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Abstract We consider mechanisms without payments for the problem of schedul-
ing unrelated machines. Specifically, we consider truthful in expectation randomized
mechanisms under the assumption that a machine (player) is bound by its reports:
when a machine lies and reports value t̃ij for a task instead of the actual one tij , it
will execute for time t̃ij if it gets the task (unless the declared value t̃ij is less than the
actual value tij , in which case, it will execute for time tij ). Our main technical result
is an optimal mechanism for one task and n players which has approximation ratio
(n + 1)/2. We also provide a matching lower bound, showing that no other truth-
ful mechanism can achieve a better approximation ratio. This immediately gives an
approximation ratio of (n + 1)/2 and n(n + 1)/2 for social cost and makespan min-
imization, respectively, for any number of tasks. We also study the price of anarchy
of natural algorithms.

Keywords Algorithmic game theory · Mechanism design

1 Introduction

A major challenge today is to design algorithms that work well even when the in-
put is reported by selfish agents or when the algorithm runs on a system with selfish
components. The classical approach is to use mechanism design [18], that is, to de-
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sign algorithms that use payments to convince the selfish agents to reveal the truth
and then compute the outcome using the reported values. Central to the mechanism
design approach is the use of dominant strategies as the equilibrium concept. Mech-
anism design is a very important framework with many unexpected results and it
remains a very active research area trying to address some beautiful and challenging
problems. Nevertheless, one major problem with mechanism design with payments
is that in many situations, the use of payments may not be feasible.

Partly for this reason, there is a lot of recent interest in mechanisms that use no
payments (mechanism design without payments) [18]. Given that in many problems
we have obtained very poor results using mechanisms with payments, it will be really
surprising if the substantially more restricted class of mechanisms without payments
can achieve any positive results. For the general unrestricted domain with at least 3
outcomes and truthful mechanisms without payments, the Gibbard-Satterthwaite the-
orem [10, 24] states that only dictatorial mechanisms are truthful; dictatorial mech-
anisms are those in which a particular player determines the outcome. Contrast this
to Roberts theorem [23], which states that if we allow payments, the truthful mecha-
nisms are the affine maximizers, a much richer class than the dictatorial mechanisms
(yet a very poor class in comparison to the set of all possible algorithms).

When we restrict the domain to scheduling unrelated machines, perhaps the most
influential problem in algorithmic game theory, the results so far have also been dis-
appointing. The best approximation ratio for the makespan that we know by truthful
in expectation mechanisms is (n + 1)/2 [7], where n is the number of players. The
best known lower bound of 2 [7, 16] leaves the possibility open for improved mecha-
nisms. The situation for deterministic mechanisms is similar: the upper bound is eas-
ily n [17], and the best known lower bound is 2.61 [13]. It may seem surprising that
in this work we can achieve comparable results using mechanisms without payments
if we assume that the players are bound by their declarations: Our main result, The-
orem 2, is a truthful in expectation mechanism with approximation ratio n(n + 1)/2.
But a moments thought will reveal that we can get a slightly weaker bound (approx-
imation ratio n for one task and hence approximation ratio n2 for many tasks) with
the natural mechanism which allocates each task independently and with probability
inversely proportional to the execution times (Proposition 1). The assumption that
the players are bound by their declarations plays a crucial role; without it, no positive
result is possible. The main value of our main result is that it gives a definite answer
(tight upper and lower bounds, albeit only for one task) for this fundamental problem.

Mechanism design without payments is a major topic in game theory [18], al-
though it has not been studied as intensively as the variant with payments in al-
gorithmic game theory. There are however many recent publications which study
such mechanisms. Procaccia and Tennenholtz [22] proposed to study approximate
mechanism design without payments for combinatorial problems and they studied
facility location problems. This work was substantially extended (see for example
[1, 14, 15]). Such mechanisms studied also by Dughmi and Ghosh [8] who consider
mechanisms for assignment problems and by Guo and Conitzer [11] who consider
selling items without payments to 2 buyers. Conceptually, closer to our approach of
assuming that the players pay their declared values is the notion of impositions of
Nissim, Smorodinsky, and Tennenholtz [19] which was further pursued by Fotakis
and Tzamos [9].
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2 Model

We study the problem of scheduling tasks when the machines are selfish. We formu-
late the problem in its more general form, the unrelated machines version: there are
n selfish machines and m tasks; the machines are lazy and prefer not to execute any
tasks. Machine i needs time ti,j to execute task j . The tasks are allocated to machines
with the objective of minimizing the makespan (or the social welfare which is the
negation of the sum of executing times of all machines). Let a be an (optimal) alloca-
tion for input t , where ai,j is an indicator variable about the event of allocating task
j to machine i. The execution time of machine i is

∑m
j=1 ai,j ti,j and the makespan

is maxi=1,...,n

∑m
j=1 ai,j ti,j . For randomized algorithms, the allocation variables ai,j

are not integral but real values in [0,1] which is the probability to allocate task j to
machine i.1

In this work, we consider direct revelation mechanisms; a mechanism is simply
a randomized scheduling algorithm S which computes an allocation based on the
declarations of the machines. There are no payments. More precisely, every machine
i reports its private values t̃i,j , one for each task and we apply the algorithm S on
this input. The notation t̃i,j instead of ti,j is used because the machine may lie and
not declare its true values ti,j . There is however a very important difference with
the standard Nisan-Ronen framework [17] for this mechanism design problem. We
assume that the machines are bound by their reports. More precisely, if a machine
i declares a value t̃i,j ≥ ti,j for task i and is allocated the task, its actual cost is the
declared value t̃i,j and not ti,j . One justification for this assumption is that in some
environments the machines can be observed during the execution of the tasks and
cannot afford to be caught lying about the execution times. Similar assumptions have
been used for other problems. Our assumption is similar to the notion of imposition
[9, 19]; for example, in the facility location problem, the players may be forced to
use the facility which is closer to their declared position instead of letting them freely
choose between the facilities. To complete our assumptions, we need to specify what
happens when a machine declares a smaller value, i.e., t̃i,j < ti,j . In this case, we
make the simple assumption that the actual cost is the true value ti,j ; it would be
simpler to assume that the machines are not allowed to lie in this direction, but we
prefer the weakest assumption since it does not affect our results. To summarize, the
cost of machine i for task j is max(ti,j , t̃i,j ).

Our framework now is simple. We design a randomized scheduling algorithm S.
The selfish machines report values t̃i,j and we apply algorithm S to the reported
values. This induces a game among the machines: the pure strategies of machine i

are the vectors (t̃i,j )
m
j=1 with t̃i,j ≥ 0. The cost is the execution time computed by

algorithm S on input t̃ . To be more precise, if a = S(t̃) is the allocation computed
by algorithm S on input t̃ , the cost of machine i is ci = ∑m

j=1 ai,j max(ti,j , t̃i,j ).
We seek mechanisms which minimize the makespan maxi=1,...,n ci or the social cost∑n

i=1 ci .

1We may also interpret the probabilities as fractional allocations. Naturally, our results apply to the frac-
tional allocations as well.
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Our assumption is related to mechanisms with verification [17], in which the
mechanism learns the actual execution time of the machines and pays after the exe-
cution. Because of the delayed payments, these mechanisms are much more powerful
than the mechanisms of our framework; for example, they can enforce that the ma-
chines are bound by their declarations by imposing a very high penalty for lying.
A similar framework was proposed in [4], but in this case the power of the mecha-
nism is limited: it can only deny payment at the end when a machine is caught lying
by not being able to finish the tasks within the declared time. In this model, [20, 21]
gave collusion-resistant mechanisms that are optimal. The power of this model is
in some sense orthogonal to the power of the model of this work: on the one hand,
the model of [4, 20, 21] is more powerful in that it can use payments as rewards for
telling the truth, but on the other hand it is less powerful in that the players pay their
actual cost, not their declared cost.

Mechanisms without money for the scheduling problem have been considered be-
fore: coordination mechanisms introduced in [5] are such mechanisms, but they differ
substantially from the model of this work in that the players are the tasks, not the ma-
chines. This and subsequent work [2, 6] considered truthful mechanisms with the
assumption, same with the assumption of this work, that the execution time of a task
is the maximum of the declared and actual value, a condition which is more easily
enforceable when the machines are controlled by the mechanism.

2.1 The Case of a Single Task

We focus on the simple case of one task and n machines. Let t1, . . . , tn be the true val-
ues of the machines for the task and let t̃1, . . . , t̃n be the declared values; we drop the
second subscript since there is only one task. Let pi(t̃) be the probability of allocating
the task to player i. The expected cost of player i is ci = ci(ti , t̃ ) = pi(t̃)max(ti , t̃i ),
while the social cost of the algorithm is

∑n
i=1 ci (in the case of the single task, the

makespan and social cost are identical).
The mechanism is called truthful if for every t−i , the expected cost ci of player

i is minimized when t̃i = ti . This notion of truthfulness, truthful in expectation, is
the weakest notion of truthfulness which contains a richer class of mechanisms than
the standard notion of truthfulness or universal truthfulness. It is not ex post truthful,
meaning that after the players see the outcome of the coins, they may want to change
their declarations. In contrast, universal truthfulness is ex post truthfulness, and it
is trivial to see that this stronger notion of truthfulness cannot achieve any positive
result. Notice however, that for the fractional version of the scheduling problem, in
which we can allocate parts of the same tasks to different machines, we can consider
deterministic algorithms and consequently the strongest notion of truthfulness.

Lemma 1 An algorithm is truthful if and only if for every i and t−i , tipi(t) is non-
decreasing in ti and pi(t) is non-increasing in ti .

Proof Indeed, if tipi(t) is non-decreasing in ti , the player prefers ti to higher values,
i.e., when t̃i ≥ ti , the cost ci = pi(t̃i , t−i )t̃i is minimized at t̃i = ti . Similarly, if pi(ti)

is non-increasing, the player prefers ti to smaller values, i.e., when t̃i ≤ ti , the cost
ci = pi(t̃i , t−i )ti is again minimized at t̃i = ti .
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Conversely, if there exist x < y with pi(t−i , y)y < pi(t−i , x)x, then player i gains
by lying: when ti = x he prefers to declare y. Similarly, if there exist x > y with
pi(t−i , x) > pi(t−i , y), the player would again prefer to declare y when ti = x. �

A mechanism is defined simply by the probability functions pi(t). The expected
makespan is

∑
i ci and its approximating ratio is

∑
i ci/mini ti . We seek truthful

mechanisms with small approximation ratio.

3 Truthful Mechanisms for One Task

In this section, we study the case of a single task. We first consider a natural mecha-
nism, the proportional algorithm: It allocates the task to machine i with probability
inversely proportional to the declared value ti , i.e., pi(t) = t−1

i /
∑

k t−1
k .

Proposition 1 The proportional algorithm is truthful and achieves approximation
ratio n.

Proof Indeed, to verify that the mechanism is truthful, it suffices to observe that pi(t)

is non-increasing in ti and that tipi(t) is non-decreasing it ti . The expected makespan
of this mechanism is n/

∑
i t

−1
i while the optimal makespan is mini ti . It follows that

the approximation ratio is at most n and that it can be arbitrarily close to n (when for
example one value is 1 and the other n − 1 values are arbitrarily high). �

It is natural to ask whether there are better mechanisms than the proportional
mechanism. In the next subsection, we give a positive answer by designing an op-
timal mechanism, albeit with not substantially better approximation ratio.

3.1 An Optimal Truthful Mechanism

In this subsection, we study truthful algorithms that have optimal approximation ratio.
To find an optimal truthful mechanism, we want to find functions pi(t) such that

for every t :

– for every i: tipi(t) is non-decreasing in ti ,
– for every i: pi(t) is non-increasing in ti ,
–

∑
i pi(t) = 1

and which minimize maxt

∑
i tipi(t)/mini ti . The first two conditions capture truth-

fulness and the third condition the natural property that the probabilities add to 1.
We will show the following theorem:

Theorem 1 There is a truthful in expectation mechanism without payments with ap-
proximation ratio (n + 1)/2. Conversely, no truthful in expectation mechanism with-
out payments can have approximation ratio better than (n + 1)/2.
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Before proceeding with the proof of the theorem, it is instructive to consider first
the case of n = 2 players. We will consider a symmetric mechanism, so it suffices to
give the probabilities pi(t) of assigning the task to player i when t1 ≤ t2. We claim
that the mechanism with probabilities

p1(t) = 1 − t1

2t2
p2(t) = t1

2t2

is truthful and has approximation ratio 3/2. To clarify: these are the probabilities
when t1 ≤ t2; by symmetry, we can compute the probabilities when the declared value
of the second player is smaller than the declared value of the first player.

Let us verify that this mechanism is truthful. Specifically we want to show that the
expected cost of player i is minimized when he declares his true value; this must hold
for every value t−i of the other player. Consider first player 1 (the one with true value
less than the declared value of the other player).

– He has no reason to declare something less than t1, because p1(t) is non-increasing
in t1, consequently tipi(t) ≤ tipi(t̃i , t−i ).

– He has no reason to declare something in (t1, t2), because t1p1(t) = t1 − t2
1

2t2
=

t2
2 −(t2−t1)

2

2t2
is increasing in t1 for t1 < t2.

– Finally, he has no reason to declare something in [t2,∞). In this case, his lie
changes the order of the values, and, by the definition of the mechanism, the prob-
ability of getting the task will be p2(t2, t̃1). Nevertheless, we still have

t1p1(t) = t2
2 − (t2 − t1)

2

2t2
≤ t2

2
= t̃1

t2

2t̃1
= t̃1p2(t2, t̃1).

We work similarly for the second player (the one with true value greater than the
declared value of the other player). If he declares his true value t2, his expected cost
is t2p2(t) = t1/2.

– He has no reason to declare something less than t1, because in this case the prob-
ability p1(t1, t̃2) of getting the task is at least 1/2 and his cost will be at least
t2/2 ≥ t1/2.

– He has no reason to declare any other value greater than t1 because his cost is going
to be t̃2p2(t1, t̃2) = t1/2, anyway.

The above mechanism has approximation ratio 3/2, because the cost is

t1p1(t) + t2p2(t) = t1 − t2
1

2t2
+ t1

2
= 3

2
t1 − t2

1

2t2
≤ 3

2
t1.

Trivially, the approximation ratio tends to 3/2 as t2 tends to ∞.
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We proceed to generalize the above to more than two players. Again, we define a
symmetric mechanism, so it suffices to describe it when t1 ≤ · · · ≤ tn:

p1 = 1

t1

∫ t1

0

n∏

i=2

(

1 − y

ti

)

dy

pk = 1

tkt1

∫ t1

0

∫ y

0

∏

i=2...n,i �=k

(

1 − x

ti

)

dx dy for k �= 1.

(1)

For example, for n = 2 we get the mechanism discussed above, and for n = 3 the
probabilities are

p1 = 1 − t1(t2 + t3)

2t2t3
+ t2

1

3t2t3
p2 = t1

2t2
− t2

1

6t2t3
p3 = t1

2t3
− t2

1

6t2t3
.

This definition is not arbitrary, but it is the natural solution to the requirements at the
beginning of this subsection. This will become apparent as we proceed to show that
this is an optimal algorithm for our problem.

First we verify that the mechanism is well-defined: We need to show that these
probabilities are nonnegative and add up to 1. Indeed, consider the quantities qi inside
the integrals

q1(y) =
n∏

i=2

(

1 − y

ti

)

qk(y) = 1

tk

∫ y

0

∏

i=2...n,i �=k

(

1 − x

ti

)

dx

for which

pi = 1

t1

∫ t1

0
qi(y) dy.

Since the integral is for y ≤ t1 and t1 is the minimum among the tk’s, all factors in
these expressions are nonnegative. This shows that qi(y) ≥ 0 for every i = 1, . . . , n.
We also observe that q ′

1(y) = −∑n
i=2 q ′

k(y) which shows that
∑n

i=1 qi(y) is con-
stant; taking y = 0, we see that this constant is 1. In summary the pi ’s are nonnegative
and their sum is 1

t1

∫ t1
0

∑n
i=1 qi(y) dy = 1

t1

∫ t1
0 1dy = 1.

We also need to verify that (1) defines the probabilities consistently. More pre-
cisely, the definition of the probabilities is based on the order of the values; when
these values are distinct, there is a unique order of the values t1 < t2 < · · · < tn, and
there is no inconsistency. However, when some values are equal, there are many or-
ders of the values and we need to guarantee that every such order gives the same
probabilities. For all values except the minimum one, this follows directly from the
symmetry of the algebraic expressions in (1). Thus we need only to verify consistency
when the first two values are equal and specifically, we need to show that if t1 = t2,
then p1 = p2. Indeed, it is straightforward to verify it by employing the following
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easy identity for every function g:2

∫ a

0
(a − y)g(y) dy =

∫ a

0

∫ y

0
g(x)dx dy (2)

In this case, g(y) = ∏n
i=3(1 − y

ti
) and a = t1.

We now proceed to establish that the mechanism is truthful.

Lemma 2 The symmetric mechanism defined by the probabilities in (1) is truthful.

Proof To show that the algorithm is truthful, we observe that

– The probabilities pi are non-increasing in ti . This is trivially true for i �= 1 and it
can be easily verified for i = 1. The fact that the probabilities are non-increasing in
ti shows that no player i has a reason to lie and declare a value t̃i < ti . To see this,
fix the values of the remaining players and assume that player i changes his value
to t̃i < ti . We will argue that the probability of getting the task with the new value
is greater than or equal to the original probability; this suffices because the cost of
the player is this probability times ti .

If, after the change, the order of the players remains the same, the probability
does not decrease by this change because pi is non-increasing in ti . We need to
show the same when the change affects the order of the players. This turns out to
be easy but we note that we need to be careful, because the expressions that define
the probabilities of the mechanism depend on the order of the values. However,
we don’t need the expressions of the probabilities but a simpler argument: imagine
that we lower the value from ti to t̃i in stages: from ti to ti−1 to ti−2, and so
on, to ti−k , and finally to t̃i . In each stage, the order of the values remains the
same and therefore the probability can only increase. It follows that it does not
decrease from the total change. The fact that the mechanism is symmetric is crucial
in this argument because the algebraic expressions of the probability of the player
may change from stage to stage, but the values at the boundaries ti−1, . . . , ti−k of
successive stages are the same.

– every player k for k �= 1 is truthful since tkpk is independent of his value tk ; this
holds even when the player reports a higher value which may change the order of
the players

– player 1 has no reason to lie and report a value in (t1, t2] because t1p1 is increasing
in t1; furthermore, player 1 has no reason to report a higher value than t2 which
will change the order of the players because the cost will change from t1p1 to

2Proof: Let G(y) = ∫ y
0 g(x)dx. Then

∫ a

0
(a − y)g(y)dy −

∫ a

0

∫ y

0
g(x)dx dy =

∫ a

0
(a − y)g(y) − G(y)dy

=
∫ a

0
ag(y) − (

yG(y)
)′

dy

= aG(a) − aG(a) = 0.



Theory Comput Syst (2014) 54:375–387 383

t ′kp′
k = 1

t2

∫ t2
0

∫ y

0

∏n
i=3(1 − x

ti
) dx dy (because now the minimum value is t2). It

suffices therefore to show

t1p1 ≤ t ′kp′
k

⇔
∫ t1

0

n∏

i=2

(

1 − y

ti

)

dy ≤ 1

t2

∫ t2

0

∫ y

0

n∏

i=3

(

1 − x

ti

)

dx dy

⇐
∫ t2

0

n∏

i=2

(

1 − y

ti

)

dy ≤ 1

t2

∫ t2

0

∫ y

0

n∏

i=3

(

1 − x

ti

)

dx dy

⇔
∫ t2

0
(t2 − y)

n∏

i=3

(

1 − y

ti

)

dy ≤
∫ t2

0

∫ y

0

n∏

i=3

(

1 − x

ti

)

dx dy

The last holds because of Eq. (2).

Putting everything together, we see that the mechanism is indeed truthful. �

Lemma 3 The symmetric mechanism defined by the probabilities in (1) has approx-
imation ratio (n + 1)/2.

Proof Now that we have established that the algorithm is truthful, we proceed to
bound its approximation ratio. The approximation ratio is

∑n
i=1 tipi/t1. Clearly,

t1p1 ≤ t1 and for k > 1

tkpk = 1

t1

∫ t1

0

∫ y

0

∏

i=2..n,i �=k

(

1 − x

ti

)

dx dy

≤ 1

t1

∫ t1

0

∫ y

0
1dx dy

= t1/2.

Therefore,
∑n

i=1 tipi ≤ t1 + (n−1)t1/2 = t1(n+1)/2, which shows that the approx-
imation ratio is at most (n + 1)/2. It is trivial that if we fix the other values and let
t1 tend to 0, the above inequalities are almost tight, and therefore the approximation
ratio can be arbitrarily close to (n + 1)/2. �

We will show that no other truthful algorithm has a better approximation ratio. To
do this, we first show that the optimal approximation ratio is achieved by a symmetric
mechanism. By symmetric or anonymous, we mean a mechanism with the property
that if we permute the indexes of the players, the allocation probabilities are per-
muted similarly. More formally, a mechanism is symmetric if for every t and every
permutation π : p(π · t) = π · p(t), where π · t denotes (tπ1 , . . . , tπn). This in par-
ticular implies that if two players have equal values they have the same allocation
probabilities, a property that we will use to establish the lower bound below.
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Lemma 4 The optimal approximation ratio of the symmetric truthful mechanisms is
the same with the approximation ratio of all truthful mechanisms.

Proof Let p be the allocation probabilities of an arbitrary truthful mechanism. Con-
sider the mechanism which selects a (uniformly) random permutation π of the values,
computes the allocation probabilities using p, and then assigns the probabilities to the
players by taking the inverse permutation π−1. More formally, the new mechanism
has allocation probabilities p′(t) = Eπ [π−1 · p(π · t)] and it is clearly symmetric.

We now establish that if p is truthful, then p′ is also truthful. The reason is simple:
when we permute players and values by permutation π , player i plays the role of
player πi ; since player πi is truthful in the original mechanism, player i has no reason
to lie. More formally, p′

i (t) = Eπ [p
π−1

i
(π · t)]. To establish the truthfulness of the

new mechanism, we need to establish the monotonicity of p′
i (t) and tip

′
i (t). Let t ′ =

π · t . Since the original mechanism is truthful, p
π−1

i
(t ′) is monotone in t ′

π−1
i

= ti and

therefore p′
i (t), being the expectation of monotone functions in ti , is also monotone.

An almost identical argument establishes that tip
′
i (t) is also monotone. In summary,

p′ is a truthful mechanism.
We will now argue that the approximation ratio of the new symmetric mechanism

is not higher than the approximation ratio of the original mechanism. Indeed, suppose
that the original mechanism has approximation ratio ρ. This implies that for every t

and every permutation π , the cost of the mechanism when the values are π · t is at
most ρ mini tπi

= ρ mini ti . It follows that if π is selected randomly, the expected
cost of the original mechanism, which is equal to the cost of the new mechanism, is
at most ρ mini ti ; this shows that the approximation ratio of the new mechanism is at
most ρ. �

Lemma 5 No truthful in expectation mechanism without payments has approxima-
tion ratio smaller than (n + 1)/2.

Proof We will employ instances with values of the form (1,1,m, . . . ,m) and
(1,m, . . . ,m) where m is some large value (which we will allow to tend to infin-
ity to obtain the lower bound). By the previous lemma, we can assume without loss
of generality that the mechanism is symmetric. Let p and p′ be the probabilities
assigned by an algorithm to the above instances. For the instance (1,1,m, . . . ,m),
we have 2p2 + (n − 2)p3 = 1 and the approximation ratio is at least r ≥ 2p2 +
m(n − 2)p3 = m − 2p2(m − 1). Similarly for the other instance (1,m, . . . ,m) we
have p′

1 + (n − 1)p′
2 = 1 and r ≥ p′

1 + (n − 1)mp′
2 = 1 + (m − 1)(n − 1)p′

2.
The crucial step is to use the truthfulness of player 2 to connect the two instances.

Specifically, the second player is truthful only when 1 · p2 ≤ m · p′
2. Substituting the

value of p′
2 in the bound of the second instance, we get that the approximation is at

least 1 + p2(m − 1)(n − 1)/m.
In summary, the approximation ratio is at least max{m− 2p2(m− 1),1 +p2(m−

1)(n − 1)/m}. The first expression is decreasing in p2 while the second one is
increasing in p2; the minimum approximation ratio is achieved when the expres-
sions are equal, that is, when p2 = m/(2m + n − 1) which gives ratio at least
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(n + 1)/2 − (n2 − 1)/(4m + 2n − 2). As m tends to infinity, the approximation ratio
tends to (n + 1)/2. �

4 Extension to Many Tasks and Discussion

In the previous section, we gave an optimal mechanism for one task. We can use it
to get a mechanism for many tasks by running it independently for every task. Since
the tasks are allocated independently, the resulting mechanism remains truthful. If
the objective is the social cost (i.e., to minimize the sum of the cost of all players),
the mechanism clearly retains its approximation ratio. If the objective however is the
makespan, then the approximation ratio is at most n(n + 1)/2, for the simple reason
that maxi ci ≤ ∑

i ci ≤ nmaxi ci . So we get

Theorem 2 There is a truthful in expectation mechanism without payments for the
problem of scheduling unrelated machines with approximation ratio (n + 1)/2 when
the objective is the social cost and n(n + 1)/2 when the objective is the makespan.

It follows from the case of one task that the approximation ratio (n + 1)/2 is
tight for the social cost. It is not clear that the pessimistic way we used to bound
the approximation ratio of the makespan is tight. It remains open to estimate the
approximation ratio of the given mechanism for many tasks. It is also open whether
this is the best mechanism without payments for many tasks, that is, whether there are
other (task-independent or not) mechanisms without payments for many tasks with
better approximation ratio.

4.1 Mechanisms and the Price of Anarchy

So far, we have considered truthful mechanisms. It is however natural to ask whether
there are non-truthful mechanisms with better performance. To formulate rigorously
this question, we need first to agree on how to quantify the performance of non-
truthful mechanisms, an issue that did not arise for truthful mechanisms because they
have unique dominant equilibria. A natural way to evaluate non-truthful mechanism
is to consider their price of anarchy (the performance of the worst Nash equilibrium)
or their price of stability (the performance of the best Nash equilibrium) [3, 12].

To explain the issues of this approach, we analyze here the non-truthful natural
greedy algorithm which gives the task to the machine with minimum reported time.
Assume also that the ties are broken randomly (or in any deterministic way). We
argue below that

Proposition 2 The price of stability of the greedy algorithm for one task is 1, while
its price of anarchy is unbounded.

Proof We will consider only the case of 2 players since it can be directly generalized
to the case of more players. We assume that the actual values of the two players are
t1 ≤ t2.
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For the price of stability, consider the Nash equilibrium in which the first player
reports his true value t1 while the second player declares any value x ≥ t2 with cumu-
lative distribution F2(x) = 1 − t2/x. The cost of the players is t1 and 0 respectively,
and the social cost is t1, optimal. To see that this is indeed a Nash equilibrium, notice
that the first player has no reason to switch: if he reports a value x in [t2,∞) his ex-
pected cost would be xP r[t2 > x] = x(1 − F2(x)) = t2. Trivially the second player
has no reason to switch since his cost is already 0.

For the price of anarchy, consider a similar Nash equilibrium in which the second
player reports his true value t2 and the first player reports a random value in [t2,∞)

with cumulative distribution F1(x) = 1 − t2/x. It is easy to check that this is indeed
Nash equilibrium and that the social cost is t2. The price of anarchy is t2/t1 which is
unbounded. �

The optimal truthful mechanism of Sect. 3.1 for one task has price of anarchy (and
stability) (n + 1)/2. Because it is optimal, no other truthful mechanism has a better
price of anarchy. Is there a non-truthful mechanism with better price of anarchy?
If the answer is positive, it will perhaps be a challenging open problem to find an
algorithm which achieves the minimum price of anarchy for the case of a single task,
as well as the case of many tasks.
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