
Theory Comput Syst (2014) 55:250–278
DOI 10.1007/s00224-014-9534-z

The Failure of the Strong Pumping Lemma for Multiple
Context-Free Languages

Makoto Kanazawa · Gregory M. Kobele ·
Jens Michaelis · Sylvain Salvati · Ryo Yoshinaka

Published online: 30 January 2014
© Springer Science+Business Media New York 2014

Abstract Seki et al. (Theor. Comput. Sci. 88(2):191–229, 1991) showed that every
m-multiple context-free language L is weakly 2m-iterative in the sense that either
L is finite or L contains a subset of the form {u0w

i
1u1 · · ·wi

2mu2m | i ∈ N}, where
w1 · · ·w2n �= ε. Whether every m-multiple context-free language L is 2m-iterative,
that is to say, whether all but finitely many elements z of L can be written as z =
u0w1u1 · · ·w2mu2m with w1 · · ·w2m �= ε and {u0w

i
1u1 · · ·wi

2mu2m | i ∈ N} ⊆ L, has
been open. We show that there is a 3-multiple context-free language that is not k-
iterative for any k.

Keywords Multiple context-free grammar · Pumping lemma

M. Kanazawa (B)
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
e-mail: kanazawa@nii.ac.jp

G.M. Kobele
Computation Institute and Department of Linguistics, University of Chicago, Chicago, IL 60637,
USA
e-mail: kobele@uchicago.edu

J. Michaelis
Fakultät für Linguistik und Literaturwissenschaft, Universität Bielefeld, Postfach 10 01 31,
33501 Bielefeld, Germany
e-mail: jens.michaelis@uni-bielefeld.de

S. Salvati
INRIA Bordeaux Sud-Ouest, LaBRI, 351, Cours de la Libération, 33405 Talence Cedex, France
e-mail: sylvain.salvati@labri.fr

R. Yoshinaka
Graduate School of Informatics, Kyoto University, 36-1 Yoshida-Honmachi, Sakyo-ku,
Kyoto 606-8501, Japan
e-mail: ry@i.kyoto-u.ac.jp

mailto:kanazawa@nii.ac.jp
mailto:kobele@uchicago.edu
mailto:jens.michaelis@uni-bielefeld.de
mailto:sylvain.salvati@labri.fr
mailto:ry@i.kyoto-u.ac.jp

Theory Comput Syst (2014) 55:250–278 251

1 Introduction

The study of iterative properties of the languages of multiple context-free grammars
(MCFG) [14] has had a peculiar history.1 Seki et al. [14] proved that any language L

generated by an MCFG of dimension m (i.e., m-MCFG) is weakly 2m-iterative (in
the sense of Greibach [2, 3]): either L is finite or else it contains a subset of the form

{
u0w

i
1u1 · · ·wi

2mu2m | i ∈ N
}

(1)

for some strings u0, u1, . . . , u2m and w1, . . . ,w2m such that w1 · · ·w2m �= ε.2 Seki
et al. [14] called this theorem a “pumping lemma” for m-MCFLs. Their proof of the
theorem starts with an application of the pigeon-hole principle to a path in a derivation
tree in a way familiar from the pumping lemma for context-free languages; beyond
that, however, it involves much more intricate reasoning than in the context-free case,
due to the complex relation between derivation trees of an MCFG and the derived
strings. The proof goes roughly as follows.

Given a sufficiently long string z in the language L of an m-MCFG G, the deriva-
tion tree T for z must contain a “context” U [] inside it that can be iterated any number
of times.3 That is to say, T can be written as T = U ′[U [T ′]], where U [T ′] is a sub-
tree of T which contains T ′ as a proper subtree, and for each i ≥ 0, U ′[Ui[T ′]] is
also a derivation tree. Here, the notation Ui[T ′] is defined by

U0[T ′] = T ′,

Ui+1[T ′] = U
[
Ui

[
T ′]].

In the case of a context-free grammar, each subtree of a derivation tree yields a single
string. In the case of an m-MCFG, in contrast, each subtree of a derivation tree is
associated with a tuple of strings. Thus, the contribution of the iterable context U []
to the derived string is some function g mapping an n-tuple of strings to another n-
tuple, for some n ≤ m. Such a function can be specified by an equation of the form
g(x1, . . . ,xn) = (α1, . . . , αn) using variables xi and strings αi over Σ ∪{x1, . . . ,xn},
where Σ is the terminal alphabet, such that each xi occurs in a unique αj . In the spe-
cial case where αj = w2j−1xjw2j for all j = 1, . . . , n (w1, . . . ,w2n ∈ Σ∗), iteration
of U [] inside the derivation tree translates into iteration of the strings w1, . . . ,w2n

inside the derived string, giving rise to a set of the form (1). In general, since xi

may end up in some αj with j �= i, the effect of iterating U [] in T = U ′[U [T ′]] is
rather hard to describe. As a consequence, derivation trees of the form U ′[Ui[T ′]]
do not (necessarily) generate a set of the form (1). One can see, however, that for

1Around the same time as Kasami et al. [9] first introduced multiple context-free grammars, essentially the
same formalism was proposed by Vijay-Shanker et al. [15] under the name linear context-free rewriting
systems (LCFRS). In this paper, we mostly follow the terminology of Seki et al. [14].
2We let N denote the set of natural numbers {0,1,2, . . . } and ε denote the empty string.
3Formally, a context is a tree with a single special leaf node (“hole”), which is labeled by �. When U [] is
a context and T is a tree, U [T] denotes the tree that results from removing the hole of U [] and inserting T

in its place.

252 Theory Comput Syst (2014) 55:250–278

large enough k, the k-fold composition gk of g with itself has the property that if
gk(x1, . . . ,xn) = (β1, . . . , βn), then for every j = 1, . . . , n, βj either is a constant
string (i.e., string over Σ) or else contains xj . It follows that g2k(x1, . . . ,xn) =
gk(β1, . . . , βn) = (w1β1w2, . . . ,w2n−1βnw2n) for some constant strings w1, . . . ,w2n

such that w2j−1w2j = ε whenever βj is a constant string. It is not difficult to see that
this implies that g(i+1)k(x1, . . . ,xn) = (wi

1β1w
i
2, . . . ,w

i
2n−1βnw

i
2n). Thus, deriva-

tion trees U ′[U(i+1)k[T ′]] (i ≥ 0) yield a subset of L of the required form (1). Cru-
cially, the original string z is not an element of this set.

By a strange quirk of fate, this proof was erroneously claimed by Radzinski [13] to
implicitly demonstrate a much stronger property,4 namely, that every m-MCFL L is
2m-iterative (in the sense of Greibach [3]): all but finitely many z ∈ L can be written
as z = u0w1u1 · · ·w2mu2m such that w1 · · ·w2m �= ε and {u0w

i
1u1 · · ·wi

2mu2m | i ∈
N} ⊆ L. More strangely, Groenink [5] just took Radzinski’s word for it (see also [4]).
A more recent book by Kracht [10] also states this property as a theorem.

We refer to the assertion that every m-MCFL is 2m-iterative as the strong pumping
lemma for m-MCFLs, to distinguish it from Seki et al.’s [14] theorem. It is clear that
no simple modification of the method of Seki et al. can establish the strong pump-
ing lemma for m-MCFLs. It is only when the iterable context U [] maps an n-tuple
(x1, . . . ,xn) to an n-tuple of the form (w1x1w2, . . . ,w2n−1xnw2n) that it is possi-
ble to conclude, analogously to the context-free case, that the given string z contains
factors w1, . . . ,w2m that can be pumped up and down without pushing the resulting
string outside of the given m-MCFL.5 Kanazawa [6] called such a well-behaved iter-
able context an even pump in his proof that an m-MCFG satisfying the condition of
well-nestedness always generates a 2m-iterative set. This proof works by induction
on m. The base case is handled by the fact that well-nested 1-MCFGs are just CFGs.
For the induction step, Kanazawa showed that given a well-nested m-MCFG G, one
can always find a well-nested (m − 1)-MCFG G′ for the language L′ consisting of
strings generated by G with derivation trees containing no even pump. Hence the
language L of G is a union of some 2m-iterative set and L′, which, by induction hy-
pothesis, is a 2(m − 1)-iterative set. It follows that L is 2m-iterative, completing the
induction. This method is such that derivation trees of G′ have very different shapes
from the original derivation trees of G for the same strings. Whereas the method also
works for 2-MCFGs in general, the well-nestedness property is essential for m ≥ 3,
and there is no obvious way of extending it to the non-well-nested case.

In this paper, we prove that the strong pumping lemma indeed fails for non-well-
nested m-MCFGs for m ≥ 3. We do so by exhibiting a particular 3-MCFG that gen-
erates a language that is non-iterative in a very strong sense. This language, which
we call H , is not k-iterative for any k. It is not even finitely pumpable in the sense
of Groenink [4, 5], a condition which is similar to k-iterativity but allows the number
of iterable factors to vary from string to string. In fact, H contains an infinite subset
{vn | n ∈ N} consisting of strings that are almost anti-iterative in the following sense:

4See footnote 10 of Radzinski [13]. Radzinski refers to the technical report [9] rather than the journal
article [14] based on it, but the proof is the same in both papers.
5A string v is a factor of a string z if z = uvw for some strings u,w.

Theory Comput Syst (2014) 55:250–278 253

whenever vn = u0w1u1 · · ·wkuk and w1 · · ·wk �= ε (for any k), it holds that
∣∣{i | i > 1 and u0w

i
1u1 · · ·wi

kuk ∈ H
}∣∣ ≤ 1.

Most of the rest of the paper is devoted to the proof of this property of the lan-
guage H (Sect. 3). Before we get to it, we briefly review basic notions concerning
multiple context-free grammars for readers unfamiliar with this grammar formalism
(Sect. 2). The proof in Sect. 3 does not use any general properties of MCFLs, and can
be followed by anyone who understands the definition of the language H .

2 Multiple Context-Free Grammars

Like a context-free grammar, a multiple context-free grammar is a quadruple
G = (N,Σ,P,S), where N is a finite set of nonterminals, Σ is a finite set of ter-
minals, P is a set of rules, and S is a designated nonterminal. While a nonterminal
of a CFG is associated with a set of terminal strings, a nonterminal of an MCFG is
interpreted as a q-ary relation on terminal strings, where q is the dimension of the
nonterminal. Each nonterminal comes with a unique dimension. (So the set N can be
thought of as a ranked alphabet.) The dimension of the designated nonterminal S is
always 1. A rule is of the form

A(α1, . . . , αq) ← B1(x1,1, . . . ,x1,q1), . . . ,Bn(xn,1, . . . ,xn,qn),

where n ≥ 0, A,B1, . . . ,Bn are nonterminals of dimension q, q1, . . . , qn, respec-
tively, the xi,j are pairwise distinct variables, which are symbols not in Σ , and
α1, . . . , αq are strings over Σ ∪ {xi,j | 1 ≤ i ≤ n,1 ≤ j ≤ qi} such that each xi,j

occurs at most once in α1 · · ·αq .
A rule is interpreted like a universally quantified implication from right to left.

Define a predicate �G that holds of expressions of the form A(u1, . . . , uq) (called
facts) inductively as follows:

– If A(u1, . . . , uq) ← is a rule of G, then �G A(u1, . . . , uq).
– If A(α1, . . . , αq) ← B1(x1,1, . . . ,x1,q1), . . . ,Bn(xn,1, . . . ,xn,qn) is a rule of G

and �G Bi(wi,1, . . . ,wi,qi
) for i = 1, . . . , n, then �G A(u1, . . . , uq), where

(u1, . . . , uq) is the result of substituting wi,j for each xi,j in (α1, . . . , αq).

When �G A(u1, . . . , uq), we say that A(u1, . . . , uq) is derivable (in G). (We some-
times write � instead of �G when the grammar is clear from the context.) The lan-
guage of G is defined by L(G) = {w ∈ Σ∗ | �G S(w)}.

An MCFG is an m-MCFG if the dimension of nonterminals does not exceed m.
The language of an m-MCFG is called an m-MCFL. It is shown by Seki et al. [14]
that each m-MCFG has an equivalent one such that the variables on the right-hand
side of any rule all appear in the left-hand side. Such an MCFG is called non-deleting.

A rule A(α1, . . . , αq) ← B1(x1,1, . . . ,x1,q1), . . . ,Bn(xn,1, . . . ,xn,qn) is called
non-permuting if for each i = 1, . . . , n and each j, k such that 1 ≤ j < k ≤ qi , it
is not the case that

ϕ(α1 · · ·αq) = xi,kxi,j ,

254 Theory Comput Syst (2014) 55:250–278

where ϕ is the homomorphism that erases all symbols in Σ and all variables other
than xi,j and xi,k . An MCFG G is called non-permuting if all its rules are non-
permuting. Every m-MCFG has an equivalent non-deleting non-permuting m-MCFG
[10, 11].

A non-deleting non-permuting MCFG is called well-nested if every rule A(α1, . . . ,

αq) ← B1(x1,1, . . . ,x1,q1), . . . ,Bn(xn,q , . . . ,xn,qn) satisfies the following condi-
tion: whenever i �= i′, 1 ≤ j < k ≤ qi , 1 ≤ j ′ < k′ ≤ qi′ , it is not the case that

χ(α1 · · ·αq) = xi,jxi′,j ′xi,kxi′,k′

where χ is the homomorphism that erases all symbols in Σ and all variables other
than xi,j ,xi,k,xi′,j ′ ,xi′,k′ . Kanazawa [6] showed that the languages of well-nested
m-MCFGs are all 2m-iterative. See also [8] for the effect of the well-nestedness con-
dition on the generative power of MCFGs.

In order to rigorously define the notion of a derivation tree, we view the rule set
P as a ranked alphabet where π ∈ P has rank n if the right-hand side of π has n

occurrences of nonterminals. A derivation tree of G = (N,Σ,P,S) is a local set of
trees over P , defined inductively as follows:

– If π = A(u1, . . . , uq) ← is a rule in P , then π is a derivation tree for A(u1, . . . , uq).
– If π = A(α1, . . . , αq) ← B1(x1,1, . . . ,x1,q1), . . . ,Bn(xn,1, . . . ,xn,qn) is a rule

in P and for i = 1, . . . , n, Ti is a derivation tree for Bi(wi,1, . . . ,wi,qi
), then

πT1 · · ·Tn is a derivation tree for A(u1, . . . , uq), where (u1, . . . , uq) is the result
of substituting wi,j for each xi,j in (α1, . . . , αq).

A derivation tree for A(u1, . . . , uq) is a derivation tree of type A. A complete deriva-
tion tree is a derivation tree of type S, and it is said to be a derivation tree for w if it
is a derivation tree for S(w). When T is a derivation tree for a fact A(u1, . . . , uq), we
also say T derives A(u1, . . . , uq). Clearly, �G A(u1, . . . , uq) holds if and only if G

has a derivation tree that derives A(u1, . . . , uq).
When a derivation tree of type B contains a derivation tree of type A as a subtree,

the result of replacing that subtree by any other derivation tree of type A is again a
derivation tree of type B . When a complete derivation tree T for w has a path contain-
ing more nodes than the number of nonterminals, then there must be a nonterminal A

and two nodes on that path such that the subtree rooted at each of the two nodes is a
derivation tree of type A. This is the starting point of Seki et al.’s [14] proof of their
pumping lemma.

Example 1 Consider the following 2-MCFG:

π1 : S(x1#x2) ← D(x1,x2)

π2 : D(ε, ε) ←
π3 : D(x1y1,x2y2) ← E(x1,x2),D(y1,y2)

π4 : E(cx1c̄, cx2c̄) ← D(x1,x2)

(π1,π2,π3,π4 are the names of the rules). Here, S is the designated nonterminal,
and all other nonterminals are of rank 2. This grammar generates {w#w | w ∈ D∗

1},

Theory Comput Syst (2014) 55:250–278 255

Fig. 1 A derivation tree for ccc̄c̄cc̄#ccc̄c̄cc̄ (left) and the same tree augmented with additional information
about what fact is derived at each step (right)

where D∗
1 is the Dyck language over the alphabet {c, c̄}. Note that the third rule is

not well-nested. Figure 1 shows a derivation tree for ccc̄c̄cc̄#ccc̄c̄cc̄, alongside of the
same tree with each node annotated by the fact derived by the subtree rooted at that
node.

3 Counterexample to the Strong Pumping Lemma for 3-MCFLs

We fix two alphabets:

Σ = {c, c̄, d, d̄},
Σ̂ = Σ ∪ {a, b}.

Define a 3-MCFL H ⊆ Σ̂∗ by the following 3-MCFG, where we use the symbol H

itself as the designated nonterminal:

H(x2) ← J (x1,x2,x3)

J (ax1,y1cx2c̄dy2d̄x3,y3b) ← J (x1,x2,x3), J (y1,y2,y3)

J (a, ε, b) ←
This is our counterexample to the strong pumping lemma. Note that the second rule
is not well-nested. When J (u1, u2, u3) is derivable in this grammar, we always have
u1 = ak+1, u3 = bl+1 for some k, l ∈ N, and u2 is either ε or a string of the form
amcvc̄dwd̄bn for some v,w ∈ H and m,n ≥ 1. In the latter case, the (unique) deriva-
tion tree for J (ak+1, amcvc̄dwd̄bn, bl+1) is a binary tree T where k and n are the
numbers of nodes on the leftmost and rightmost branches, respectively, of the left
immediate subtree of T , and m and l are the numbers of nodes on the leftmost and
rightmost branches, respectively, of the right immediate subtree of T (Fig. 2).

The language H is related to a context-free language over Σ via the homomor-
phism ψ : Σ̂∗ → Σ∗ defined by:

ψ(e) =
{

ε if e ∈ {a, b},
e if e ∈ Σ .

256 Theory Comput Syst (2014) 55:250–278

Fig. 2 Derivation tree for
J (ak+1, amcvc̄dwd̄bn, bl+1)

It is easy to see that ψ(H) is a context-free language included in the Dyck language
D∗

2 over the alphabet Σ , where (c, c̄) and (d, d̄) are each regarded as a matching pair
of parentheses. The homomorphism ψ is an injection when restricted to the strings
in H , and for each v ∈ H , ψ(v) encodes in an obvious way the unique derivation tree
for v. We can learn a lot about iterative properties of the 3-MCFL H from the CFL
ψ(H), so we begin by studying the latter.

3.1 Properties of the CFL V = ψ(H)

The goal of this section is to state a necessary condition for w ∈ Σ+ to be in
{
w | ww is a factor of some string in ψ(H)

}
.

In what follows, we use regular expressions and (recursive) equations involving reg-
ular expressions to define various languages. In regular expressions, the vertical bar
“|” denotes union, and is assumed to have lower precedence than all other operators.

Define the reduction relation � ∈ Σ∗ × Σ∗ by

� = {
(v1cc̄v2, v1v2) | v1, v2 ∈ Σ∗} ∪ {

(v1dd̄v2, v1v2) | v1, v2 ∈ Σ∗}.

We write �∗ for the reflexive transitive closure of the relation �, and �n for the
n-fold composition of � with itself (more precisely, �n+1 is � composed with �n,
where �0 is the identity relation). When v �∗ w, we say v reduces to w, and when
v �n w, we say v reduces to w in n steps. A string w ∈ Σ∗ is said to be in normal
form if neither cc̄ nor dd̄ is a factor of w. It is well known that the relation �∗ has
the confluence (i.e., Church-Rosser) property and each string w ∈ Σ∗ reduces to a
unique string in normal form, which is called the normal form of w. We write nf(w)

for the normal form of w. The Dyck language D∗
2 over Σ is defined as D∗

2 = {w ∈
Σ∗ | nf(w) = ε}.

Lemma 2 The following conditions hold of all u,v,w,v′ ∈ Σ∗:

(i) If v �∗ v′ ∈ c̄Σ∗, then nf(vw) ∈ c̄Σ∗.
(ii) If v �∗ v′ ∈ d̄Σ∗, then nf(vw) ∈ d̄Σ∗.

(iii) If v �∗ v′ ∈ Σ∗c, then nf(uv) ∈ Σ∗c.
(iv) If v �∗ v′ ∈ Σ∗d , then nf(uv) ∈ Σ∗d .
(v) If v �∗ v′ ∈ Σ∗cd̄Σ∗, then nf(uvw) ∈ Σ∗cd̄Σ∗.

(vi) If v �∗ v′ ∈ Σ∗dc̄Σ∗, then nf(uvw) ∈ Σ∗dc̄Σ∗.

Proof (i). Since v �∗ v′ ∈ c̄Σ∗ implies vw �∗ v′w ∈ c̄Σ∗ and, by the confluence
property, nf(vw) = nf(v′w), it suffices to show that z ∈ c̄Σ∗ implies nf(z) ∈ c̄Σ∗
for all z ∈ Σ∗. We prove this by induction on the number of reduction steps from z

Theory Comput Syst (2014) 55:250–278 257

to nf(z). Suppose z = c̄y. If z = nf(z), then nf(z) ∈ c̄Σ∗. Otherwise, z = c̄y �n nf(z)
for some n ≥ 1. Then c̄y � x �n−1 nf(z) = nf(x) for some x ∈ c̄Σ∗. By the induction
hypothesis applied to x, we obtain nf(z) ∈ c̄Σ∗.

Part (ii)–(vi) may be proved similarly. �

Lemma 3 Let w ∈ Σ∗ and suppose nf(w) = e1 · · · en for some e1, . . . , en ∈ Σ .
Then there exist u0, . . . , un ∈ Σ∗ such that w = u0e1u1 · · · enun and nf(ui) = ε for
i = 0, . . . , n.

Proof By induction on the number of reduction steps from w to e1 · · · en. �

If K is a set of strings, let fac(K) be the set of factors of elements of K , i.e.,

fac(K) = {v | uvw ∈ K}.
Since the relation “is a factor of” is reflexive and transitive, fac(fac(K)) = fac(K)

always holds.

Lemma 4 For every w ∈ fac(D∗
2), it holds that nf(w) ∈ (c̄ | d̄)∗(c | d)∗.

Proof By the definition of normal form, nf(w) cannot contain cc̄ or dd̄ as a factor.
Now nf(w) cannot contain cd̄ or dc̄ as a factor, either. To see this, let uwv ∈ D∗

2 and
suppose cd̄ or dc̄ is a factor of nf(w). Then by Lemma 2, part (v) and (vi), nf(uwv)

contains cd̄ or dc̄ as a factor, contradicting nf(uwv) = ε. The desired conclusion now
follows easily. �

Lemma 5 If vw ∈ D∗
2 , then nf(v) ∈ (c | d)∗ and nf(w) ∈ (c̄ | d̄)∗.

Proof Suppose vw ∈ D∗
2 . By Lemma 4, nf(v) and nf(w) both belong to (c̄ | d̄)∗(c |

d)∗. If nf(v) ∈ (c̄ | d̄)+(c | d)∗, then by Lemma 2, part (i) and (ii), nf(vw) ∈ (c̄ |
d̄)Σ∗, contradicting vw ∈ D∗

2 . Hence nf(v) ∈ (c | d)∗. Similarly, we can conclude
nf(w) ∈ (c̄ | d̄)∗ using Lemma 2, part (iii) and (iv). �

The set D2 of Dyck primes over Σ is defined as D2 = cD∗
2 c̄ | dD∗

2 d̄ . It is well
known and easy to see that D∗

2 indeed equals (D2)
∗.

Define context-free languages V,L,R by6

V = ε | LR,

L = cV c̄,

R = dV d̄.

Then it is easy to see that V ⊂ D∗
2 , L ⊂ D2, R ⊂ D2.

Lemma 6 fac(V) ∩ Σ2 = {cc, cc̄, c̄d, dc, dd̄, d̄c̄, d̄d̄}.

6As usual, the sets V,L,R are understood to be the components of the least solution to these equations.

258 Theory Comput Syst (2014) 55:250–278

Proof First, note that V = ε | LR implies that every v ∈ V satisfies v ∈ ε | cΣ∗d̄ .
Let F be the set on the right-hand side of the equation to be proved. We can show
by induction on the length of v that v ∈ V and w ∈ fac(v) ∩ Σ2 imply w ∈ F . Sup-
pose v ∈ V and w ∈ fac(v) ∩ Σ2. Then v ∈ LR = cV c̄dV d̄ , so v = cv1c̄dv2d̄ for
some v1, v2 ∈ V . Hence either w ∈ fac({v1, v2}) ∩ Σ2 or w ∈ {cc, cc̄, d̄c̄, c̄d, dc, dd̄,

d̄d̄} = F . By induction hypothesis, fac({v1, v2}) ∩ Σ2 ⊆ F , so it follows that w ∈ F .
This establishes fac(V) ∩ Σ2 ⊆ F . To see the converse inclusion, just note that for
u = ccc̄dd̄c̄dcc̄dd̄d̄ ∈ V , we have fac(u) ∩ Σ2 = F . �

Lemma 7 V = ψ(H).

Proof Applying the homomorphism ψ in each rule of the 3-MCFG for H , we get

H(x2) ← J (x1,x2,x3)

J (x1,y1cx2c̄dy2d̄x3,y3) ← J (x1,x2,x3), J (y1,y2,y3)

J (ε, ε, ε) ←
In this grammar, whenever J (u1, u2, u3) is derivable, u1 = u3 = ε. So the first and
third arguments of J can be dropped, and the grammar can be simplified to

J (cxc̄dyd̄) ← J (x), J (y)

J (ε) ←
This is just a context-free grammar for V . �

Lemma 8 D2 ∩ fac(V) = L | R.

Proof Since V = ε | LR and L | R ⊆ D2, it is clear that L | R ⊆ D2 ∩ fac(V).
For the converse inclusion, we prove by induction on the length of x ∈ V that

x = uvw and v ∈ D2 implies v ∈ L | R. The base case of x = ε is trivial. For the
induction step, let x = cyc̄dzd̄ , where y, z ∈ V , and suppose x = uvw and v ∈ D2.
We distinguish three cases.

Case 1. v is a factor of cyc̄. If v = cyc̄, then v ∈ L, and if v is a factor of y, then v ∈
L | R by the induction hypothesis. If v = cy′, where y′ is a prefix of y, then nf(v) =
nf(cy′) ∈ c(c | d)∗ by Lemma 5. So nf(v) �= ε, contradicting v ∈ D2. Likewise, if
v = y′′c̄, where y′′ is a suffix of y, then nf(v) = nf(y′′c̄) ∈ (c̄ | d̄)∗c̄ and nf(v) �= ε,
contradicting v ∈ D2.

Case 2. v is a factor of dzd̄ . This case is completely analogous to Case 1, and we
can conclude v ∈ L | R.

Case 3. v = v′v′′, where v′ is a non-empty suffix of cyc̄ and v′′ is a non-empty prefix
of dzd̄ . Since v ∈ D2, v cannot equal x = cyc̄dzd̄ . So either v′ is a suffix of yc̄,
in which case nf(v) = nf(v′v′′) ∈ (c̄ | d̄)∗c̄(c | d)∗ by Lemma 5, or else v′′ is a prefix
of dz, in which case nf(v) = nf(v′v′′) ∈ (c̄ | d̄)∗d(c | d)∗, again by Lemma 5. In either
case, nf(v) �= ε, contradicting v ∈ D2.

Theory Comput Syst (2014) 55:250–278 259

We have seen that v ∈ L | R holds in all cases, and the induction step is com-
plete. �

Lemma 9 D∗
2 ∩ fac(V) = V | L | R.

Proof Since V = ε | LR and L | R ⊆ D2, it is clear that V | L | R ⊆ D∗
2 ∩ fac(V).

For the converse inclusion, suppose w ∈ D∗
2 ∩ fac(V). Since any factor of a string

in fac(V) is itself in fac(V), it follows that w ∈ (D2 ∩ fac(V))∗. By Lemma 8, w ∈
(L | R)∗ ∩ fac(V). Since any string in LL | RL | RR has one of c̄c, d̄c, d̄d as a factor,
Lemma 6 implies (LL | RL | RR) ∩ fac(V) = ∅. It follows that (L | R)2 ∩ fac(V) =
LR and for n ≥ 3,

(L | R)n ∩ fac(V) = (
(L | R)2 ∩ fac(V)

)
(L | R)n−2 ∩ fac(V)

= LR(L | R)n−2 ∩ fac(V)

⊆ L
(
(RL | RR) ∩ fac(V)

)
(L | R)n−3

= ∅.

So

w ∈ (
ε | (L | R) | (L | R)2) ∩ fac(V)

= ε | (L | R) | LR

= V | L | R.

This proves D∗
2 ∩ fac(V) ⊆ V | L | R. �

Lemma 10 Let u,w ∈ Σ∗ and v ∈ Σ+. If uv ∈ V and vw ∈ V , then u = w = ε.

Proof Since V ⊂ D∗
2 , Lemma 5 implies nf(v) ∈ (c̄ | d̄)∗ ∩ (c | d)∗, and hence

nf(v) = ε. It follows that nf(u) = nf(w) = ε, too, and hence u,v,w are all in D∗
2 .

By Lemma 9, u,v,w are all in V | L | R. Since v �= ε, the strings uv and vw are
both in V − {ε} = LR = cV c̄dV d̄ . So v ends in d̄ and begins in c. If u �= ε, then
u ∈ LR | L | R, so u ∈ Σ∗(c̄ | d̄). This implies either c̄c or d̄c is a factor of uv ∈ V ,
contradicting Lemma 6. Therefore, u = ε. Similarly, we can use Lemma 6 to con-
clude w = ε. �

We say that a string u is a proper prefix (proper suffix) of a string v if u is a prefix
(suffix) of v and u �= v. Lemma 10 implies that no proper prefix or proper suffix of a
string in V can belong to V , which is to say that V is both prefix-free and suffix-free.

Lemma 11

fac(V) ⊆ (V | L | R) |
(V | R)(c̄R | d̄)∗(c̄ | c̄R | d̄) |
(c | Ld | d)(c | Ld)∗(V | L) |
(V | R)(c̄R | d̄)∗c̄d(c | Ld)∗(V | L).

260 Theory Comput Syst (2014) 55:250–278

Proof Suppose w ∈ fac(V). By Lemma 4, nf(w) ∈ (c̄ | d̄)m(c | d)n for some m,
n ≥ 0, and by Lemma 3, there are strings u0, . . . , um+n such that nf(ui) = ε for each
i = 0, . . . ,m + n and

w ∈ u0(c̄ | d̄)u1 · · · (c̄ | d̄)um(c | d)um+1 · · · (c | d)um+n.

Since ui is a factor of w ∈ fac(V), ui ∈ D∗
2 ∩ fac(V). Lemma 9 then implies ui ∈ V |

L | R.
By Lemma 6, each of the following sets is disjoint from fac(V):

c̄(c̄ | d̄), (c | d)d,

d̄(c | d), (c̄ | d̄)c.

This implies that the following conditions hold:

u0 ∈ V | R if m ≥ 1, (2)

um+n ∈ V | L if n ≥ 1, (3)

ui ∈ ε | R if ui is preceded by c̄, (4)

ui ∈ R if ui is preceded by c̄ and is followed by c̄ or d̄, (5)

ui = ε if ui is preceded by d̄ , (6)

ui = ε if ui is followed by c, (7)

ui ∈ ε | L if ui is followed by d , (8)

ui ∈ L if ui is preceded by c or d and is followed by d . (9)

Case 1. m = n = 0. Then w = u0 ∈ V | L | R.

Case 2. m ≥ 1, n = 0. Then w ∈ u0(c̄ | d̄)u1 · · · (c̄ | d̄)um. By (2), (4), (5), and (6),
we get w ∈ (V | R)(c̄R | d̄)∗(c̄ | c̄R | d̄).

Case 3. m = 0, n ≥ 1. Then w ∈ u0(c | d) · · ·un−1(c | d)un. By (3), (7), (8), and (9),
we get w ∈ (c | Ld | d)(c | Ld)∗(V | L).

Case 4. m,n ≥ 1. By (4), (6), (7), and (8), we see that um = ε. Since (c̄c | d̄c |
d̄d) ∩ fac(V) = ∅,

w ∈ u0(c̄ | d̄)u1 · · · (d̄ | d̄)um−1c̄dum+1(c | d) · · ·um+n−1(c | d)um+n.

By (2), (3), (5), (6), (7), and (9), we see that w ∈ (V | R)(c̄R | d̄)∗c̄d(c | Ld)∗(V | L).

This proves the lemma. �

Lemma 12 If w ∈ Σ+ and ww ∈ fac(V), then one of the following conditions
holds:

(i) w ∈ (c̄R | d̄)+.
(ii) w ∈ R(c̄R | d̄)∗c̄.

Theory Comput Syst (2014) 55:250–278 261

(iii) w ∈ (c | Ld)+.
(iv) w ∈ d(c | Ld)∗L.
(v) w ∈ (V | R)(c̄R | d̄)mc̄d(c | Ld)n(V | L) for some m,n ≥ 0 such that m �= n.

Proof Suppose w �= ε and ww ∈ fac(V). Since w ∈ fac(V), by Lemma 11,

fac(V) ⊆ (V | L | R) |
(V | R)(c̄R | d̄)∗(c̄ | c̄R | d̄) |
(c | Ld | d)(c | Ld)∗(V | L) |
(V | R)(c̄R | d̄)∗c̄d(c | Ld)∗(V | L).

Case 1. w ∈ V | L | R. Since w �= ε, w ∈ LR | L | R. It follows that ww has one of
d̄c, c̄c, d̄d as a factor, which contradicts ww ∈ fac(V) by Lemma 6. So this case is
impossible.

Case 2. w ∈ (V | R)(c̄R | d̄)∗(c̄ | c̄R | d̄). If w starts in c, then ww contains either c̄c

or d̄c as a factor, which contradicts ww ∈ fac(V) by Lemma 6. So

w ∈ (ε | R)(c̄R | d̄)∗(c̄ | c̄R | d̄).

Case 2.1. w ∈ (c̄R | d̄)∗(c̄ | c̄R | d̄). If w ends in c̄, ww contains either c̄c̄ or c̄d̄

as a factor, which contradicts ww ∈ fac(V) by Lemma 6. So in this case w ∈ (c̄R |
d̄)∗(c̄R | d̄) = (c̄R | d̄)+.

Case 2.2. w ∈ R(c̄R | d̄)∗(c̄ | c̄R | d̄) In this case, w starts in d . If w ends in d̄ , then
ww contains either d̄d as a factor, contradicting ww ∈ fac(V) by Lemma 6. So in
this case w ∈ R(c̄R | d̄)∗c̄.

Case 3. w ∈ (c | Ld | d)(c | Ld)∗(V | L). This case is exactly symmetric to Case 2,
and we can conclude w ∈ (c | Ld)+ or w ∈ d(c | Ld)∗L.

Case 4. w ∈ (V | R)(c̄R | d̄)∗c̄d(c | Ld)∗(V | L). Let m,n ≥ 0 be such that

w ∈ (V | R)(c̄R | d̄)mc̄d(c | Ld)n(V | L).

We show that m �= n. Suppose, by way of contradiction, m = n. Then ww contains a
factor u that belongs to

d(c | Ld)n(V | L)(V | R)(c̄R | d̄)nc̄.

Note that

u �∗ u′ ∈ d(c | d)n(c̄ | d̄)nc̄.

It is easy to see from this that nf(u) has either cd̄ or dc̄ as a factor. But since u

is a factor of ww, u ∈ fac(V) ⊆ fac(D∗
2). By Lemma 4, nf(u) ∈ (c̄ | d̄)∗(c | d)∗,

a contradiction.

We have proved that one of (i)–(v) holds in each case. �

262 Theory Comput Syst (2014) 55:250–278

3.2 Properties of the 3-MCFL H

Lemma 12 immediately yields a necessary condition for membership in {w ∈ Σ̂+ |
ww ∈ fac(H)}. For w to be in this set, it must be that ψ(w)ψ(w) = ψ(ww) ∈
ψ(fac(H)) = fac(ψ(H)) = fac(V), so either ψ(w) = ε, in which case w ∈ a+ | b+,
or ψ(w) must satisfy one of the five conditions in Lemma 12. This will be used in
the next section to give a necessary condition for membership in

{
w ∈ Σ̂+ | ww ∈ fac(H)

} ∩ fac
({vn | n ∈ N}),

where {vn | n ∈N} is a certain infinite subset of H . In this section, we establish some
general properties of H that will be useful in the next section.

Lemma 13 For every v ∈ V , there is a unique string w ∈ H such that ψ(w) = v.

Proof We prove by induction on the length of v ∈ V that there is a unique triple
(w1,w2,w3) such that J (w1,w2,w3) is derivable and ψ(w2) = v. It is clear from the
grammar for H that � J (w1,w2,w3) and ψ(w2) = ε imply w1 = a,w2 = ε,w3 = b.
This takes care of the case v = ε. Now suppose v ∈ LR. Then v = cu1c̄du2d̄ for
some u1, u2 ∈ V . Note that the choice of u1 and u2 is unique. For, if v = cu′

1c̄du′
2d̄

for some u′
1, u

′
2 ∈ V , then u′

1 either is a prefix of u1 or contains u1 as a prefix, which
implies u1 = u′

1 by Lemma 10. Similarly, u′
2 either is a suffix of u2 or contains u2

as a suffix, and it follows that u2 = u′
2. If � J (w1,w2,w3) and ψ(w2) = v, then w2

cannot be ε and there must be some x1, y1 ∈ a+, x2, y2 ∈ H , and x3, y3 ∈ b+ such
that

� J (x1, x2, x3),

� J (y1, y2, y3),

w1 = ax1,

w2 = y1cx2c̄dy2d̄x3,

w3 = y3b.

Since ψ(w2) = v, we have cψ(x2)c̄dψ(y2)d̄ = cu1c̄du2d̄ . Since x2, y2 ∈ H , both
ψ(x2) and ψ(y2) are in ψ(H) = V . It follows that ψ(x2) = u1 and ψ(y2) = u2.
By induction hypothesis, (x1, x2, x3) and (y1, y2, y3) are uniquely determined by
u1 and u2, respectively. Since u1 and u2 are uniquely determined by v, the triple
(w1,w2,w3) is uniquely determined by v. �

Let $ be a symbol not in Σ̂ . We use this symbol to mark the beginning and end of
a string in H .

Lemma 14 fac(H)∩({$}∪Σ̂)2 = {$$,a, aa, ac, b, bb, bc̄, bd̄, ca, cc̄, c̄d, da,

dd̄, d̄b}.

Theory Comput Syst (2014) 55:250–278 263

Proof Let F denote the set on the right-hand side of the equation. We prove by induc-
tion on the length of u2 that � J (u1, u2, u3) implies fac($u2$)∩ ({$}∪Σ̂)2 ⊆ F . For
the induction basis, observe that fac($ε$) ∩ ({$} ∪ Σ̂)2 = {$$} ⊆ F . Now suppose
for some x1, x2, x3, y1, y2, y3 such that � J (x1, x2, x3) and � J (y1, y2, y3), we have
u1 = ax1, u2 = y1cx2c̄dy2d̄x3, u3 = y3b. It follows from the induction hypothesis
applied to x2 and y2 that

fac(cx2c̄) ∩ Σ̂2 ⊆ (
F − {$$,a, b}) ∪ {cc̄, ca, bc̄}

= F − {$$,a, b}
fac(dy2d̄) ∩ Σ̂2 ⊆ (

F − {$$,a, b}) ∪ {dd̄, da, bd̄}
= F − {$$,a, b}.

Since y1 ∈ a+ and x3 ∈ b+, we get

fac($y1cx2c̄dy2d̄x3$) ∩ ({$} ∪ Σ̂
)2

⊆ {$a, aa, ac} ∪ (
fac(cx2c̄) ∩ Σ̂2) ∪ {c̄d} ∪ (

fac(dy2d̄) ∩ Σ̂2) ∪ {d̄b, bb, b$}
⊆ F.

Therefore, fac(H) ∩ ({$} ∪ Σ̂)2 ⊆ F . To see the converse inclusion, note that for
v =aacacc̄dd̄bc̄dacc̄dd̄bd̄bb ∈ H , we have fac(v)∩ ({$}∪ Σ̂)2 =F −{$$}. �

Lemma 15 Let u,w ∈ Σ̂∗ and v ∈ Σ̂+. If uv ∈ H and vw ∈ H , then u = w = ε.

Proof Since v �= ε, Lemma 14 implies that both uv and vw start in a and end
in b. Hence v starts in a and ends in b. By Lemma 14, the only symbols that
can follow a in v are a and c, and the only symbols that can precede b in v are
b and d̄ . So v ∈ a+cΣ̂∗d̄b+. Since ψ(v) �= ε and ψ(uv) and ψ(vw) are both in
ψ(H) = V , Lemma 10 implies that ψ(u) = ψ(w) = ε. Hence ψ(uv) = ψ(vw), and
by Lemma 13, uv = vw. But ψ(u) = ψ(w) = ε implies u ∈ a∗ and w ∈ b∗, and it
easily follows that u = w = ε. �

Lemma 15 implies that H is both prefix-free and suffix-free.

Lemma 16

(i) H ⊆ ε | (a+c)+c̄Σ̂∗d(d̄b+)+.
(ii) If � J (u1, u2, u3) and u2 ∈ (a∗c)k(c̄Σ̂∗d | ε)(d̄b∗)l , then u1 = ak+1 and u3 =

bl+1.

Proof (i). Suppose v �= ε and v ∈ H . We reason using Lemma 14. The first symbol
of v must be a. Also, in v, the only symbols that can follow a are a and c, and the
only symbols that can follow c are a and c̄. Since the last symbol of v must be b, it
follows that v has a prefix that belongs to (a+c)+c̄. By a symmetric reasoning, v has
a suffix that belongs to d(d̄b+)+. Therefore, v ∈ (a+c)+c̄Σ̂∗d(d̄b+)+.

264 Theory Comput Syst (2014) 55:250–278

(ii). We prove this part7 by induction on the length of u2. Suppose � J (u1, u2, u3). If
u2 = ε ∈ (a∗c)0(c̄Σ̂∗d | ε)(d̄b∗)0, then we must have u1 = a1 and u3 = b1. If u �= ε,
then there exist x1, x2, x3, y1, y2, y3 such that � J (x1, x2, x3), � J (y1, y2, y3), u1 =
ax1, u2 = y1cx2c̄dy2d̄x3, u3 = y3b. Suppose u2 ∈ (a∗c)k(c̄Σ̂∗d | ε)(d̄b∗)l . Since
y1 ∈ a∗ and x3 ∈ b∗, we have k, l ≥ 1, and part (i) of the lemma implies that for some
m,n ≥ 0,

x2 ∈ (
a∗c

)k−1(
c̄Σ̂∗d | ε)(d̄b∗)m

,

y2 ∈ (
a∗c

)n(
c̄Σ̂∗d | ε)(d̄b∗)l−1

.

By induction hypothesis, x1 = ak and y3 = bl . Therefore, u1 = ak+1 and u3 =
bl+1. �

Note that by Lemma 14, in any string in H , c̄ always precedes d and d always
follows c̄.

Lemma 17 For all u,v ∈ Σ̂∗, the following conditions hold:

(i) If ucv ∈ H , then for some k ≥ 1,

u ∈ (
ε | Σ̂∗(c | d)

)
ak, akcv ∈ H

(
ε | (c̄ | d̄)Σ̂∗)

(ii) If ud̄v ∈ H , then for some l ≥ 1,

ud̄bl ∈ (
ε | Σ̂∗(c | d)

)
H, v ∈ bl

(
ε | (c̄ | d̄)Σ̂∗).

(iii) If uc̄dv ∈ H , then for some k, l ≥ 1,

u ∈ (
ε | Σ̂∗(c | d)

)
akcH, v ∈ Hd̄bl

(
ε | (c̄ | d̄)Σ̂∗).

Proof Each of the three conditions can be proved by easy induction on the com-
bined length of u and v. We only prove (i). Suppose ucv ∈ H . Since ucv �= ε, there
must be y1 ∈ a+, x2, y2 ∈ H , and x3 ∈ b+ such that ucv = y1cx2c̄dy2d̄x3. If u = y1,
then we can take ak = y1. Otherwise, either u = y1cx

′
2, v = x′′

2 c̄dy2d̄x3 for some
x′

2, x
′′
2 such that x2 = x′

2cx
′′
2 , or u = y1cx2c̄dy′

2, v = y′′
2 d̄x3 for some y′

2, y
′′
2 such

that y2 = y′
2cy

′′
2 . In the former case, we can apply the induction hypothesis to x′

2, x
′′
2

and obtain x′
2 ∈ (ε | Σ̂∗(c | d))ak and akcx′′

2 ∈ H(ε | (c̄ | d̄)Σ̂∗) for some k ≥ 1. It
follows that u = y1cx

′
2 ∈ Σ̂∗(c | d)ak and akcv = akcx′′

2 c̄dy2d̄x3 ∈ H(c̄ | d̄)Σ̂∗. In
the latter case, we can apply the induction hypothesis to y′

2, y
′′
2 and obtain y′

2 ∈ (ε |
Σ̂∗(c | d))ak and akcy′′

2 ∈ H(ε | (c̄ | d̄)Σ̂∗) for some k ≥ 1, and we can similarly
infer u = y1cx2c̄dy′

2 ∈ Σ̂∗(c | d)ak and akcv = akcy′′
2 d̄x3 ∈ H(c̄ | d̄)Σ̂∗. �

Lemma 18 Suppose w ∈ fac(H). For all k, l ≥ 0, the following conditions hold:

7By part (i), part (ii) can be equivalently stated with a+ and b+ in place of a∗ and b∗ , but it will turn out
to be slightly more convenient in this form.

Theory Comput Syst (2014) 55:250–278 265

(i) w ∈ ($ | c | d)akcH c̄d(a∗c)l(c̄ | d̄) implies k = l + 1.
(ii) w ∈ (c | d)(d̄b∗)kc̄dH d̄bl(c̄ | d̄ | $) implies k + 1 = l.

Proof We only prove part (i), since part (ii) is exactly symmetric. Suppose that w ∈
fac(H) and for some u ∈ H ,

w ∈ ($ | c | d)w′,

w′ ∈ akcuc̄d
(
a∗c

)l
(c̄ | d̄).

By Lemma 17, part (i), there is a string z ∈ H such that w′ is a prefix of some string
in z(ε | (c̄ | d̄)Σ̂∗). Since w′ starts in a or c, the string z cannot be ε. Hence there
are some strings x1, x2, x3, y1, y2, y3 such that � J (x1, x2, x3), � J (y1, y2, y3), and
z = y1cx2c̄dy2d̄x3. So

w′ is a prefix of some string in y1cx2c̄dy2d̄x3(ε | (c̄ | d̄)Σ̂∗).

Note that x1, y1 ∈ a+ and x3, y3 ∈ b+. So clearly, y1 = ak , and either x2c̄ is a prefix
of uc̄, or else uc̄ is a prefix of x2c̄. Since u ∈ H and x2 ∈ H , neither u nor x2 can
start in c̄. It follows that u = ε if and only if x2 = ε. If u �= ε and x2 �= ε, then either u

is a non-empty prefix of x2 or vice versa, and Lemma 15 implies that u = x2. Hence
we always have akcuc̄d = y1cx2c̄d . It follows that y2d̄ has a prefix belonging to
(a∗c)l(c̄ | d̄). Since y2 ∈ H , by Lemma 16, part (i), either l = 0 and y2 = ε or l ≥ 1
and y2 has a prefix belonging to (a∗c)l c̄. We can now apply Lemma 16, part (ii), to
J (y1, y2, y3) and obtain k = l + 1. �

3.3 Almost Anti-iterative Elements of H

Given a language K and a string w ∈ K , an iteration tuple for w in K is a tuple of
strings (u0,w1, u1, . . . ,wk,uk) such that

– w = u0w1u1 · · ·wkuk ,
– w1 · · ·wk �= ε, and
– u0w

i
1u1 · · ·wi

kuk ∈ K for all i ≥ 0.

The notion of an iteration tuple is a generalization of the notion of an iterative pair
[1]. A language K is said to be k-iterative if all but finitely many strings in K have
an iteration tuple (u0,w1, u1, . . . ,wk,uk) (of length 2k + 1) in K . We simply say
that K is iterative if all but finitely many strings in K have an iteration tuple (of any
length) in K . (Iterativity is a slight weakening of the property Groenink [4, 5] called
finite pumpability.)

We prove a theorem that implies that the language H is not iterative. In fact,
the theorem states something much stronger. We say that a string v ∈ K is anti-
iterative in K if v = u0w1u1 · · ·wkuk and w1 · · ·wk �= ε (for any k ≥ 1) imply
u0w

i
1u1 · · ·wi

kuk /∈ K for all i > 1. We say that v ∈ K is almost anti-iterative in
K if v = u0w1u1 · · ·wkuk and w1 · · ·wk �= ε (for any k ≥ 1) imply that there is at
most one natural number i > 1 such that u0w

i
1u1 · · ·wi

kuk ∈ K . Clearly, if v is almost
anti-iterative in K , then there is no iteration tuple for v in K .

266 Theory Comput Syst (2014) 55:250–278

Now for each n ≥ 0, define a string vn ∈ H as follows:

v0 = ε,

vn+1 = an+1cvnc̄dvnd̄bn+1.

It is easy to see � J (an+1, vn, b
n+1) for all n ∈ N. The strings vn are precisely those

elements of H that have a derivation tree whose immediate subtree is a perfect binary
tree. We will show that each vn is almost anti-iterative in H .

We start with some lemmas (Lemmas 19–22) stating some general properties of
the strings vn that are intuitively obvious from the way they are defined. We give a
fairly rigorous proof to each of these lemmas.

Lemma 19 vn ∈ (a+c)n(c̄Σ̂∗d | ε)(d̄b+)n for all n.

Proof For n = 0, v0 = ε = (a+c)0ε(d̄b+)0, so the desired condition holds. For n ≥ 1,
we prove by induction on n that vn ∈ (a+c)nc̄Σ̂∗d(d̄b+)n. For n = 1, v1 = acc̄dd̄b ∈
(a+c)1c̄Σ̂∗d(d̄b+)1. For n ≥ 2, assume vn−1 ∈ (a+c)n−1c̄Σ̂∗d(d̄b+)n−1. Then vn =
ancvn−1c̄dvn−1d̄bn ∈ (a+c)nc̄Σ̂∗d(d̄b+)n. �

Lemma 20 fac({vn | n ∈N}) ∩ H = {vn | n ∈N}.

Proof Clearly, it suffices to show the inclusion, fac({vn | n ∈N})∩H ⊆ {vn | n ∈N}.
We prove by induction on n ∈ N that w ∈ fac(vn) ∩ H implies w = vk for some
k ≤ n. Since v0 = ε ∈ H , the induction basis is immediate. Now assume w ∈ H and
w is a factor of vn+1 = an+1cvnc̄dvnd̄bn+1. By Lemma 16, part (i), either w = ε

or w ∈ (a+c)+c̄Σ̂∗d(d̄b+)+. If w = ε, then w = v0. It remains to consider the case
where w ∈ (a+c)+c̄Σ̂∗d(d̄b+)+. If ψ(w) = ψ(vn+1), then w = vn+1 by Lemma 13.
If ψ(w) �= ψ(vn+1), then either w is a factor of vnc̄dvnd̄bn+1 or w is a factor of
an+1cvnc̄dvn.

Case 1. w is a factor of vnc̄dvnd̄bn+1. Since w starts in a, there must be a non-empty
suffix y of vn starting in a such that w is a prefix of yc̄dvnd̄bn+1 or of yd̄bn+1. Since
y is a suffix of vn ∈ H , Lemma 15 implies that y cannot be a proper prefix of any
element of H . Since w ∈ H , it follows that y is not a proper prefix of w. Since w is
a prefix of yc̄dvnd̄bn+1 or of yd̄bn+1, w must be a prefix of y.

Case 2. w is a factor of an+1cvnc̄dvn. Since w ends in b, there must be a non-empty
prefix x of vn ending in b such that w is a suffix of an+1cx or of an+1cvnc̄dx. By an
analogous reasoning to the previous case, we can conclude that w is a suffix of x.

In both cases, w is a factor of vn, and the induction hypothesis gives w = vk for
some k ≤ n. �

Lemma 21 Suppose w ∈ fac(${vn | n ∈ N}$). For all k, l ≥ 0, the following condi-
tions hold:

(i) w ∈ ($ | c | d)ak(c | cH c̄d)al(c | c̄ | d̄) implies k = l + 1.
(ii) w ∈ (c | d | d̄)bk(c̄dH d̄ | d̄)bl(c̄ | d̄ | $) implies k + 1 = l.

(iii) w ∈ (c | d̄)bkc̄dal(c | d̄) implies k = l.

Theory Comput Syst (2014) 55:250–278 267

Proof (i). Suppose uwv = vn and

w ∈ ($ | c | d)w′,
(10)

w′ ∈ ak(c | cH c̄d)al(c | c̄ | d̄).

By Lemma 17, part (i), k ≥ 1 and there is a z ∈ H such that w′v ∈ z(ε | (c̄ | d̄)Σ̂∗)$.
Since w′ starts in a, z �= ε. Lemma 20 implies that z = vk = akcvk−1c̄dvk−1d̄bk . So

w′v ∈ akcvk−1c̄dvk−1d̄bk
(
ε | (c̄ | d̄)Σ̂∗)$. (11)

By (11), either w′ ∈ akcal(c | c̄ | d̄) or w′ ∈ akcH c̄dal(c | c̄ | d̄).

Case 1. w′ ∈ akcal(c | c̄ | d̄). Then either k = 1, vk−1 = ε, l = 0, and w′ = akcc̄, or
k ≥ 2 and vk−1 has a prefix that belongs to al(c | c̄ | d), which implies l = k − 1. In
either case, we get k = l + 1.

Case 2. w′ ∈ akcxc̄dal(c | c̄ | d̄) for some x ∈ H . Then either vk−1c̄ is a prefix of
xc̄ or xc̄ is a prefix of vk−1c̄. Since neither vk−1 nor x can start in c̄, it follows that
vk−1 = ε if and only if x = ε. If vk−1 �= ε and x �= ε, then either vk−1 is a non-empty
prefix of x or x is a non-empty prefix of vk−1. Lemma 15 then implies vk−1 = x. So
we always have akcvk−1c̄d = akcxc̄d . By (11), it follows that vk−1d̄ has a prefix that
belongs to al(c | c̄ | d̄). But the definition of vn implies that vk−1d̄ always has a prefix
in ak−1(c | d̄). Therefore, l = k − 1 and so k = l + 1.

(ii). Exactly symmetric to part (i).
(iii). Suppose uwv = vn and

w = w′c̄dw′′,

w′ ∈ (c | d̄)bk, w′′ ∈ al(c | d̄).

By Lemma 17, part (iii), there exist x, y ∈ H and k′, l′ ≥ 1 such that

uw′ ∈ $
(
ε | Σ̂∗(c | d)

)
ak′

cx, w′′v ∈ yd̄bl′(ε | (c̄ | d̄)Σ̂∗)$.

Since x and y are factors of vn, Lemma 20 implies that x = vi and y = vj for some
i, j ≥ 0. If i ≥ 1, then vi has d̄bi as a suffix, so it follows that k = i. If i = 0, then uw′
ends in c, so w′ = c and k = 0. So we always have k = i. By a symmetric reasoning,
we get l = j . It follows that

uwv = uw′c̄dw′′v ∈ $
(
ε | Σ̂∗(c | d)

)
ak′

cvkc̄dvld̄bl′(ε | (c̄ | d̄)Σ̂∗)$.

Since vkc̄ has a prefix that belongs to ak(c | c̄) and vld̄ has a prefix that belongs to
al(c | d̄), part (i) of this lemma implies k′ = k + 1 = l + 1. Therefore, k = l. �

We will make frequent use of Lemmas 18 and 21 in what follows. It will be im-
portant not to confuse part (i) and (ii) of Lemma 18, on the one hand, and part (i) and
(ii) of Lemma 21, on the other. The former state general properties of elements of H ,
while the latter express special properties of the strings vn.

268 Theory Comput Syst (2014) 55:250–278

Lemma 22 Suppose w ∈ fac({vn | n ∈ N}).
(i) If ψ(w) ∈ L, then w = aicvkc̄ for some i, k ≥ 0 such that i ≤ k + 1.

(ii) If ψ(w) ∈ R, then w = dvkd̄bj for some j, k ≥ 0 such that j ≤ k + 1.
(iii) If ψ(w) ∈ LR, then w = aicvkc̄dvkd̄bj for some i, j, k ≥ 0 such that i,

j ≤ k + 1.

Proof (i). Suppose uwv = vn and ψ(w) ∈ L = cV c̄. By Lemma 14, in the string w,
b cannot precede a or c and neither a nor b can follow c̄. Hence w = aicxc̄ for some
i ∈ N and some x such that ψ(x) ∈ V .

Since uwv = uaicxc̄v = vn ∈ H , Lemma 17, part (i), implies that there must
be some l ≥ 1 and y ∈ H such that l ≥ i, al is a suffix of uai and alcxc̄v ∈ y(ε |
(c̄ | d̄)Σ̂∗). This means that y must contain alc as a prefix, so Lemma 20 implies
y = vl = alcvl−1c̄dvl−1d̄bl . Hence

alcxc̄v ∈ alcvl−1c̄dvl−1d̄bl
(
ε | (c̄ | d̄)Σ̂∗).

This implies the following:

Either xc̄ is a prefix of vl−1c̄, or else vl−1c̄ is a prefix of xc̄. (12)

We claim x = vl−1. The desired conclusion follows from this by putting k = l −1.

Case 1. l = 1. Then vl−1 = v0 = ε. Since ψ(x) ∈ V implies that x cannot start in c̄,
it is clear from (12) that x must be ε. So the claim holds in this case.

Case 2. l ≥ 2. It follows from (12) that either ψ(x)c̄ is a prefix of ψ(vl−1)c̄ or vice
versa. Since l − 1 ≥ 1, ψ(vl−1) starts in c. Then ψ(x) must also start in c. Hence
either ψ(x) is a non-empty prefix of ψ(vl−1) or ψ(vl−1) is a non-empty prefix of
ψ(x). By Lemma 10, we get ψ(vl−1) = ψ(x). Consequently, xc̄ is not a prefix of
vl−1, and vl−1c̄ is not a prefix of x, so by (12), we can conclude vl−1 = x.

(ii). This is proved in an exactly symmetric way to (i).
(iii). By Part (i) and (ii) of this lemma, w = aicvkc̄dvl d̄bj for some i, j, k ≥ 0 such
that i ≤ k+1 and j ≤ l+1. Since w contains a factor that belongs to (c | d̄)bkc̄dal(c |
d̄), part (iii) of Lemma 21 gives k = l. �

We now state and prove our main lemma. Let

L̂ = {cvnc̄ | n ∈ N},
R̂ = {dvnd̄ | n ∈ N},

L̂R = {cvnc̄dvnd̄ | n ∈ N}.
Then Lemma 22 implies

ψ−1(L) ∩ fac
({vn | n ∈N}) ⊆ a∗L̂, (13)

ψ−1(R) ∩ fac
({vn | n ∈N}) ⊆ R̂b∗, (14)

ψ−1(LR) ∩ fac
({vn | n ∈N}) ⊆ a∗L̂Rb∗. (15)

Theory Comput Syst (2014) 55:250–278 269

Lemma 23 If w ∈ fac({vn | n ∈ N}) and ww ∈ fac(H), then

ψ(w) ∈ c∗ | Ldc∗ | d̄∗ | d̄∗c̄R | V c̄dc+ | d̄+c̄dV .

Proof Since ε clearly belongs to the required set, assume ψ(w) ∈ Σ+. Since ww ∈
fac(H) implies ψ(w)ψ(w) ∈ fac(V), ψ(w) must satisfy one of the five cases of
Lemma 12:

1. ψ(w) ∈ (c̄R | d̄)+.
2. ψ(w) ∈ R(c̄R | d̄)∗c̄.
3. ψ(w) ∈ (c | Ld)+.
4. ψ(w) ∈ d(c | Ld)∗L.
5. ψ(w) ∈ (V | R)(c̄R | d̄)mc̄d(c | Ld)n(V | L) for some m,n ≥ 0 such that m �= n.

Below we treat the five cases in turn.

Case 1. ψ(w) ∈ (c̄R | d̄)+. We show that ψ(w) ∈ d̄+ | d̄∗c̄R. Suppose by way of
contradiction that ψ(w) ∈ d̄∗c̄R(c̄R | d̄)+. Lemma 14 says that in the string w, a

cannot precede d̄ or c̄, b can follow only d̄ , and d̄ can be followed only by b. Together
with (14), this allows us to infer

w ∈ b∗(d̄b+)∗
c̄R̂b+(

(c̄R̂ | d̄)b+)∗
(c̄R̂ | d̄)b∗.

Recall that R̂ consists of the strings dvi d̄ . Recall also that vi = ε when i = 0 and
vi = aicvi−1c̄dvi−1d̄bi otherwise. So if w contains a factor that belongs to

dvi d̄bj (c̄ | d̄),

then w contains a factor that belongs to

(d | d̄)bi d̄bj (c̄ | d̄),

and part (ii) of Lemma 21 allows us to infer j = i + 1. Hence w must be of the form8

w = ux1 · · ·xmc̄dvkd̄bk+1y1 · · ·ynz,

where m,n ≥ 0 and

u ∈ b∗,

xi = d̄bpi for some pi ≥ 1,

yi ∈ (c̄dvqi
d̄ | d̄)bqi+1 for some qi ≥ 0,

z ∈ (c̄dvld̄ | d̄)b∗ for some l ≥ 0.

8We will appeal to Lemma 21 similarly in Cases 2–5 without explicitly going through this kind of reason-
ing.

270 Theory Comput Syst (2014) 55:250–278

Lemma 21, part (ii), also implies

qi+1 = qi + 1 for i = 1, . . . , n − 1,

q1 = k + 1 if n ≥ 1.

So

qi = k + i for i = 1, . . . , n.

It immediately follows that

d̄bk+1y1 · · ·yn contains d̄bk+n+1 as a suffix. (16)

Note that this holds even when n = 0.
Next, we claim that

dvkd̄bk+1y1 · · ·yn has a suffix that belongs to d
(
d̄b∗)k+n+1. (17)

By Lemma 19, this is clearly true when n = 0. When n ≥ 1, we can prove by in-
duction on i ∈ {1, . . . , n} that dvkd̄bk+1y1 · · ·yi always has a suffix in d(d̄b∗)k+i+1.
For i = 0, dvkd̄bk+1 has a suffix in d(d̄b∗)k+1 by Lemma 19. For 1 ≤ i ≤ n, assume
that dvkd̄bk+1y1 · · ·yi−1 has a suffix in d(d̄b∗)k+i . If yi = d̄bqi+1 = d̄bk+i , then it
follows that dvkd̄bk+1y1 · · ·yi has a suffix in d(d̄b∗)k+i+1. If yi = c̄dvqi

d̄bqi+1 =
c̄dvk+i d̄bk+i+1, then yi has a suffix in d(d̄b∗)k+i+1 by Lemma 19.

Now note that

ww has a factor in c̄dvkd̄bk+1y1 · · ·ynzux1 · · ·xmc̄dvkd̄bk+1(c̄ | d̄). (18)

Since ww ∈ fac(H), this factor must also belong to fac(H). We distinguish two cases.

Case 1.1. z ∈ c̄dvl d̄b∗. Then by Lemma 19, zux1 · · ·xm has a suffix in d(d̄b∗)l+1+m,
so by Lemma 18, part (ii), we get l + 1 + m + 1 = k + 1, i.e.,

k = l + m + 1. (19)

By (16), w contains as a factor

d̄bk+n+1z ∈ d̄bk+n+1c̄dvld̄b∗.

Since this factor belongs to fac({vn | n ∈N}), we must have

l = k + n + 1

by Lemma 21, part (iii). But this last equation contradicts (19).

Case 1.2. z ∈ d̄b∗. By (17), we see that dvkd̄bk+1y1 · · ·ynzux1 · · ·xm has a suffix in
d(d̄b∗)k+n+1+1+m = d(d̄b∗)k+n+m+2. By Lemma 18, part (ii), we obtain from (18)
that k + n + m + 2 + 1 = k + 1, a contradiction.

We have derived a contradiction in each case. So the assumption that ψ(w) ∈
d̄∗c̄R(c̄R | d̄)+ is incorrect and ψ(w) must be in d̄+ | d̄∗c̄R.

Theory Comput Syst (2014) 55:250–278 271

Case 2. ψ(w) ∈ R(c̄R | d̄)∗c̄. We derive a contradiction. By Lemma 14, in the string
w, c̄ can be followed only by d and d̄ can be followed only by b. Together with (14),
this allows us to infer

w ∈ R̂b+(
(c̄R̂ | d̄)b+)∗

c̄.

By Lemma 21, part (ii), w must be of the form

w = dvkd̄bk+1y1 · · ·ync̄,

where n ≥ 0 and

yi ∈ (c̄dvqi
d̄ | d̄)bqi+1 for some qi ≥ 0.

Lemma 21, part (ii), also implies

qi+1 = qi + 1 for i = 1, . . . , n − 1,

q1 = k + 1 if n ≥ 1.

So we have

qi = k + i for i = 1, . . . , n.

As in Case 1, we can see that vkd̄bk+1y1 · · ·yn has a suffix that belongs to
d(d̄b∗)k+n+1. Since ww has a factor in

vkd̄bk+1y1 · · ·ync̄dvkd̄bk+1(c̄ | d̄)

and this factor belongs to fac(H), Lemma 18, part (ii), implies k +n+ 1 + 1 = k + 1,
a contradiction.

Case 3. ψ(w) ∈ (c | Ld)+. This case is exactly symmetric to Case 1 and we can
derive ψ(w) ∈ c+ | Ldc∗.

Case 4. ψ(w) ∈ d(c | Ld)∗L. This case is exactly symmetric to Case 2 and we can
derive a contradiction.

Case 5. ψ(w) ∈ (V | R)(c̄R | d̄)mc̄d(c | Ld)n(V | L) for some m,n ≥ 0 such that
m �= n. We show that ψ(w) ∈ d̄+c̄dV | V c̄dc+. By Lemma 14, a cannot precede c̄

or d̄ , and b cannot follow c or d . Together with (13), (14), and (15), this allows us to
infer

w ∈ (
b∗ | a∗L̂Rb∗ | R̂b∗)((c̄R̂ | d̄)b∗)m

c̄d
(
a∗(c | L̂d)

)n(
a∗ | a∗L̂Rb∗ | a∗L̂

)
.

By Lemma 21, part (i) and (ii), we can write w as

w = xx1 · · ·xmc̄dyn · · ·y1y,

where

x ∈ b∗ | a∗cvkc̄dvkd̄bk+1 | dvkd̄bk+1 for some k ≥ 0,

y ∈ a∗ | al+1cvl c̄dvld̄b∗ | al+1cvl c̄ for some l ≥ 0,

272 Theory Comput Syst (2014) 55:250–278

xi ∈ (c̄dvpi
d̄ | d̄)bpi+1 for some pi ≥ 0,

yi ∈ aqi+1(c | cvqi
c̄d) for some qi ≥ 0.

Lemma 21, part (i) and (ii), also implies

pi+1 = pi + 1 for i = 1, . . . ,m − 1, (20)

qi+1 = qi + 1 for i = 1, . . . , n − 1. (21)

We first show that

yx = vj for some j . (22)

Since ww contains dyn · · ·y1yxx1 · · ·xmc̄ as a factor and ww ∈ fac(H),

(c | d)yx(c̄ | d̄) ∩ fac(H) �= ∅. (23)

By Lemma 14, the only symbol that can follow c̄ in yx is d and the only symbol that
can precede d in yx is c̄. So x = dvkd̄bk+1 if and only if y = al+1cvl c̄. Lemma 14
also implies that neither a nor c can follow b or d̄ in yx, so we cannot have both
x ∈ a∗cvkc̄dvkd̄bk+1 and y ∈ al+1cvl c̄dvld̄b∗. Hence

yx ∈ a∗b∗ | a∗cvkc̄dvkd̄bk+1 | al+1cvl c̄dvld̄b∗ | al+1cvl c̄dvkd̄bk+1.

If yx ∈ a∗b∗, Lemma 14 together with (23) implies yx = ε = v0. Otherwise, Lem-
mas 18 and 19 together with (23) imply

yx = aj+1cvj c̄dvj d̄bj+1 = vj+1,

where j = k or j = l. This establishes (22).
Since m �= n, either m ≥ 1 or n ≥ 1. We distinguish three cases:

Case 5.1. m ≥ 1, n ≥ 1. In this case, ww contains a factor in

(c | d)y1vjx1(c̄ | d̄).

This factor is in fac(H). Since ψ(ww) ∈ fac(V) ⊆ fac(D∗
2), we have ψ(y1vjx1) ∈

fac(D∗
2). By Lemma 4, nf(ψ(y1vjx1)) ∈ (c̄ | d̄)∗(c | d)∗, and it follows that

y1vjx1 ∈ aq1+1cvj c̄dvp1 d̄bp1+1 | aq1+1cvq1 c̄dvj d̄bp1+1.

So

(c | d)
(
aq1+1cvj c̄dvp1 d̄bp1+1 | aq1+1cvq1 c̄dvj d̄bp1+1)(c̄ | d̄) ∩ fac(H) �= ∅.

By Lemmas 18 and 19, we obtain p1 = q1 = j . By (20) and (21), then, we get pm =
j + m − 1 and qn = j + n − 1. Since

xmc̄dyn ∈ (c̄dvj+m−1d̄ | d̄)bj+mc̄daj+n(c | cvj+n−1c̄d)

Theory Comput Syst (2014) 55:250–278 273

is a factor of w, we get j + m = j + n by Lemma 21, part (iii), but this contradicts
m �= n.

Case 5.2. m ≥ 1, n = 0. Since

ww = xx1 · · ·xmc̄dvjx1 · · ·xmc̄dy

and ψ(ww) ∈ fac(V) ⊆ fac(D∗
2), we get ψ(dvjx1) ∈ fac(D∗

2). By Lemma 4,
nf(ψ(dvjx1)) = nf(dψ(x1)) ∈ (c̄ | d̄)∗(c | d)∗. Hence we must have

x1 = d̄bp1+1.

By (20), pi = p1 + i − 1 for i = 1, . . . ,m. We consider three subcases, depending on
whether x ∈ b∗, and whether xi = d̄bp1+i for all i = 1, . . . ,m.

Case 5.2.1. x ∈ b∗ and xi = d̄bp1+i for all i = 1, . . . ,m. Then since yx = vj , either
x = y = ε or j = l + 1 and y ∈ al+1cvl c̄dvld̄b∗. Hence

ψ(w) ∈ d̄+c̄dV .

Case 5.2.2. x /∈ b∗ and xi = d̄bp1+i for all i = 1, . . . ,m. Then j = k + 1, yx = vk+1,
and dvkd̄bk+1 is a suffix of x. Since w contains a factor in

dvkd̄bk+1x1(c̄ | d̄) = dvkd̄bk+1d̄bp1+1(c̄ | d̄),

we get p1 = k + 1 by Lemma 21, part (ii). By Lemma 19, we also see that xx1 · · ·xm

has a suffix in d(d̄b∗)k+m+1. Since ww has a factor in

xx1 · · ·xmc̄dvk+1x1(c̄ | d̄) = xx1 · · ·xmc̄dvk+1d̄bk+2(c̄ | d̄)

⊆ Σ̂∗d
(
d̄b∗)k+m+1

c̄dH d̄bk+2(c̄ | d̄),

we get by Lemma 18, part (ii),

k + m + 1 + 1 = k + 2,

which contradicts m ≥ 1.

Case 5.2.3. xh = c̄dvp1+h−1d̄bp1+h for some h ∈ {2, . . . ,m}. (Recall x1 = d̄bp1+1.)
We can assume h to be the largest such number, i.e., xi = d̄bp1+i for all i ∈ {h +
1, . . . ,m}. By Lemma 19, xh has a suffix in d(d̄b∗)p1+h. It follows that xh · · ·xm has
a suffix in d(d̄b∗)p1+m. Since ww has a factor in

xh · · ·xmc̄dvjx1(c̄ | d̄) = xh · · ·xmc̄dvj d̄bp1+1(c̄ | d̄)

⊆ Σ̂∗d
(
d̄b∗)p1+m

c̄dH d̄bp1+1(c̄ | d̄),

we get by Lemma 18, part (ii),

p1 + m + 1 = p1 + 1,

which contradicts m ≥ 1.

274 Theory Comput Syst (2014) 55:250–278

Case 5.3. m = 0, n ≥ 1. This case is exactly symmetric to the preceding case, and
we can conclude

ψ(w) ∈ V c̄dc+.

This concludes the proof of the lemma. �

Theorem 24 For each n ≥ 0, the string vn is almost anti-iterative in H .

Before embarking on the proof of the theorem, let us consider a simple example:

v2 = aac︸︷︷︸
w1

acc̄dd̄︸ ︷︷ ︸
u1

bc̄dacc̄dd̄bd̄b︸ ︷︷ ︸
w2

b︸︷︷︸
w3

.

In this example, u0 = u2 = u3 = ε. Note

ψ(w1) = c, ψ(w2) ∈ c̄R, ψ(w3) = ε.

We have

w2
1u1w

2
2w

2
3 = aac aac acc̄dd̄b︸ ︷︷ ︸

v1

c̄d acc̄dd̄b︸ ︷︷ ︸
v1

d̄bb

︸ ︷︷ ︸
v2

c̄d acc̄dd̄b︸ ︷︷ ︸
v1

d̄bbb ∈ H,

but

w3
1u1w

3
2w

3
3

= aac aac aac acc̄dd̄b︸ ︷︷ ︸
v1

c̄d acc̄dd̄b︸ ︷︷ ︸
v1

d̄bb

︸ ︷︷ ︸
v2

c̄d acc̄dd̄b︸ ︷︷ ︸
v1

d̄bb

︸ ︷︷ ︸
/∈H

c̄d acc̄dd̄b︸ ︷︷ ︸
v1

d̄bbbb /∈ H

After the occurrence of d̄ following the third occurrence of v1, one should find b3,
rather than b2, in order to have a string in H (as required by Lemma 18, part (ii)).

Proof of Theorem 24 Suppose that vn = u0w1u1 · · ·wkuk and w1 · · ·wk �= ε. If
there is some j such that w3

j is not in fac(H), then there is no i ≥ 3 such that

u0w
i
1u1 · · ·wi

kuk ∈ H , and the conclusion of the theorem is clearly satisfied. Hence
we may assume that each w3

j belongs to fac(H).

Suppose that u0w
h
1 · · ·wh

k uk ∈ H for some h > 1. We show that such h is unique.
Since w2

j is a factor of w3
j and hence belongs to fac(H), by Lemma 23, each

ψ(wj) must belong to one of the six sets

c∗, Ldc∗, d̄∗, d̄∗c̄R, V c̄dc+, d̄+c̄dV .

Since w1 · · ·wk �= ε, we have u0w1u1 · · ·wkuk �= u0w
h
1u1 · · ·wh

k uk . By Lemma 13,
we know that ψ(u0w1u1 · · ·wkuk) �= ψ(u0w

h
1u1 · · ·wh

k uk). Therefore, it cannot be

Theory Comput Syst (2014) 55:250–278 275

that ψ(wj) = ε for all j . Since both ψ(u0w1u1 · · ·wkuk) and ψ(u0w
h
1u1 · · ·wh

k uk)

belong to V , the string ψ(w1) · · ·ψ(wk) must have the same number of occurrences
of c, c̄, d, d̄ . It follows that there is a j such that ψ(wj) ∈ Ldc∗ | d̄∗c̄R | V c̄dc+ |
d̄+c̄dV .

Case 1. ψ(wj) ∈ Ldc∗. Lemma 14 implies that in the string wj , b can follow only d̄ .
So

wj ∈ vd
(
a∗c

)∗
a∗

for some v ∈ fac({vn | n ∈ N}) such that ψ(v) ∈ L. By Lemma 22, v ∈ a∗cvl c̄ for
some l ≥ 0. Lemma 14 also implies that in u0w1u1 · · ·wkuk , (i) the only symbols
that can precede a are a, c, and d , (ii) the only symbols that can follow a are a and c,
and (iii) the only symbols that can follow c or d are a, c̄, and d̄ . Hence we can write

u0w1u1 · · ·wj−1uj−1 ∈ (
ε | Σ̂∗(c | d)

)
am0,

wj ∈ am1cvl c̄d
(
a∗c

)p
am2,

ujwj+1uj+1 · · ·wkuk ∈ (
a∗c

)q
(c̄ | d̄)Σ̂∗,

for some l,m0,m1,m2,p, q ≥ 0. We get m0 +m1 = l +1 by Lemma 21, part (i), and
m0 + m1 = p + q + 1 by Lemma 18, part (i). Hence l = p + q .

Let g ≥ j the largest number such that ujwj+1 · · ·ug−1wg ∈ (a∗c)∗a∗. Let r be
the number of occurrences of c in wj+1 · · ·wg . Then for every i ≥ 1,

ujw
i
j+1uj+1 · · ·wi

kuk ∈ (
a∗c

)q+(i−1)r
(c̄ | d̄)Σ̂∗.

Thus, wh
j ujw

h
j+1uj+1 · · ·wh

k uk has a factor in

d
(
a∗c

)p
am2+m1cvl c̄d

(
a∗c

)p
am2

(
a∗c

)q+(h−1)r
(c̄ | d̄).

Since this factor is in fac(H), Lemma 18, part (i), implies

m2 + m1 = p + q + (h − 1)r + 1

= (h − 1)r + l + 1. (24)

Note that the string w3
j has a factor in

d
(
a∗c

)p
am2+m1cvl c̄d

(
a∗c

)p
am2+m1cvl c̄.

Since we assumed that w3
j ∈ fac(H), this factor is also in fac(H). By Lemma 19, vl c̄

has a prefix that belongs to (a∗c)l c̄. By Lemma 18, part (i), then, we have

m2 + m1 = p + 1 + l + 1

= p + l + 2. (25)

From (24) and (25), we get

(h − 1)r = p + 1.

276 Theory Comput Syst (2014) 55:250–278

Since p ≥ 0, this implies r �= 0 and

h = p + 1

r
+ 1,

which shows that h is unique.

Case 2. ψ(wj) ∈ d̄∗c̄R. This case is exactly symmetric to the preceding case.

Case 3. ψ(wj) ∈ V c̄dc+. We can use Lemma 14 to infer

wj ∈ vc̄d
(
a∗c

)+
a∗,

ujwj+1uj+1 · · ·wkuk ∈ (
a∗c

)∗
c̄Σ̂∗

for some string v ∈ fac({vn | n ∈ N}) such that ψ(v) ∈ V . By Lemma 21, part (i), we
can write

wj ∈ vc̄dal1+l2c · · ·al1+1cam1,

ujwj+1uj+1 · · ·wkuk ∈ am2cal1−1c · · · ca1cc̄Σ̂∗

⊆ (
a∗c

)l1 c̄Σ̂∗.

for some l1,m1,m2 ≥ 0 and l2 ≥ 1 such that m1 +m2 = l1. Similarly to Case 1, there
must be some r ≥ 0 such that

ujw
i
j+1uj+1 · · ·wi

kuk ∈ (
a∗c

)l1+(i−1)r
c̄Σ̂∗

for all i ≥ 1. Then wh
j ujw

h
j+1uj+1 · · ·wh

k uk has a factor in

(c | d)al1+1cam1vc̄dal1+l2c · · ·al1+1cam1
(
a∗c

)l1+(h−1)r
c̄Σ̂∗

⊆ (c | d)al1+1cam1vc̄d
(
a∗c

)l2+l1+(h−1)r
c̄Σ̂∗. (26)

This factor is in fac(H). Note that the above inclusion holds even when l1 = r = 0,
since l1 = 0 implies m1 = 0.

We show that am1v ∈ H . Recall ψ(v) ∈ V and v ∈ fac({vn | n ∈ N}). If ψ(v) = ε,
then v ∈ (a | b)∗, but since cam1vc̄ ∈ fac(H), Lemma 14 implies am1v = ε ∈ H .
If ψ(v) ∈ LR, Lemma 22 implies that am1v ∈ a∗cvl c̄dvl d̄b∗ for some l. Since
cam1vc̄ ∈ fac(H), it follows from Lemma 19 and Lemma 18, part (i) and (ii), that
am1v = al+1cvl c̄dvl d̄bl+1 = vl+1 ∈ H .

So the set (26) is included in

(c | d)al1+1cH c̄d
(
a∗c

)l2+l1+(h−1)r
c̄Σ̂∗.

Since there is an element of fac(H) belonging to this set, we obtain by Lemma 18,
part (i)

l1 + 1 = l2 + l1 + (h − 1)r + 1.

Theory Comput Syst (2014) 55:250–278 277

Since h > 1, r ≥ 0 and l2 ≥ 1, this is a contradiction.

Case 4. ψ(wj) ∈ d̄+c̄dV . This case is exactly symmetric to the preceding case. �

Corollary 25 The language H is not iterative.

Corollary 26 There is a 3-MCFL that is not k-iterative for any k.

4 Conclusion

We have proved that the language H is a 3-MCFL that is not iterative. A simple
consequence of this theorem is that if C is a subclass of the class MCFL of multiple
context-free languages and C consists entirely of iterative sets, then the language H

does not belong to C and hence C must be a proper subclass of MCFL.
Kanazawa and Salvati [8] showed that the class MCFLwn of well-nested multiple

context-free languages is properly included in MCFL, and in particular, the language
{w#w | w ∈ D∗

2} belongs to MCFL − MCFLwn. Since every language in MCFLwn is
k-iterative for some k, the language H serves as a further witness to the separation of
MCFL and MCFLwn.

Another subclass of MCFL that only contains languages that are k-iterative for
some k is the class of languages in Weir’s control language hierarchy [7, 12, 16].
As far as we know, it has been an open question whether the inclusion of the con-
trol language hierarchy in the class of multiple context-free languages is proper. The
language H serves as a witness to the properness of the inclusion.

Corollary 27 There is a 3-MCFL that does not belong to Weir’s control language
hierarchy.

References

1. Berstel, J., Boasson, L.: Context-free languages. In: van Leeuwen, J. (ed.) Handbook of Theoretical
Computer Science, vol. B, pp. 59–102. Elsevier, Amsterdam (1990)

2. Greibach, S.A.: Hierarchy theorems for two-way finite state transducers. Acta Inform. 11, 89–101
(1978)

3. Greibach, S.A.: One-way finite visit automata. Theor. Comput. Sci. 6, 175–221 (1978)
4. Groenink, A.V.: Mild context-sensitivity and tuple-based generalizations of context-free grammar.

Linguist. Philos. 20(6), 607–636 (1997)
5. Groenink, A.V.: Surface without Structure. Ph.D. thesis, University of Utrecht (1997)
6. Kanazawa, M.: The pumping lemma for well-nested multiple context-free languages. In: Diekert, V.,

Nowotka, D. (eds.) Developments in Language Theory: 13th International Conference, DLT 2009.
Lecture Notes in Computer Science, vol. 5583, pp. 312–325. Springer, Berlin (2009)

7. Kanazawa, M., Salvati, S.: Generating control languages with abstract categorial grammars. In: Pre-
liminary Proceedings of FG-2007: The 12th Conference on Formal Grammar (2007)

8. Kanazawa, M., Salvati, S.: The copying power of well-nested multiple context-free grammars. In:
Dediu, A.H., Fernau, H., Martín-Vide, C. (eds.) Language and Automata Theory and Applications,
Fourth International Conference, LATA 2010. Lecture Notes in Computer Science, vol. 6031, pp.
344–355. Springer, Berlin (2010)

9. Kasami, T., Seki, H., Fujii, M.: Generalized context-free grammars, multiple context-free grammars
and head grammars. Technical report, Osaka University (1987)

278 Theory Comput Syst (2014) 55:250–278

10. Kracht, M.: The Mathematics of Language. de Gruyter, Berlin (2003)
11. Michaelis, J.: On formal properties of minimalist grammars. Linguistics in Potsdam 13. Universitäts-

bibliothek, Publikationsstelle, Potsdam. Ph.D. thesis, ISBN 3-935024-28-2
12. Palis, M.A., Shende, S.M.: Pumping lemmas for the control language hierarchy. Math. Syst. Theory

28(3), 199–213 (1995)
13. Radzinski, D.: Chinese number-names, tree adjoining languages, and mild context-sensitivity. Com-

put. Linguist. 17(3), 277–299 (1991)
14. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theor. Comput.

Sci. 88(2), 191–229 (1991)
15. Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions produced by various

grammatical formalisms. In: 25th Annual Meeting of the Association for Computational Linguistics,
pp. 104–111 (1987)

16. Weir, D.J.: A geometric hierarchy beyond context-free languages. Theor. Comput. Sci. 104(2), 235–
261 (1992). doi:10.1016/0304-3975(92)90124-X

http://dx.doi.org/10.1016/0304-3975(92)90124-X

	The Failure of the Strong Pumping Lemma for Multiple Context-Free Languages
	Abstract
	Introduction
	Multiple Context-Free Grammars
	Counterexample to the Strong Pumping Lemma for 3-MCFLs
	Properties of the CFL V = psi(H)
	Properties of the 3-MCFL H
	Almost Anti-iterative Elements of H

	Conclusion
	References

