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Abstract TARGET SET SELECTION, which is a prominent NP-hard problem occur-
ring in social network analysis and distributed computing, is notoriously hard both in
terms of achieving useful polynomial-time approximation as well as fixed-parameter
algorithms. Given an undirected graph, the task is to select a minimum number of
vertices into a “target set” such that all other vertices will become active in the course
of a dynamic process (which may go through several activation rounds). A vertex,
equipped with a threshold value t , becomes active once at least t of its neighbors
are active; initially, only the target set vertices are active. We contribute further in-
sights into the existence of islands of tractability for TARGET SET SELECTION by
spotting new parameterizations characterizing some sparse graphs as well as some
“cliquish” graphs and developing corresponding fixed-parameter tractability and (pa-
rameterized) hardness results. In particular, we demonstrate that upper-bounding the
thresholds by a constant may significantly alleviate the search for efficiently solvable,
but still meaningful special cases of TARGET SET SELECTION.
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1 Introduction

The NP-hard TARGET SET SELECTION (TSS) problem is defined as follows: Given
an undirected graph G = (V ,E) where each vertex v ∈ V is assigned a positive inte-
ger threshold value thr(v), the task is to find a minimum-cardinality target set S ⊆ V .
A vertex set S ⊆ V is called a target set of G if it “activates” all vertices in G in
a dynamic process where a vertex v gets activated once at least thr(v) many of its
neighbors are activated. Initially, only the vertices in S are active. TSS generalizes
well-known graph problems such as DOMINATING SET with thresholds [21], VEC-
TOR DOMINATING SET [32], k-TUPLE DOMINATING SET [25] (all these variants
allow for only one “activation round”), VERTEX COVER [10] (where the thresh-
old value equals the vertex degree), IRREVERSIBLE k-CONVERSION SET [15],
r-NEIGHBOR BOOTSTRAP PERCOLATION [4] (where the threshold of each vertex
is k or r , respectively), and so-called dynamic monopolies [31] (where the thresh-
old of a vertex v with degree deg(v) is �deg(v)/2�—in the following this condi-
tion is referred to as majority thresholds). Besides being a problem of considerable
graph-theoretic interest, TSS is also motivated by applications in areas such as so-
cial network analysis [10, 24] and distributed computing [31]. Indeed, since different
research communities use different names to describe the problem, some work has
been done independently from each other.

Since previous work has shown that TSS is computationally very hard (both
in terms of approximation complexity and in terms of parameterized complex-
ity) [6, 10, 29], it is a natural approach to search for practically relevant, but com-
putationally tractable special cases. We contribute to this line of research by start-
ing from the following: while TSS is linear-time solvable both on trees [10] and on
cliques [29, 33], it turns hard if the treewidth is unbounded [6] (more specifically, it
is W[1]-hard with respect to the parameter treewidth of the graph) and it is NP-hard
on graphs with diameter two [29] (cliques are exactly the diameter-one graphs). This
motivates the search for further parameterizations that govern the computational com-
plexity of TSS [6, 29]. In this work, we focus on parameterizations measuring the dis-
tance from being a tree or forest and parameterizations measuring the distance from
being a clique or cluster graph. Since TARGET SET SELECTION is polynomial-time
solvable on forests and cliques, these parameterizations follow the “distance from
triviality” approach [20]. A paragraph in Sect. 2 is dedicated to further discussing the
relevance of the chosen parameters.

We are interested in the role of the allowed thresholds and one of our main conclu-
sions is that bounding the thresholds by a constant may be decisive in order to gain
(fixed-parameter) tractability. This is of interest since in several applications, such as
influence spreading in social networks, it is conceivable that constant thresholds suf-
fice to model the underlying application scenarios. For instance, independent of my
total number of friends it may suffice that at least five of my friends (that is, neighbor
vertices) in a social network buy a certain product to convince me about the product’s
usefulness.
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Previous Work As mentioned before, TSS has recently received considerable inter-
est and, together with its variants, it appears under different names and in different
application contexts, making it somewhat hard to give a complete overview on the
corresponding results. Thus, we focus on previous results that directly relate to our
work and refrain from discussing the history of work on TSS—a more thorough re-
view of previous work can be found in [29].

Chen [10] showed hardness of approximating TSS within a ratio of 2log1−ε (n) for
any fixed ε > 0 even for majority thresholds and thresholds at most two. For unanim-
ity thresholds (that is, thr(v) = deg(v) for every vertex v), TSS turns out to be equiva-
lent to the MINIMUM VERTEX COVER problem [10] and therefore is APX-complete
and fixed-parameter tractable with respect to the solution size. Very recently, Baz-
gan et al. [5] showed that a maximization variant of TSS (MaxTSS: select k vertices
such that as many vertices as possible get activated in the end) has no parameterized
approximation algorithm with respect to the parameter “target set size k”; more pre-
cisely, MaxTSS with general thresholds cannot be approximated within a factor n1−ε

in time f (k) · nO(1) for any function f unless FPT = W[2]. Ben-Zwi et al. [6] found
that TSS is W[1]-hard with respect to the parameter “treewidth” of the underlying
graph. Indeed, they also showed that TSS is polynomial-time solvable on constant-
treewidth graphs. However, the degree of the polynomial depends on the treewidth.
Recently, further parameterized complexity studies for the structural graph param-
eters “diameter”, “cluster editing number”, “vertex cover number”, and “feedback
edge set number” have been undertaken [29]. Moreover, polynomial-time algorithms
for TSS restricted to special graph classes including chordal graphs and block-cactus
graphs have been developed [8, 11, 33].

Finally, there are numerous combinatorial studies concerning the sizes of optimal
target sets (upper and lower bounds) mostly with respect to special graph classes
[1–3, 9, 11, 15, 34].

The role of the threshold values and threshold functions has been studied in the
past. For instance, Dreyer and Roberts [15] showed NP-hardness for TSS when all
vertices have the same threshold t , t ≥ 3. Later, Chen [10] extended this result to
t = 2. Centeno et al. [8] and Chiang et al. [11] exploited threshold values being
upper-bounded by two to develop polynomial-time algorithms for TSS on chordal
graphs. Most interesting in our context, however, is the result of Ben-Zwi et al. [6]
who showed that TSS is W[1]-hard with respect to the treewidth of the underlying
graph in case of unbounded threshold values whereas they showed it to be fixed-
parameter tractable for the same parameter once the threshold values are bounded by
any constant.

Our Contributions Starting from the efficient solvability of TSS on trees and
cliques [10, 29, 33], we investigate to what extent efficient algorithms can be obtained
for more general graph classes. On the one hand, we consider parameters measuring
tree-likeness or sparseness, thereby extending previous work [6, 29]. On the other
hand, we spot several parameters measuring distance to “cliquish” graphs. In both
lines, we put particular emphasis on how restricted threshold functions, in particular
the majority and constant function, influence computational complexity. Notably, all
our positive results for constant thresholds generalize to the case that the maximum
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Fig. 1 Overview of the relations between structural graph parameters and our results for TARGET SET

SELECTION. An arc directed from a parameter α to a parameter β means that, for all graphs, β can be
upper-bounded in a linear function in α. Herein, “distance” refers to the vertex deletion distance into the
specified graph class. The three rectangles below each parameter indicate the known results for TSS with
(from left to right:) constant, majority, and general threshold function. The white text on black background
at the parameter “clique cover number” means NP-hard for constant values of this parameter, violet (dark
gray in black and white version) background means W[1]-hard, green (light gray) background means FPT,
and white background indicates an open question. Results marked with “Th. x” are obtained in this paper
in Theorem x

threshold tmax is given as an additional parameter. To keep matters simple and in
accordance with previous work, however, we focus on constant thresholds. Our find-
ings, which are pictorially presented (including the relations between parameters) in
Fig. 1, read as follows.

We start with the “sparse setting” (Sect. 3). For majority thresholds, we show
that W[1]-hardness results for parameters such as “feedback vertex set number” and
“pathwidth” for general threshold functions (which are due to Ben-Zwi et al. [6])
extend to the case of majority thresholds (Theorem 1). Conversely, the very same pa-
rameterizations lead to fixed-parameter tractability results in case of constant thresh-
old values [6]. Further, we briefly indicate that TSS is fixed-parameter tractable for
the parameter “bandwidth”1 even in case of arbitrary threshold functions (Theo-
rem 2).

Our main results are related to the “cliquish setting” (Sect. 4), centered around the
fixed-parameter tractability of TSS with respect to the parameter “cluster vertex dele-
tion number” (the minimum number of vertices to delete from a graph to transform it
into a union of disjoint cliques [22]): TSS is W[1]-hard for general thresholds (The-
orem 3) but becomes fixed-parameter tractable for constant thresholds (Theorem 6),
leaving the case of majority thresholds open for future work. For the larger, also re-
ferred to as “weaker” [26], parameter “distance to clique” (the minimum number of
vertices whose deletion leaves a clique), however, TSS is fixed-parameter tractable for
both constant and majority thresholds (Theorem 5) whereas this is open for general

1A graph with bandwidth k has a linear arrangement of its vertices v1, . . . , vn such that the length |i − j |
of each edge {vi , vj } is at most k.
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thresholds. Finally, for the parameter “clique cover number” (the minimum number
of cliques needed to cover all vertices of a graph) we show NP-hardness even for pa-
rameter value two (Theorem 4), rendering fixed-parameter tractability very unlikely.
The parameterized complexity for majority and constant thresholds is open.

Again, refer to Fig. 1 for an overview on our results in context of previous work
and the respective parameter relations in the spirit of “stronger” and “weaker” param-
eterizations [26].

2 Preliminaries and Parameter Identification

Graph Notation We use standard graph-theoretic notation. For graphs G = (V ,E),
we use n := |V | and m := |E|. We omit the index of the neighborhood NG(v) or de-
gree degG(v) of a vertex v if G is clear from the context. To formally define TARGET

SET SELECTION, consider a graph G = (V ,E) and a function thr : V → N ∪ {0}.
For a vertex set S ⊆ V , we define the set of vertices that are activated by S in the ith

round as Ai
G,thr(S) with

A0
G,thr(S) := S and

Ai+1
G,thr(S) := Ai

G,thr(S) ∪ {
v ∈ V | ∣∣N(v) ∩Ai

G,thr(S)
∣∣ ≥ thr(v)

}
.

We call r(S) := max{i | Ai−1
G,thr 
= Ai

G,thr} the number of activation rounds and say

that S is a target set for (G, thr) if Ar(S)
G,thr(S) = V . We can now formally define the

central problem of this work:

TARGET SET SELECTION

Input: An undirected graph G = (V ,E), a threshold function thr : V →N∪ {0} and
an integer k ≥ 0.

Question: Is there a target set S ⊆ V for G with |S| ≤ k?

We denote the maximum threshold of an instance (G, thr) by tmax(G, thr) :=
max{thr(v) | v ∈ V (G)}. Again, we omit (G, thr) if it is clear from the context.

A cograph is a graph that does not contain an induced P4, that is, a path on four
vertices. A graph G = (V ,E) is called interval graph if there exists a set of real
intervals {Iv | v ∈ V } such that Iv ∩ Iu 
= ∅ if and only if {u,v} ∈ E [12]. A tree
decomposition of a graph G = (V ,E) is a pair (X,T ), where X = {X1, . . . ,Xn} is a
family of subsets of V , and T is a tree whose nodes are the subsets Xi , satisfying the
following properties [12]:

1. The union of all sets Xi equals V . That is, each graph vertex is associated with at
least one tree node.

2. For every edge {v,w} in the graph, there is a subset Xi that contains both v and w.
3. If Xi and Xj both contain a vertex v, then all nodes of the tree in the (unique) path

between Xi and Xj contain v as well.

A path decomposition is defined analogously with the only difference that T is re-
quired to be a path instead of a tree. The width of a tree (path) decomposition is one
less than the size of its largest set Xi ∈ X. The treewidth tw (pathwidth pw) of a
graph G is the minimum width among all possible tree (path) decompositions of G.
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Parameterized Complexity This is a two-dimensional framework for studying com-
putational complexity [14, 18, 30]. One dimension of a parameterized problem is the
input size s, and the other one is the parameter (usually a positive integer). A parame-
terized problem is called fixed-parameter tractable (fpt) with respect to a parameter �

if it can be solved in f (�) ·sO(1) time, where f is a computable function only depend-
ing on �. This definition also extends to combined parameters. Here, the parameter
usually consists of a tuple of positive integers (�1, �2, . . .) and a parameterized prob-
lem is called fpt with respect to (�1, �2, . . .) if it can be solved in f (�1, �2, . . .) · sO(1)

time.
A core tool in the development of fixed-parameter algorithms is polynomial-time

preprocessing by data reduction [7, 19]. Here, the goal is to transform a given prob-
lem instance I with parameter � in polynomial time into an equivalent instance I ′
with parameter �′ ≤ � such that the size of I ′ is upper-bounded by some function g

only depending on �. If this is the case, we call I ′ a (problem) kernel of size g(�).
Usually, this is achieved by applying polynomial-time executable data reduction
rules. We call a data reduction rule R correct if the new instance I ′ that results from
applying R to I is a yes-instance if and only if I is a yes-instance. An instance is
called reduced with respect to some data reduction rule if further application of this
rule has no effect on the instance. The whole process is called kernelization. It is
well-known that a parameterized problem is fixed-parameter tractable if and only if
it has a problem kernel.

Using parameterized reductions, Downey and Fellows [14] developed a frame-
work to show that problems are unlikely to be fpt. A parameterized reduction from
a parameterized problem P to another parameterized problem P ′ is a function that,
given an instance (x, �), computes in f (�) · sO(1) time an instance (x′, �′) (with �′
only depending on �) such that (x, �) is a yes-instance of P if and only if (x′, k′) is
a yes-instance of P ′. The basic complexity class for fixed-parameter intractability is
called W[1] and there is good complexity-theoretic reason to believe that W[1]-hard
problems are not fpt [14, 18, 30]. Moreover, there is a whole hierarchy of classes
W[t], t ≥ 1, where, intuitively, problems become harder with growing t . In this sense,
W[1]-hardness is the parameterized complexity analog of NP-hardness.

Parameter Identification Fixed-parameter algorithms work best if the parameter
they are designed for is small in practice. TSS having many applications on social
networks [16], it is natural to extract small parameters from typical properties of so-
cial networks. A widely accepted property of social networks is the so-called “small-
world phenomenon”, roughly stating that the diameter of social networks is usually
small. Unfortunately, the diameter of the input graph turns out not to be a suitable
parameter since even diameter-two graphs lead to intractability results [29].

The parameters considered in this work are derived from the observation that there
are actually multiple types of social networks. When the network models friendships
for example, we expect the network to be made up of multiple cliques (or otherwise
dense substructures) that overlap. This motivates considering the number of cliques
needed to cover all vertices [23] (the “clique cover number”) or the number of ver-
tices to remove to obtain a clique (the “distance to clique”). As the latter parameter
is somewhat restrictive, we also consider the number of vertices to delete in order
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to obtain a collection of disjoint cliques (the “cluster vertex deletion number”). Re-
cently, the cluster vertex deletion number was also used to parameterize problems
related to coloring and hamiltonicity [13]. Other less restrictive parameters related to
the denseness of a network such as “distance to cograph” and “distance to interval”
are also considered.

In some applications, we deal with very sparse social networks, for instance net-
works modeling sexual contacts [16, Chap. 2, Fig. 2.7]. In these cases, parameters
related to the sparseness of the input graph are interesting. Hence, we consider the
number of vertices to remove to obtain an edgeless graph (“vertex cover number”),
the number of edges or vertices to remove to obtain a forest (“feedback edge set
number” and “feedback vertex set number”) as well as some graph width parameters
(treewidth, pathwidth, bandwidth).

Note that all these parameters except the diameter and the “feedback edge set
number” are NP-hard to compute. However, for the two parameters for which we
present positive results—namely “distance to clique” (that is the size of minimum
vertex cover in the complement graph) and “cluster vertex deletion number”—there
exist constant-factor polynomial time approximation algorithms. Furthermore, there
exist simple search tree algorithms for computing these parameters showing that they
are fixed-parameter tractable with respect to their solution size [30].

Data Reduction We use the following two data reduction rules throughout our work.
If the threshold of a vertex exceeds its degree, then it cannot be activated by its

neighbors and, hence, the vertex is part of any target set. Moreover, we consider
threshold-0 vertices as already active.

Reduction Rule 1 [29, Reduction Rule 1] Let G = (V ,E) and v ∈ V . If thr(v) >

deg(v), then delete v, decrease the threshold of all its neighbors by one and de-
crease k by one. If thr(v) = 0, then delete v and decrease the thresholds of all its
neighbors by one.

In an instance that is reduced with respect to Reduction Rule 1, every degree-one
vertex has threshold one. Thus, considering an arbitrary degree-one vertex, we do
not select it into the target set as choosing its neighbor is at least as good. This is
formalized in the next data reduction rule.

Reduction Rule 2 [29, Reduction Rule 5] Let (G, thr, k) be an instance of TSS re-
duced with respect to Reduction Rule 1 and let v ∈ V (G) with thr(v) = deg(v) = 1.
Then, delete v from G.

3 Parameters Related to Sparse Structures

In this section, we consider parameters that measure the sparseness of the input graph.
Since trees are the most sparse connected graphs and TSS is polynomial-time solv-
able on trees [10], parameters measuring the distance to trees are most interesting.
Canonical candidates for this are the treewidth, the pathwidth, and the feedback
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vertex set number of the input graph. Notably, if the maximum threshold tmax is
bounded by a constant, then a fixed-parameter algorithm of Ben-Zwi et al. [6] for
the parameter “treewidth tw” can solve TSS in t

O(tw)
max · nO(1) time, implying fixed-

parameter tractability for the three parameters mentioned above. Furthermore, Ben-
Zwi et al. [6] proved W[1]-hardness for TSS with respect to the parameter “treewidth”
when the thresholds are unbounded. We extend this result by showing W[1]-hardness
for treewidth when the thresholds respect the majority condition. The proof even
shows hardness for the combined parameter “feedback vertex set, pathwidth, distance
to cographs, and distance to interval graphs”. Finally, we show that TSS is fixed-
parameter tractable when parameterized by the bandwidth. This result even holds for
general thresholds.

3.1 Basic Reduction

In the following, we recall the reduction of Ben-Zwi et al. [6], since it forms a basis
for other W[1]-hardness reductions in this work. The reduction, which we will refer
to as basic reduction, is from the W[1]-hard MULTICOLORED CLIQUE problem [17],
which is defined as follows.

MULTICOLORED CLIQUE (MCC)

Input: An undirected graph G = (V ,E), an integer k ≥ 0, and a coloring col : V →
{1, . . . , k}.

Question: Does G contain a multicolored clique of size k, that is, a vertex sub-
set V ′ ⊆ V with |V ′| = k such that for all u,v ∈ V ′ it holds that {u,v} ∈ E

and col(u) 
= col(v)?

Let (G, col, k) be an MCC instance. An equivalent instance (G′, thr, k′) is con-
structed as follows. For each color c ∈ {1, . . . , k}, create a vertex-selection gadget Xc

consisting of a star whose leaves one-to-one correspond to vertices with color c in G.
For each pair of distinct colors c1, c2 ∈ {1, . . . , k}, let E{c1,c2} ⊆ E be the set of all
edges that connect vertices of color c1 with vertices of color c2 and create the fol-
lowing edge-selection gadget X{c1,c2}. The edge-selection gadget X{c1,c2} consists of
a star whose leaves one-to-one correspond to edges in E{c1,c2}. The center vertex of
any star is called guard.

The second type of gadgets is a validation gadget. They use the arbitrary bi-
jection low : V → {1, . . . , n} and the bijection high : V → {n, . . . ,2n − 1} defined
as high(v) := 2n − low(v) for each v ∈ V . For each {c1, c2} with c1, c2 ∈ {1, . . . , k},
add two validation gadgets Vc1,c2 and Vc2,c1 each consisting of two vertices. Now, for
each {u,v} ∈ E{c1,c2} such that col(v) = c1, connect the first validation gadget Vc1,c2

as follows: Let v′ be the vertex in Xc1 corresponding to v. First, add low(v) vertices
and connect them to v′ and to the first vertex of Vc1,c2 . Next, add high(v) vertices
and connect them to v′ and to the second vertex of Vc1,c2 . Analogously, denoting
with e{u,v} the vertex in X{c1,c2} corresponding to {u,v}, add high(v) vertices and
connect them to e{u,v} and to the first vertex of Vc1,c2 . Then, add low(v) vertices and
connect them to e{u,v} and to the second vertex of Vc1,c2 . The second validation gad-
get Vc2,c1 is analogously connected to the vertex of Xc2 that corresponds to u and
to e{u,v} in X{c1,c2}.
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We call all the vertices adjacent to vertices of a validation gadget connection ver-
tices. The thresholds are set as follows: Guard vertices and connection vertices have
threshold one, the two vertices in each validation gadget have threshold 2n, and the
remaining vertices in the selection gadgets have a threshold equal to their degree.
Finally, k′ = k + (

k
2

)
. This completes the reduction.

As to the correctness: If the instance (G, col, k) is a yes-instance of MCC then the
vertices chosen to be in the target set of G′ refer to the multicolored clique in G: For
each vertex in the clique, the corresponding vertex in the vertex-selection gadget is in
the target set. Furthermore, for each edge in the clique the corresponding vertex in the
edge-selection gadget is in the target set. This target set activates the whole graph. In
the reverse direction the validation gadgets play a central role: Each validation gadget
connects a vertex-selection gadget with and edge-selection gadget. The vertices in the
validation gadget only become activated if a vertex in the vertex-selection gadget and
a vertex in the edge-selection gadget are in the target set such that the corresponding
vertex and edge in G are incident. Basically this ensures that one has to choose ver-
tices in G′ into the target set that refer to a multicolored clique in G. We refer the
reader to Ben-Zwi et al. [6] for more details.

While it is not explicitly stated by Ben-Zwi et al. [6], the presented basic reduction
shows W[1]-hardness for general thresholds with respect to the combined parameter
feedback vertex set, distance to cograph, distance to interval graph, and pathwidth.
To see this, first observe that once we have deleted all guard vertices and validation
gadgets (that is,

(
k
2

) + k vertices) in G′, we get a new graph G′′ which consists of
stars and isolated vertices. Thus, G′′ contains no cycles and is both a cograph and an
interval graph implying W[1]-hardness with respect to the combined parameter feed-
back vertex set, distance to cograph, and distance to interval graph. Finally, the graph
G′ has pathwidth O(k2) which implies W[1]-hardness with respect to the pathwidth:
Indeed, one can add the O(k2) deleted vertices to every node of a path decomposition
of G′′ of width 1 (such path decomposition exists since G′′ is a collection of stars and
isolated vertices and, thus, has pathwidth 1).

3.2 Extending the Basic Reduction to Majority Thresholds

In the following, we show that the basic reduction can be extended to the majority
case.

Theorem 1 TARGET SET SELECTION with majority threshold is W[1]-hard even
with respect to the combined parameter feedback vertex set, distance to cograph,
distance to interval graph, and pathwidth.

Proof We modify the basic reduction to get the new, equivalent instance (G′′, thr′, k′′)
as follows. For each vertex v in a validation gadget, add degG′(v) − 4n vertices ad-
jacent to v. Moreover, for each guard vertex v add degG′(v) − 2 neighbors. Let X

be the set of vertices added so far. Insert a new vertex u adjacent to all vertices in X

and add |X|+ 2(k′ + 2) vertices to the neighborhood of u. To complete the modifica-
tion of the graph, for every vertex v in a selection gadget, attach degG′(v) neighbors.
Finally, set thr′(v) := �degG′′(v)/2� for all v ∈ V (G′′) and k′′ := k′ + 1. We claim
that (G′′, thr′, k′′) is equivalent to (G′, thr, k′).
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“⇒”: Suppose that there is a solution S′ for (G′′, thr′, k′′). First, observe that u ∈
S′ since otherwise u would not become active. Indeed, even if all the vertices in G′′
plus k′′ degree-one neighbors of u are activated, the vertex u will not be activated
since its threshold is |X| + k′′ + 1. Since u is in all solutions, we may consider the
equivalent instance where u is removed together with all its neighbors (they all have
threshold one and thus get activated by u). Moreover, for each removed vertex v, we
have to decrease the threshold of the vertices in N(v) by one. This operation leaves
a graph with many degree-one vertices of threshold one. Applying Reduction Rule 2,
we arrive at the instance (G′, thr, k′). By correctness of Rule 2, the equivalence fol-
lows.

“⇐”: Conversely, let S be a solution for (G′, thr, k′). Since activating u and ex-
haustively applying Reduction Rule 2 results in (G′, thr, k′), it is clear that S ∪ {u} is
a target set for (G′′, thr′) of size k′ + 1.

To complete the proof of the theorem, it is enough to observe that if we remove the
vertex u, all guard vertices, and the validation gadgets (that is,

(
k
2

) + k + 1 vertices),
then we get stars and isolated vertices. Therefore, using the same arguments as before,
the result follows. �

3.3 Bandwidth

Another measure for sparseness is the bandwidth of the input. Here, our result is of
more positive nature: we observe that TARGET SET SELECTION is fixed-parameter
tractable with respect to the bandwidth, even for general threshold functions, by using
an algorithm of Ben-Zwi et al. [6].

Theorem 2 TARGET SET SELECTION is fixed-parameter tractable with respect to
the parameter “bandwidth”.

Proof Let (G = (V ,E), thr, k) be an instance of TSS. First, exhaustively apply Re-
duction Rule 1 to get a new equivalent instance (G′ = (V ′,E′), thr′, k′). Observe
that thr′(v) ≤ degG′(v) for all v ∈ V ′. Let bw denote the bandwidth of G′. By the
definition of bandwidth it follows that degG′(v) ≤ 2 · bw and, thus, thr′(v) ≤ 2 · bw
for all v ∈ V ′. Moreover, Ben-Zwi et al. [6] gave a (tmax)

O(tw) · n-time algorithm
for solving TSS, where tw is the treewidth of the input graph and tmax is the
maximum threshold value. Since tw ≤ 2 · bw, this algorithm applied to G runs in
(2bw)O(bw) · n time. �

4 Parameters Related to Dense Structures

In contrast to Sect. 3, we now consider TSS with respect to parameters related to the
denseness of the input graph. Since cliques are the most dense graphs and TSS is
polynomial-time solvable on cliques [29, 33], parameters measuring the distance to
cliques are most interesting. In particular, we consider the vertex deletion distance
to a clique and to a collection of disjoint cliques (also called “cluster vertex deletion
number” or “cvd number” for short), and the clique cover number.



Theory Comput Syst (2014) 55:61–83 71

Starting with the case of unrestricted thresholds in Sect. 4.1, we show that
TSS parameterized by the size of a minimum cluster vertex deletion (cvd) set
is W[1]-hard. Furthermore, we show NP-hardness when restricting TSS to in-
stances with clique cover number two. Then, in Sect. 4.2, we study restricted
threshold functions. For constant or majority thresholds, TSS parameterized by
the distance to a clique is fixed-parameter tractable. Furthermore, we show an
exponential-size problem kernel for TSS with respect to the combined parame-
ter maximum threshold value and cvd number, implying fixed-parameter tractabil-
ity with respect to the cvd number on inputs with thresholds bounded by a con-
stant.

4.1 Unrestricted Thresholds

In the following, we consider the general TSS setting without constraints on the
thresholds of the input. The next two theorems state that these variants are (presum-
ably) parameterized intractable with respect to the employed denseness measures.

Theorem 3 TARGET SET SELECTION is W[1]-hard with respect to the parameter
“cvd number”.

Proof We modify the basic reduction (see Sect. 3.1) as follows. Make all connection
vertices that have a common vertex in a (vertex- or edge-) selection gadget to a clique.
The thresholds of the connection vertices are modified as follows: In each maximal
clique of the connection vertices, an arbitrary ordering of the vertices is fixed. Then
the first vertex has threshold one, the second has threshold two, and the ith vertex has
threshold i. See Fig. 2 for a scheme of the reduction.

Note that each connection vertex is contained in exactly one maximal clique. Also
the following holds: Let C be such a maximal clique, V 1 (resp. V 1 and V 2) denote
the validation gadget adjacent to C, and v the vertex adjacent to C in the vertex-
selection gadget (resp. the edge-selection gadget). Then all connection vertices in C

are activated if and only if either v is activated or all the vertices in V 1 (resp. V 1

and V 2) are activated.
We now prove that (G, col, k) is a yes-instance of MULTICOLORED CLIQUE if

and only if (G′, thr,
(
k
2

) + k) is a yes-instance of TSS.
“⇒”: Suppose that (G, col, k) has a multicolored clique C ⊆ V of size k. Then

the set S := {v ∈ C} ∪ {eu,v | u,v ∈ C} is a target set for (G′, thr, k′). Indeed, in the
first step of the propagation process all guard vertices are activated since they are
all adjacent to a vertex in S. After 4n steps, all the connection vertices adjacent to
a vertex in S get activated. During the next step, all 4

(
k
2

)
vertices in validation pairs

will be activated since C is a multicolored clique of size k. From now on, it is not
hard to see that the entire graph will be activated.

“⇐”: Conversely, assume that (G′, thr, k′) has a target set S ⊆ V ′ of size k. First,
we may assume that S does not contain any guard vertex since they all have thresh-
old one. Moreover, one has to pick up in the target set at least one vertex in each
selection gadget to activate the guard vertex of the latter. Indeed, recall that every
neighbor of a guard vertex has a threshold equal to its degree and the guard vertex
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Fig. 2 Graph obtained after carrying out the modifications in the proof of Theorem 3 (with n = 4). The
vertices inside an ellipse form a clique. The numbers in the vertices denote the thresholds. If no number is
inside a vertex, the threshold is equal to the degree

is not in the target set. Thus, every target set contains at least one vertex in each
selection gadget. Furthermore, since k′ = (

k
2

) + k we conclude that there is exactly
one vertex from each selection gadget in a minimal target set. Suppose now that we
select two vertices u ∈ Xc1 and v ∈ Xc2 together with an edge-vertex eu′,v′ ∈ X{c1,c2}
for some c1, c2 ∈ {1, . . . , k} such that eu′,v′ is not incident to both u and v. With-
out loss of generality, we may assume that u 
= u′. Then at least one vertex in the
validation gadgets Vc1,c2 and Vc2,c1 will not be activated. To see this, recall that
for all w ∈ V ′ it holds that high(w) + low(w) = 2n and, since u 
= u′, we have
either low(u) + high(u′) < 2n or high(u) + low(u′) < 2n. This implies, as previ-
ously discussed, that some connection vertices will not be activated, a contradic-
tion. �

Theorem 4 TARGET SET SELECTION is NP-hard and W[2]-hard with respect to the
parameter “target set size” k, even on graphs with clique cover number two.
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Proof We present a parameterized reduction from HITTING SET, which is W[2]-
complete [14] with respect to the parameter “solution size k”.

HITTING SET (HS)

Input: A collection F of subsets of a finite set U and an integer k ≥ 0.
Question: Is there a subset U ′ ⊆ U with U ′ ≤ k such that U ′ contains at least one

element from each subset in F?

Given an HS-instance (F ,U, k) consisting of a set family F = {F1, . . . ,Fm}
over a universe U = {u1, . . . , un} and an integer k ≥ 0, we construct a TSS-
instance (G, thr, k) consisting of a graph G = (V ,E), a threshold function thr : V →
N∪ {0}, and k as follows.

We start with the construction of the graph G. The set VU of vertices contains a
vertex for every element u ∈ U , that is, VU := {vu | u ∈ U}. Analogously, the set WF
contains a vertex for every subset, that is, WF := {wF | F ∈ F}. The vertices in VU

are called element vertices and the vertices in WF are called subset vertices. There is
an edge between an element vertex vu and a subset vertex wF if and only if u ∈ F .
Next, add a new vertex x /∈ (VU ∪ WF ) to G and connect x to all vertices in WF .
Then, make V1 := VU ∪ {x} a clique. Add |F | − 1 sets of vertices V B

1 , . . . , V B
|F |−1

to the graph, each set containing α := |U | + 2 vertices and let V B := ⋃|F |−1
i=1 V B

i .
Finally, make V2 := WF ∪ V B

1 ∪ · · · ∪ V B
|F |−1 a clique.

The thresholds are set as follows. For every subset vertex wFi
∈ WF , set the

threshold thr(wFi
) := (i − 1)α + i, for every element vertex vu ∈ VU , set thr(vu) :=

|{F ∈F | u ∈ F }|+ k + 1, and for each vertex v ∈ V B
i , 1 ≤ i ≤ |F | − 1, set thr(v) :=

(i − 1)α + i. Finally, complete the construction by setting thr(x) := |WF | + k

Since V1 and V2 are cliques, the constructed graph G is a diameter-two graph
whose vertices can be covered by two cliques, see Fig. 3.

For the correctness it remains to show that (F ,U, k) is a yes-instance of HS if and
only if (G, thr, k) is a yes-instance of TSS.

“⇒”: If (F ,U, k) is a yes-instance, then there exists a size-k hitting set U ′ for F .
We show that S := {vu | u ∈ U ′} is a size-k target set for G. Since U ′ is a hitting set,
every vertex in WF has at least one neighbor in S. Thus, all vertices in V1 become
active in 2|WF | − 1 rounds: In the first round wF1 is activated since thr(wF1) = 1.
Then in the second round, all vertices in V B

1 are activated since all these vertices also
have threshold one and wF1 is active. For 2 ≤ i ≤ |WF |, in the (2i − 1)th round the
vertex wFi

is activated and in the next round all vertices in V B
i : The neighbors of wFi

that are active in round 2i − 2 are the following: all vertices in V B
1 ∪ · · · ∪ V B

i−1, the
vertices wF1, . . . ,wFi−1 , and at least one vertex in S. Since the threshold thr(wFi

)

is (i −1)α + i, the vertex wFi
is activated. Then, there are (i −1)α + i active vertices

in V2 and, hence, all vertices in V B
i are activated in the 2ith round. After all vertices

in V2 are active, x is activated. Finally, in the last round all vertices in VU \ S are
activated since for every vertex in VU \ S all neighbors in WF and x have been
activated.

“⇐”: If (G, thr, k) is a yes-instance of TSS, then there is a target set S of size at
most k. We first show that S ⊆ VU .

Assume towards a contradiction that there is a vertex in S \ VU . Then, |S ∩ VU | ≤
k − 1. Let � denote the first round in which a vertex in VU \ S is activated, that
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Fig. 3 A schematic picture of the constructed graph. Each of the two vertex sets V1 (upper box) and V2
(lower box) forms a clique. The number below a vertex denotes its threshold. The only way to activate
all vertices with a target set of size k is to choose k vertices in VU such that these k vertices activate all
vertices in WF

is, � := min{j | Aj

G,thr(S) ∩ (VU \ S) 
= ∅}. Moreover, let vu ∈A�
G,thr(S) ∩ (VU \ S).

Note that, by definition of �, it holds that |A�−1
G,thr(S) ∩ (V1)| ≤ k. Hence:

∣∣NG(vu) ∩A�−1
G,thr(S)

∣∣ = ∣∣NG(vu) ∩A�−1
G,thr(S) ∩ WF

∣∣

+ ∣∣NG(vu) ∩A�−1
G,thr(S) ∩ (V1)

∣∣

≤ ∣∣{F ∈F | u ∈ F }∣∣ + k

<
∣∣{F ∈ F | u ∈ F }∣∣ + k + 1 = thr(vu),

a contradiction. Therefore, S ⊆ VU .
Finally, we show that U ′ := {u | vu ∈ S} is a hitting set for F . To this end, we show

that every subset vertex wFi
has a neighbor in S and, hence, is hit by U ′. Assume

towards a contradiction that there exists a vertex wFi
∈ WF with NG(wFi

) ∩ S = ∅.
Let Xi := (

⋃
i≤j≤|F |−1 V B

j )∪(
⋃

i≤j≤|F |{wFi
}). Let � denote the first round in which

a vertex in Xi is activated, that is, � := min{j |Aj

G,thr(S) ∩ Xi 
= ∅}.
Hence:

∣∣A�−1
G,thr(S) ∩ WF

∣∣ = ∣∣A�−1
G,thr(S) ∩ (

WF \ Xi
)∣∣ ≤ i − 1 and

∣∣A�−1
G,thr(S) ∩ V B

∣∣ = ∣∣A�−1
G,thr(S) ∩ (

V B \ Xi
)∣∣ ≤

∣∣∣∣
⋃

1≤j<i

V B
j

∣∣∣∣ = (i − 1)α.
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Let v ∈ Xi ∩ V B , then we have:
∣∣A�−1

G,thr(S) ∩ NG(v)
∣∣ = ∣∣A�−1

G,thr(S) ∩ V B
∣∣ + ∣∣A�−1

G,thr(S) ∩ WF
∣∣

≤ (i − 1)α + i − 1

< (i − 1)α + i ≤ thr(v)

and, thus, A�
G,thr(S) ∩ Xi ∩ V B = ∅. Now consider v ∈ Xi ∩ (WF \ {wFi

}). Observe

that |A�−1
G,thr ∩ V1| = |S| = k. Thus, we have:

∣∣A�−1
G,thr(S) ∩ NG(v)

∣∣ ≤ ∣∣A�−1
G,thr(S) ∩ V B

∣∣ + ∣∣A�−1
G,thr(S) ∩ WF

∣∣ + ∣∣A�−1
G,thr(S) ∩ V1

∣∣

≤ (i − 1)α + i − 1 + k

< iα + i + 1 ≤ thr(v)

and, thus, A�
G,thr(S) ∩ Xi ∩ (WF \ {wFi

}) = ∅. Finally, consider v = wFi
:

∣∣A�−1
G,thr(S) ∩ NG(v)

∣∣ ≤ ∣∣A�−1
G,thr(S) ∩ V B

∣∣ + ∣∣A�−1
G,thr(S) ∩ WF

∣∣

≤ (i − 1)α + i − 1

< (i − 1)α + i = thr(v)

and, thus, wFi
/∈ A�

G,thr(S). Altogether we have A�
G,thr(S) ∩ Xi ∩ V B = ∅,

A�
G,thr(S) ∩ Xi ∩ (WF \ {wFi

}) = ∅, and wFi
/∈ A�

G,thr(S) and, hence, A�
G,thr(S) ∩

Xi = ∅, a contradiction. �

4.2 Restricted Thresholds

In the spirit of researching the influence of bounded thresholds on TSS, we con-
sider the parameters “distance to clique” and “cluster vertex deletion number” (cvd
number). Recall that we showed W[1]-hardness for the parameter “cvd number” for
unbounded thresholds in the previous paragraph. By presenting an exponential-size
problem kernel, we show that the problem becomes fixed-parameter tractable with
respect to this parameter if the maximum threshold is a constant.

First, we show that TSS with majority thresholds or constant thresholds is fixed-
parameter tractable with respect to the parameter “distance � to clique”. Indeed, we
can even show fixed-parameter tractability for less restrictive threshold functions. To
this end, let P(V ) be the power set of V .

Theorem 5 TARGET SET SELECTION on graphs with vertex set V is fixed-
parameter tractable with respect to the parameter “distance � to clique” if the thresh-
old function thr fulfills the restriction

thr(v) > g(�) ⇒ thr(v) = f
(
N(v)

)

for all vertices v ∈ V and arbitrary functions f : P(V ) → N and g :N → N.
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Proof We prove the theorem by giving a fixed-parameter algorithm computing a
minimum-size target set for (G, thr). To this end, we introduce some notation.
Let X ⊂ V , |X| = �, denote a set of vertices such that G[V \ X] is a clique. We
define a non-standard “twins” equivalence relation ≡ by

u ≡ v ⇐⇒ (
N [u] = N [v]) ∧ (

thr(u) = thr(v)
) ∧ (u ∈ X ⇐⇒ v ∈ X).

Since the thresholds and neighborhoods of all vertices in an equivalence class Z are
equal, we can denote this threshold and this neighborhood by thr(Z) and N [Z], re-
spectively. Let Z1,Z2, . . . ,Zs be a list of all nonempty equivalence classes of ≡.
Since G[V \ X] is a clique, we know that for all u,v ∈ V \ X it holds that
N [u] = N [v] if and only if NG[X][u] = NG[X][v]. Due to the condition thr(v) >

g(�) ⇒ thr(v) = f (N(v)), for each subset X′ ⊆ X, there are at most g(�) + 1 equiv-
alence classes disjoint from X whose neighborhood in X is exactly X′. Hence, s ≤
2�(g(�) + 1) + �.

Let S be a minimum-size target set for (G, thr). With S, we can define ri as the
number of the first activation round in which all vertices of Zi are active. More for-
mally, ri := min{j | Zi ⊆ Aj

G,thr(S)}. Let r := max{ri | 1 ≤ i ≤ s}.
In the following, we upper-bound r by s. We do this by showing that for each 1 ≤

j ≤ r , there is an 1 ≤ i ≤ s such that ri = j . Assume this was false, that is, there is
some activation round j such that none of the equivalence classes gets activated in
round j . Since j ≤ r , there is some vertex v that gets activated in round j . Let Zi

denote the equivalence class of v. Since j ≥ 1, we know that |N(v) ∩ Aj−1
G,thr(S)| ≥

thr(v). Since for each vertex u ∈ Zi , thr(u) = thr(v) and N(u) = N(v), we conclude
that Zi ⊆ Aj

G,thr(S), contradicting the assumption that ri 
= j .
Now we describe our algorithm. In the first phase, we guess the correct values

of ri for all 1 ≤ i ≤ s. There are at most rs ≤ ss possibilities to do so.
In the second phase of the algorithm, we use an ILP formulation to solve the prob-

lem. Each variable xi in the ILP represents the number of vertices in the equivalence
class i that are in the target set S. We use constraints to model the activation pro-
cess: For each equivalence class Zi , the number of active neighbors in round ri have
to exceed thr(Zi). Two types of active neighbors are considered. First, the vertices
in N [Zi] ∩ S. Second, the vertices in all equivalence classes Zj ⊆ N [Zi] that are
active in round i, that is, rj < ri . More formally,

Minimize:
s∑

i=1

xi

subject to: ∀1 ≤ i ≤ s : thr(Zi) ≤
∑

Zj ⊆N[Zi ]
rj ≥ri

xj +
∑

Zj ⊆N[Zi ]
rj <ri

|Zj |,

∀1 ≤ i ≤ s : xi ∈ {0,1}.
By the discussion above, a solution to this ILP corresponds to a minimum-size target
set for (G, thr). Since the ILP formulation has s variables, a result by Lenstra [27]
implies that solving it is fixed-parameter tractable with respect to s. Since at most ss
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such ILPs have to be solved and s ≤ 2�(g(�) + 1) + �, fixed-parameter tractability
with respect to � follows. �

Clearly, Theorem 5 is a pure complexity classification result. Since the majority
thresholds and constant thresholds both satisfy the restrictions required in Theorem 5,
the next corollary immediately follows.

Corollary 1 TARGET SET SELECTION with majority thresholds or constant thresh-
olds is fixed-parameter tractable with respect to the parameter “distance to clique”.

Next, we show fixed-parameter tractability for TSS with constant thresholds with
respect to the parameter “cvd number”. In the following, we assume that an optimal
cvd set X of the input graph is given. If this is not the case, then one might instead
use a simple factor-3 approximation.2 Either way, we abbreviate � := |X|.

In this section we use the notion of “critical cliques”. Here, a clique K in a graph
is critical if all its vertices have the same closed neighborhood and K is maximal
with respect to this property.

First, we present a data reduction rule allowing us to bound the number of vertices
with the same open or closed neighborhood by the maximum threshold tmax.

Reduction Rule 3 Let I := (G = (V ,E), thr, k) be an instance of TSS that is re-
duced with respect to Reduction Rule 1 and let v1, v2, . . . , vtmax+1 ∈ V be vertices
such that either

N(v1) = N(v2) = · · · = N(vtmax+1) or N [v1] = N [v2] = · · · = N [vtmax+1].

Furthermore, let v1 be the vertex with the highest threshold, that is, for all 1 ≤ i ≤
tmax + 1 it holds that thr(v1) ≥ thr(vi). Then delete v1.

Lemma 1 Reduction Rule 3 is correct and can be exhaustively applied in O(n + m)

time.

Proof For the running time, note that computing the critical cliques of a graph can be
done in linear time [28]. Thus, we first compute the critical cliques of the graph in lin-
ear time. Then we iterate over the critical cliques and if one of them has size tmax + r ,
r > 0, then we delete the r vertices of this critical clique having the largest thresholds.
This can clearly be done in linear time. Notice that a maximal set of vertices with the
same open neighborhood form a critical clique in the complement graph. Hence, in a
second step, we repeat the procedure with the complement graph. Then the graph is
reduced with respect to Reduction Rule 3. Furthermore observe that Reduction Rule 1
is not applicable after Reduction Rule 3 was applied.

2An undirected graph is a cluster graph if and only if it contains no induced P3, that is, an induced path of
three vertices. Using this characterization, the factor 3-approximation simply deletes all vertices occurring
in an induced P3.
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To show the correctness, we prove that the instance (G′ = (V ′,E′), thr, k) that is
produced by Reduction Rule 3 is a yes-instance if and only if the input instance I is
a yes-instance.

“⇒:” Since (G′, thr, k) is a yes-instance, there exists a target set S ⊆ V ′, |S| ≤ k,
that activates all vertices in G′. Hence, S activates all vertices of V \ {v1} in G.
Since (G, thr, k) is reduced with respect to Reduction Rule 1, the vertex v1 is acti-
vated by its neighbors. Thus, S is also a target set for (G, thr, k).

“⇐:” Since (G, thr, k) is a yes-instance, there exists a target set S ⊆ V , |S| ≤ k,
activating all vertices in G. Let W = {v1, v2, . . . , vtmax+1} be the vertices considered
in the reduction rule. First observe that we can assume W \ S 
= ∅, (that is, not all
vertices of W are in the target set) since otherwise S′ = S \ {v1} is also a target set: In
the first activation round all vertices in N(v1) become active and, since (G, thr, k) is
reduced with respect to Reduction Rule 1, it follows that v1 is active after the second
round. Thus, S′ is also a target set.

Now consider the case that v1 /∈ S. Since for all vi ∈ W it holds that thr(v1) ≥
thr(vi) and v1 is activated by its neighbors, it is clear that all vertices in W \ {v1}
are active once v1 is active. Since |W | > tmax this implies that all vertices in NG(v1)

become active in G′ and, thus, S is a target set for G′.
Finally, consider the case that v1 ∈ S. Let w ∈ W \S be the vertex with the highest

threshold, that is, for all vi ∈ W \ S it holds that thr(w) ≥ thr(vi). Observe that S′ =
(S \ {v1}) ∪ {w} is a target set for G′: Since S activates all vertices in W it is clear
that S′ activates all vertices in W \ {v1}. This implies that all vertices in N(v1) are
activated by S′ in G′ since |W \ {v1}| = tmax and all vertices in W have the same
neighborhood. Thus, S′ activates all vertices in G′. �

In the following we assume that the input graph G is reduced with respect to
Reduction Rule 1 and Reduction Rule 3. Thus, G[V \ X] consists of disjoint cliques.
Each of these cliques contains at most tmax vertices for each of the 2� neighborhoods
in X. Hence, in order to show a problem kernel it remains to bound the number of
cliques in G[V \ X]. To this end, we introduce the following notation:

Definition 1 Let I := (G = (V ,E), thr, k) be an instance of TSS, let X ⊆ V be a cvd
set, and let S ⊆ V . Let C1,C2 ⊆ V be two clusters in G[V \ X]. We call C1 and C2

equivalent with respect to X, denoted by C1 ≡X C2, if there exists a bijection f :
C1 → C2 such that for every v ∈ C1 it holds that thr(v) = thr(f (v)) and N(v)∩X =
N(f (v)) ∩ X. Furthermore, we call C1 and C2 equivalent with respect to X and S,
denoted by C1 ≡S

X C2, if the bijection f additionally fulfills v ∈ S ⇐⇒ f (v) ∈ S for
all v ∈ C1.

Note that ≡X is an equivalence relation on the clusters in G[V \ X] with at
most (tmax + 1)2�tmax equivalence classes. To see this, observe that each equivalence
class is uniquely determined by 2� (possibly empty) sequences of thresholds. One for
each subset of X. Since G is reduced with respect to Reduction Rule 3, each such se-
quence contains between 0 and tmax thresholds. Since each threshold is at most tmax,
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the number of equivalence classes is at most

(
tmax∑

i=0

t imax

)2�

≤ (
(tmax + 1)tmax

)2� = (tmax + 1)2�tmax .

In the following, our goal is to bound the number of cliques in each equivalence class
in a function depending only on tmax and �. Note that once we achieve this goal, we
have a problem kernel with respect to the parameter “cvd number” in case of constant
thresholds. The next lemma is a first step towards this goal.

Lemma 2 Let I := (G = (V ,E), thr, k) be an instance of TSS, let X ⊆ V be
a cvd set for G, and let S ⊆ V , |S| ≤ k, be a target set for G. Furthermore
let C1,C2, . . . ,Ctmax+1 ⊆ V be clusters in G[V \ X] that are pairwise equivalent
with respect to X and S. Then, S \ C1 is a target set for G[V \ C1].

Proof Let S′ = S \ C1 and G′ = G[V \ C1]. We prove the lemma by contradiction:
Assume that S′ is not a target set for G′. Let Y ⊆ V \C1 be the set of vertices that are
activated in G in some round i but are not activated in G′ in the round i. Formally,
Y := {v ∈ V \ C1 | ∃i ≥ 1 : v ∈ Ai

G,thr(S) ∧ v /∈ Ai
G′,thr(S

′)}. Since S′ is not a target
set for G′, the set Y is not empty. In particular, Y contains all vertices in G′ that are
not activated by S′. Let v ∈ Y be the vertex that is activated first in G, that is, for all
u ∈ Y it holds for 1 ≤ i that u ∈ Ai

G,thr(S) ⇒ v ∈ Ai
G,thr(S).

Since v ∈ Y and Y ⊆ V \ C1, it holds that v /∈ S. Let i ≥ 1 be the round in
which v becomes active in G, that is, v ∈ Ai

G,thr(S) \ Ai−1
G,thr(S). Thus, |NG(v) ∩

Ai−1
G,thr(S)| ≥ thr(v). Since v is in G′ not activated by S′, it follows that |NG′(v) ∩

Ai−1
G′,thr(S

′)| < thr(v). From the selection of v it follows that Y ∩Ai−1
G,thr(S) = ∅. Thus,

Ai−1
G,thr(S) \ Ai−1

G′,thr(S
′) ⊆ C1. Since NG(v) \ NG′(v) ⊆ C1, it follows that NG(v) ∩

Ai−1
G,thr(S)∩C1 
= ∅ and v ∈ X. Let u ∈ NG(v)∩Ai−1

G,thr(S)∩C1. Note that C1 and Cj ,
1 < j ≤ tmax + 1, are equivalent with respect to X and S and, hence, there is a bi-
jection fj as described in Definition 1. Thus, it is easy to see that u ∈ Ai−1

G,thr(S) ⇒
fj (u) ∈ Ai−1

G,thr(S). Moreover, since u ∈ NG(v) it follows that fj (u) ∈ NG(v) and,

thus, fj (u) ∈ NG′(v). Hence, fj (u) ∈ NG′(v) ∩ Ai−1
G′,thr(S

′) for all 2 ≤ j ≤ tmax + 1

and thus |NG′(v)∩Ai−1
G′,thr(S

′)| ≥ tmax. Hence, thr(v) > |NG′(v)∩Ai−1
G′,thr(S

′)| ≥ tmax,
a contradiction. �

Since we do not know the target set S for G, two problems have to be solved in
order to convert this lemma into a data reduction rule: The first problem is to find out
by how much we have to decrease k, or, equivalently, how to compute |S ∩ C1| in
polynomial time? The second problem is that we do not know the target set S. As we
show in the following, the key in overcoming these two problems is to increase the
number of equivalent clusters Cj in the precondition of Lemma 2.

To this end, we first compute a lower bound and an upper bound on the size of
the target set for G. Let GX be the graph that results from activating all vertices
in X and applying Reduction Rule 1 exhaustively. Let CX

1 ,CX
2 , . . . ,CX

ζ denote the
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maximal cliques of GX . Clearly, for each clique CX of GX there is a cluster C

in G[V \ X] such that CX ⊆ C. Let SX ⊆ V be an optimal solution for GX . Note
that SX can be computed in linear time [29, 33]. By construction of GX it is clear
that |SX| is a lower bound for the size of any target set for G. Furthermore, SX ∪ X

is a target set for G. Hence, if k < |SX|, then we can immediately answer no, and
if k ≥ |SX| + |X| = |SX| + �, then we can answer yes. Thus, we assume in the fol-
lowing that |SX| ≤ k < |SX| + �. Besides these general bounds on the target set
size we can also derive bounds for the number of vertices in a target set for each
cluster C in G[V \ X]: If there is a (uniquely determined) clique CX in GX such
that CX ⊆ C, then set min(C) := |SX ∩ CX|. In case there is no such clique in GX

set min(C) := 0. Finally, set max(C) := min{tmax,min(C) + �}. Clearly, min(C)

and max(C) are lower resp. upper bounds on the number of vertices of C that are
in an optimal target set for G. Note that if two clusters C1 and C2 in G[V \ X] are
equivalent with respect to X, then min(C1) = min(C2). Furthermore, having � + 1
clusters C1, . . . ,C�+1 in G[V \ X] that are equivalent with respect to X, we can con-
clude that for any optimal target set S there is a cluster Ci , 1 ≤ i ≤ � + 1, having
exactly min(C1) vertices in the target set, since otherwise the solution SX ∪ X for G

contains fewer vertices than S. Likewise, if there are � + r clusters C1, . . . ,C�+r that
are equivalent with respect to X, then it is clear that for any optimal target set S at
least r of these clusters contain exactly min(C1) vertices of S. Hence, increasing the
number of equivalent clusters to at least � + tmax + 1 solves the first problem.

We overcome the second problem by relaxing the condition “equivalent with re-
spect to X and S” for the clusters C1, . . . ,Ctmax ⊆ V to “equivalent with respect to X”
and increase the number of equivalent clusters: We can assume that, out of each clus-
ter C, at most max(C) ≤ tmax vertices are in a target set. Thus, there are at most t2�

max
possibilities for choosing tmax vertices from a cluster to be in a target set: Choose
at most tmax vertices with the highest threshold from each of the at most 2� critical
cliques of the cluster. Having a set of vertices with the same closed neighborhood and
the task is to choose s of them to be in a target set, it is best to choose the s vertices
with the highest thresholds [29, Observation 7]. Thus, when increasing the number
of clusters that have to be equivalent with respect to X to � + t2�

max(tmax + 1) we can
conclude with the pigeonhole principle that there are clusters Ci1, . . . ,Citmax+1 that
are equivalent with respect to X and S for any target set S and each cluster Cij con-
tains min(Cij ) vertices of S. Hence, applying Lemma 2 to this set we arrive at the
following reduction rule.

Reduction Rule 4 Let I := (G = (V ,E), thr, k) be an instance of TSS that is re-
duced with respect to Reduction Rule 1 and let X ⊆ V be a cvd set of size �.
Let C1,C2, . . . ,Cα ⊂ V be disjoint clusters in G[V \ X] such that α = � +
t2�

max(tmax + 1) and for each pair Ci,Cj , 1 ≤ i, j ≤ α, it holds that Ci ≡X Cj . Then
delete C1 and reduce k by min(C1).

The correctness of the data reduction rule follows from Lemma 2 and the above
discussion. As to the running time, note that Reduction Rule 4 can be exhaustively
applied in O(|X| · n2) time: Since we require that the cvd set X is given, we can
compute the clusters in G[V \ X] in linear time. Then, we sort the vertices in these
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clusters by neighborhood and threshold. This can be done in O(n log(n)) time. After
this sorting the check whether two clusters are equivalent with respect to X can be
done in O(|X| · n) time: Simply iterate over the sorted vertices and check whether
the current vertices in both clusters have the same threshold and the same neighbor-
hood (of size at most |X|). Overall, iterating over all clusters in G[V \ X], deter-
mining the equivalent clusters, and deleting the respective clusters can be done in
O(|X| · n2) time.

With these data reduction rules we now arrive at the following theorem.

Theorem 6 TARGET SET SELECTION admits a problem kernel with t
O(2�tmax)
max � ver-

tices, where � is the cluster vertex deletion number and tmax is the maximum thresh-
old. The problem kernel can be found in O(� · n2) time.

Proof Let I := (G = (V ,E), thr, k) be an instance of TSS that is reduced with re-
spect to Reduction Rules 1, 3, and 4. Furthermore let X ⊆ V be a cvd set and let
� = |X|.

Since I is reduced with respect to Reduction Rule 3, the clusters in G[V \X] have
size at most 2�tmax. Hence, there are at most (tmax + 1)2�tmax clusters in G[V \ X]
that are all pairwise not equivalent with respect to X. Furthermore, since I is re-
duced with respect to Reduction Rule 4, each equivalence class of ≡X contains at
most �+ t2�

max(tmax +1) clusters. Thus, the number of clusters in G[V \X] is bounded

by (� + t2�

max(tmax + 1))(tmax + 1)2�tmax , each of these clusters contains at most 2�tmax

vertices. Overall this gives t
O(2�tmax)
max � vertices in G[V \ X] and, thus, G contains at

most t
O(2�tmax)
max � vertices. Reduction Rules 1 and 3 can both be applied exhaustively

in O(n + m) time and Reduction Rule 4 can be applied exhaustively in O(� · n2).
Overall, the kernelization runs in O(� · n2) time. �

Clearly, the problem kernel of Theorem 6 implies that TSS is fixed-parameter
tractable with respect to the combined parameter (tmax, �). This yields the following
result for TSS with constant thresholds.

Corollary 2 TARGET SET SELECTION with constant thresholds is fixed-parameter
tractable with respect to the parameter “cvd number”.

5 Conclusion

We showed that constant threshold values, as naturally occur in several real-world
applications of TARGET SET SELECTION (TSS), can help to find efficient algorithms
that exactly solve TSS. This extends previous work of Ben-Zwi et al. [6] where this
observation was made for the parameter “treewidth”. A question left open in our work
is whether or not TSS is fixed-parameter tractable with respect to the parameter “clus-
ter vertex deletion number” for majority thresholds (we showed it to be W[1]-hard
for general thresholds and fixed-parameter tractable for constant thresholds). A sec-
ond open question arising from our work is whether or not TSS is fixed-parameter
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tractable with respect to the parameter “distance to clique” for general thresholds
(it is fixed-parameter tractable for majority and constant thresholds). Indeed, these
two cases are part of the more general open question whether, in terms of computa-
tional complexity, TSS is basically as hard for majority thresholds as it is for general
thresholds but significantly easier for constant thresholds—the results we achieved in
this paper may be interpreted as directing to a corresponding conjecture. Recall that
majority thresholds are of particular interest in distributed computing [31].

Considering the practical relevance of TSS, it would be interesting to incorpo-
rate further natural parameters into the search for islands of tractability; among these
we clearly have “graph diameter” (note, however, that this parameter needs to be
combined with others since TSS is already hard on diameter-two graphs [29]) and
“number of activation rounds” (the case of only one activation round—that is, the
non-dynamic setting—leads to variants of domination [21, 25, 32]; again, in order
to lead to tractability results, this parameter needs to be combined with others [29]).
Finally, due to applications in social networks, the identification of tractable special
cases in scale-free graphs, that is, graphs with power law degree distributions, would
be of particular interest.
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