

Proof We prove this by induction on the S-star size k while keeping the treewidth
fixed to c. If the S-star size is k = 1, then in every S-component all vertices from
S are adjacent. But then they induce a clique in the primal graph of H and thus by
Lemma 2 there may be at most c + 1 of them.

Let now k > 1. Consider an S-component H′ of H. The graph H′
P [S] has at

most treewidth c because it is an induced subgraph of H′
P which has by assumption

treewidth at most c. By Lemma 3, there is a vertex v in H′
P [S] of degree at most c.

If follows that v has at most c neighbors in S in H′. Let H′′ be the hypergraph we
get from H′ = (V ′, E′) by deleting v and all of its neighbors in S. We claim that
(H′′, S ∩ V ′) has S-star size at most k − 1.

Assuming this is false, there are k independent vertices v1, . . . , vk ∈ S inH′′. But
then v1, . . . , vk, v are k + 1 independent vertices from S in H′, so the S-star size of
H is at most k + 1 which contradicts the assumption.

So the S-star size ofH′′ is indeed bounded by k − 1. By inductionH′′ contains at
most (k−1)(c+1) vertices from S, and since we deleted at most c+1 vertices during
the construction ofH′′ we get thatH′ contains at most k(c + 1) vertices from S.

We now prove the second direction of Proposition 1

Lemma 19 Let (H, S) be an S-hypergraph such that the treewidth and the S-star
size of (H, S) are bounded by c ∈ N. Then the elimination width of (H, S) is at most
(c + 1)3 + (c + 1)2.

Proof Let (T , (χt )t∈T ) be a tree decomposition ofH = (V , E) of minimal width �.
Let S(v) for every v ∈ V \ S be the set of vertices from S in the S-component of v.
For every t ∈ T we construct a new bag χ ′

t as

χ ′
t := χt ∪

⋃

v∈(V \S)∩χt

S(v).
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Because the S-star size ofH is at most c we get by Lemma 18 that |S(v)| ≤ c(�+1).
It follows with � ≤ c that

|χ ′
t | ≤ |χt | +

∑

v∈(V \S)∩χt

|S(v)| ≤ (� + 1) + (� + 1)c(� + 1)

≤ (� + 1)(c + 1)(� + 1)

≤ (c + 1)3

It is easy to see that (T , (χ ′
t )t∈T ) is a tree decomposition. Remember that for each

t ∈ T the tree Tt is the subtree of T with t as its root. Let Vt be the set of vertices
appearing in the bags χ ′

t ′ of Tt . For each y ∈ V let r(y) be the t ∈ T with y ∈ χ ′
t that

is nearest to the root of T .

Claim 3 There exists t ∈ T such that ∅ �= Vt \ S ⊆ χ ′
t with a vertex y ∈ Vt \ S with

t = r(y).

Proof We find t and y by descending in T . Let r be the root of T . If Vr \ S ⊆ χ ′
r

we are done. Otherwise let ti be a child of r such that Vti \ S � χ ′
r . Now check if

Vti \ S ⊆ χ ′
ti
and if not go deeper in T . Let t be the first vertex on this descent with

Vt \ S ⊆ χ ′
t . Then χ ′

t must contain a vertex y that is not in χ ′
t ′ where t ′ is the parent

of t in T . But then r(y) = t as desired.

We construct an elimination order π of H inductively as follows, starting from
the empty elimination order: While any bag of the tree decomposition (T , (χ ′

t )t∈T )

contains a vertex from V \ S, do the following: Choose by Claim 3 t ∈ T such that
∅ �= Vt \ S ⊆ χ ′

t with a vertex y ∈ Vt \ S with t = r(y), delete y from H and all
bags and add y as the next vertex to the elimination order π .

When the vertices from V \ S have all been deleted, we proceed with the vertices
in S in a similar fashion: While there is a non-empty bag, choose one t ∈ T with
∅ �= S ∩ Vt ⊆ χ ′

t and y ∈ S ∩ Vt with r(y) = t , delete y and add y as the next vertex
in π . Again, such t and y can always be found.

All vertices in V \ S appear before all vertices in S in π , so π is an elimination
order of (H, S). We will now bound the width of π .

Claim 4 Let x, y ∈ V with x, y ∈ V \ S or x, y ∈ S such that there exists t ∈ T

with x, y ∈ χ ′
t . If x is higher-numbered than y with respect to π , then x ∈ χr(y).

Proof x and y appear in a common bag χ ′
t and thus x ∈ Vr(y). But x is higher-

numbered, so y was deleted before x. Hence, when y was chosen to be deleted the
vertex x was still in Vr(y). But then x ∈ χr(y) because otherwise y would not have
been chosen for deletion.

Claim 5 a) For every vertex y ∈ V \ S the neighbors of y in HP,π are vertices of
the same S-component as y.

b) When a vertex y ∈ V \ S is deleted, the bag χ ′
r(y) contains all higher-numbered

neighbors of y in the fill-in graphHP,π that are in V \ S.
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c) When a vertex y ∈ S is deleted, the bag χ ′
r(y) contains all higher-numbered

neighbors of y in the fill-in graphHP,π .
Proof We first prove a) and b) by induction along the elimination order π . So let
first y be the vertex with π(y) = 1. We claim that the higher-numbered neighbors
of y in HP,π are simply the neighbors of y in HP . Certainly, these are all higher-
numbered. Also, in the construction of HP,π from HP edges incident to y may
only be added by lower-numbered vertices. As there are none for y, all neighbors
of y in HP,π are already neighbors in HP . This proves the induction start for a).
For b) consider a neighbor x ∈ V \ S of y in H. By the definition of tree decom-
positions x and y must be in one common bag χ ′

t . With Claim 4 it follows that
x ∈ χr(y).

Consider now y ∈ V \ S with π(y) > 1. All neighbors x ∈ V \ S

of y in HP,π are either already neighbors of y in H and thus in the same S-
component as y or they are neighbors that originate from edges added in the
construction of HP,π from HP . In the latter case the edge xy must have been
added because of a common lower-numbered neighbor v of y and x. Because v

is lower-numbered than y it follows that v ∈ V \ S. By induction all higher-
numbered neighbors of v in HP,π are in the same S-component as v in H,
so y, x and v are all vertices of the same S-component which completes the
proof of a).

Now let x ∈ V \ S be a higher-numbered neighbor of y ∈ V \ S in
HP,π . Consider first the case that xy is already an edge in HP . Then there is
a bag χ ′

t such that x, y ∈ χ ′
t . With Claim 4 we get x ∈ χr(y) as desired.

If x and y are not neighbors in HP , then there is a lower-numbered vertex v

of x and y in HP,π that led to the introduction of the edge xy. By induction
x, y ∈ χr(v). We conclude with Claim 4 that x ∈ χr(y). This completes the
proof of b).

To prove c) consider a vertex y ∈ S. Let x be a higher-numbered neighbor of
y in HP,π . By construction x ∈ S. Assume first that x and y are in a common S-
component. Let v ∈ V \ S be a vertex of this S-component, then, by construction
of (T , (χ ′

t )t∈T ), the vertices x and y both appear in any bag χ ′
t that contains v. We

conclude with Claim 4 that x ∈ χr(y). If x and y are not in a common S-component,
then the vertex v that leads to the introduction of the edge xy must be in S by a).
Because v is a lower-numbered neighbor of x and y, we have by induction that x, y ∈
χr(v). By Claim 4 we get x ∈ χr(y) which completes the proof of Claim 5.

We claim that the width of π is at most (c + 1)3 + (c + 1)2. As the bags χ ′
t have

size at most (c+1)3+1, every vertex y ∈ V \S has at most (c+1)3 higher-numbered
neighbors in V \ S in HP,π by Claim 5. Furthermore, y ∈ V \ S has by Claim 5
and Lemma 18 at most (c + 1)2 neighbors in S in HP,π . Finally, y ∈ S has at most
(c + 1)3 higher-numbered neighbors by Claim 5 and the bound on the size of the
bags. This completes the proof of Lemma 19.

From Proposition 1 and Theorem 12 we get the following alternative characteri-
zation of S-hypergraphs of bounded arity that allow tractable #CQ.

Theory Comput Syst (2015) 57:1202–1249 1235



Theorem 14 Let G be a recursively enumerable class of S-hypergraphs of bounded
arity. Assume thatW[1] �= FPT. Then the following statements are equivalent:

1. #CQ on G is solvable in polynomial time.
2. p-#CQ on G is fixed-parameter tractable.
3. There is a constant c such that all S-hypergraphs in G have elimination width at

most c.

Let us remark that there is a similar notion of elimination width for quantified
constraint satisfaction (QCSP) which is a version of CQ in which also universal
quantification is allowed. Chen and Dalmau [9] introduced this measure and showed
that it characterizes the tractable classes of graphs for QCSP. We consider it as
likely that an equivalent characterization of the same classes of graphs could be
given by treewidth and an adapted notion of S-star size. This would probably also
make it possible to get a better understanding of tractable classes of hypergraphs of
unbounded arity for QCSP by exchanging treewidth for e.g., generalized hypertree
width.

6 Computing Star Size

In this section we consider the problem of computing the quantified star size of hyper-
graphs that have small width for the decomposition techniques defined in Section 2.6.
Note that the computation of quantified star size is not strictly necessary for tractable
counting. The algorithm of Section 4 does not need to compute the S-star size for
graphs of width k but only for acyclic hypergraphs which can be done with the help
of Lemma 14 (see [15] for the details). Still it is of course desirable to know the
quantified star size of an instance before applying the counting algorithm, because
quantified star size has an exponential influence on the runtime.

We show that for all decomposition techniques considered in this paper the
quantified star size can be computed rather efficiently, in time roughly |V |O(k)

where k is the width of the input. For small values of k, this bound is reason-
able. We then proceed by showing that, on the one hand, for some decomposition
measures such as treewidth or hingetree width, the computation of quantified
star size is even fixed parameter tractable parameterized by the width. On the
other hand, we show that for decomposition measures above hypertree width
it is unlikely that fixed parameter tractability can be obtained (under standard
assumptions).

Instead of tackling quantified star size directly, we consider the combinatori-
ally less complicated notion of independent sets. This is justified by the following
observation:

Observation 15 Let β be any decomposition technique considered in this paper.
Then, for every k ∈ N, computing the S-star size of S-hypergraphs of β-width at most
k polynomial time Turing-reduces to computing the size of a maximum independent
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set for hypergraphs of β-width at most k. Furthermore, there is a polynomial time
many one reduction from computing the size of a maximum independent set in hyper-
graphs of β-width at most k to computing the S-star size of hypergraphs of β-width at
most k + 1.

Proof By definition computing S-starsize reduces to the computation of independent
sets of S-components. S-components are induced subhypergraphs, so we get the first
direction from Observation 5.

For the other direction letH = (V , E) be a hypergraph for which we want to com-
pute the size of a maximum independent set. Let x �∈ V . We construct the hypergraph
H′ of vertex set V ′ = V ∪ {x} and edge set E′ = {e ∪ {x} | e ∈ E} and set S := V .
The hypergraph is one single S-component, because x is in every edge. Furthermore,
the S-starsize of H′ is obviously the size of a maximum independent set in H. It is
easy to see that the construction increases the treewidth of the hypergraph by at most
1 and does not increase the β-width for all other decomposition considered here at
all.

Because of Observation 15 we will not talk about S-star size in this section
anymore but instead formulate everything with independent sets.

6.1 Exact Computation

Proposition 2 There is an algorithm that, given a hypergraph H = (V , E) and a
generalized hypertree decomposition (T , (λt )t∈T , (χt )t∈T ) of width k ofH, computes
a maximum independent set of H in time k|V |O(k).

Proof We apply dynamic programming along the decomposition. Let b = (λ, χ) be
a guarded block of T . Let Tb be the subtree of T with b as its root. We set Vb :=
χ(Tb). Observe that I ⊆ Vb is independent in H if and only if it is independent in
H[Vb] so we do not differentiate between the two notions. For each independent set
σ ⊆ χ we will compute an independent set Ib,σ ⊆ Vb that is maximum under the
independent sets containing exactly the vertices σ from χ . Observe that because λ

contains at most k edges that cover χ we have to compute at most knk independent
sets Ib,σ for each b.

If b is a leaf of T , the construction of the Ib,σ is straightforward and can certainly
be done in time k|V |O(k).

Let now b = (λ, χ) be an inner vertex of T with children b1, . . . , br and let
bi = (λi, χi). For each independent set σ ⊆ χ we do the following: For each i, let
σi be an independent set of χi such that σ ∩ χ ∩ χi = σi ∩ χ ∩ χi and |Ibi ,σi

| is
maximal. We claim that we can set Ib,σ := σ ∪ Ib1,σ1 ∪ . . . ∪ Ibr ,σr .

We first show that Ib,σ defined this way is independent. Assume this is not true,
then Ib,σ contains x, y that are in one common edge e inH[Vb]. But then x, y do not
lie both in χ , because Ib,σ ∩χ = σ and σ is independent. By induction x, y do not lie
in one Vbi

either. Assume that x ∈ χ and y ∈ Vbi
for some i. Then certainly x /∈ Vbi

and y /∈ χ . But the edge e must lie in one block χ ′. Because of the connectivity
condition for y, the guarded block (λ′, χ ′) must lie in the subtree with root bi , which
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contradicts x ∈ e. Finally, assume that x ∈ Vbi
and y ∈ Vbj

for i �= j and x, y /∈ χ .
Then x and y cannot be adjacent because of the connectivity condition. This shows
that Ib,σ is indeed independent.

Now assume that Ib,σ is not of maximum size and let J ⊆ Vb be an independent
set with |J | > |Ib,σ | and J ∩ χ = σ . Because J and Ib,σ are fixed to σ on χ there
must be a bi such that |J ∩ Vbi

| > |Ibi ,σi
|. This contradicts the choice of σi . So Ib,σ

is indeed of maximum size.
Because each block has at most k|V |k independent sets, all computations can be

done in time k|V |O(k).

6.2 Parameterized Complexity

While the algorithm in the last section is nice in that it is a polynomial
time algorithm for fixed k, it is somewhat unsatisfying for some decomposi-
tion techniques: If we can compute the decomposition quickly, we would ideally
want to be able to compute the S-star size efficiently, too. Naturally we can-
not expect a polynomial time algorithm independent of the width k for any of
the decomposition techniques we consider, because computing maximum inde-
pendent sets is NP-hard. Instead, we can hope for independent set to be at
least fixed-parameter tractable with respect to k. We will show that for gen-
eral hypertree width even this is unlikely, because independent set parameterized
by generalized hypertree width is W[1]-hard. More positively, we will show
that computing maximum independent sets is fixed-parameter tractable for some
other decomposition techniques, in particular tree decompositions and hingetree
decompositions.

Lemma 20 Computing maximum independent sets on hypergraphs is W[1]-hard
parameterized by generalized hypertree width.

Proof We will show a parameterized many-one reduction from the problem p-
IndependentSet defined as follows:

Because p-IndependentSet is well known to be W[1]-hard, this suffices to estab-
lishW[1]-hardness of independent sets on hypergraphs parameterized by generalized
hypertree width.

So let G = (V , E) be a graph and let k be a positive integer. We construct a
hypergraph H = (V ′, E′) in the following way: For each vertex v the hypergraph H
has k vertices v1, . . . , vk . For i = 1, . . . , k we have an edge Vi := {vi | v ∈ V } in
E′. Furthermore, for each v ∈ V we add an edge Hv := {vi | i ∈ [k]}. Finally we
add the edge sets Eij := {viuj | uv ∈ E} for i, j ∈ [k]. H has no other vertices or
edges. The construction is illustrated in Fig. 7.
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Fig. 7 We illustrate the construction for Lemma 20 by an example. A graph G on the left with the associ-
ated hypergraph H for k = 4 on the right. To keep the illustration more transparent the edge sets Eij are
not shown except for E1,2 and E2,1

We claim that G has an independent set of size k if and only if H has an inde-
pendent set of size k. Indeed, if G has an independent set v1, . . . , vk , then v11, . . . v

k
k

is easily seen to be an independent set of size k in H. Now assume that H has an
independent set I of size k. Then for each v ∈ I we can choose a vertex π(v) ∈ V

such that v ∈ Hπ(v). Furthermore for distinct v, u ∈ I the corresponding vertices
π(v), π(u) have to be distinct, too, so π(I) ⊆ V has size k. Finally, we claim that
π(I) is independent in G. Assume this is not true, then there are vertices π(v), π(u)

such that π(v)π(u) ∈ E. But then vu ∈ E′ by construction which is a contradiction.
So, indeed G has an independent set of size k if and only if H has one.

From Observation 3 we get that H has generalized hypertreewidth at most k,
because V1, . . . , Vk cover V ′.

Observing that the construction of H from G can be done in time polynomial in
|V | and k completes the proof.

We start our fixed-parameter tractability results with an easy observation.

Proposition 3 Given a hypergraph H computing a maximum independent set in H
is fixed parameter tractable parameterized by the treewidth of H.

This can be seen either by applying an optimization version of Courcelle’s
Theorem [11] or by straightforward dynamic programming. Interestingly, one can
show the same result also for bounded hingetree width. For this decomposition tech-
nique blocks are of unbounded size which makes the dynamic programming in the
proof far more involved than for treewidth.

Proposition 4 Given a hypergraph H = (V , E) of hingetree width k, a maxi-
mum independent set in H can be computed in time k2k2 |E|O(1). It follows that
independent set is fixed parameter tractable parameterized by hingetree width.

Proof First observe that minimum width hingetree decompositions can be computed
in polynomial time by Lemma 10, so we simply assume that a decomposition is given
in the rest of the proof.
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The proof has some similarity with that of Proposition 2, so we use some
notation from there. For guarded block (λ, χ) we will again compute maximum
independent sets containing prescribed vertices. The difference is, that we can
take these prescribed sets to be of size 1: because of the hingetree condition,
only one vertex of a block may be reused in any independent set in the parent.
The second idea is that we can use equivalence classes of vertices in the com-
putation of independent sets in the considered guarded blocks, which limits the
number of independent sets we have to consider. We now describe the computation
in detail.

Let Ξ = (T , (λt )t∈T , (χt )t∈T ) be a hingetree decomposition ofH of width k. Let
b = (λ, χ) be a guarded block of Ξ and let b′ = (λ′, χ ′) be its parent. As before, let
Tb be the subtree of T with b as its root and Vb := χ(Tb). Set Hb := (Vb, Eb) with
Eb := ⋃

λ∗ with the union being over all guarded blocks in Tb. The main idea is to
iteratively compute, for all vertices v ∈ χ ′ ∩ χ , a maximum independent set Jv,b in
Hb = (Vb, Eb) containing v. Furthermore, we also compute an independent set J∅,b

that contains no vertices of χ ′ ∩χ . Note that, since χ ⊆ ⋃
e∈λ e, there are no isolated

vertices in χ and the size of a maximum independent set is bounded by k in each
block.

For a node b = (λ, χ), we organize the vertices in χ into at most 2k equivalence
classes by defining v and u to be equivalent if they lie in the same subset of edges
of λ. The equivalence class of v is denoted by c(v). For each class, a representant is
fixed. We denote by v̄, the representant of the equivalence class of v and by χ̄ ⊆ χ ,
the restriction of χ on these at most 2k representants.

Example 12 Considering node b1 in Example 5, the equivalence classes are the fol-
lowing: v̄1, ū1, v̄2 = ū2, v̄4 = ū3. Hence χ̄ = {v̄1, ū1, v̄2, v̄4}. For node b2, the list
is: v̄4 = v̄5, v̄6, v̄8, v̄9, ū7, ū8. Note that {v4, v5, v6, v8} = χb ∩ χb2 , although these
vertices are spread in three distinct equivalence classes, by definition of hinge tree
decomposition, they all belong to some hyperedge and no two of them can appear
simultaneously in one independant set.

Let first b be a leaf. We first compute independent sets on χ̄ . Observe that the
independent sets are invariant under the choice of representants. For each equiva-
lence class c(v), we compute Jv̄,b ⊆ χ̄ as a maximum independent set containing
v̄. Computing the classes and a choice of maximum independent sets containing
each v̄ can be done in time k2k2 because independent sets cannot be bigger than
k. Clearly, Jv,b, a maximum independent set containing v, can be easily computed

from the set Jv̄,b. Thus, one can compute all the Jv,b in time k2k2n. The computa-
tion of J∅,b can be done on representants, too, by simply excluding the vertices from
χ ′ ∩ χ .

Let b now be an inner vertex and b1, b2, ..., bm be its children with bi = (λi, χi),
i ∈ [m]. We again consider equivalence classes on χ . Fix v ∈ χ and compute the list
Lv̄,b of all independent sets σ ⊆ χ̄ containing v̄. Fix now σ ∈ Lv̄,b. We first compute
a set J σ

v,b as a maximum independent set of Hb containing v and whose vertices in
χ have the representants σ . We will distinguish for a given vertex ū ∈ σ if it is the
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representant of a vertex belonging to the block of some (or several) children of b or
if it represents vertices of χ\(⋃m

i=1 χi) only. Therefore we partition σ into σ ′, σ ′′
accordingly:

– σ := σ ′ ∪ σ ′′
– σ ′ := χ̄ ∩ {ū | u ∈ ⋃m

i=1 χi}.
– σ ′′ := χ̄\{ū | u ∈ ⋃m

i=1 χi}
Set σ ′ := {ū1, ..., ūh} with h ≤ m. Let us examine the consequences of T being a

hingetree decomposition. We have that, for all i ∈ [m], there exists ei ∈ λ, such that
χ ∩ χi ⊆ ei . Thus, since σ is an independent set in χ̄ ⊆ χ , at most one vertex in σ ′
is a representant of a vertex in χi . Thus

∀u �= u′ ∈ σ : χi ∩ c(u) = ∅ ∨ χi ∩ c(u′) = ∅. (1)

We denote by Si = {j | c(ui) ∩ χj �= ∅} and by S = [m]\ ⋃
Si . By (1) the sets

S1, ..., Sh, S form a partition of [m]. To construct J σ
v,b, we now determine for each

i ≤ h, which vertex u of c(ui) can contribute the most, by taking the union of all the
maximum independent sets Ju,bj

, j ∈ Si , that u induces at the level of the children
of b.

For each fixed u ∈ c(ui), let

Ii,u = {u} ∪
⋃

j∈Si

Ju,bj
,

where we set Ju,bj
:= J∅,bj

if u /∈ χj . Let then Ii = Ii,u for some u ∈ c(ui) for
which the size of Ii,u is maximal.

The set J σ
v,b is now obtained as follows depending on whether v̄ ∈ σ ′′ or v̄ ∈ σ ′.

If v̄ ∈ σ ′′, we claim that J σ
v,b can be chosen as

J σ
v,b := {v} ∪ (σ ′′\{v̄}) ∪

h⋃

i=1

Ii ∪
⋃

i∈S

J∅,bi
.

If v̄ ∈ σ ′, say v̄ = u1, we claim that J σ
v,b can be chosen as

J σ
v,b := σ ′′ ∪

⋃

j∈S1:v∈χj

Jv,bj
∪

⋃

j∈S1:v /∈χj

J∅,bj
∪

h⋃

i=2

Ii ∪
⋃

i∈S

J∅,bi
.

The set Jv,b is taken as one of the sets J σ
v,b of maximal size for a σ ∈ Lv,b. To

compute J∅,b, the arguments are similar.
We first show that all Jv,b are indeed independent sets inHb. Clearly, it is enough

to prove this for any J σ
v,b. There will be no reason to distinguish whether v̄ ∈ σ ′′ or

v̄ ∈ σ ′, because our arguments will apply to all J σ
v,b independent of the choice of a

distinguished element v. We will make extensive use of the two following facts.

– Let j, j ′ ∈ [m] and I ⊆ Vbj
, I ′ ⊆ Vbj ′ independent sets of Hbj

and Hb′
j

respectively. By the connectivity condition for tree decomposition we have

I ∩ I ′ ⊆ χj ∩ χj ′ ∩ χ.
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This permits to investigate the intersection of two independent sets I, I ′ by
looking at their restriction on χ .

– Let now I ⊆ Vbj
be an independent set of Hbj

. Then, I remains an independent
set inHb. Indeed, suppose there is a e ∈ Eb\Ebj

containing two vertices y1, y2 ∈
I . Since all edges must belong to a guard, there exists a node b∗ = (λ∗, χ∗)
such that e ∈ λ∗. Then, since in a hingetree decomposition we have χ∗ = ⋃

λ∗,
then {y1, y2} ⊆ e ⊆ χ∗. But then, by the connectivity condition it follows that
{y1, y2} ⊆ χ . Hence, by the intersection property of hingetree decomposition,
there exists ej ∈ χj such that

{y1, y2} ⊆ χ ∩ χj ∩ ej

which implies that y1 and y2 are adjacent inHbj
. Contradiction.

We now start the proof that J σ
v,b is independent incrementally. Let i ∈ [h],

u ∈ c(ui) and j ∈ Si and consider the set I := Ju,bj
. By induction, the set I

is independent in Hbj
. By the hingetree condition, there exists ej ∈ λj such that

χ ∩ χj ⊆ ej . By the connectivity condition, this implies χ ∩ I ⊆ ej . Then, since
I is an independent set, no two vertices of χ can belong to I , i.e., |χ ∩ I | ≤ 1.
The connectivity condition also implies that, for j ′ �= j , Vbj ′ ∩ I ⊆ χ ∩ χj , hence
|Vbj ′ ∩ I | ≤ 1 and I is an independent set of Hb. Finally, the set Ii = ⋃

j∈Si
Ju,bj

is
also an independent set of Hb, since for any distinct j, j ′ ∈ Si :

Ju,bj
∩ Ju,bj ′ ⊆ χj ∩ χj ′ ∩ χ ⊆ ej .

Hence Ju,bj
∩Ju,bj ′ contains at most one vertex (which is in χ and could then only

be u).
Let now i, i′ ∈ [m] be distinct. By the arguments above, Ii (resp. Ii′) contains at

most one element u (resp. u′) such that u ∈ c(ui) (resp. u′ ∈ c(ui′)). By Eq. 1, we
have that the two classes are distinct and that ui �= ui′ . But ui, ui′ ∈ σ and σ is
independent in χ . Hence, ui, ui′ cannot be adjacent in Hb. Consequently,

h⋃

i=1

Ii

is an independent set in Hb.
Let j ∈ S. J∅,bj

is independent in Hbj
and J∅,bj

⊆ Vbj
\χ . Hence, J∅,bj

is inde-
pendent inHb. This also implies that, given j ′ ∈ [m] distinct from j , J∅,bj

∩Vbj ′ = ∅.
Thus,

h⋃

i=1

Ii ∪
⋃

i∈S

J∅,bi
.

is independent inHb.
Finally, by construction, for all i ∈ [h], Ii ∩ χ = {u} with ū = ūi ∈ σ ′. Also

σ = σ ′ ∪ σ ′′ is independent in χ hence in Hb. No vertices y1 ∈ Ii and y2 ∈ σ ′′ can
be adjacent because, again, this would imply that {y1, y2} ⊆ χ and contradict the fact
that ȳ1, ȳ2 are independent in σ . Thus J σ

v,b is independent.
We now prove that Jv,b is of maximum size. Observe that it suffices to show this

again for each J σ
v,b. Each maximum independent set J of Hb that contains v and
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whose vertices in χ have exactly the representants σ can be expressed as τ ∪J1∪J2∪
...∪Jm. Here τ ⊆ χ is an independent set of b containing v and whose representants
are σ . Furthermore, Ji is an independent set ofHb that contains only vertices of Vbi

.
The set Ji may only contain one vertex ui from χ ∩ χi . But then exchanging Ji for
Jui,bi

may only increase the size of the independent set, so we can assume that I has
the form τ ∪ Ju1,bi

∪ Ju2,b2 ∪ . . . ∪ Jum,bm where ui may also stand for ∅.
Assume now that J σ

v,b is not a maximum independent set, i.e., there is an indepen-
dent set J containing v whose vertices in χ have the representants σ and J is bigger
than J σ

v,b. Then one of four following things must happen:

– There is an i such that v ∈ χi and J ∩ Vbi
is bigger than Jv,bi

. But this case
cannot occur by induction.

– v = u1 and there is a j ∈ S1 such that v /∈ χj and |J ∩ Vbj
| > |J∅,bj

|. By
induction we know that J∅,bj

is optimal under all independent sets of Hbj
not

containing any vertex of χj ∩χ , so there must be a vertex u ∈ J ∩χ ∩χj . Since
J is independent, v and u share no edge in λ and then v̄ �= ū. Since j ∈ S1, it
holds that c(v) ∩ χj �= ∅ and by Eq. 1, c(u) ∩ χj = ∅. Contradiction.

– There is an i ∈ S such that J ∩Vbi
is bigger than J∅,bi

. But from i ∈ S it follows
by definition that χ ∩χi ∩ J = ∅, so this case can not occur by induction, either.

– There is an i ∈ [h] such that |J ∩(
⋃

j∈Si
Vj )| > |Ii |. We claim that (

⋃
j∈Si

χj )∩
χ ∩ J contains only one vertex. Assume there are two such vertices x and y.
By definition, x̄, ȳ ∈ τ̄ . Since J is independent, x̄ and ȳ are not adjacent in χ̄

and x̄ �= ȳ. At least one of these, say y, must be in c(ui), because ūi ∈ τ̄ by
definition. Let x ∈ Vj ′ with j ′ ∈ Si , then there is a vertex w ∈ c(ui) = c(y) in
χj ′ ∩ χ ⊆ ej by definition of Si . But then x̄ and ȳ are adjacent in χ̄ which is a
contradiction.

So there is exactly one vertex u in (
⋃

j∈Si
χj ) ∩ χ ∩ J . But then |J ∩

(
⋃

j∈Si
Vj )| > Ii,u. Thus either there must be a j ∈ Si with u ∈ Vj such

that |J ∩ Vj | > |Ju,bj
| or there must be a j ∈ Si with u /∈ Vj such that

|J ∩ Vj | > |J∅,bj
|. The former clearly contradicts the optimality of Ju,bj

, while
the latter leads to a contradiction completely analogously to the second item
above.

Because only k2k2n2 sets have to be considered for each guarded block, this results
in an algorithm with runtime k2k2 |V |O(1).

6.3 Approximation

We have seen that computing maximum independent sets of hypergraphs with
decompositions of width k can be done in polynomial time for fixed width
k and that for some decompositions it is even fixed parameter tractable with
respect to k. Still, the exponential influence of k is troubling. In this section
we will show that we can get rid of it if we are willing to sacrifice the opti-
mality of the solution. We give a polynomial time k-approximation algorithm
for computing maximum independent sets of graphs with generalized hyper-
tree width k assuming that a decomposition is given. We start by formulating
a lemma.
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Lemma 21 Let H = (V , E) be a hypergraph with a generalized hypertree decom-
position Ξ = (T , (λt )t∈T , (χt )t∈T ) of width k. Let H′ = (V , E′) where E′ := {χt |
t ∈ T }. Let � be the size of a maximum independent set in H and let �′ be the size of
a maximum independent set in H′. Then

�

k
≤ �′ ≤ �.

Before we prove Lemma 21 we will show how to get the approximation algorithm
from it.

Observation 16 Every independent set of H′ is also an independent set of H.

Proof Each pair of independent vertices x, y inH′ is by definition in different blocks
χt in H. For each edge e ∈ E there must (by definition of generalized hypertree
decompositions) be a block χ such than e ⊆ χ . Thus no edge e ∈ E can contain both
x and y, so x and y are independent inH as well.

Corollary 3 There is a polynomial time algorithm that, given a hypergraph H and
a generalized hypertree decomposition of width k, computes an independent set I of
H such that |I | ≥ �

k
where � is the size of a maximum independent set ofH.

Proof Observe that H′ is acyclic by Lemma 7. By Lemma 14, we compute in poly-
nomial time a maximum independent set I of H′ whose size by Lemma 21 only
differs by a factor 1

k
from �. By Observation 16, we know that I is also an independent

set ofH.

Proof of Lemma 21 The second inequality follows directly from Observation 16.
For the first inequality consider a maximum independent set I ofH. Observe that

a set I ′ is an independent set ofH′ if and only if it is an independent set of its primal
graphH′

P , so it suffices to show the same result forH′
P .

Claim 6 The graphH′
P [I ] has treewidth at most k − 1.

Proof First observe that vertices v that appear in no edge e ∈ E change neither
the treewidth nor the generalized hypertree width of a graph or hypergraph. Thus we
assume that every vertex v ∈ V is in at least one edge e ∈ E.

We construct a tree decomposition (T ′, (χ ′
t )t∈T ′) ofH′

P [I ] from Ξ as follows: We
set T ′ := T [T ′] where T ′ := {t ∈ T | χt ∩ I �= ∅}. Furthermore, χ ′

t := χt ∩ I for
t ∈ T ′. For every v ∈ I there is an edge e ∈ E and t ∈ T such that v ∈ e ⊆ χt and
thus v ∈ χ ′

t . It follows that the bags χ ′
t cover I . Moreover, the connectivity condition

for I is satisfied, because it is satisfied for Ξ . Finally, for each edge uv in H′
P [I ]

there is a guarded block (λt , χt ) such that u, v ∈ χt and thus u, v ∈ χ ′
t . Hence,

(T ′, (χ ′
t )t∈T ′) is indeed a tree decomposition.

Thus we only have to show |χ ′
t | ≤ k. To see this, observe that for each t the bag

χ ′
t ⊆ χt is covered by λt . But the vertices in χ ′

t ⊆ I are independent in H and thus
each e ∈ λt can contain only a single vertex from χ ′

t . Thus |χ ′
t | ≤ |λt | ≤ k.
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Claim 7 The graphH′
P [I ] has an independent set I ′ of size at least |I |

k
.

Proof From Claim 6 it follows with Lemma 3 that H′[I ] and all of its induced
subgraphs have a vertex of degree at most k. We construct I ′ iteratively by choosing
a vertex of minimum degree and deleting it and its neighbors from the graph. In each
round we delete at most k vertices, so we can choose a vertex in at least |I |

k
rounds.

Obviously the chosen vertices are independent.

Every independent set ofH′
P [I ] is also an independent set ofH′

P which completes
the proof of Lemma 21.

7 Fractional Hypertree Width

In this section we extend the main results of the paper to fractional hypertree width,
which is the most general notion known so far that leads to tractable CQ [23]. In
particular it is strictly more general than generalized hypertree width.

Definition 16 Let H = (V , E) be a hypergraph. A fractional edge cover of a ver-
tex set S ⊆ V is a mapping ψ : E → [0, 1] such that for every v ∈ S we have∑

e∈E:v∈e ψ(e) ≥ 1. The weight of ψ is
∑

e∈E ψ(e). The fractional edge cover num-
ber of S, denoted by ρ∗

H(S) is the minimum weight taken over all fractional edge
covers of S.

A fractional hypertree decomposition ofH is a triple (T , (χt )t∈T , (ψt )t∈T ) where
T = (T , F ) is a tree, and χt ⊆ V and ψt is a fractional edge cover of χt for every
t ∈ T satisfying the following properties:

1. For every v ∈ V the set {t ∈ T | v ∈ χt } induces a subtree of T .
2. For every e ∈ E there is a t ∈ T such that e ⊆ χt .

The width of a fractional hypertree decomposition (T , (χt )t∈T , (ψt )tinT ) is defined
as maxt∈T (ρ∗

H(χt )). The fractional hypertree width ofH is the minimum width over
all fractional hypertree decompositions ofH.

Together with the previous results of this paper, the two following Theorems will
serve as key ingredients to prove the main results of this section.

Theorem 17 ([23]) The solutions of a CQ-instance � with hypergraph H = (V , E)

can be enumerated in time ‖�‖ρ∗
H(V )+O(1).

Theorem 18 ([28]) Given a hypergraph H and a rational number w ≥ 1, it is
possible in time ‖H‖O(w3) to either

– compute a fractional hypertree decomposition of H with width at most 7w3 +
31w + 7, or

– correctly conclude that fhw(H) ≥ w.
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7.1 Tractable Counting

We start of with the quantifier free case which we will use as a building block for the
more general result later.

Lemma 22 The solutions of a quantifier free CQ-instance � with hypergraphH can
be counted in time ‖�‖fhw(H)O(1)

.

Proof With Theorem 18 we can compute a fractional hypertree decomposition
(T , (χt )t∈T , (ψt )t∈T ) of width at most k := O(fhw(H)3). For each bag χt we can
with Theorem 17 in time ‖�‖k compute all solutions to the CQ-instance �[χt ] that is
induced by the variables in χt . Let these solutions form a new relation Rt belonging
to a new atom φ′

t . Then
∧

t∈T φ′
t gives a solution equivalent, acyclic, quantifier free

#CQ instance of size ‖�‖O(k). Now we can count the solutions with the algorithm
[31] or [15].

We can now prove a version of Corollary 1 for fractional hypertree width.

Theorem 19 There is an algorithm that given a #CQ-instance � of quantified star-
size � and fractional hypertree width k counts the solutions of � in time ‖�‖p(k,�)

for a polynomial p.

Proof This is a minor modification of the proof of Lemma 13. Let H = (V , E)

be the hypergraph of �. Because of Theorem 18 we may assume that we have a
fractional hypertree decomposition Ξ := (T , (χt )t∈T , (ψt )t∈T ) of width k′ := kO(1)

of H. For each edge e ∈ E we let ϕ(e) be the atom of � that induces e.
Let V1, . . . , Vm be the vertex sets of the components of H[V \S] and let

V ′
1, . . . , V

′
m be the vertex sets of the S-components of H. Clearly, Vi ⊆ V ′

i and
V ′

i − Vi = V ′
i ∩ S =: Si . Let �i be the restriction of � to the variables in V ′

i and let
Ξi be the corresponding fractional hypertree decomposition. Then Ξi has a tree Ti

that is a subtree of T .
For each �i we construct a new #CQ-instance �′

i by computing for each
bag t ∈ T an atom φt in the variables χt that contains the solutions of
�i[χt ] that is induced by the variables of χt . The decomposition Ξ has width
at most k′ so this can be done in time ‖�‖O(k′) by Theorem 17. Obviously
�i and �′

i are solution equivalent and �′
i is acyclic. Furthermore, �′

i has only
one single Si-component, because all the vertices in Vi are connected in � and
thus also in �′

i . Let Hi be the hypergraph of �′
i , then Hi has Si-star size at

most �. Thus the vertices in Si can be covered by at most � edges in Hi by
Lemma 14.

Now we construct a CQ-instance (A′′
i , φ

′′
i ) such that φ′′

i is an atomic formula in
the variables Si exactly as in the proof of Lemma 13.

We now eliminate all quantified variables in �. To do so we add the atom φ′′
i for

i ∈ [m] and delete all atoms that contain any quantified variable, i.e., we delete all
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�′
i . Call the resulting CQ-instance �′′. Because

(
A′′

i , φ
′′
i

)
is solution equivalent to

�′
i , we have that � and �′′ are solution equivalent, too.
We now construct a fractional hypertree decomposition of �′′ by doing the fol-

lowing: we set χ ′
t = (χt \ ⋃

i∈It
Vi) ∪ ⋃

i∈It
Si for each bag χt where It := {i |

χt ∩ Vi �= 0}. For each bag χt we construct a fractional edge cover ψ ′
t of χ ′

t

by setting ψ ′
t (e) := ψt(e) for all old edges and setting ψt(Si) = 1 for i ∈ It

where Si corresponds to the newly added constraint φi with χt ∩ Vi �= 0. The
result is indeed a fractional edge cover, because each variable not in any Si is still
covered as before and the variables in Si are covered by definition of ψt . Further-
more, we claim that the width of the cover is at most k′. Indeed, for each i ∈ I

we had for each v ∈ Vi ,
∑

e∈E:v∈e ψ(e) ≥ 1. None of these edges appears in
the new decomposition anymore. Thus adding the edge Si with weight 1 does not
increase the total weight of the cover. It is now easy to see that doing this con-
struction for all χt leads to a fractional hypertree decomposition of �′ of width at
most k′.

Applying Lemma 22 concludes the proof.

7.2 Computing Independents Sets

Also S-star size or equivalently independent sets of bounded fractional hypertree
width hypergraphs can be computed efficiently.

Lemma 23 There is an algorithm that given a hypergraphH = (V , E) of fractional
hypertree width at most k computes a maximum independent set ofH in time |H|kO(1)

.

In the proof of Lemma 23 we will use the following lemma.

Lemma 24 The independent sets of a hypergraph H = (V , E) can be enumerated
in time |H|O(ρ∗

H(V )).

Proof LetH = (V , E). We construct a quantifier free CQ-instance� = (A, φ)with
the hypergraph H. Let V be the variables of �, {0, 1} the domain and add an atom
φe with relation symbol Re and scope e for each e ∈ E. The relation RA

e contains
all tuples that contain at most one 1 entry. Finally, φ := ∧

e∈E φe.
Clearly, � has indeed the hypergraph H. Furthermore the solutions of � are

exactly the characteristic vectors of independent sets of H. Thus we can enumerate
all independent sets of H in time |H|O(ρ∗

H(V )) with Theorem 17.

Proof of Lemma 23 (Sketch) We proceed by dynamic programming along a fractional
hypertree decomposition.

In a first step we compute a fractional hypertree decomposition
(T , (χt )t∈T , (ψt )t∈T ) of width k′ = kO(1) of H with Theorem 18. For each bag χt

we then compute all all independent sets ofH[χt ] by Lemma 24; call this set It .
By dynamic programming similar to the proof of Lemma 2 we then compute a

maximum independent set ofH.
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8 Conclusion

The results of this paper give a clear picture of tractability for counting solutions of
conjunctive queries for structural classes that are known to have tractable decision
problems. Essentially counting is tractable if and only if these classes are combined
with quantified star size. So to find more general structural classes that allow tractable
counting, progress for the corresponding decision question appears to be necessary.

Note that our characterizations of tractable classes of queries rely only on the
underlying hypergraphs of the queries and do not use any other information. For the
case of bounded arity, it is known that analyzing classes of queries directly instead of
their hypergraphs allows to completely characterize the classes of queries for which
the decision problem CQ is tractable [12, 22]. In particular, this includes tractable
classes whose tractability is not witnessed by the hypergraph perspective alone. A
refinement of our results in this style in the case of bounded arity can be found in
[29]. These results will also appear in an upcoming paper by Hubie Chen and the
second author.

Another way of generalizing the results of this paper would be extending the logic
that the queries can be formulated in. Just recently Chen and Dalmau [9] have char-
acterized the tractable classes of bounded arity QCSP which is essentially a version
of CQ in which also universal quantifiers are allowed. They do this by introducing a
new width measure for first order {∀, ∃, ∧}-formulas. We conjecture that their width
measure also characterizes the tractable cases for #QCSP, i.e., tractable decision and
counting coincide here. It would be interesting to see how far this can be pushed for
the case of unbounded arity.

Another extension of conjunctive queries appears in a recent paper by Chen [7]
where he considers existential formulas that may use conjunction and disjunction.
This is particularly interesting, because it corresponds to the classical select-project-
join queries with union that play an important role in database theory (see e.g.,
the textbook [1]). One may wonder if techniques used in this paper may help to
understand the complexity of this class of queries better.

Acknowledgments The authors are grateful for the very helpful feedback on this paper they got from
the reviewers of the conference version. The results of this paper are a part of the PhD thesis of the second
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