
Theory Comput Syst (2014) 55:421–447
DOI 10.1007/s00224-013-9465-0

Two-Way Automata Versus Logarithmic Space

Christos A. Kapoutsis

Published online: 11 April 2013
© Springer Science+Business Media New York 2013

Abstract We strengthen a previously known connection between the size complex-
ity of two-way finite automata (2FAs) and the space complexity of Turing machines
(TMs). Specifically, we prove that

– every s-state 2NFA has a poly(s)-state 2DFA that agrees with it on all inputs of
length ≤ s if and only if NL ⊆ L/poly, and

– every s-state 2NFA has a poly(s)-state 2DFA that agrees with it on all inputs of
length ≤ 2s if and only if NLL ⊆ LL/polylog.

Here, 2DFAs and 2NFAs are the deterministic and nondeterministic 2FAs, NL and
L/poly are the standard classes of languages recognizable in logarithmic space by
nondeterministic TMs and by deterministic TMs with access to polynomially long
advice, and NLL and LL/polylog are the corresponding complexity classes for space
O(log logn) and advice length poly(logn). Our arguments strengthen and extend an
old theorem by Berman and Lingas and can be used to obtain variants of the above
statements for other modes of computation or other combinations of bounds for the
input length, the space usage, and the length of advice.

Keywords Two-way finite automata · 2D versus 2N · Sakoda-Sipser conjecture ·
Logarithmic space · L versus NL · Sub-logarithmic space

Preliminary version presented in the 6th International Computer Science Symposium in Russia,
St. Petersburg, 14–18 June 2011 [Lecture Notes in Computer Science vol. 6651, Springer-Verlag,
pp. 359–372].

Research funded by a Marie Curie Intra-European Fellowship (PIEF-GA-2009-253368) within the
European Union Seventh Framework Programme (FP7/2007-2013).

C.A. Kapoutsis (�)
LIAFA, Université Paris Diderot—Paris VII, Case 7014, 75205 Paris Cedex 13, France
e-mail: christos.kapoutsis@liafa.jussieu.fr

mailto:christos.kapoutsis@liafa.jussieu.fr

422 Theory Comput Syst (2014) 55:421–447

1 Introduction

The question whether nondeterministic computations can be more powerful than de-
terministic ones is central in complexity theory. Numerous instantiations have been
studied, for a variety of computational models under a variety of resource restrictions.
This article investigates the relationship between two families of such instantiations,
those for two-way finite automata under size restrictions and those for Turing ma-
chines under space restrictions. We start by introducing each of these two families
separately, then continue to describe the relationship between them.

1.1 Size-Bounded Two-Way Finite Automata

The question whether nondeterminism makes a difference in two-way finite automata
(2FAs) of bounded size was first studied by Seiferas in the early 70s [15]. Formally,
this is the question whether every nondeterministic 2FA (2NFA) has an equivalent
deterministic 2FA (2DFA) with only polynomially more states:

Is there a polynomial p such that every s-state 2NFA has
a 2DFA with ≤p(s) states that agrees with it on all possible inputs?

(1)

The answer has long been conjectured to be negative [13, 15]. Indeed, this has been
confirmed in several special cases: when the automata are single-pass (i.e., they halt
upon reaching an end-marker [15]), or almost oblivious (i.e., they exhibit o(n) distinct
input head trajectories over all n-long inputs [7]), or moles (i.e., they explore the
configuration graph implied by the input [9]), or they perform few reversals (i.e.,
they reverse their input head only o(n) times on every n-long input [10]). For unary
automata, however, a non-trivial upper bound is known: an equivalent 2DFA with only
quasi-polynomially more states always exists [5].

A robust theoretical framework was built around this question by Sakoda and
Sipser in the late 70s [13]. Central in this framework are the complexity classes 2D
and 2N. The former consists of every family of languages (Lh)h≥1 that can be rec-
ognized by a polynomial-size family (Ah)h≥1 of 2DFAs, in the sense that every Ah

recognizes the corresponding Lh and has ≤p(h) states, for some polynomial p. The
latter is the analogous class for 2NFAs. In these terms, the question becomes equiva-
lent to the question:

Is it true that 2D ⊇ 2N? (1′)

and the long-standing conjecture becomes equivalent to 2D � 2N.1

In this article, we consider ‘bounded’ variants of (1). We replace the requirement
that the 2DFA and 2NFA agree on all possible inputs with the requirement that they

1Note the unusual forms ‘A ⊇ B’ and ‘A � B’. In cases where A ⊆ B (e.g., when A = 2D & B = 2N), these
are of course equivalent to the more usual ‘A = B’ and ‘A � B’. However, we will encounter cases where
A ⊆ B is not true (e.g., when A = 2D & B = 2N/poly or when A = L/poly & B = NL—see below) and hence
‘A ⊇ B’ and ‘A � B’ are appropriate. We thus use these forms throughout the article, so that all statements
are easy to compare. We read and think of these forms as ‘A covers/does not cover B’.

Theory Comput Syst (2014) 55:421–447 423

agree only on all ‘short’ inputs, for different interpretations of ‘short’. Could it be
that under this relaxed requirement the 2DFA can now stay only polynomially larger?

For the most part, we will focus only on two interpretations of ‘short’. Under the
first one, an input is ‘short’ if its length is at most exponential in the size of the 2NFA:

Is there a polynomial p such that every s-state 2NFA has a 2DFA

with ≤p(s) states that agrees with it on all inputs of length ≤2s?
(2)

Under the second interpretation, an input is ‘short’ if its length is at most linear in
the size of the 2NFA:

Is there a polynomial p such that every s-state 2NFA has a 2DFA

with ≤p(s) states that agrees with it on all inputs of length ≤ s?
(3)

We conjecture that neither relaxation makes the simulation easy. Namely, much like
the answer to (1), we conjecture that the answers to (2) and (3) are still negative.

The new questions can be expressed in the Sakoda-Sipser framework, as well. To
this end, we first extend the definitions of 2D and 2N so that they now consist of all
families of promise problems (as opposed to just all families of languages) that admit
polynomial-size families of 2DFAs and 2NFAs, respectively. Then, we introduce two
new complexity classes, subclasses of the extended 2N, called 2N/exp and 2N/poly.
The former consists of only those promise-problem families (Lh)h≥1 in 2N where all
instances of Lh are of length ≤2q(h), for some polynomial q and all h. Then (2) can
be proved equivalent to:

Is it true that 2D ⊇ 2N/exp? (2′)

Similarly, 2N/poly consists of only those promise-problem families in 2N where ev-
ery Lh has instances of length ≤q(h). Then (3) can be proved equivalent to:

Is it true that 2D ⊇ 2N/poly? (3′)

This way, our stronger conjectures are that even 2D � 2N/exp and 2D � 2N/poly.
We remark that other interpretations of ‘short’ are also possible, but not as cru-

cial. In Sect. 2.1 (Lemma 2.1) we will see that restricting (1) to super-exponential
lengths produces a question which is actually still equivalent to (1). Variants for quasi-
polynomial lengths will be considered in Sect. 3 (Theorem 3.2).

1.2 Space-Bounded Turing Machines

The question whether nondeterminism makes a difference in Turing machines (TMs)
of bounded space dates back to the work of Kuroda in the mid 60s [12]. Formally,
this is the question whether every nondeterministic TM (NTM) has an equivalent de-
terministic TM (DTM) that uses the same space:

Does every bound f satisfy DSPACE
(
f (n)

) ⊇ NSPACE
(
f (n)

)
? (4)

The answer has long been conjectured to be negative. We know, however, that we may
restrict our attention to bounds outside o(log logn), because for f (n) = o(log logn)

424 Theory Comput Syst (2014) 55:421–447

the inclusion follows trivially from the fact that both complexity classes contain only
regular languages [1, 6, 17]. We also know that, if the inclusion is satisfied by any
bound in Θ(log logn) ∪ Ω(logn), then all greater bounds satisfy it, too [14, 18].

For the most part, we will focus on the two smallest natural bounds, log logn and
logn. The former gives rise to the complexity classes LL := DSPACE(log logn) and
NLL := NSPACE(log logn), and to the respective question:

Is it true that LL ⊇ NLL? (5)

Similarly, the latter bound gives rise to the standard space complexity classes L =
DSPACE(logn) and NL = NSPACE(logn), and to the question:

Is it true that L ⊇ NL? (6)

Once again, the answers to both questions are conjectured to be negative; i.e., most
people believe that both LL � NLL and L � NL.

An early observation on (6) was that, even if L � NL, a deterministic logarithmic-
space TM might still manage to simulate a nondeterministic one if it is allowed non-
uniform behavior [2]. This led to the introduction of the class L/poly of all languages
that can be recognized in space O(logn) by a DTM which has access to poly(n) ≡
nO(1) bits of non-uniform advice [11]. The new question was:

Is it true that L/poly ⊇ NL? (6+)

and the stronger conjecture was that even L/poly � NL. By a similar reasoning, we can
introduce a corresponding class LL/polylog for space O(log logn) and for poly(logn)

bits of advice, then ask the question:

Is it true that LL/polylog ⊇ NLL? (5+)

and conjecture that even LL/polylog � NLL.
We remark that other combinations of bounds for the space and the length of

advice are also possible, but not as crucial. For example, if both the space and advice
length are O(logn), then the resulting question whether L/log ⊇ NL is equivalent
to (6) [11]. Combinations of sub-logarithmic space and sub-linear advice length will
be considered in Sect. 3. Finally, we note that the classes DSPACE(f)/2O(f) for
varying f have been studied in [8] under the names NUDSPACE(f).

1.3 Size-bounded 2FAs Versus Space-Bounded TMs

It has long been known, by a theorem of Berman and Lingas [3], that a simula-
tion of nondeterministic logarithmic-space TMs by deterministic ones would imply
the simulation of nondeterministic polynomial-size 2FAs by deterministic ones on
polynomially-long inputs, in our notation:

2D ⊇ 2N/poly ⇐= L ⊇ NL.

Our contribution is the tightening and deepening of this relationship.
We first show that 2D ⊇ 2N/poly follows even from the weaker assumption that

L/poly ⊇ NL, and that then the converse is also true:

Theory Comput Syst (2014) 55:421–447 425

Theorem 1.1 2D ⊇ 2N/poly ⇐⇒ L/poly ⊇ NL.

Next, we prove a similar relationship for the case where the bound for the input
lengths increases to exponential while the bounds for the space and the advice length
decrease to log-logarithmic and poly-logarithmic, respectively.

Theorem 1.3 2D ⊇ 2N/exp ⇐⇒ LL/polylog ⊇ NLL.

Finally, in between Theorems 1.1 and 1.3, we also relate the different levels of quasi-
polynomial input lengths with different levels of sub-logarithmic space and sub-linear
lengths of advice:

Theorem 1.2 For all k ≥ 1 we have:

2D ⊇ 2N/2O(logkh) ⇐⇒ DSPACE
(

k
√

logn
)
/2O(k

√
logn) ⊇ NSPACE

(
k
√

logn
)
.

(See Sect. 2 for the precise definitions of the notations used in this statement.)
For the most part, the proofs of these theorems elaborate on standard, old ideas [3,

13, 18]. Perhaps their main value lies in what they imply for how we approach the
questions on the two sides of the equivalences, as the next two paragraphs explain.

On the one hand, people interested in size-bounded 2FAs can use these theorems to
extract evidence about how hard it is for various proof strategies towards 2D � 2N to
succeed. For example, suppose that we are exploring two strategies, the first of which
promises to eventually establish that every deterministic simulation of 2NFAs fails on
at most exponentially long inputs, while the second strategy promises to prove failure
only on super-exponentially long inputs. Then the first strategy is probably harder to
succeed, because it implies an additional breakthrough in understanding nondeter-
minism in space-bounded TMs (by Theorem 1.3), while the second strategy involves
no such implications. (Incidentally, all proof techniques that have been successful on
restricted 2FAs are of the latter kind.)

On the other hand, people interested in space-bounded TMs can find in the 2D ver-
sus 2N question a single unifying setting in which to work. Separating polynomial-
size 2NFAs from polynomial-size 2DFAs on super-exponentially long inputs can be
seen as the first step in a gradual approach that sees NTMs being separated from DTMs
for larger and larger space bounds as improved proof techniques separate polynomial-
size 2NFAs from polynomial-size 2DFAs on shorter and shorter inputs.

Another aspect of the proofs of Theorems 1.1, 1.2, and 1.3 is that they can be
modified so as to work also for other modes of computation. For example, consider
alternating 2FAs and TMs, and let 2A/poly and AL denote the alternating analogues
of the complexity classes 2N/poly and NL, respectively. As with nondeterminism, the
inclusions 2D ⊇ 2A/poly and L ⊇ AL are open and conjectured to be false. Recalling
that alternating logarithmic space equals deterministic polynomial time, namely

AL = P = DTIME
(
poly(n)

)
,

we can state the following analogue of Theorem 1.1:

426 Theory Comput Syst (2014) 55:421–447

Theorem 1.4 2D ⊇ 2A/poly ⇐⇒ L/poly ⊇ P.

We claim that its proof is a straightforward modification of that of Theorem 1.1.
Concluding this introduction, we mention a different strengthening of the theorem

of Berman and Lingas, by Geffert and Pighizzini [4]: if 2N/unary is the restriction of
2N to families of unary languages, then

2D ⊇ 2N/unary ⇐= L ⊇ NL, (7)

where the inclusion on the left is independent of the lengths of the unary inputs. Our
article has been largely motivated by this recent theorem—and our title reflects this.

2 Preparation

For n ≥ 1, we let [n] := {0, . . . , n−1}. If S is a set, then S and |S| are its complement
and size. By ‘log(·)’ we always mean ‘log2(·)’, whereas lg(·) := max(1, �log2(·)
).

If Σ is an alphabet, then Σ∗ is the set of all strings over Σ and ε is the empty
string. If x is a string, then |x| is its length, xi is its ith symbol (for 1 ≤ i ≤ |x|), xi is
the concatenation of i copies of x (for i ≥ 0), and 〈x〉 is the natural binary encoding
of x into |x| blocks of lg |Σ | bits each (under a fixed ordering of Σ).

A (promise) problem over Σ is a pair L = (L, L̃) of disjoint subsets of Σ∗. An
instance of L is any x ∈ L ∪ L̃, and is either positive, if x ∈ L, or negative, if x ∈ L̃.
A machine solves L if it accepts every positive instance but no negative one. If L̃ = L

then every x ∈ Σ∗ is an instance, and L is a language.
For L = (Lh)h≥1 a family of problems and G a class of functions on the natural

numbers, we say that the problems of L are G -long if there exists g ∈ G such that
|x| ≤ g(h), for all x ∈ Lh ∪ L̃h and all h. In particular, if G is the class poly(h) of
all polynomial functions or the class 2poly(h) of all exponential functions, then the
problems of L are respectively polynomially long or exponentially long. Note that,
since every language has arbitrarily long instances, no member Lh of a G -long L
can be a language (irrespective of what G really is).

2.1 Two-Way Finite Automata

A two-way finite automaton (2FA, 2NFA, 2DFA) consists of a finite control and an end-
marked, read-only input tape, accessed via a two-way head (Fig. 1a). More carefully,
a (s, σ)-2NFA is a tuple A = (S,Σ, δ, q0,F) of a set of states S with |S| = s, an
input alphabet Σ with |Σ | = σ , a designated start state q0 ∈ S, a set of designated
final states F ⊆ S, and a set of transitions

δ ⊆ S × (
Σ ∪ {�,�}) × S × {L,R},

where �,� /∈ Σ are the two end-markers of the input tape, and L and R are the left
and the right directions. An input x ∈ Σ∗ is presented on the input tape surrounded
by the end-markers, as �x�, and is considered accepted if δ allows a computation

Theory Comput Syst (2014) 55:421–447 427

Fig. 1 Types of machines in this article: (a) two-way finite automaton, (b) Turing machine and (c) trans-
ducer

that starts at q0 on � and eventually falls off � into a state q ∈ F .2 If δ allows at most
one computation per input, then A is a 2DFA.

The behavior of A on a string x over Σ ∪{�,�} is the set of tuples (p, d,p′, d ′) of
states p,p′ and sides d, d ′ ∈ {L,R} such that A can exhibit a computation that starts
at p on the d-most symbol of x and eventually falls off the d ′-most symbol of x

into p′. Easily, the total number of all possible behaviors of A on all possible strings
is at most 2(2s)2

. If A is a 2DFA, then this number is at most (2s+1)2s = 22s log(2s+1).
The language of A is the set L(A) := {x ∈ Σ∗ | A accepts x}.
The binary encoding of A is the binary string 〈A〉 := 0s10σ1uvw where u en-

codes δ with 2s2(σ + 2) bits (in the natural way, with 1 bit per possible transition,
under some fixed ordering of the set of all possible transitions), whereas v encodes q0
with lg s bits and w encodes F with s bits (again in natural ways, under some fixed
ordering of S). Easily, |〈A〉| = O(s2σ).

For A = (Ah)h≥1 a family of 2NFAs and F a class of functions on the natural
numbers, we say that the automata of A are F -large if there exists f ∈ F such that
every Ah has ≤f (h) states. In particular, if F is the class poly(h) of all polynomial
functions, then the automata of A are small. We say that A solves a family of prob-
lems L = (Lh)h≥1 if every Ah solves the corresponding Lh. The class of families of
problems that admit F -large 2NFAs is denoted by

2NSIZE(F) := {L | L is a family of problems

that can be solved by a family of F -large 2NFAs}.
Its subclass consisting only of families of G -long problems, for G a class of functions,
is denoted by 2NSIZE(F)/G . (Note that no family in this subclass is a family of
languages.) When we omit ‘SIZE(F)’, we mean F = poly(h). In particular,

2N := {L | L is a family of problems solvable by a family of small 2NFAs}.

2Note that a set of designated final states F is not really necessary in this definition. Since the 2FA accepts
by falling off �, designating all states as accepting or just one state as accepting (e.g., q0) would have had
the same effect. With F , our definition stays comparable to other standard finite automata definitions.

428 Theory Comput Syst (2014) 55:421–447

We specifically let 2N/poly := 2N/poly(h) and 2N/exp := 2N/2poly(h). We also let
2DSIZE(F), 2DSIZE(F)/G , 2D, and 2D/G be the respective classes for 2DFAs.

As explained in Sect. 1.1, we are interested in the question whether 2D ⊇ 2N and
in its bounded variants for exponential or polynomial input lengths, namely the ques-
tions whether 2D ⊇ 2N/exp or 2D ⊇ 2N/poly. The next lemma explains why we
are ignoring super-exponential bounds for the input lengths. The doubly-exponential
function used in its statement is just a representative example; it can be replaced by
any function that grows faster than every function in 2poly(h).

Lemma 2.1 2D ⊇ 2N ⇐⇒ 2D ⊇ 2N/{22h}.

Proof For the interesting direction, suppose 2D ⊇ 2N/{22h}. Pick an arbitrary family
of promise problems L = (Lh)h≥1 ∈ 2N. We will prove that L ∈ 2D, as well.

Since L ∈ 2N, we know some family of small 2NFAs A = (Ah)h≥1 solves L .
For each h, consider the promise problem of checking that a string of at most doubly-
exponential length is accepted by Ah:

L
′
h := ({

x | |x| ≤ 22h

& x ∈ L(Ah)
}
,

{
x | |x| ≤ 22h

& x ∈ L(Ah)
})

.

Then the family L ′ := (L′
h)h≥1 is in 2N/{22h}, because its problems are doubly-

exponentially long and are (obviously) solved by the small 2NFAs of A . Therefore,
L ′ ∈ 2D (by our starting assumption). So, some family of small 2DFAs B = (Bh)h≥1
solves L ′. We will prove that (a modification of) this B solves L , as well.

Intuitively, the 2DFAs of B correctly simulate the 2NFAs of A on all inputs of at
most doubly-exponential length. We will argue that, because the 2FAs of both families
are small, it is impossible for this simulation to stay correct on inputs of such great
length without actually being correct on all possible inputs. So, (a modification of)
B cannot but simulate A correctly on all inputs, and thus solve L , causing L ∈ 2D.

For the argument, let us call an index h ‘failing’ if Bh does not solve Lh.

Claim The number of failing h is finite.

Proof Call an index h ‘conflicting’ if L(Ah) �= L(Bh), namely some inputs are ac-
cepted by exactly one of Ah and Bh. Then every failing h is conflicting. Indeed, if
h is failing, then Bh does not solve Lh; so Bh errs on some instances x, namely

x ∈ Lh & Bh does not accept x ∨ x ∈ L̃h & Bh accepts x;
since Ah solves Lh, every such instance also satisfies

Ah accepts x, but Bh does not ∨ Ah does not accept x, but Bh does,

and is thus in the symmetric difference of L(Ah) and L(Bh), making h conflicting.
So, it suffices to prove finite the number of conflicting h. For this, let a and b be the

degrees of the polynomials that bound the sizes of the automata in A and B, so that
every Ah has O(ha) states and every Bh has O(hb) states. Then, every Ah and Bh

Theory Comput Syst (2014) 55:421–447 429

exhibit respectively 2O(h2a) and 2O(hb logh) behaviors. So, the total number lh of pairs
of behaviors of Ah and Bh is 2O(h2a+hb logh) = 2O(hc), where c = max(2a, b + 1).

Now pick any conflicting h, and let xh be a shortest string in the symmetric dif-
ference of L(Ah) and L(Bh). Since Bh solves L′

h, it is clear that the length of xh

must exceed 22h
. Less obvious, but also true, is that it cannot exceed lh. Indeed, if

|xh| > lh, then xh contains two prefixes on which Ah behaves identically and Bh be-
haves identically, too. Removing the infix of xh between the right boundaries of these
two prefixes, we get a strictly shorter input yh that neither Ah nor Bh can distinguish
from xh. Thus, Ah and Bh disagree on yh iff they disagree on xh. Given that they
disagree on xh, they must also disagree on yh, contradicting the selection of xh as
shortest.

Hence, for every conflicting h, our shortest witness of the disagreement satisfies

22h

< |xh| ≤ lh = 2O(hc).

Since 2O(hc) = o(22h
), only a finite number of h can satisfy these inequalities. �

Now consider the family B′ = (B ′
h)h≥1 that differs from B only at the failing h,

where B ′
h is any 2DFA that solves Lh (e.g., the standard determinization of Ah [16]).

Obviously, B′ solves L . Moreover, if p is a polynomial that bounds the size of the
automata of B and if S is the maximum number of states of a B ′

h that corresponds to
a failing h, then every B ′

h has ≤ p(h) states, if it is identical to Bh, or ≤ S states, if
h is failing. Hence, the polynomial p′(h) = p(h)+S bounds the size of the automata
in B′. Overall, B′ is a family of small 2DFAs solving L . Therefore L ∈ 2D. �

2.2 Turing Machines

A Turing machine (TM, NTM, DTM) is a 2FA with two extra tapes: a bi-infinite, read-
write work tape and an end-marked, read-only advice tape, each of which is accessed
via a dedicated two-way head (Fig. 1b). More carefully, a (s, σ, γ)-NTM is a tuple
M = (S,Σ,Γ,Δ, δ, q0, qf) of a set of states S with |S| = s, an input alphabet Σ

with |Σ | = σ , a work alphabet Γ with |Γ | = γ , an advice alphabet Δ, two designated
start and final states q0, qf ∈ S, and a set of transitions

δ ⊆ S × (
Σ ∪ {�,�}) × (

Γ ∪ {�}) × (
Δ ∪ {�,�}) × S × Γ × {L,R}3,

where �,� �∈ Σ ∪ Δ are the two end-markers, � /∈ Γ is the blank symbol, and L,R

are the two directions. An input x ∈ Σ∗ and an advice string y ∈ Δ∗ are presented
on the input and advice tapes surrounded by end-markers, as �x� and �y�, and are
considered accepted if δ allows a computation which starts at q0, with blank work
tape and with the input and advice heads on �, and eventually falls off � on the input
tape into qf . If δ allows at most one computation per input, then M is a DTM.

The internal configuration of M at a point in the course of its computation is the
tuple (q,w, j, i) of its current state q , current non-blank content w ∈ Γ ∗ on the work
tape, current head position j on �w�, and current head position i on the advice tape.

430 Theory Comput Syst (2014) 55:421–447

The language of M under a family Y = (ym)m≥0 of advice strings over Δ is the set

L(M,Y) := {
x ∈ Σ∗ | M accepts x and y|x|

}
.

If Y is the empty advice (ε)m≥0, then we just write L(M). The length of Y is the
function m �→ |ym|. We say that Y is strong advice for M if every ym is valid not
only for all inputs of length m but also for all shorter inputs:

for all x with |x| ≤ m: M accepts x and ym ⇐⇒ M accepts x and y|x|.

This deviation from standard definitions of advice is unimportant if the advice length
is at least polynomial in m (because then we can always replace ym with the concate-
nation of y0, y1, . . . , ym). For shorter advice, though, it is not clear whether there is a
difference. Our theorems need the strong variant.

A function f is a strong space bound for M under Y if, for all m and all x with
|x| ≤ m, every computation on x and ym visits at most f (m) work tape cells. If this
is guaranteed just for the x and ym that are accepted and then just for at least one
accepting computation, then f is only a weak space bound for M under Y .

For F and G two classes of functions, the class of languages that are solvable by
NTMs under strong G -long advice in strongly F -bounded space is denoted by

NSPACE(F)/G := {L(M,Y) | Y is strong advice for M of length g ∈ G

& some f ∈ F is a strong space bound for M under Y }.
When we just write NSPACE(F), we mean G = {0}, so that the only possible advice
is the empty one. In particular, we let

NL := NSPACE
({logn}) and NLL := NSPACE

({log logn}).
The respective classes for DTMs, denoted by DSPACE(F)/G , DSPACE(F), L,
and LL, are defined analogously. We specifically let L/poly := DSPACE({logn})/
poly(n) and LL/polylog :=DSPACE({log logn})/poly(logn).

The next lemma lists the full details of the standard fact that every (advised) TM

that computes on inputs of bounded length can be simulated by a 2FA. In the state-
ment, a function f is fully space constructible if there exists a DTM which, on any in-
put x and any advice, halts after visiting exactly f (|x|) work tape cells. A transducer
is a DTM without advice tape but with a write-only output tape, which is accessed via
a one-way head (Fig. 1c).

Lemma 2.2 Consider a NTM M under strong advice Y of length g, obeying a
weak space bound f . For every length bound m, there exists a 2NFA Am with
2O(f (m)+logg(m)) states which agrees with M under Y on every input of length at
most m.

Moreover: (a) If M is deterministic, then so is Am. (b) If Y is empty, then Am also
agrees with M under Y on every non-accepted input (of any length). (c) If f is fully
space constructible, then there exists a transducer TM which, given m (in unary) and
the corresponding ym, computes Am (in binary) in space O(f (m) + logg(m)).

Theory Comput Syst (2014) 55:421–447 431

Proof Let M be a (s, σ, γ)-NTM and pick Y = (ym)m≥0 and g and f as in the state-
ment. Fix m and consider M working on any input (of any length) and on ym. Let Sm

be the set of all internal configurations of M with ≤f (m) work tape cells when ym is
on the advice tape. The number of such configurations is easily seen to satisfy:

|Sm| ≤ s ·
(

1 +
f (m)∑

t=1

γ t (t+2)

)

· (|ym|+2
)

≤ s · (1 + γ f (m)
(
f (m)+2

)
f (m)

) · (g(m)+2
)

= O
(
γ f (m)f (m)2 · g(m)

) = 2O(f (m)+ logg(m)).

We let Am := (Sm,Σ, δm,q0,Fm) where Σ is M’s input alphabet, q0 and Fm are the
initial and the accepting internal configurations in Sm, and δm contains a transition
(c, a, c′, d) iff M can change its internal configuration from c to c′ and move its
input head in direction d when its current input cell contains a and its advice tape
contains ym. (Note that ym is ‘embedded’ in δm.) This concludes the definition of Am.

Now fix any input x (of any length). Let τm and τ ′
m be respectively the computation

tree of M on x and ym and the computation tree of Am on x. It should be clear that
every branch β in τm that uses ≤f (m) work tape cells is fully simulated in τ ′

m by
an equally long branch β ′, which accepts iff β does. In contrast, every branch β

in τm that uses > f (m) work tape cells is only partially simulated in τ ′
m, by a shorter

branch β ′ which hangs (at a rejecting state). Moreover, every branch of τ ′
m is the β ′

of a branch β of τm under the correspondence established by the above two cases.
Now suppose |x| = n ≤ m. We must prove that x ∈ L(M,Y) iff Am accepts x.

For this, let τn be the computation tree of M on x and yn, and note that τn accepts iff
τm does (because Y is strong). We distinguish the natural two cases.

• If x ∈ L(M,Y), then τn accepts. Hence, τm accepts as well. Therefore, some ac-
cepting branch β in τm uses ≤f (m) work tape cells (because f is a weak space
bound). So, the corresponding branch β ′ in τ ′

m completes the simulation and ac-
cepts, too. Hence, Am accepts x.

• If x /∈ L(M,Y), then τn does not accept. Hence, τm does not accept either. There-
fore, every branch in τ ′

m is non-accepting, either because it fully simulates a non-
accepting branch of τm or because it hangs after partially simulating one. Hence,
Am does not accept x.

Overall, Am agrees with M under Y on every x of length n ≤ m, as required. We
continue with the remaining, special considerations of the lemma.

(a) If M is deterministic, then Am is clearly also deterministic.
(b) If Y is empty, then the agreement between Am and M under Y extends also to

every x /∈ L(M,Y) of length n > m. Indeed: Since x /∈ L(M,Y), we know τn

does not accept, hence τm does not accept (because, since Y is empty, we have
yn = ym and thus τn = τm), and thus τ ′

m does not accept (as in the second case
above).3

3Note that, in contrast, for an x ∈ L(M,Y) with n > m we have no guarantee that Am agrees with M

under Y . It may be that the computation tree τn of M on input x and advice yn = ε uses f (n) work

432 Theory Comput Syst (2014) 55:421–447

(c) If f is fully space constructible, then the binary encoding 〈Am〉 can be computed
from 0m and ym, as follows. We first mark exactly f (m) work tape cells, by
running on 0m the DTM that fully constructs f . Then, using these cells and ym,
we mark another lg s + lg(f (m)+2)+ lg(|ym|+2) cells. Now the marked region
is as long as the longest description of an internal configuration c ∈ Sm. This
makes it possible to iterate over all c ∈ Sm or pairs thereof (by lexicographically
iterating over all possible strings and discarding those that are non-descriptions).
From this point on, computing the bits of 〈Am〉 is fairly straightforward. Overall,
we will need no more than O(f (m) + logg(m)) work tape cells. �

Corollary 2.1

(a) For every NTM M (under empty advice) of weak space O(logn) and for every
length bound m, there exists a poly(m)-state 2NFA Am that may disagree with M

only on accepted inputs longer than m—and is deterministic, if M is. Moreover,
there exists a logarithmic-space transducer TM which, given m (in unary), com-
putes Am (in binary).

(b) For every NTM M (under empty advice) of weak space O(log logn) and for every
length bound m, there exists a poly(logm)-state 2NFA Am that may disagree
with M only on accepted inputs longer than m—and is deterministic, if M is.

Proof

(a) Let TM be the transducer guaranteed by Lemma 2.2 for M under the empty ad-
vice and the fully space constructible space bound f (m) = logm. Since the ad-
vice is empty, we know that the second input to TM is always ε, that the advice
length is g(m) = 0, and that Am also agrees with M on every non-accepted input.
Therefore, TM works on the single input 0m, uses space O(f (m) + logg(m)) =
O(logm), and outputs a 2NFA that has 2O(f (m)+logg(m)) = poly(m) states and
may disagree with M only on accepted inputs longer than m.

(b) Let Am be the 2NFA guaranteed by Lemma 2.2 for m and for M under the empty
advice and the weak space bound f (m) = O(log logm). Since the advice is
empty, we know that its length is g(m) = 0 and that Am also agrees with M

on all non-accepted inputs. Therefore, Am has 2O(f (m)+logg(m)) = 2O(log logm) =
poly(logm) states and may disagree with M only on accepted inputs longer
than m. �

2.3 Reductions

Let Σ1 and Σ2 be two alphabets, neither of which contains the end-markers � and �.
Every function r : Σ1 ∪ {�,�} → Σ∗

2 extends naturally to the entire �Σ∗
1 � by the

rule

r(�x�) := r(�)r(x1) · · · r(x|x|)r(�)

tape cells on every accepting branch. Hence, if f (n) > f (m), our Am will be missing some of the states
necessary to simulate these accepting branches in its computation tree τ ′

m on x. Therefore, τn will be
accepting but τ ′

m will be rejecting—despite the fact that yn = ym = ε.

Theory Comput Syst (2014) 55:421–447 433

for every x ∈ Σ∗
1 . Such a function is called a homomorphic reduction of a problem

L1 = (L1, L̃1) over Σ1 to a problem L2 = (L2, L̃2) over Σ2 if it satisfies

x ∈ L1 =⇒ r(�x�) ∈ L2 and x ∈ L̃1 =⇒ r(�x�) ∈ L̃2,

for all x [13]. When such a reduction exists, we say that L1 homomorphically reduces
to L2, and write L1 ≤h L2. The expansion of r is the function which maps every
length bound m to the maximum length of the r-image of (the end-marked extension
of) a string of length ≤ m:

μr(m) := max
{∣∣r(�x�)

∣∣ | x ∈ Σ∗
1 and |x| ≤ m

}
.

The ternary encoding of r , assuming a fixed ordering a1, . . . , aσ1 of Σ1, is

〈r〉 := 〈
r(�)

〉
#

〈
r(a1)

〉
· · · # 〈

r(aσ1)
〉
#

〈
r(�)

〉
.

(On the right-hand side of this definition, 〈 · 〉 stands for the standard binary encoding
of strings over Σ2, as explained in the beginning of Sect. 2; so 〈r〉 ∈ {0,1,#}∗.)

The next lemma lists the full details of the old fact that the class of problems that
can be solved by small 2FAs is closed under homomorphic reductions [13].

Lemma 2.3 If L1 ≤h L2 and some s-state 2NFA A2 solves L2, then some 2s-state
2NFA A1 solves L1.

If A2 is deterministic, then so is A1. Moreover, there exists a logarithmic-space
transducer Th which, given a homomorphic reduction of L1 to L2 (in ternary) and a
deterministic A2 (in binary), computes A1 (in binary).

Proof Suppose r : Σ1 ∪ {�,�} → Σ∗
2 is a homomorphic reduction of L1 = (L1, L̃1)

to L2 = (L2, L̃2), and the 2NFA A2 = (S2,Σ2, δ2, q2,F2) solves L2 with |S2| = s.
On input x ∈ Σ∗

1 , the new automaton A1 simulates A2 on r(�x�) piece-by-piece:
on each symbol a on its tape, A1 does exactly what A2 would eventually do on the
corresponding infix r(a) on its own tape—except if a is � or �, in which case the
corresponding infix is respectively the prefix �r(�) or the suffix r(�)�. This way,
every branch β in the computation tree τ2 of A2 on r(�x�) is simulated by a branch
in the computation tree τ1 of A1 on x, which is accepting iff β is; in addition, these
simulating branches are the only branches in τ1. Thus, τ1 contains accepting branches
iff τ2 does, namely A1 accepts x iff A2 accepts r(�x�). Consequently, if x ∈ L1, then
r(�x�) ∈ L2 (by the selection of r), hence A2 accepts, and thus A1 accepts as well.
In contrast, if x ∈ L̃1, then r(�x�) ∈ L̃2 (again by the selection of r), hence A2 does
not accept, and thus A1 does not accept either. Overall, A1 solves L1.

To perform this simulation, A1 keeps track of the current state of A2 and the
side (L or R) from which A2 enters the current corresponding infix. Formally, A1 :=
(S2×{L,R},Σ1, δ1, (q2, L),F2×{L}), where δ1 is fairly straightforward to derive from
the above informal description. For example, ((p, L), a, (q, L), R) ∈ δ1 iff δ2 allows
on r(a) a computation that starts at p on the leftmost symbol and eventually falls off
the rightmost boundary into q (thus entering the subsequent infix from its left side).
For another example, ((p, L),�, (q, R), L) ∈ δ1 iff δ2 allows on r(�)� a computation

434 Theory Comput Syst (2014) 55:421–447

that starts at p on the leftmost symbol and eventually falls off the leftmost boundary
into q (thus entering the preceding infix from its right side).

If A2 is deterministic, then clearly A1 is also deterministic. Moreover, its encoding
〈A1〉 can then be computed from the two encodings 〈r〉 and 〈A2〉 in deterministic
logarithmic space. To see how, let σ1 := |Σ1| and σ2 := |Σ2|, and recall that

〈A1〉 = 02s10σ11u1v1w1 and 〈A2〉 = 0s10σ21u2v2w2,

where the u1, v1,w1 and u2, v2,w2 encode respectively the transition functions, the
start states, and the sets of final states. Each part of 〈A1〉 can be computed in a
straightforward manner from the corresponding part of 〈A2〉 (using no work tape
at all), except for 0σ1 and u1. For the former, we scan 〈r〉 and output a 0 for every
occurrence of # after the first one. For the latter, we mark 2 lg s + lg(σ1+2) + 3 =
O(log(σ1s)) work tape cells and use them to iterate over all encodings of tuples of
the form

(
(p, d), a,

(
p′, d ′), d ′′) for p,p′ ∈ [s] and a ∈ Σ1 ∪ {�,�} and d, d ′, d ′′∈ {L,R},

outputting 1 bit per tuple. To decide each bit, we locate 〈r(a)〉 in 〈r〉 and simulate
A2 on r(a) (or on �r(a) if a = �, or on r(a)� if a = �), starting at p on the d-
most symbol and counting the simulated steps. We continue until either we fall off
the string or the number of simulated steps exceeds s · |r(a)| = s · |〈r(a)〉|/ lgσ2
by 1 (or by s + 1, if a = � or �). If we fall off the d ′′-most boundary into p′ and
d ′ �= d ′′ then we output 1; in all other cases, we output 0. This simulation needs only
a finite number of pointers into 〈r〉 and u2, plus the aforementioned bounded counter.
Overall, the space used is logarithmic in |〈r〉 + 〈A2〉|. �

2.4 Two-Way Liveness

Central in our arguments in Sect. 3 are several variants of a computational problem
that we call two-way liveness [13]. In this section we introduce these variants and
study their properties.

Fix any h ≥ 1. Let Γh be the alphabet of all possible directed graphs consisting
of two columns of h nodes each (Fig. 2a). Easily, |Γh| = 2(2h)2

. Every string x ∈ Γ ∗
h

of such graphs induces the multicolumn graph that we get when we identify adjacent
columns (Fig. 2b). If this h-tall (|x| + 1)-column graph contains a path from its left-
most to its rightmost column, we say that x is live; otherwise, no such path exists and
we say that x is dead. The language

TWO-WAY LIVENESSh = TWLh := {
x ∈ Γ ∗

h | x is live
}

represents the computational problem of checking that a given string of h-tall two-
column graphs is live. The family of languages

TWO-WAY LIVENESS = TWL := (TWLh)h≥1

represents this computational task for all possible heights h.

Theory Comput Syst (2014) 55:421–447 435

Fig. 2 (a) Three symbols of Γ5, and (b) the multicolumn graph defined by them

The next lemma lists the full details of the old fact that every problem that can
be solved by a 2NFA reduces homomorphically to the problem of checking two-way
liveness on graphs of height twice the number of states in the automaton [13].

Lemma 2.4 If L can be solved by an s-state 2NFA A, then L ≤h TWL2s via a reduc-
tion which has expansion m + 2 and is constructible from 〈A〉 in logarithmic space.

Proof Let A = (S,Σ, δ, q0,F) with |S| = s. We consider a reduction r which maps
every a ∈ Σ ∪ {�,�} to a single symbol r(a) ∈ Γ2s . This is the unique symbol that
fully encodes the behavior of A on a, under the following scheme.

First, in each of the two columns of r(a) we distinguish the upper and the lower
half. We thus get four half-columns (upper-left, lower-left, upper-right, and lower-
right) of s nodes each, representing four copies of S. For every tuple (p, d,p′, d ′) in
the behavior of A on a we add an arrow with origin the p-th node of either the upper-
left or the lower-right half-column, depending on whether d = L or R, and destination
the p′-th node of the lower-left or the upper-right half-column, depending on whether
d ′ = L or R. In the special case when a = �, an arrow with origin in the upper-left
half-column is added only if p = q0. In the special case when a = �, an arrow with
destination in the upper-right half-column is added only if p′ ∈ F .

With these definitions, it is not hard to see that the computation tree of A on
a string x ∈ Σ∗ contains an accepting branch iff r(�x�) contains a path from its
leftmost to its rightmost column (see [13] for details). Hence, r is a correct reduction
of the entire L(A) to TWL2s , and thus also of L to TWL2s . Obviously, |r(�x�)| =
|�x�| = |x| + 2 for every x ∈ Σ∗, and thus the expansion is μ(m) = m + 2. Finally,
constructing 〈r〉 out of 〈A〉 reduces to computing the behavior of A on each a ∈
Σ ∪{�,�}, which is straightforward to do with a finite number of pointers into 〈A〉. �

In order to establish Theorem 1.1, we will need a single language that can encode
the problem of checking two-way liveness on every possible height. To introduce this
language, we start with the binary encoding 〈a〉 of a single graph a ∈ Γh, which is a
string of (2h)2 bits that describes a in the natural way (with 1 bit per possible arrow,
under a fixed ordering of the set of all possible arrows). Using this encoding scheme,
we can “join” all languages of the family TWL into the one binary language:

TWL JOIN := {
0h1〈a1〉〈a2〉 · · · 〈al〉10t | h ≥ 1 & h divides t

& l ≥ 0 & each ai ∈ Γh & a1a2 · · ·al is live
}
.

436 Theory Comput Syst (2014) 55:421–447

The interpretation is driven by the h leading 0s: the leftmost 1 and the rightmost 1
must be separated by 0 or more blocks of bits of length (2h)2 each (the “middle
bits”); the multicolumn graph encoded by these blocks must contain a path from its
leftmost to its rightmost column; and the number t of trailing 0s must be a multiple
of h.4

In order to establish Theorem 1.3, we will need a variant of TWL JOIN, called
TWL LONG-JOIN. This differs only in the specification for the number of trailing 0s,
which must now be a multiple of every positive j ≤ h, as opposed to just h:

TWL LONG-JOIN := {
0h1〈a1〉〈a2〉 · · · 〈al〉10t | h ≥ 1 & all j ≤ h divide t

& l ≥ 0 & each ai ∈ Γh & a1a2 · · ·al is live
}
.

Here, we are copying the padding scheme used by Szepietowski in [18]. In short, this
scheme pads a string of length h with a string of 0s whose length is (i) at least expo-
nential in h and (ii) checkable in space logarithmic in h—and thus log-logarithmic in
the new total length, hence its usefulness for Theorem 1.3.

Finally, the proof of Theorem 1.2 requires yet more variants of TWL JOIN. For
every k ≥ 1, we let TWL JOINk be the variant where the number of trailing 0s must be
a multiple of every positive j ≤ �logh�k . This leads to a padding string whose length
is (i) at least quasi-polynomial in h and (ii) checkable in space poly-logarithmic in h.
(If k = 1 then the length is at least polynomial and the space logarithmic, causing the
properties of TWL JOIN1 to be similar to those of TWL JOIN.)

The next two lemmas study the properties of these variants of two-way liveness.
They also discuss another problem, the acceptance problem for 2NFAs, with which it
will be useful to compare in Sect. 3. This is the problem of checking whether a given
2NFA accepts a given input, formally the ternary language

A2NFA := {〈A〉#〈x〉 | A is a 2NFA and A accepts x
}
.

Note that the alphabet of the given automaton is not fixed: to solve this problem, one
must also check that the binary string after # can indeed be interpreted as an input
for the 2NFA that is encoded by the binary string before #. Finally, we also let A2DFA

be the corresponding problem for 2DFAs.

Lemma 2.5 If L can be solved by a (s, σ)-2NFA A, then L homomorphically re-
duces to each of A2NFA, TWL JOIN, TWL JOINk , and TWL LONG-JOIN via reductions
of expansion O(s2σm), O(s2m), 2O(logk s)m, and 2O(s)m, respectively. The first two
reductions are constructible from 〈A〉 in logarithmic space.5

4These trailing 0s are, in fact, redundant. They are included in the definition just for symmetry with the
definitions of the variants in the next two paragraphs.
5More tightly, the expansion of the first reduction is O(s2σ) + m lgσ . But the looser O(s2σm) is simpler
and does not harm our conclusions, since it is later (Theorem 3.0, forward direction) fed to an unspecified
polynomial. Similar looseness is adopted elsewhere, too.

Theory Comput Syst (2014) 55:421–447 437

Proof Let the alphabet of A be Σ = {a1, . . . , aσ }. We construct four homomorphic
reductions of L to the four languages of the statement, and call them respectively

r0 : Σ ∪ {�,�} → {0,1,#}∗ and r1, r2, r3 : Σ ∪ {�,�} → {0,1}∗.
It will be straightforward to verify that each reduction is correct, and that 〈r0〉 and 〈r1〉
can be constructed from 〈A〉 in logarithmic space, so we will omit these discussions.

Reduction r0 maps � to 〈A〉#, every ai to the lgσ -long binary representation
of i−1, and � to the empty string. As a result, every string x of length n ≤ m is
transformed into the string r0(�x�) = 〈A〉#〈x〉, of length (|〈A〉|+1) + n lgσ + 0 =
O(s2σ) + n lgσ = O(s2σm).

Reduction r1 uses the reduction r : Σ ∪ {�,�} → Γ2s given by Lemma 2.4, along
with the binary encoding 〈 · 〉 of the graphs of Γ2s . It maps � to 02s1〈r(�)〉, every ai

to 〈r(ai)〉, and � to 〈r(�)〉102s . As a result, every string x of length n ≤ m is trans-
formed into the string

r1(�x�) = 02s1
〈
r(�)

〉〈
r(x1)

〉 · · · 〈r(xn)
〉〈
r(�)

〉
102s ,

which has length (2s+1) + (n+2)(4s)2 + (1+2s) = O(s2m) and is in TWL JOIN iff
r(�)r(x1) · · · r(xn)r(�) is live (all other conditions in the definition of TWL JOIN are
obviously satisfied), namely iff r(�x�) ∈ TWL2s .

The last two reductions, r2 and r3, use the function λ defined by

for every l ≥ 1: λ(l) := lcm{1,2, . . . , l},
which is known to satisfy λ(l) = 2Θ(l) [18, Lemma, part (b)]. The two reductions
differ from r1 only in that they map � respectively to

〈
r(�)

〉
10λ(�log 2s�k) and

〈
r(�)

〉
10λ(2s).

Hence, every string x of length n ≤ m is now mapped to the string r2(�x�) of length

(2s+1) + (n+2)(4s)2 + (
1+2Θ(�log 2s�k)

) = 2O(logk s)m,

and to the string r3(�x�) of length 2O(s)m (by a similar calculation). �

Lemma 2.6 The problems A2NFA, TWL JOIN, TWL JOINk and TWL LONG-JOIN are
respectively NL-complete, NL-complete, in NSPACE(k

√
logn), and in NLL.

Proof That A2NFA is NL-complete is well-known, so we focus on the other claims.
To prove that TWL JOIN is NL-hard, pick any L recognized by a NTM M in loga-

rithmic space. Every instance x of L can be transformed into an instance of TWL JOIN

by the following series of transductions, where m = |x|:

x −→ x#0m TM−→ x#〈Am〉 −→ x#〈r〉 −→ r(�x�).

First, we append #0m by running on x an obvious zero-space transducer. Then, we
replace 0m with the encoding of the 2NFA Am guaranteed by Corollary 2.1(a) for M

438 Theory Comput Syst (2014) 55:421–447

and m, by running on 0m the logarithmic-space transducer TM given by that corollary.
Next, we replace 〈Am〉 with the encoding of the reduction r guaranteed by Lemma 2.5
for L = L(Am) and TWL JOIN, by running on 〈Am〉 the corresponding logarithmic-
space transducer given by that lemma. Finally, we replace x#〈r〉 with r(�x�) by
running on it the obvious logarithmic-space transducer that applies r to every symbol
of �x�. By the transitivity of logarithmic-space transductions, it follows that the
full transformation can also be implemented in logarithmic space. Moreover, by the
selection of M , m, Am, and r , we have

x ∈ L ⇐⇒ M accepts x ⇐⇒ x ∈ L(Am) ⇐⇒ r(�x�) ∈ TWL JOIN.

Therefore, L reduces to TWL JOIN in logarithmic space, as required.
To solve TWL JOIN by a NTM in logarithmic space, we work in two stages. First,

we deterministically verify the format: we check that there are at least two 1s, com-
pute the number h of leading 0s, and check that h divides the number of trailing 0s
(by scanning and counting modulo h) and that (2h)2 divides the number of “middle
bits” (similarly). Then, we nondeterministically verify liveness, by simulating on the
“middle bits” the 2h-state 2NFA solving TWLh [13]. Easily, each stage can be per-
formed in space O(logh). Since h is obviously smaller than the total input length n,
we conclude that the space usage is indeed O(logn). Thus TWL JOIN ∈ NL, complet-
ing the proof that TWL JOIN is NL-complete.

To solve TWL LONG-JOIN by a NTM in log-logarithmic space, we use the same
algorithm as for TWL JOIN, but with a preliminary stage [18]. This starts by checking
that there exist at least two 1s; if not, we reject. Then, we increment a counter from 1
up to the first number, t∗, that does not divide the number t of trailing 0s (as above,
divisibility is always tested by scan-and-count). On reaching t∗, we compare it with
the number h of leading 0s (scan-and-count, again). If t∗ ≤ h, we reject; otherwise
we continue to the two main stages (omitting, however, the check that h divides t).
We consider the correctness of this algorithm to be clear, and discuss only the space
usage. First, in the preliminary stage the cost is clearly O(log t∗). Then, as above,
the two main stages cost O(logh), which is also O(log t∗) because we get to them
only if h < t∗. Since t∗ = O(log t) [18, Lemma, part (d)] and t ≤ n (obviously), we
conclude that the total space used is O(log logn), as required.

To solve TWL JOINk by a NTM in space O(k
√

logn), we use the same algorithm
as for TWL LONG-JOIN, but with a modification. Instead of testing whether t∗ ≤ h,
we test whether k

√
t∗ ≤ �logh�. If so, then t∗ ≤ �logh�k , hence the padding length is

incorrect, and we reject; otherwise, the padding length is correct and we proceed to
the two main stages. To test whether k

√
t∗ ≤ �logh�, we test the equivalent condition⌈

k
√

t∗
⌉ ≤ �logh�. For this, we first compute t̃ := ⌈

k
√

t∗
⌉

from t∗ by standard methods
in space O(log t∗), then test t̃ ≤ �logh�. This last test can be performed using two
counters α and β , as follows. After initializing α := t̃ and β := 0, we start scanning
the prefix 0h1 of the input, incrementing β at every step and decrementing α at every
change of the length of β , until either α becomes 0 or we reach 1 on the input tape.

• If the former condition is met first, then the initial value t̃ of α equals the actual
number of times that the length of β increased, and is thus bounded by the max-
imum number of times �logh� that the length of β can possibly increase (in the

Theory Comput Syst (2014) 55:421–447 439

case when the latter condition is met first). That is, t̃ ≤ �logh� and we reject. The
space usage, for computing t̃ , for storing α, and for storing β , is respectively:

O
(
log t∗

) + O(log t̃) + (t̃ + 1) = O
(

k
√

t∗
) = O(k

√
log t) = O(k

√
logn).

The first equality is clear, then we use that t∗ = O(log t) and t ≤ n (as above).
• If the latter condition is met first, then t̃ > �logh� and we continue to the two

main stages. The space usage is again O(log t∗) + O(log t̃) for computing t̃ and
storing α, plus �logh�+1 for storing β and O(logh) for the main stages. Overall:

O
(
log t∗

) + O(log t̃) + (�logh�+1
) + O(logh) = O

(
k
√

t∗
) = O(k

√
logn).

The first equality uses the fact that �logh� < t̃ , while the second one uses the fact
that t∗ = O(log t) and t ≤ n (as above).

Overall, in both cases, the total space usage is O(k
√

logn), as required. �

3 The Berman-Lingas Theorem

The ‘Berman-Lingas Theorem’ is Theorem 6 of the old technical report [3]. It is
usually cited as follows:

If L = NL then for every s-state 2NFA there exists a poly(s)-state 2DFA that
agrees with it on all poly(s)-long inputs.

(8)

However, the full statement that was actually claimed in that report, via a remark a
few pages after the statement of Theorem 6, is much stronger:6

L = NL iff for every alphabet Σ there exists a logarithmic-space
transducer TΣ which, on input a 2NFA A over Σ (in binary) and
a length bound m (in unary), outputs a 2DFA B (in binary) that has
at most poly(sm) states, for s the number of states in A, and may
disagree with A only on accepted inputs longer than m.

(8+)

That is, the report also claimed that the promised 2DFA is constructible from the 2NFA

and the length bound in logarithmic space, and that then the converse is also true. The
usual citation (8) is just a weak corollary of (8+) for the case when m = poly(s).

Unfortunately, the proofs of the above statements depend on the fact that |Σ | is
constant. In cases where the alphabet grows with s (as is often true in the study of
2D versus 2N), the bound that is guaranteed by these proofs for the number of states
in B may very well be exponential in s. To highlight this subtle point, we state and
prove the theorem under no assumptions for the alphabet size.

6The actual statement of [3, Theorem 6] is very close to the usual citation (8); however, it also includes a
pointer to a Remark a few pages later (p. 17), which explains that the promised 2DFA can be constructed
in logarithmic space and that with this observation the theorem becomes an equivalence. We also note that
the actual statement of [3, Theorem 6] uses s · m as the length bound, for s the number of states in the
2NFA, whereas the full statement (8+) uses just m; the two statements are equivalent, but (8+) is simpler
and facilitates comparison with subsequent statements.

440 Theory Comput Syst (2014) 55:421–447

Theorem 3.0 (Berman and Lingas [3]) The following statements are equivalent:

(A) L ⊇ NL.
(B) There exists a logarithmic-space transducer T which, on input a 2NFA A (in

binary) and a length bound m (in unary), outputs a 2DFA B (in binary) that has
at most poly(sσm) states, for s and σ the number of states and symbols in A,
and may disagree with A only on accepted inputs longer than m.

Proof

[(A)⇒(B)] Suppose L ⊇ NL. Then A2NFA ∈ L. Therefore, some DTM M under empty
advice solves A2NFA in space strongly bounded by logn.
To see the main idea behind the argument, consider any (s, σ)-2NFA A and any
length bound m. Lemma 2.5 says that L(A) ≤h A2NFA via a reduction of expan-
sion μ. Hence, Lemma 2.3 implies that constructing a 2DFA B for L(A) and in-
put lengths ≤m reduces to constructing a 2DFA B̃ for A2NFA = L(M) and input
lengths ≤μ(m). This latter construction is indeed possible by Corollary 2.1(a).
So, given A and m, we employ a series of logarithmic-space transductions:

〈A〉#0m −→ 〈A〉#0μ(m) TM−→ 〈A〉#〈B̃〉 −→ 〈r〉#〈B̃〉 Th−→ 〈B〉.
First, we replace 0m with 0μ(m), by running on 〈A〉#0m an obvious logarithmic-
space transducer which performs the algebra for μ(m) on the parameters of A and
on m. Then we replace 0μ(m) with the encoding of the 2DFA B̃ guaranteed by Corol-
lary 2.1(a) for M and for μ(m), by running on 0μ(m) the logarithmic-space trans-
ducer TM given by that corollary. Then we replace 〈A〉 with the encoding of the
homomorphism r guaranteed by Lemma 2.5 for L(A) ≤h A2NFA, by running on 〈A〉
the logarithmic-space transducer given by that lemma. Finally, we convert 〈r〉#〈B̃〉
into the desired 2DFA B , by running the logarithmic-space transducer Th given by
Lemma 2.3. By the transitivity of logarithmic-space transductions, we know that the
full algorithm can also be implemented in logarithmic space. It remains to verify the
properties of B .
If S and S̃ are the sets of states in B and B̃ , then |S| = 2|S̃| (by Lemma 2.3) and
|S̃| = poly

(
μ(m)

)
(by Corollary 2.1(a)) and μ(m) = O(s2σm) (by Lemma 2.5). So,

|S| = 2|S̃| = 2 · poly
(
μ(m)

) = 2 · poly
(
O

(
s2σm

)) = poly(sσm),

as promised. Moreover, consider any input x to A. If y := r(�x�) is its transforma-
tion under r , then clearly |y| ≤ μ(|x|) and the two cases of interest are as follows:

• If x �∈ L(A), then y /∈ A2NFA, hence M does not accept y, so B̃ does not accept y

either, causing B not to accept x.
• If x ∈ L(A) and |x| ≤ m, then y ∈ A2NFA, hence M accepts y, hence B̃ also ac-

cepts y (since |y| ≤ μ(m)), causing B to accept x.

Overall, B may disagree with A only on x ∈ L(A) with |x| > m, as promised.
[(B)⇒(A)] Suppose the logarithmic-space transducer T of the statement exists.
Then A2NFA reduces to A2DFA in logarithmic space, as follows. Given a 2NFA A

Theory Comput Syst (2014) 55:421–447 441

and an input x, we apply the following two logarithmic-space transductions, where
m = |x|:

〈A〉#〈x〉 −→ 〈A〉#0m#〈x〉 T−→ 〈B〉#〈x〉.
First, we insert #0m by running an obvious logarithmic-space transducer that per-
forms the algebra for m = |〈x〉|/ lgσ , where σ is the number of symbols in A.
Then, we run T on 〈A〉#0m to replace it with the encoding of a 2DFA B that
agrees with A on all inputs of length ≤ m, including x. Clearly, 〈A〉#〈x〉 ∈ A2NFA iff
〈B〉#〈x〉 ∈ A2DFA.
Now, the NL-hardness of A2NFA, the logarithmic-space reduction to A2DFA, the fact
that A2DFA ∈ L (easy, just simulate the 2DFA, being careful not to loop), and the
closure of L under logarithmic-space reductions imply L ⊇ NL. �

It is now clear that, when we restrict to inputs of length at most m = poly(s),
the bound for the states in B is poly(sσ)—not poly(s). Hence, for a 2NFA A over
an alphabet of size σ = 2Ω(s) (e.g., a 2NFA for TWLs), the bound of Theorem 3.0
for the number of states in a 2DFA simulating A on inputs of length poly(s) cannot
be lower than 2O(s). We stress that this looseness is inherent in the Berman-Lingas
argument, not just in our analysis of it: a larger alphabet for A implies a longer encod-
ing 〈A〉, thus longer inputs to the alleged logarithmic-space DTM M for A2NFA, more
work space for M when it computes on these inputs, more internal configurations,
more states in the 2DFA B̃ simulating M , and thus more states in the final 2DFA B

simulating B̃ .
It is also clear that the theorem’s equivalence requires that the relationship between

the given A and m and the promised B is constructive. That is, if (B) were modified
to state that for every 2NFA A and length bound m a fitting 2DFA B simply exists (as
opposed to it being logarithmic-space constructible), then the argument for (B)⇒(A)
would not stand. This is an extra obstacle in connecting L versus NL with the purely
existential question of 2D versus 2N (conceivably, a proof that 2D ⊇ 2N needs no
logarithmic-space conversion of s-state 2NFAs to poly(s)-state 2DFAs).

Our Theorem 3.1 is a variant of Theorem 3.0 that removes both dependences
above, on alphabet size and logarithmic-space constructibility. To remove the de-
pendence on alphabet size, we switch to another NL-complete problem; to remove
the dependence on constructibility, we switch to non-uniform L. The structure of the
argument, however, is the same. Note that, of the six equivalences established among
the four statements, (A)⇔(B) is the one closest to the statement of Theorem 3.0;
(C)⇔(D) is the equivalence claimed in Sect. 1.1 between Questions (3) and (3′); and
(D)⇔(A) is the statement in terms of complexity classes, as announced in Sect. 1.3.

Theorem 3.1 The following statements are equivalent:

(A) L/poly ⊇ NL.
(B) There exists a polynomial q such that for every 2NFA A and length bound m

there exists a 2DFA B that has at most q(sm) states, for s the number of states
in A, and agrees with A on all inputs of length at most m.

(C) There exists a polynomial p such that every s-state 2NFA has a 2DFA with ≤p(s)

states that agrees with it on all inputs of length ≤ s.
(D) 2D ⊇ 2N/poly.

442 Theory Comput Syst (2014) 55:421–447

Proof

[(A)⇒(B)] Suppose L/poly ⊇ NL. Then TWL JOIN ∈ L/poly. Therefore, some
DTM M under strong advice Y of length g(m) = poly(m) solves TWL JOIN in space
strongly bounded by f (m) = logm.
Pick any (s, σ)-2NFA A and length bound m. We know that L(A) ≤h TWL JOIN via a
reduction of expansion μ(m) = O(s2m) (Lemma 2.5). Hence, finding a 2DFA B for
L(A) and inputs of length ≤m reduces to finding a 2DFA B̃ for L(M,Y) and inputs
of length ≤μ(m) (Lemma 2.3). Indeed, such a B̃ is guaranteed by Lemma 2.2, with
a number of states at most exponential in f (μ(m)) + logg(μ(m)). Calculating

f
(
μ(m)

) = logO
(
s2m

) = O
(
log(sm)

)
,

logg
(
μ(m)

) = log poly
(
O

(
s2m

)) = log poly(sm) = O
(
log(sm)

)
,

2O(f (μ(m))+logg(μ(m))) = 2O(log(sm)) = poly(sm),

we see that the number of states in B is 2 · poly(sm) = poly(sm), as required.
[(B)⇒(C)] Applying (B) with m = s, we deduce (C) with p(s) := q(s2).
[(C)⇒(D)] Assume (C). Pick any family L = (Lh)h≥1 ∈ 2N/poly. Then every Lh

has instances of length ≤ q1(h) and is solved by some 2NFA Ah with ≤ q2(h) states,
for q1 and q2 two polynomials. Let q := q1 +q2. Then clearly every Lh has instances
of length ≤ q(h) and is solved by some q(h)-state 2NFA A′

h. Now, (C) implies that
every A′

h has a 2DFA Bh with ≤ p(q(h)) states that agrees with it on all inputs of
length ≤ q(h), and is thus correct on all instances of Lh. Hence, B = (Bh)h≥1 is a
family of small 2DFAs that solve L . Therefore, L ∈ 2D.

[(D)⇒(A)] Suppose 2D ⊇ 2N/poly. Pick any L ∈ NL. Let Σ be its alphabet and
let M be a NTM solving it (under empty advice) in space strongly bounded by logn.
For each h ≥ 1, consider the problem Lh that restricts L to inputs of length < h:

Lh := ({
x ∈ L | |x| < h

}
,

{
x ∈ L | |x| < h

})
.

By Corollary 2.1(a) for m = h−1, we know some 2NFA Ah with poly(h−1) =
poly(h) states agrees with M on every input of length < h, and thus decides cor-
rectly on every instance of Lh. So, L := (Lh)h≥1 is a family of polynomially
long problems, solvable by the family of small 2NFAs (Ah)h≥1. Therefore L is
in 2N/poly, and thus also in 2D (by our starting assumption). So, there exists a
2DFA family B = (Bh)h≥1 and a polynomial p such that every Bh solves Lh

with ≤ p(h) states.
Now consider the binary encodings of the automata of B as advice strings,

Y = (ym)m≥0 := (〈Bm+1〉
)
m≥0

and let U be the DTM which, on input x ∈ Σ∗ and advice y ∈ {0,1}∗, interprets y

as the encoding of a 2DFA and simulates it on x. Then L(U,Y) = L, because

x ∈ L(U,Y) ⇐⇒ U accepts x and yn (definition of L(U,Y), and n := |x|)
⇐⇒ Bn+1 accepts x (definition of yn and of U)

⇐⇒ x ∈ L (Bn+1 solves Ln+1, and |x| < n+1).

Theory Comput Syst (2014) 55:421–447 443

In addition, Y is strong advice for U , because every ym helps U treat an input x

‘correctly’ (namely, as it would under y|x|) not only when |x| = m but also when
|x| < m: Indeed, for all m and all x with |x| = n ≤ m,

U accepts x and ym ⇐⇒ Bm+1 accepts x (definition of ym and of U)

⇐⇒ x ∈ L (Bm+1 solves Lm+1, and |x| < m+1)

⇐⇒ Bn+1 accepts x (Bn+1 solves Ln+1, and |x| < n+1)

⇐⇒ U accepts x and yn (definition of yn and of U).

Moreover, |ym| = |〈Bm+1〉| = O(p(m + 1)2 · |Σ |) = poly(m), since Σ is con-
stant in m. Finally, the space used by U for x and ym when |x| ≤ m is the space
for storing the pointers into ym that are necessary for the simulation of Bm+1,
namely O(log |ym|) = O(log poly(m)) = O(logm). Overall, U and Y witness that

L ∈ L/poly. �

While Theorem 3.1 uncovers the full details of the Berman-Lingas connection be-
tween space-bounded TMs and size-bounded 2FAs, our next two theorems reveal that
this connection is only one aspect of a deeper relationship. Specifically, they show
that the equivalences of Theorem 3.1 remain valid when we appropriately decrease
the space usage and advice length on the TM side and increase the input lengths on
the 2FA side. Theorem 3.2 is the case where the space usage and the advice length
decrease respectively to sub-logarithmic and sub-linear, whereas the input length in-
creases to quasi-polynomial. Theorem 3.3 is the case of log-logarithmic space usage,
poly-logarithmic advice, and exponential input lengths.

Because Theorem 3.3 is easier to compare to Theorem 3.1, we will state and prove
it before Theorem 3.2. Both proofs use arguments very similar to those used for The-
orem 3.1, so we will present them in less detail. The most important difference is that
TWL JOIN is replaced respectively by TWL LONG-JOIN and by TWL JOINk when we
prove the implications (A)⇒(B). The remaining differences are in the calculations.

Theorem 3.3 The following statements are equivalent:

(A) LL/polylog ⊇ NLL.
(B) There exists a polynomial q such that for every 2NFA A and length bound m

there exists a 2DFA B that has at most q(s logm) states, for s the number of
states in A, and agrees with A on all inputs of length at most m.

(C) There exists a polynomial p such that every s-state 2NFA has a 2DFA with ≤p(s)

states that agrees with it on all inputs of length ≤2s .
(D) 2D ⊇ 2N/exp.

Proof

[(A)⇒(B)] If LL/polylog ⊇ NLL then TWL LONG-JOIN is in LL/polylog, so it is
solved by a DTM M under strong advice Y of length g(m) = poly(logm) and
strong space bound f (m) = log logm. As in Theorem 3.1, for every (s, σ)-2NFA A

and length bound m, we know L(A) ≤h TWL LONG-JOIN via a reduction of expan-
sion μ(m) = 2O(s)m (Lemma 2.5), so it suffices to find a 2DFA B̃ for L(M,Y)

444 Theory Comput Syst (2014) 55:421–447

on lengths ≤μ(m) (Lemma 2.3), which indeed exists with 2O(f (μ(m))+logg(μ(m)))

states (Lemma 2.2). Now,

f
(
μ(m)

) = log log
(
2O(s)m

) = O
(
log(s + logm)

)
,

logg
(
μ(m)

) = log poly
(
log

(
2O(s)m

)) = O
(
log log

(
2O(s)m

))

= O
(
log(s + logm)

)
,

2O(f (μ(m))+logg(μ(m))) = 2O(log(s+logm)) = poly(s + logm) = poly(s logm),

so our 2DFA for L(A) on lengths ≤ m has 2 · poly(s logm) = poly(s logm) states.
[(B)⇒(C)] Applying (B) with m = 2s , we deduce (C) with p(s) := q(s2).
[(C)⇒(D)] Assume (C), and let L = (Lh)h≥1 ∈ 2N/exp. Then every Lh has in-
stances of length ≤ 2q1(h) and is solved by a 2NFA Ah with ≤ q2(h) states, for
q1, q2 two polynomials. So, q := q1 + q2 is such that every Lh has instances of
length ≤ 2q(h) and is solved by a q(h)-state 2NFA A′

h. By (C), every A′
h has a

2DFA Bh with ≤ p(q(h)) states that agrees with it on all inputs of length ≤ 2q(h),
including the instances of Lh. So, the small automata B = (Bh)h≥1 solve L , caus-
ing L ∈ 2D.

[(D)⇒(A)] Suppose 2D ⊇ 2N/exp. Pick any L ∈ NLL. Let Σ be its alphabet, and M

a NTM solving L (under empty advice) in space strongly bounded by log logn. As
in Theorem 3.1, consider for each h ≥ 1 the problem Lh that restricts L to instances
of bounded length, this time exponential in h:

Lh := ({
x ∈ L | |x| < 2h−1},

{
x ∈ L | |x| < 2h−1}).

By Corollary 2.1(b) for m = 2h−1−1, we know some 2NFA Ah with poly(log(2h−1

−1)) = poly(h) states agrees with M on every input of length < 2h−1, and thus
decides correctly on every instance of Lh. So, the family L := (Lh)h≥1 of expo-
nentially long problems is solved by the family (Ah)h≥1 of small 2NFAs. Hence,
L ∈ 2N/exp, and thus also L ∈ 2D (by our starting assumption). So, some 2DFA

family B = (Bh)h≥1 and polynomial p are such that every Bh solves Lh with
p(h) states.
We now continue with the same DTM U as in the proof of Theorem 3.1, advised by
the encodings of the 2DFAs of B, this time ‘spread out’ exponentially:

Y = (ym)m≥0 := (〈Bh(m)〉
)
m≥0 where h(m) := �log(m + 1)
 + 1.

So, U under Y decides whether to accept an input x by simulating Bh(|x|). Since
this 2DFA solves Lh(|x|), it decides L correctly on all inputs strictly shorter than

2h(|x|)−1 = 2�log(|x|+1)
 ≥ 2log(|x|+1) = |x| + 1,

and thus also on x. Therefore, U under Y decides L correctly on all inputs, namely
L(U,Y) = L. It is also easy to verify that every Bh(m) helps U decide correctly not
only on all inputs of length exactly m but also on all inputs of length < m, namely
Y is strong advice for U . Finally,

|ym| = ∣∣〈Bh(m)〉
∣∣ = O

(
p
(
h(m)

)2 · |Σ |) = O
(
p
(
h(m)

)2) = poly(logm)

Theory Comput Syst (2014) 55:421–447 445

and the space used by U for the pointers into ym that are necessary to simulate Bh(m)

is O(log |ym|) = O(log poly(logm)) = O(log logm). Overall, L ∈ LL/polylog. �

Theorem 3.2 For any k ≥ 1, the following statements are equivalent:

(A) DSPACE(k
√

logn)/2O(k
√

logn) ⊇ NSPACE(k
√

logn).
(B) There exists a polynomial q such that for every 2NFA A and length bound m

there exists a 2DFA B that has at most q(s 2
k
√

logm) states, for s the number of
states in A, and agrees with A on all inputs of length at most m.

(C) There exists a polynomial p such that every s-state 2NFA has a 2DFA with ≤p(s)

states that agrees with it on all inputs of length ≤2logk s .
(D) 2D ⊇ 2N/2O(logk h).

Proof

[(A)⇒(B)] If (A) holds, then a DTM M under strong advice of length 2O(k
√

logm)

solves TWL JOINk in space strongly bounded by k
√

logm. Given a (s, σ)-2NFA A

and length bound m, we now have a reduction of L(A) to TWL JOINk with expansion
μ(m) = 2O(logk s)m, and a 2DFA B̃ that solves TWL JOINk on lengths ≤ μ(m) with
a number of states at most exponential in

k
√

logμ(m) + log 2O(k
√

logμ(m)) = O
(

k
√

logμ(m)
) = O

(
k

√
logk s + logm

)

= O
(

k

√
logk s + k

√
logm

)
= O

(
log s + k

√
logm

)
.

So, some 2DFA B solves L(A) on lengths ≤ m with a number of states at most

2 · 2O(log s+ k
√

logm) = 2 · poly
(
2log s+ k

√
logm

) = poly
(
s 2

k
√

logm
)
.

[(B)⇒(C)] Applying (B) with m = 2logk s , we deduce (C) with p(s) := q(s2).
[(C)⇒(D)] Assuming (C), we let L = (Lh)h≥1 ∈ 2N/2O(logk h) and pick q such that

every Lh has instances of length ≤ 2logk q(h) and is solved by a q(h)-state 2NFA A′
h.

By (C), every A′
h has a 2DFA Bh with ≤ p(q(h)) states that agrees with it on all

inputs of length ≤ 2logk q(h), and thus solves Lh. Hence L ∈ 2D.
[(D)⇒(A)] Suppose 2D ⊇ 2N/2O(logk h) and some NTM solves L under empty ad-
vice in space strongly bounded by k

√
logn. For every h ≥ 1, we consider the

restriction Lh of L to instances of length < 2�logh
k
. Applying Lemma 2.2 for

m = 2�logh
k−1 and f (m) = k
√

logm and g(m) = 0, we see that Lh is solved by
a 2NFA with a number of states exponential in

f (m) = k
√

logm = k

√
log

(
2�logh
k−1

) = O(logh)

and thus polynomial in h. Hence, (Lh)h≥1 is in 2N/2O(logk h) ⊆ 2D, and thus solv-
able by a family (Bh)h≥1 of small 2DFAs. Using the encodings of these 2DFAs as

446 Theory Comput Syst (2014) 55:421–447

advice

Y = (ym)m≥0 := (〈Bh(m)〉
)
m≥0 where h(m) := ⌈

2
k
√

log(m+1)
⌉

to the DTM U from the proof of Theorem 3.1, we again verify that L(U,Y) = L, that
Y is strong advice of length 2O(k

√
logm), and that the space usage is

O(k
√

logm). �

4 Conclusion

We strengthened and deepened an old theorem of Berman and Lingas (Theorem 3.0),
which connected the comparison between determinism and nondeterminism in size-
bounded two-way finite automata to the comparison between determinism and non-
determinism in space-bounded Turing machines. We proved three variants of that the-
orem, one which elaborated directly on it and tightened its statement (Theorem 3.1),
and two more which extended this tightened statement to other combinations of
bounds for the relevant resources (Theorems 3.2 and 3.3).

Our arguments suggest a more general proof scheme, applicable not only in the
comparison between determinism and nondeterminism, but also in the comparison of
other modes of computation. As evidence for this generality, we stated without proof
a variant of the Berman-Lingas Theorem for the comparison between determinism
and alternation (Theorem 1.4). We expect that several theorems of this kind will
strengthen the connection between the size complexity of two-way finite automata
and the space complexity of Turing machines, for the benefit of both theories.

In light of our arguments, it would also be interesting to explore possible improve-
ments of the implication (7), the recent theorem of Geffert and Pighizzini from [4].
It is not hard to see that this can be strengthened by replacing its assumption that
L ⊇ NL with the weaker assumption that L/poly ⊇ NL. It is then likely that the con-
verse becomes true as well, but proving it appears not to be as straightforward.

References

1. Alberts, M.: Space complexity of alternating Turing machines. In: Proceedings of FCT, pp. 1–7
(1985)

2. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks, universal traversal
sequences, and the complexity of maze problems. In: Proceedings of FOCS, pp. 218–223 (1979)

3. Berman, P., Lingas, A.: On complexity of regular languages in terms of finite automata. Report 304,
Institute of Computer Science, Polish Academy of Sciences, Warsaw (1977)

4. Geffert, V., Pighizzini, G.: Two-way unary automata versus logarithmic space. Inf. Comput. 209(7),
1016–1025 (2011)

5. Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic unary automata into
simpler automata. Theor. Comput. Sci. 295, 189–203 (2003)

6. Hopcroft, J.E., Ullman, J.D.: Some results on tape-bounded Turing machines. J. ACM 16(1), 168–177
(1967)

7. Hromkovič, J., Schnitger, G.: Nondeterminism versus determinism for two-way finite automata: gen-
eralizations of Sipser’s separation. In: Proceedings of ICALP, pp. 439–451 (2003)

8. Ibarra, O.H., Ravikumar, B.: Sublogarithmic-space Turing machines, nonuniform space complexity,
and closure properties. Math. Syst. Theory 21, 1–17 (1988)

Theory Comput Syst (2014) 55:421–447 447

9. Kapoutsis, C.: Deterministic moles cannot solve liveness. J. Autom. Lang. Comb. 12(1–2), 215–235
(2007)

10. Kapoutsis, C.: Nondeterminism is essential in small 2FAs with few reversals. In: Proceedings of
ICALP, vol. 2, pp. 192–209 (2011)

11. Karp, R.M., Lipton, R.J.: Some connections between nonuniform and uniform complexity classes. In:
Proceedings of STOC, pp. 302–309 (1980)

12. Kuroda, S.: Classes of languages and linear-bounded automata. Inf. Control 7, 207–223 (1964)
13. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata. In: Proceedings

of STOC, pp. 275–286 (1978)
14. Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Com-

put. Syst. Sci. 4, 177–192 (1970)
15. Seiferas, J.I.: Untitled manuscript, communicated to M. Sipser (1973)
16. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM J. Res. Dev. 3,

198–200 (1959)
17. Stearns, R.E., Hartmanis, J., Lewis, P.M. II: Hierarchies of memory limited computations. In: Pro-

ceedings of SWCT, pp. 179–190 (1965)
18. Szepietowski, A.: If deterministic and nondeterministic space complexities are equal for log logn then

they are also equal for logn. In: Proceedings of STACS, pp. 251–255 (1989)

	Two-Way Automata Versus Logarithmic Space
	Abstract
	Introduction
	Size-Bounded Two-Way Finite Automata
	Space-Bounded Turing Machines
	Size-bounded 2fas Versus Space-Bounded tms

	Preparation
	Two-Way Finite Automata
	Turing Machines
	Reductions
	Two-Way Liveness

	The Berman-Lingas Theorem
	Conclusion
	References

