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Abstract The players of a congestion game interact by allocating bundles of
resources from a common pool. This type of games leads to well studied models for
analyzing strategic situations, including networks operated by uncoordinated selfish
users. Congestion games constitute a subclass of potential games, meaning that a
pure Nash equilibrium emerges from a myopic process where the players iteratively
react by switching to a strategy that diminishes their individual cost. With the aim of
covering more applications, for instance in communication networks, we extend con-
gestion games to the setting where every resource is endowed with a capacity which
possibly limits its number of users. From the negative side, we show that a pure Nash
equilibrium is not guaranteed to exist in any case and we prove that deciding whether
a game possesses a pure Nash equilibrium is NP-complete. Our positive results state
that congestion games with capacities are potential games in the well studied single-
ton case. Polynomial algorithms that compute these equilibria are also provided.

Keywords Congestion games · Pure nash equilibrium · Potential function ·
Algorithms

1 Introduction

In congestion games [32], a finite set of players may use resources from a common
pool and the delays associated with the use of each resource is a function only of the
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number of players using it. The cost of a player is the sum of the delays associated
with each resource in his strategy choice, given the choices of the other players.
The existence of (pure) Nash equilibria [31] for congestion games can be proved by
constructing an exact potential function [30, 32], and it can be also proved that each
game with an exact potential function is isomorphic to a congestion game ([30]; see
[37] for an introduction to more general results on potential games).

This type of games are well studied models for strategic situations including rout-
ing [12], network design [3] and load balancing [11]. It is also a prominent model for
resource sharing among uncoordinated selfish users.

Significant interest has been addressed over the last years to the analysis of
practical congestion problems in the Internet. Data delays and losses due to data
congestions, or the network collapse as a consequence of exceeding the data flow
capacity of some links or nodes, has long been a real problem for the Internet
[4]. Several policies have been proposed to control congestion, in order to regulate
and improve the availability of broadband access to the Internet. Priority rules, for
instance, have been adopted to regulate the users who enter into the network, with the
objective to prevent congestion and to obtain a Quality of Service (QoS) that other-
wise would not be available to users [6]. A classical example of priorities of users is
provided by the access categories of the IEEE 802.11e standard, that was developed
in order to offer QoS capabilities to Wireless Local Area Networks (WLANs) [28].
But the interest for priority policies is not limited to the Internet. In many countries,
priority-based mechanisms have increasingly been used to promote an efficient use
of the highway. Think for instance to High Occupancy Vehicle (HOV) lanes, which
provide priority to vehicles with more than two or three occupants, like shuttle vans,
buses, car pools etc. Sometimes, and at less congested hours, low occupancy vehi-
cles are also allowed to use priority lanes on payment of a toll aimed to contribute to
cover system implementation costs. However, many transportation specialists claim
that HOV lanes would not substantially solve the problem of traffic congestion, while
they would extremely penalize low occupancy vehicles. Therefore, they argue for
more sophisticated priority mechanisms which may improve the efficient exploita-
tion of the highway traffic capacity [22]. Priority rules are also used in railway traffic
regulation when the traffic demand exceeds the capacity of rails: for example, pri-
ority may be provided to trains increasing the revenues of the rail network provider,
like in Germany [10], or to passenger trains over freight trains, like in Italy [27], etc.

Congestion games [32] can only partially model the practical situation described
above. In order to catch other realistic factors like capacities of resources and the
different priority of users on the network, a more sophisticated model is required.

For this purpose, we introduce the class of congestion games with capacitated
resources, where each resource is associated both with a capacity level, representing
the maximum number of users that such a resource may simultaneously accommo-
date, and with an ordering on the users, prescribing the priority of accommodation
of the users. Given a certain profile of players’ strategies, the cost of utilization of
a resource for the players which have that resource in their strategy and which are
accommodated on it, is a function of the number of players using it in that profile (as
in the case of classical congestion games), whereas the cost of players having that
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resource in their strategy, but which are not accommodated, is prohibitive (supposed
infinite).

In this paper we investigate the following questions: Do congestion games with
capacitated resources always admit a pure strategy Nash equilibrium (NE in short) in
any case as it holds for classical congestion games? If not, is it difficult to decide if an
instance possesses a pure NE? Can we identify natural classes of instances admitting
a pure NE? Are there polynomial (or more efficient) algorithms that build a pure NE
for classes containing such an equilibrium?

2 Models and Notations

A strategic (cost) game is a tuple 〈N , (�i)i∈N , (ci)i∈N 〉, where N = {1, · · · , n} is
a finite set of players; �i is a non-empty set of pure strategies for each player i ∈ N ;
ci : �1 × · · · × �n → R is an individual cost function specifying players i’s cost
ci(σ ) ∈ R for each strategy profile σ = (σi)i∈N ∈ �1 × · · · × �n and each i ∈ N .

Using conventional notations, we denote by � = �1 ×· · ·×�n the set of strategy
profiles or strategy space and we denote a strategy profile σ by (σi, σ−i ) if the choice
of player i needs stressing. The strategy space � is symmetric-strategy if �1 = �2 =
. . . = �n.

A pure strategy Nash equilibrium (or simply pure Nash equilibrium, NE in short)
is a pure strategy profile σ ∈ � such that, for all players i ∈ N , and all pure strategies
si ∈ �i , it holds that ci(σ ) ≤ ci(si , σ−i ). We only deal with pure strategies in this
article so we often omit the word “pure”.

For some given strategy profile, a better move of a player is a unilateral deviation
such that his cost decreases strictly. If such a better move exists, we say that the
corresponding player is unhappy, otherwise he is happy. In this setting a NE is a
strategy profile where all players are happy. The better-response dynamics is the
process of repeatedly choosing an arbitrary unhappy player and let him make an
arbitrary better move. A potential game is a game in which, for any instance, the
better-response dynamics always converges [30]. Such a property is typically shown
by a potential function argument.

2.1 Congestion Models and Games

Rosenthal [32] defines a congestion model as a tuple 〈N ,R, (�i)i∈N , (dr )r∈R〉
whereN = {1, . . . , n} is the set of players;R is a finite set of m resources; �i ⊆ 2R

is the set of pure strategies of player i, for each i ∈ N ; dr : {0, 1, . . . , n} → R
+ is

a delay function associated with resource r , for each r ∈ R. This function depends
on the number of players using resource r , denoted by nr(σ ) or simply nr when the
context is clear. The interpretation is that every player of a resource r incurs a cost of
dr(nr) (with the convention that dr(0) = 0). Delay functions are sometimes supposed
monotone (e.g. [12]) but we do not make this restriction in this paper.

Given a congestion model 〈N ,R, (�i)i∈N , (dr )r∈R〉, an associated congestion
game is defined as a strategic cost game 〈N , (�i)i∈N , (ci)i∈N 〉 where for each
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σ ∈ � and i ∈ N , ci(σ ) = ∑
r∈σi

dr (nr(σ )). Better-response dynamics always
converges in congestion games because every better move decreases Rosenthal’s
potential function

∑
r∈R

∑nr

i=1 dr(i) [32].
In general, a potential function � : � → R maps the incentives of all players into

one function whose local optima correspond to the pure NE of the game. The class
of games admitting a potential function is known as potential games [30].

An important subclass of congestion games is the class of singleton congestion
games (also known as parallel-link games) in which every player’s strategy consists
of a single resource [1, 11, 13, 15, 16, 21, 29].

2.2 Congestion Games with Capacitated Resources

This section describes the model introduced and studied in this paper. Given a con-
gestion model 〈N ,R, (�i)i∈N , (dr )r∈R〉, we also assume that every resource r ∈ R
has a capacity κr – an integer between 1 and n – which is the maximal number of
players that can use resource r . Moreover, every resource r is associated with a linear
order posr : N → {1, . . . , n}, where posr (i) = t means that player i is in the t-th
position of r (pos is strict total). We say that a player i has a higher priority than
player j at resource r iff posr (i) < posr (j). Notice that posr (i) is defined even if
r does not appear in the strategy space of player i.

Let Nr(σ) be the set of players using resource r in the strategy profile σ . A player
i ∈ Nr(σ) is accommodated by r iff the number of players inNr(σ) having a position
lower than posr (i) is strictly smaller than the capacity of resource r , i.e., |{j ∈
Nr(σ) : posr (j) < posr (i)}| < κr. The delay dr(σ ) of a resource r in profile σ is
defined as dr(min{nr(σ ), κr}). The delay di

r (σ ) of player i ∈ Nr(σ) on resource r is:

di
r (σ ) =

{
dr(min{nr(σ ), κr}) if i is accommodated,
+∞ otherwise.

(1)

A congestion game with capacitated resources (capacitated congestion game in
short) is a strategic cost game where the cost of a player i in profile σ is defined as
ci(σ ) = ∑

r∈σi
di
r (σ ).

Note that capacitated congestion games follow the original congestion model of
Rosenthal [32] when the resources are not overcrowded. When the capacity of a
resource is exceeded, the game shares similarities with the player-specific model of
Milchtaich [29] and with its generalization in [1]. However congestion games with
capacitated resources are neither a refinement nor an extension of player-specific
congestion games (this is discussed in detail in Appendix 1).

In congestion games with capacitated resources, a profile is a Nash equilibrium if
the following conditions hold:

– no player, accommodated by every resource in his current strategy, can unilater-
ally deviate and decrease his cost;

– no player, not accommodated by at least one resource in his current strategy, can
unilaterally deviate and incur a finite cost.

We say that a resource r is saturated if nr(σ ) ≥ κr . We say that a player i is
displaced by another player j in the following situation: i is accommodated by a
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resource r which is not used by j , j deviates so that r is in his new strategy and i is
not accommodated by r anymore whereas j is (of course posr (j) < posr (i)).

3 Related Works

Various aspects of congestion games were investigated. The existence of pure NE,
the convergence of better-response dynamics and the computation of equilibria are
interleaved questions studied in [2, 7, 12, 21]. Computing a pure NE of a congestion
game is a PLS-complete problem, even if strategies are symmetric. Nevertheless
there are important subclasses for which a NE can be built in polynomial time, by the
use of dedicated algorithms or simply via better response dynamics (see [20, 36, 37]
for surveys). Another important direction is the quality of equilibria compared to a
social optimal profile (the so-called price of anarchy [23] and price of stability [3])
for the specific class of congestion games [8].

Many extensions of the congestion model introduced in Rosenthal [32] have been
studied in the literature of strategic games. A non exhaustive list contains player-
specific and weighted congestion games [29], potential games [30], local-effect
games [26], congestion games with priorities [1] and graphical congestion games [5].

Player-specific congestion games [29] have been introduced with the objective to
model congestion situations where the delay of each resource inR depends not only
on the number of players using that resource but also on the player’s identity itself.
The delay of a player i ∈ N on resource r ∈ R is a function di

r : N → R
+. This

means that the delays of the same resource for two distinct players may be different.
A generalization of this model are (player-specific) congestion games with prior-

ities, which have been introduced in [1] with the objective to model situations where
each resource can assign priorities to the players (not necessarily a total order), and
players with a higher priority can displace all players with a lower priority. Several
players can allocate a resource but only those with highest priority are assigned to it.
The congestion on a resource depends on the number of players assigned to it. The
players who allocate a resource without being assigned to it incur an infinite delay.

Singleton congestion games with priorities (without player specific delay func-
tions) are potential games, and a pure NE can be found in polynomial time [1].
Congestion games with priorities extend (with ties) the two-sided markets model
introduced in [17], which is used to analyze markets where different kinds of agents
are matched to another (e.g., students and colleges, client and server sides, readers
and writers, firms and workers etc.). In the model of two-sided markets with ties
adopted by [1], several players may propose to be allocated to a resource, but only
the most preferred ones are assigned to that resource. In contrast, in many real exam-
ples of two-sided matching models, the assignments are subject to the limitations
imposed by capacities, and not to the highest priorities, as it has been proposed in [1].
Consider for instance the two-sided market represented by the college admissions
problem [17, 33], where colleges need to select sets of students, and students may
rank schools according to their preferences. Since colleges have limited enrolling
capacities, admissions are usually regulated by priorities (e.g., colleges may rank stu-
dents based on their individual academic records). In this context, an assignment is
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said to be stable if, whenever a student prefers another college to his assignment,
the enrolling capacity of that college is already saturated by students with higher
priority.

There are similarities between the model introduced in this article and the model
of [1], e.g. the possibility to displace players with lower priority on a certain resource.
Nevertheless these two models generate well distinct strategic cost games. Contrast-
ing with the model discussed in this paper, Ackermann et al. [1] suppose that there
is no capacity on the resources, two players may have the same priority with respect
to a given resource and two players with distinct priorities on a resource r cannot be
both assigned to r (see Appendix 1 for further details).

The notion of capacity in systems with congested resources has been considered
in [9] (see also references therein). Nevertheless, capacitated congestion games and
the model in [9] are different. In our setting, we consider a finite number of atomic
players and resources have an order on the users, whereas in [9], players are non-
atomic and resources are not endowed with an order.

A recent work is conducted on the price of anarchy and stability in a network with
capacities on its links [14]. In this paper, the authors distinguish feasible and unfeasi-
ble strategy profiles (all capacity constraints are satisfied or not). A Nash equilibrium
exists each time a feasible solution exists. Hence, no priority rule is needed in their
work.

Other models have been presented in the literature with the objective to analyze
the effects of players’ priority on congestion. Priority-based selfish routing models,
where nonatomic agents may have different priorities on the links of a network, have
been presented in [13]. In this framework, different priority schemes [13] on the links
have been considered, and the bounds of the corresponding price of anarchy [24] are
studied and compared.

Finally, note that most of the results concerning the existence of Nash equilibria
presented in this paper deal with singleton congestion games, which are situations
where players are allowed to use only one single resource. Such games, also known
as parallel-link games, are very well studied in the literature of congestion problems
[1, 11, 13, 15, 16, 21]. We point out to the fact that the parallel-link network topology
has received increasing attention in recent years in the context of QoS and the related
implementation of priority policies in data networking [25, 35, 38].

4 Contribution and Organization

Our goal is two-fold: (i) characterize the existence of a NE in capacitated congestion
games; and (ii) efficiently compute an equilibrium if it exists. Our main results are
summarized in Table 1.

First, we consider capacitated congestion games in general. We prove that a capac-
itated congestion game always admits a NE if it consists of two resources; moreover,
this equilibrium can be computed in linear time. Besides, a game with three resources
(and more) does not necessarily possess a NE. This negative result holds even if
the game is symmetric-strategy and all players’ strategies except one are singleton.
From a computational aspect, deciding whether a game, even symmetric-strategy and
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Table 1 Summary of our main
results General strategies Singleton strategies

2 resources 3 resources

∃ NE yes no yes

Polynomially yes – yes

consisting of two players, has a NE is shown to be NP-complete. The results are
presented in Section 5.

Next, we consider singleton capacitated congestion games. We show that the game
is a potential game so it always admits a NE. The proof is based on a new geomet-
rical approach of potential argument, which could be seen as a generalization of a
dominant potential function in higher dimension. We believe that the approach would
be useful in proving the existence of NE in other games and is of independent inter-
est. In computational aspect, the better-response dynamics converges to a NE in at
most O(n4m) strategy changes (recall that n and m are the number of players and
resources, respectively). Additionally, we give a more efficient algorithm to compute
a NE when the game is symmetric-strategy. The results are presented in Section 6.

5 General Strategies

We begin with a simple symmetric-strategy game which does not admit a NE. There
are two players, three resources x, y and z, and the priorities are the same for the
three resources (priority is always given to the first player). The strategy space of the
players is {{x}, {y, z}}. Resource x has capacity 1 and dx(1) = 2. Resource y has
capacity 2 and dy(1) = 3 while dy(2) = 0. Resource z has capacity 1 and dz(1) = 0.
The game is illustrated in Figs. 1 and 2.

Notice that the example possesses some minimal characteristics for the existence
of a NE: a game with one player obviously admits a NE and Theorem 1 states that
capacitated congestion games defined on two resources always admit a NE. More-
over the instance falls into restricted cases which often make the existence of a NE
likely: strategies are symmetric source-target paths of a directed network, delays are
monotone and priorities on the resources are identical.

Making further restrictions, like assuming non-decreasing delays, does not guar-
antee the existence of a NE either, as it is shown by the 2-player symmetric-strategy

Fig. 1 A 3-resource 2-player
symmetric-strategy capacitated
congestion game without any
pure Nash equilibrium
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Fig. 2 The corresponding
network where each arc is a
resource

game presented in Fig. 3. In this game, there are four resources x, y, z, and w. The
strategy space of the players is {{x, y}, {y, z}, {x, z}, {w}}. Resources x and y have
capacity 1 and dx(1) = dy(1) = 0. Resource z and w have capacity 2 and dz(1) = 1
and dw(1) = 2, while dz(2) = 3 and dw(2) = 4. We have posx(1) < posx(2) and
posy(1) > posy(2). The linear orders of z and w have no influence on the game
since the resources can accommodate the two players.

Next result states that a pure NE is guaranteed to exist for two resources (it is not
true for 3 resources by the example of Fig. 1).

Proof Denote by r and s the resources. Observe that a player with strategy space
{{r}, {r, s}}, cannot prefer to play {r, s} over {r}, in any profile, as the delay of a
resource is non-negative. Hence, we can reduce his strategy space to {{r}}, meaning
that he is happy whenever he plays {r}. With the same arguments, a player with
strategy space {{s}, {r, s}}, is happy whenever he plays {s}. Similarly, the players
with strategy space {{r}, {s}, {r, s}} can have a reduced strategy space of {{r}, {s}};
we denote by N̂ these players.

Fig. 3 A 4-resource 2-player symmetric-strategy capacitated congestion game with non-decreasing delays
and without any pure Nash equilibrium

Theorem 1 Every capacitated congestion game defined on two resources possesses
a pure Nash equilibrium. Moreover, a NE can be computed in linear time.
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We are going to build a strategy profile σ . The players who are not in N̂ are
assigned to the single strategy of their (reduced) strategy space, and their assignments
are not subsequently modified. For the players in N̂ , we use Algorithm 1 to determine
if they play {r} or {s} .
Algorithm 1 2-resource

Input: a set N of players, two resources r, s

Output: A pure Nash equilibrium σ

1: N̂ ← ∅
2: If a player i has only one strategy in his reduced strategy space then assign him

to that strategy, else let σi ← r and N̂ ← N̂ ∪ {i}
3: Rename players in N̂ such that poss(1) < poss(2) < · · · < poss(n̂) where

n̂ = |N̂ |
4: Let N̂∞ and N̂f be the set of players in N̂ with infinite cost and finite cost under

the current profile σ , respectively
5: for i = 1 to n̂ do
6: If i ∈ N̂∞ and ci(s, σ−i ) < ci(σ ) then σi ← s

7: end for
8: for i = 1 to n̂ do
9: if i ∈ N̂f and ci(s, σ−i ) < ci(σ ) then
10: σi ← s

11: if i displaces a player j ∈ N̂ then
12: σj ← r

13: end if
14: end if
15: end for
16: return profile σ

The algorithm starts by assigning all members of N̂ to r . Then N̂ can be
partitioned in two sets N̂f and N̂∞ corresponding to accommodated and non accom-
modated players, respectively. The members of N̂∞ are examined by decreasing
priority on resource s. A player in N̂∞ is assigned to s only if he is better off on
s. After, the members of N̂f are examined by decreasing priority on resource s. A
player in N̂f is assigned to s only if he is better off on s, and if the deviation causes
the displacement of a player j ∈ N̂ then j is immediately moved to r . We are going
to prove that the resulting strategy profile must be a pure NE.

First, we show an invariant that at anytime, the algorithm maintains the property
that no player of N̂ placed on s can or wants to move to r .

The property is clearly true before the first for loop. During the first for loop, no
player who has moved from r to s has incentive to return back to r because he would
get an infinite cost. For the second for loop, we prove the invariant by induction on
i. The base case (before entering the loop) is straightforward. We analyze a step by
considering three subcases:

– Resource s is saturated before i moves and the deviation implies that a player
j ′ /∈ N̂ is displaced. In this case, the deviation does not incentivize a player
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j ∈ N̂ placed on resource s to move. Indeed j ’s cost is ds(κs) before and after
i’s deviation. After his deviation, i’s cost is ds(κs) which is strictly smaller than
his previous cost. Moving to r is not profitable to j since it implies a worse cost
(+∞ or i’s previous cost).

– Resource s is saturated before i moves and the deviation implies that a player j ∈
N̂ is displaced. Observe that j cannot belong to N̂f because the loop follows the
total order of priorities on s. The algorithm assigns j to r so that his cost is either
equal to +∞ or equal to the cost previously incurred by i. Then, the number of
players on s remains unchanged. No player from N̂ placed on resource s has
incentive to move, since otherwise the player can do it before the exchange of i

and j — contradiction with the induction hypothesis.
– Resource s is not saturated before i moves and the deviation implies that at least

one player j ∈ N̂ wants to unilaterally move to r . Players i and j have the same
finite cost. By moving to r , player j would get either +∞ (which cannot be an
improvement) or exactly the cost incurred by i before his deviation, contradicting
the fact that i has decreased his cost.

The property holds at the end of the two phases. Now observe that a player i ∈ N̂
placed on r either has been displaced from s at some step or has had the opportunity
to switch to s during the second loop but did not (could not) do so. Hence, those
players are happy on resource r . The profile σ is then a pure Nash equilibrium. The
algorithm is clearly linear in n.

When the number of resources is not fixed, the problem becomes much harder as
it is stated in the next proposition.

Proof We will reduce PARTITION — a NP-complete problem [18] — to the
symmetric-strategy capacitated congestion game. In PARTITION, given n integers
{a1, . . . , an} such that

∑n
j=1 aj = 2B > 6 and 0 < aj < B, one has to decide

whether a subset J ⊆ {1, . . . , n} such that ∑j∈J aj = B = ∑
j /∈J aj exists.

Given an instance of PARTITION, we construct a capacitated congestion game
with two players where the resources are the arcs of a network G and the players’
strategies are all paths from a common source s to a common target t , see Fig. 4. For

Fig. 4 The network associated with an instance of PARTITION

Proposition 1 Deciding whether a symmetric-strategy capacitated congestion game
has a NE is NP-complete, even with two players.
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arc e0, κe0 = 2, de0(1) = B + 2 and de0(2) = 0. For arcs ej and e′
j where 1 ≤ j ≤ n,

κej
= κe′

j
= 2, dej

(1) = aj , dej
(2) = B + 2, and de′

j
(1) = 0, de′

j
(2) = B + 2. For

arc e′
n+2, κe′

n+2
= 2 and de′

n+2
(1) = 2, de′

n+2
(2) = 0. For arcs en+1 and e′

n+1, their
capacities are κen+1 = κe′

n+1
= 1 and player 1 has higher priority than player 2 in

both arcs. Moreover, the delay functions are den+1(1) = B, de′
n+1

(1) = B − 1.
One can show that the instance of PARTITION has a feasible solution iff the game

defined on G admits a NE.
Let J be a subset of {1, . . . , n} such that

∑
j∈J aj = B = ∑

j /∈J aj . Consider
the following profile σ : σ1 = {e0} ∪ {ej : j ∈ J } ∪ {e′

j : j ∈ {1, . . . , n} \ J } and
σ2 = {e0}∪ {e′

j : j ∈ J }∪ {ej : j ∈ {1, . . . , n} \J }. Each player has cost B. One can
verify that no player can reduce his cost by unilaterally switching to another path.
Therefore, σ is a NE.

Conversely, assume that σ is a NE of the game. First, we prove the following
claim.

Proof of claim Suppose that an arc e �= e0 is shared by the two players. If e ∈
{e1, · · · , en} ∪ {e′

1, · · · , e′
n} then the cost of each player is at least de(2) = B + 2.

In this case, one player can switch to arc en+1 and get a cost of B. Otherwise, e ∈
{en+1, e

′
n+1, e

′
n+2}. As κen+1 = κe′

n+1
= 1 and player 1 has higher priority than player

2 in both arcs, the cost of player 2 is +∞. However, player 2 can choose a path
consisting of arcs in {e1, · · · , en} ∪ {e′

1, · · · , e′
n} and incur a finite cost.

Now suppose that e0 is not shared by the two players. Then, e0 /∈ σi for some
player i ∈ {1, 2}; the other player has index 3 − i. If arc e0 is used by player 3 − i

then his cost is at least de0(1) = B + 2. In this case, player 3 − i can deviate to
the path {en+1} or {e′

n+1, e
′
n+2}, which is different from player i’s strategy, and have

a cost of at most B + 1. Consider the case that arc e0 is not used by player 3 − i.
By the previous argument, no edge different from e0 is shared, so the players do
not use the same path. If player 2 chooses (en+1) then he has a cost of B while
player 1 must choose (e′

n+1, e
′
n+2) with a cost of B + 1. Now, player 1 can switch

to path (en+1) and reduce his cost to B because posen+1(1) < posen+1(2). If player
2 chooses (e′

n+1, e
′
n+2) then he has a cost of B + 1 while player 1 must choose

(en+1) with a cost of B. Now, if player 1 changes his path by taking (e′
n+1, e

′
n+2),

he gets a cost of de′
n+1

(1) + de′
n+2

(2) = B − 1 because pose′
n+1

(1) < pose′
n+1

(2).
In each case, we get a contradiction. Hence, e0 is the unique arc shared by both
players.

By the claim, e0 is shared by the players. If one player has a cost strictly larger
than B, then he can decrease it by choosing en+1. Therefore, the player’s costs in σ

is at most B. Moreover, the arcs in their paths must belong to {e0} ∪ {e1, · · · , en} ∪
{e′

1, · · · , e′
n}. The total delays of arcs without e0 in their paths is at least

∑
j aj = 2B

by the definition of the delay functions and the fact that they do not share any arc
except e0. Therefore, both have cost B. Hence, the set J := {aj : ej ∈ σ1} is a
feasible solution to the instance of PARTITION.

Claim 1 e0 is the unique arc which is shared by two players
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6 Singleton Strategies

In this section, we are interested in studying the existence of NE and efficient algo-
rithms to compute a NE in singleton capacitated congestion games. First, we present
intuitively our approach in proving the existence of a NE.

6.1 Starting Point

Consider the following dominance order ≺′. Let A = {a1 ≤ . . . ≤ ak} and B =
{b1 ≤ . . . ≤ bk} be two sets of k real-value elements that are named in increasing
order. We say that A ≺′ B if there exists an index 1 ≤ � ≤ k such that ai = bi

for all 1 ≤ i < � and a� < b�. This order is well-defined and has been used in
proving the existence of Nash equilibria (for example [15]). We interpret this order
in a geometrical view. For each set A and B, map all elements to points on a real line
where the coordinate of a point equals the value of its corresponding element. For
u ∈ R, let Au and Bu be the number of points corresponding to elements in A and B

with coordinate smaller than or equal to u, respectively. Then, the order ≺′ could be
equivalently defined as follows: A ≺′ B if for the smallest u ∈ R such that Au �= Bu,
it holds that Au < Bu. In fact, the smallest u ∈ R such that Au �= Bu is a� where � is
the index in the former definition.

As we have seen, the dominant order could be geometrically interpreted as a one-
dimension order. Taking this geometrical approach, we prove the existence of NE
by designing a two-dimension order. Intuitively, the two dimensions are due to the
nature of the game where the cost of a player depends on the resource delay and the
priority of the player on the resource.

Proof First, we give some definitions which are useful in the proof.
For each profile σ , a function rankσ : R → N is defined as follows. If resource

r is saturated1 then rankσ (r) = max{posr (j) : σj = r, j is accommodated}.
Otherwise, rankσ (r) := n + 1.

We define a function f that maps each profile σ to a multiset of points in R
+ ×

N. Each resource r in profile σ is associated with the multiset f (r, σ ) of points
(dr (1), n+ 1); (dr(2), n+ 1); . . . ; (dr(tr (σ )− 1), n+ 1) and (dr (tr (σ )),rankσ (r))

where tr (σ ) := min{nr(σ ), κr }. The multiset f (σ) := ∪r∈Rf (r, σ ). An illustration
of f (σ) is given in Fig. 5.

For a value u ∈ R
+, to every profile σ we define the multiset σu := {(a, b) ∈

f (σ) : a ≤ u}. Moreover, denote by |σu| the cardinal of σu and ‖σu‖ := ∑
(a,b)∈σu

b.
By the definition, |σu| is the number of points corresponding to profile σ which are
on the left of the line x = u and intuitively ‖σu‖ is the total height of these points.

1Recall that a resource r is saturated if nr (σ ) ≥ κr .

Theorem 2 Singleton capacitated congestion games are potential games. Moreover,
the better-response dynamics necessarily converges in O(n4m) strategy changes.
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Fig. 5 An illustration of f (σ ), black filled dots if in σu

Now we define a partial order ≺ on profiles. Formally, two profiles ν and σ satisfy
ν ≺ σ if for the smallest u > 0 such that (|σu|, ‖σu‖) �= (|νu|, ‖νu‖) we have
|σu| < |νu|, or |σu| = |νu| but ‖σu‖ > ‖νu‖. Intuitively, we can interpret this order
as follows. Two profiles ν and σ satisfy ν ≺ σ if for the smallest u > 0 such that
(|σu|, ‖σu‖) �= (|νu|, ‖νu‖), either (1) the half-space on the left of the line x = u

contains more points of ν than those of σ ; or (2) if they are equal, the total height of
such points in ν is smaller than that of σ .

Now we can show that after a better move of some player i from resource r in
profile σ to a resource s, resulting in profile ν, we get that ν ≺ σ . Note that f (σ)

and f (ν) only differ on some points corresponding to resources r and s. In the fol-
lowing, we consider only these points. Let u be the cost of player i after the move,
which equals ds(ts(ν)) — the delay of resource s in profile ν. (Note that player i is
accommodated by resource s in profile ν as he has taken a better move.)

Intuitively, a player i moves to some resource if his cost is improved, meaning
that the delay ds(ts(ν)) at the new resource is smaller than his previous cost. Then
either the number of points with first coordinate at most ds(ts(ν)) is larger; or if that
number remains the same, it must be the case that i displaces some other player with
lower priority. In any case, the potential function decreases. We are now proving the
claim formally.

Consider the set of points corresponding to resource r in f (σ) and f (ν). If
i has unbounded cost in profile σ (meaning that i is not accommodated), then
f (r, σ ) = f (r, ν). If i is accommodated in profile σ then either f (r, σ ) = f (r, ν) ∪
(dr (σ ),rankσ (r)) in case nr(σ ) ≤ κr , or f (r, σ ) = f (r, ν) \ (dr (κr),rankσ (r))∪
(dr (κr),rankν(r)) in case nr(σ ) > κr . However, as i has taken a better move,
di
r (σ ) = dr(σ ) > u. Hence, restricting to points with first coordinate smaller than or

equal to u, f (r, σ ) = f (r, ν).
Consider the set of point corresponding to resource s in f (σ) and f (ν). If s

is unsaturated before the move of i then f (s, ν) = f (s, σ ) ∪ (ds(ν),rankν(s))

= f (s, σ ) ∪ (u,rankν(s)). If s is saturated before the move of i then f (s, ν) =
f (s, σ ) ∪ (u,rankν(s)) \ (u,rankσ (s)).

Therefore, for any u′ < u, (|σu′ |, ‖σu′ ‖) = (|νu′ |, ‖νu′ ‖). Moreover, if s is unsat-
urated before the move of i, |σu| < |νu|. Otherwise, |σu| = |νu| but rankν(s) <

rankσ (s), so ‖νu‖ < ‖σu‖. Hence, ν ≺ σ , i.e., after each better move, a new profile
is ≺-smaller than the previous one. In conclusion, the game is a potential game.
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Now we bound the number of strategy changes to reach an NE from arbitrary pro-
file in the better-response dynamics. Let σ be an arbitrary profile. By the definition
of order ≺, there are at most nm values of u that we have to consider. Moreover, for
each u, 0 ≤ |σu| ≤ n and 0 ≤ ‖σu‖ ≤ n(n + 1). Hence, there are at most O(n4m)

couples (|σu|, ‖σu‖) (where σ is a profile) which are ≺-different. Thus, from an arbi-
trary profile, the better-response dynamics converges to a NE in at most O(n4m)

strategy changes.

In the following, we consider singleton capacitated congestion games with the
additional property of symmetry on the players’ strategy sets. We give an algorithm to
compute a NE that is more efficient than the better-response dynamics by exploiting
that property.

Algorithm 2 Symmetric-strategy, singleton capacitated congestion games.

Input: Set N of n players, posr and κr for all r ∈ R
Output: An equilibrium σ

1: nr ← 0 for all r ∈ R
2: n̂ ← min{n, κ} where κ = ∑

r∈R κr .
3: while n̂ > 0 do
4: Find r∗ and kr∗ such that dr∗(kr∗) = min{dr(kr ) : nr < kr ≤ min{nr +

n̂, κr}, r ∈ R}.
5: n̂ ← n̂ − (kr∗ − nr∗)
6: nr∗ ← kr∗
7: end while
8: Rename resources so that dr1(n1) ≤ dr2(n2) ≤ . . . ≤ drm(nm)

9: for j = 1 to m do
10: Assign to resource rj the first nj players S ⊂ N according to posrj

11: N ← N \ S

12: end for
13: Assign all remaining players inN to an arbitrary resource, for example resource

rm.
14: output the current assignment σ .

The load of every resource is 0 at the beginning of the first phase. The algorithm
iteratively places some loads which eventually add up to n̂, defined as the minimum
between the total number of players and the maximum number of players that can

Proof Consider Algorithm 2 which consists of two phases: (i) determine a load
nr (ie. a number of players) for every resource r , (ii) identify the nr players to be
assigned to resource r .

Theorem 3 A NE in a symmetric-strategy, singleton capacitated congestion game
can be computed in min{n, κ} strategy changes and the overall time complexity of
the algorithm is O(min{n2m, κ2}), where κ = ∑

r∈R κr .
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be accommodated. Each iteration of the first phase is to find the least costly way to
augment the load.

Once the loads on the resources are known, the algorithm starts the second phase.
Every resource r is assigned exactly nr players. The algorithm takes the most appeal-
ing resource r (r has the lowest delay when it accommodates nr players) and assigns
to it the nr players with highest priority on r . The assignment on r is unchangeable
and the algorithm proceeds greedily with the remaining resources and players until n̂
players are assigned. Finally, if n̂ < n then all resources are saturated and the players
that remain unassigned are put on rm.

We are going to prove that the resulting strategy profile is a pure NE.
First consider the case n ≥ ∑

r∈R κr . By the algorithm, at the end of the while
loop, all resources become saturated with delays dr1(κ1) ≤ . . . ≤ drm(κm). Next,
κr1 first players according to posr1 are assigned to resource r1, then κr2 first players
according to posr2 among the remaining players are assigned to resource r2 then so
on. Finally, assign all remaining players to resource rm. The outcome is a NE because:
(1) a player assigned to a resource rj cannot displace another player assigned to a
resource rj ′ where j ′ < j ; (2) a player assigned to a resource rj cannot decrease his
cost by moving to another resource rj ′ where j ′ > j .

Now, consider the case n <
∑

r∈R κr . In this case, every player is accommodated
to some resource. Suppose a player i, assigned to resource r in profile σ , has incentive
to deviate to resource s resulting in profile σ ′.

If i′s deviation displaces some player i′ then we get a contradiction. Indeed,
dr(nr(σ )) = ci(σ ) > ci(σ

′) = ci′(σ ) = ds(ns(σ )) and poss(i) < poss(i
′)

hold. However, the algorithm fills resource s before resource r (steps 8 to 12 of the
algorithm) and player i should have been assigned to s instead of player i′.

Assume i does not displace anyone when deviating. We have indeed dr(nr(σ )) =
ci(σ ) > ci(σ

′) = ds(ns(σ ) + 1). Consider the moment at which nr is modified
for the last time (line 6 of the algorithm). Let kr and ks be the number of players
already assigned to resource r and s at that time, respectively. By the algorithm, nr

is modified because dr(kr ) = dr(nr(σ )) is minimum among other choices. Besides,
observe that at that time, n̂ ≥ (ns(σ ) − ks) + 1 since later, the algorithm will set
ns(σ ) as the number of players (who are different to i) on resource s. Therefore,
resource s and ns(σ ) + 1 is a candidate for the choice of the algorithm in line 4.
Thus, dr(nr(σ )) ≤ ds(ns(σ ) + 1) — contradiction. Hence, every player in σ is
happy, meaning that it is a NE. By the algorithm, the number of strategy changes is
obviously min{n, κ} and the time complexity is dominated by the while loop which
needs at most O(min{n2m, κ2}) operations.

7 Conclusion

Though capacitated congestion games do not admit a pure NE in general, we have
identified two subcases for which the existence of a pure NE is guaranteed : when
there are only two resources and for singleton strategies. As a future work, it would
be interesting to have a characterization of the instances which admit a pure NE,
those for which a potential function exists, those for which a polynomial algorithm
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can return a pure NE and those for which deciding the existence of a pure NE is NP-
complete. Some factors like the number of resources, the symmetry of the players’
strategy spaces, the monotonicity of the delay functions and the (non) homogeneity
of the priority orders seem to be relevant. Concerning the existence of a pure NE,
the examples of Section 5 give an insight into this characterization but many cases
remain open. For example one can mention the instances with non-decreasing delays
and homogeneous priority orders. If the players’ strategy spaces can be asymmetric
then a pure NE is not guaranteed to exist (see Appendix 2). For symmetric strategy
spaces we believe that a pure NE exists but it is an open problem. Concerning the
complexity of deciding if an instance admits a pure NE, Proposition 1 captures the
symmetric 2-player case with homogeneous priority orders. We believe that other
reductions can cover other cases.

We have assumed in the paper that each capacitated resource r is endowed with
a linear order posr , indicating which players are accommodated when the resource
is overcrowded. We believe that different and equally relevant ways to determine
who is accommodated exist, and the existence of a NE should be investigated. For
instance, an interesting open question is to know the computational complexity of
symmetric-strategy capacitated congestion games with increasing delay functions.
On a dynamic perspective, for instance, it would be interesting to study a model where
the priorities of users depend on their timing of using resources (for routing problems,
this could represent the arrival time to the starting node of an edge). On the other
hand, in this perspective, dropping the assumption of priorities represented by linear
orders could generate the technical problem of coordinating users asking for the same
resource at the same time (on this issue, see the discussion about timestamp games
in [13]).

Besides, it would be interesting to consider the model of two-sided markets in
which the ones in both sides have dynamic priority orders on the ones of the other
side. For example, certain matches between agents of the two sides could be a priori
forbidden, or could determine some extra costs (like in the two-sided market repre-
sented by patients and hospitals, where patients should support further costs to switch
from public hospitals to private ones). Finally, natural restriction/extension of our
model would be singleton capacitated congestion games with linear delays and the
study of instances with weighted players.

Acknowledgments We thank the anonymous referees for their comments which lead to significant
improvements of the manuscript.

Appendix 1

Next discussion explains how the model introduced and studied in this article differs
from player-specific congestion games [29].

Consider a congestion model with three players N = {1, 2, 3}, two resources
R = {r, s}, a symmetric strategic space (�i = {{r}, {s}})i∈N , and the delay of
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Table 2 A congestion game with priorities

a resource equals the number of players using it. Consider the following player-
specific congestion game with priorities. On both resources, players 2 and 3 have
higher priority on player 1, precisely, πr(2) = πs(2) = πr(3) = πs(3) = 2 and
πr(1) = πs(1) = 1. The corresponding congestion game with priorities is given in
Table 2. Note that each triple (·, ·, ·) represents the costs of players where the costs
of player 1, 2 and 3 correspond to the first, second and third element of the triple.

Now, on the same congestion model, consider all possible capacitated congestion
games and the two strategy profiles σ = ({r}, {r}, {r}) and σ ′ = ({r}, {r}, {s}).
Whatever pos functions of resources r and s, if players’ costs in profile σ are
(∞, 2, 2) then κr = 2. On the other hand, if players’ costs in profile σ ′ are (∞, 1, 1),
then it implies that κr = 1. Therefore it cannot be possible to obtain the outcomes
corresponding to σ and σ ′ of games shown in Table 2.

Besides, consider a congestion game with capacitated resources in which κr = 2,
κs = 1 and posr (3) < posr (2) < posr (1), poss(3) < poss(2) < poss(1). We
have that the costs of players in σ and σ ′ are (∞, 2, 2) and (2, 2, 1), respectively.
A congestion game with priorities in which players’ costs are (∞, 2, 2) necessarily
gives the highest priority to both players 2 and 3. Therefore, the outcomes corre-
sponding to σ ′ is (∞, 1, 1). Hence, we have proved that neither of the two classes is
included in the other.

However, a capacitated congestion game with two players and the same priorities
over all resources can be seen as a player-specific congestion game [29]. Denote by
i and j the two players of a capacitated congestion game with posr (i) < posr (j)

and delay dr for every resource r . It suffices to consider a player-specific congestion
game with delay functions di

r and d
j
r such that di

r = dr for every resource r , dj
r = dr

for every resource r with capacity equal to 2, and d
j
r (1) = dr(1) and d

j
r (2) = +∞

for every resource r with capacity equal to 1.

Appendix 2

No pure NE exists in the next example. Every resource’s delay is non-decreasing and
all resources have the same priority order. Nevertheless the players have different
strategy spaces.

There are two players (row and column) and three resources x, y and z. The strat-
egy set of the row and column players are {{x}, {y}} and {{x, y}, {z}}, respectively.
Resource x has a capacity of 2, dx(1) = 1 and dx(2) = 3. Resource y has a capacity
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of 1 and dy(1) = 0. Resource z has a capacity of 1 and dz(1) = 2. Priority is always
given to the column player.

3 2
3 1

1 2
0
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