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Abstract We introduce a novel pricing and resource allocation approach for batch
jobs on cloud systems. In our economic model, users submit jobs with a value func-
tion that specifies willingness to pay as a function of job due dates. The cloud provider
in response allocates a subset of these jobs, taking into advantage the flexibility of al-
locating resources to jobs in the cloud environment. Focusing on social-welfare as
the system objective (especially relevant for private or in-house clouds), we construct
a resource allocation algorithm which provides a small approximation factor that ap-
proaches 2 as the number of servers increases. An appealing property of our scheme
is that jobs are allocated non-preemptively, i.e., jobs run in one shot without inter-
ruption. This property has practical significance, as it avoids significant network and
storage resources for checkpointing. Based on this algorithm, we then design an ef-
ficient truthful-in-expectation mechanism, which significantly improves the running
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complexity of black-box reduction mechanisms that can be applied to the problem,
thereby facilitating its implementation in real systems.

Keywords Mechanism design · Approximation algorithms · Cloud computing ·
Resource allocation · Scheduling algorithms

1 Introduction

Cloud computing offers easily accessible computing resources of variable size and
capabilities. This paradigm allows applications to rent computing resources and ser-
vices on-demand, benefiting from the allocation flexibility and the economy of scale
of large data centers.

Cloud computing providers, such as Amazon, Google and Microsoft, are offering
cloud hosting of user applications under a utility pricing model. The most common
purchasing options are pay-as-you-go (or on-demand) schemes, in which users pay
per-unit resource (e.g., a virtual machine) per-unit time (e.g., per hour). The advan-
tage of this pricing approach is in its simplicity, in the sense that users pay for the
resources they get. However, such an approach suffers from two shortcomings. First,
the user pays for computation as if it were a tangible commodity, rather than paying
for desired performance. To exemplify this point, consider a finance firm which has
to process the daily stock exchange data with a deadline of an hour before the next
trading day. Such a firm does not care about allocation of servers over time as long
as the job is finished by its due date. At the same time, the cloud can deliver higher
value to users by knowing the user-centric valuation for the limited resources being
contended for. This form of value-based scheduling, however, is not supported by
pay-as-you-go pricing. Second, current pricing schemes lack feedback signals that
prevent users from submitting unbounded amounts of work. Thus, users are not in-
centivized to respond to variations in resource demand and supply.

In this work, we propose a novel pricing model for cloud environments, which
focuses on quality rather than only quantity. Specifically, we incorporate the signif-
icance of the completion time of a job, rather than the exact number of servers that
the job gets at any given time. In our economic model, customers specify the overall
amount of resources (server or virtual machine hours) which they require for their
job, and how much they are willing to pay for these resources as a function of due
date. For example, a particular customer may specify that she needs a total of 1000
server hours, and is willing to pay $100 if she gets them by 5pm and $200 if she gets
them by 2pm. This framework is especially relevant for batch jobs (e.g., financial an-
alytics, image processing, search index updates) that are carried out until completion.
Under our scheme, the cloud determines the scheduling of the resources according to
given submitted jobs, the users’ willingness to pay and its own capacity constraints.
This entire approach raises fundamental mechanism design and incentive compatibil-
ity issues, as users may try to game the system by reporting false value, potentially
increasing their utility. Hence, any algorithmic solution has to self enforce the users
to report their true values (or willingness to pay) for the different job due dates.

Pricing in shared computing systems such as cloud computing can have diverse
objectives, such as maximizing profits, or optimizing system-related metrics (e.g.,
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delay or throughput). Our focus in this work is on maximizing the social welfare, i.e.,
the sum of users’ values. This objective is especially relevant for private or in-house
clouds, such as a government cloud, or enterprise computing clusters.

1.1 Our Results

We design an efficient truthful-in-expectation mechanism for a new scheduling prob-
lem, called the Bounded Flexible Scheduling (BFS) problem, which is directly mo-
tivated by the cloud computing paradigm. A cloud containing C servers receives a
set of job requests with heterogeneous demand and values per deadline (or due date),
where the objective is maximizing the social welfare, i.e., the sum of the values of
the scheduled jobs. The scheduling of a job is flexible, i.e., it can be allocated a dif-
ferent number of servers per time unit and in a possibly preemptive (non-contiguous)
manner, under parallelism thresholds. The parallelism threshold represents the job’s
limitations on parallelized execution. For every job j , we denote by kj the maximum
number of servers that can be allocated to job j in any given time unit. The maximal
parallelism thresholds across jobs, denoted by k, is assumed to be much smaller than
the cloud capacity C, as typical in practical settings.

No approximation algorithm is known for the BFS problem. When relaxing the
parallelism bounds on jobs, our model coincides with the problem of maximizing the
profit of preemptively scheduling jobs on a single server. Lawler [13] gives an opti-
mal solution in pseudo-polynomial time via dynamic programming to this problem,
implying an FPTAS for it. However, his algorithm cannot be extended to the case
where parallelization is bounded.

Our first result is an LP-based approximation algorithm for BFS that gives an
approximation factor of α � (1 + C

C−k
)(1 + ε) to the optimal social welfare for ev-

ery ε > 0. With the gap between k and C being large, the approximation factor ap-
proaches 2. The running time of the algorithm, apart from solving the linear program,
is polynomial in the number of jobs, the number of time slots and 1

ε
. The design of

the algorithm proceeds through several steps. We first consider the natural LP formu-
lation for the BFS problem. Unfortunately, this LP has a very large integrality gap.
Thus, we strengthen this LP by incorporating additional constraints that decrease the
integrality gap. We proceed by defining a reallocation algorithm that converts any so-
lution of the LP to a value-equivalent canonical form named MND, in which the num-
ber of servers allocated per job does not decrease over the execution period of the job.
Our approximation algorithm then decomposes the optimal solution, given in MND
form, to a relatively small number of feasible BFS solutions, with their average social
welfare being an α-approximation (thus, at least one of them is an α-approximation).
An appealing property of our scheme is that jobs are allocated non-preemptively, i.e.,
jobs run in one shot without interruption. This property has practical significance, as
it avoids significant network and storage resources for checkpointing the intermediate
state of jobs that are distributed across multiple servers running in parallel.

The approximation algorithm that we develop plays a key role in our construction
of an efficient truthful-in-expectation mechanism preserving the α-approximation.
To obtain this result, we slightly modify the approximation algorithm to get an exact
decomposition of an optimal fractional solution. This decomposition is then used to
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simulate (in expectation) a “fractional” VCG mechanism, which we prove to be truth-
ful. The main advantage of our mechanism is that the allocation rule requires only a
single execution of the approximation algorithm, whereas known black-box reduc-
tions that can be applied invoke the approximation algorithm many times, while pro-
viding only a polynomial bound on the number of invocations. At the end of Sect. 4,
we discuss the process of computing of the charged payments.

1.2 Related Work

We compare our results to known work in algorithmic mechanism design and
scheduling. An extensive amount of work has been carried out in these fields, start-
ing with the seminal paper of Nisan and Ronen [14] (see also [15] for a survey
book). Of relevance to our work are papers which introduce black-box schemes of
turning approximation algorithms to incentive compatible mechanisms, while main-
taining the approximation ratio of the algorithm. Specifically, Lavi and Swamy [11]
show how to construct a truthful-in-expectation mechanism for packing problems
that are solved through LP-based approximation algorithms. Dughmi and Roughgar-
den [8] prove that packing problems that have an FPTAS solution can be turned into
a truthful-in-expectation mechanism which is also an FPTAS. Recently, Chawla et al.
[7] disproved the existance of a general black-box reduction even when only requir-
ing truthfulness in expectation. Specifically, any such reduction cannot preserve the
worst-case approximation ratio of the algorithm within less than a superpolynomial
factor. On the other hand, existence of such general reductions have been found for a
weaker setting of Bayes-Nash equilibria [5, 9, 10]. We note that there are several pa-
pers that combine scheduling and mechanism design (e.g., [1, 12]), mostly focusing
on makespan minimization.

Scheduling has been a perpetual field of research in operations research and com-
puter science (see e.g., [3, 4, 6, 13, 16] and the references therein). Of specific rel-
evance to our work are [4, 16], which consider variations of the interval-scheduling
problem. These papers utilize a decomposition technique for their solutions, which
we extend to a more complex model in which the amount of resources allocated to a
job can change over time.

2 Definitions and Notation

In the Bounded Flexible Scheduling (BFS) problem, a cloud provider is in charge of
a cloud containing a fixed number of C servers. The cloud provider receives requests
from n clients, denoted by J = {1,2, . . . , n}, where each client has a job that needs to
be executed. We will often refer to a client either as a player or by the job belonging
to her. The cloud provider can choose to reject some of the job requests, for instance
if allocating other jobs increases its gain. In this model, the cloud can gain only by
fully completing a job. That is, partially completing a job is considered as if the job
hasn’t been processed and thus the cloud provider does not gain from it. We assume
that the time axis is divided into T discrete time slots T = {1,2, . . . , T }.

Every job j is described by a tuple 〈Dj, kj , vj 〉. The first parameter Dj , the de-
mand of job j , is the total amount of demand units required to complete the job,
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where a demand unit corresponds to a single server being assigned to the job for a
single time slot. Parallel execution of a job is allowed, that is, the job can be executed
on several servers in parallel. In this model we assume that the additional overhead
due to parallelism is negligible. However, parallel execution of a job is limited by a
threshold kj , which is the maximal number of servers that can be simultaneously as-
signed to job j in a single time slot. As C typically tends to hundreds of thousand of
servers, we assume that k � maxj {kj } is substantially smaller than the total capacity
C, i.e., k � C, as common in practical settings.

Let vj : T → R
+,0 be the valuation function of job j . That is, vj (t) is the value

gained by the owner of job j if job j is completed at time t . The goal is to maximize
the sum of values of the jobs that are scheduled by the cloud. Naturally, the valuation
function vj (t) can be assumed to be monotonically non-increasing in t . Nevertheless,
we will later discuss the case where this assumption is relaxed and vj is any general
function. Three families of valuation functions will be of specific interest to us:

• Deadline Valuation Functions: Here, players are interested only in their job being
completed until a particular deadline (due date). Formally, vj (t) is a step function,
which is equal to a constant scalar vj until the deadline dj , and 0 afterwards.

• General Monotone Valuation Functions: The functions vj (t) are arbitrary
monotonically non-increasing functions.

• General Valuation Functions: The functions vj (t) are arbitrary functions.

For simplicity of notation, when discussing the case of general (monotone) valuation
functions, we will set dj = T for every player. Define Tj = {t ∈ T : t ≤ dj } as the set
of time slots in which job j can be executed and Jt = {j ∈ J : t ≤ dj } as the set of
jobs that can be executed at time t .

A mapping yj : Tj → [0, kj ] is an assignment of servers to job j per time unit,
which does not violate the parallelism threshold kj .1 A mapping which fully ex-
ecutes job j is called an allocation. Formally, an allocation aj : Tj → [0, kj ] is
a mapping for job j with

∑
t aj (t) = Dj . Denote by Aj the set of allocations aj

which fully execute job j and let A = ⋃n
j=1 Aj . Let s(yj ) = min{t : yj (t) > 0} and

e(yj ) = max{t : yj (t) > 0} denote the start and end times of a mapping yj , respec-
tively. Specifically, for an allocation aj , e(aj ) is the time in which job j is completed
when the job is allocated according to aj , and vj (e(aj )) is the value gained by the
owner of job j . We will often use vj (aj ) instead of vj (e(aj )) to shorten notations.

3 Approximation Algorithm for BFS

In this section we present an algorithm for BFS that approximates the social welfare,
i.e., the sum of values gained by the players. When discussing the approximation
algorithm, we assume that players bid truthfully. In Sect. 4, we describe a payment

1For tractability, we assume that the assignment yj is a continuous decision variable. In practice, non-
integer allocations will have to be translated to integer ones, for example by processor sharing within each
time interval. The precise ways of how to implement such techniques are beyond the scope of the present
paper.
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scheme that gives players an incentive to bid truthfully. We begin this section by de-
scribing an LP relaxation for the case of deadline valuation functions and continue
by presenting a canonical solution form in which all mappings are Monotonically
Non Decreasing (MND) mappings, defined later. This result is then generalized for
general valuation functions (Sect. 3.3). We also show that the case of general valu-
ation functions can be reduced to the case of general monotone valuation functions
(Sect. 3.4). Finally, we give a decomposition algorithm (Sect. 3.5) which yields an
α-approximation to the optimal social welfare of BFS.

3.1 LP Relaxation of BFS with Deadline Valuation Functions

Consider the following IP. Every variable yj (t) for t ∈ Tj in (IP) denotes the number
of servers assigned to j at time t . We use yj to denote the mapping induced by the
variables {yj (t)}t∈Tj

and xj as a binary variable indicating whether job j has been
fully allocated or not at all.

(IP) max
n∑

j=1

vjxj

s.t.
∑

t∈Tj

yj (t) = Dj · xj ∀j ∈ J (1)

∑

j∈Jt

yj (t) ≤ C ∀t ∈ T (2)

0 ≤ yj (t) ≤ kj ∀j ∈ J , t ∈ Tj (3)

xj ∈ {0,1} ∀j ∈ J (4)

Constraints (1), (2) and (3) are job demand, capacity and parallelization constraints.
We first relax the constraints xj ∈ {0,1} to:

0 ≤ xj ≤ 1 ∀j ∈ J (5)

The integrality gap of the resulting linear program can be as high as Ω(n). To see
this, consider the following instance: There are nC jobs with kj = 1 for every job
j which are divided into n sets S0, . . . , Sn−1, each of size C. A job j ∈ Si requests
Dj = 2i demand units which need to be completed before time 2i . Formally, vj = 1
and dj = 2i . An optimal integral solution can gain at most C, since any completed
job must receive a demand unit at time t = 1. Yet, the optimal fractional solution
gains C + C·(n−1)

2 by mapping the jobs as follows (see Fig. 1): For jobs j ∈ S0 we set
yj (1) = 1, thus completing them fully. For jobs j ∈ Si with i ≥ 1, we set yj (t) = 1
for t ∈ (2i−1,2i] and yj (t) = 0 otherwise, and by that completing half of job j before
t = 2i .

Thus, we add the following set of constraints to the linear program:

yj (t) ≤ kjxj ∀j ∈ J , t ∈ Tj (6)
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Fig. 1 A fractional solution
verifying the integrality gap of
the natural relaxation of (IP)

Notice that every feasible solution to BFS satisfies the new set of constraints (6).
Hence, the linear program remains a relaxed formulation of BFS, even after the new
set of constraints (6). We describe the motivation behind these constraints. Recall
that unless a job is fully completed, it is does not contribute any value to the social
welfare of a scheduling algorithm for BFS. On the other hand, in order to find an
optimal fractional solution, we solve a relaxed scheduling problem, in which partial
execution of jobs is permitted and profitable. For a scheduling algorithm to utilize
the obtained optimal fractional solution, the algorithm must somehow derive feasible
allocations, in which jobs are fully completed, from the optimal fractional solution.
Consider some mapping yj of job j that only provides a fraction xj < 1 of the full
resource demand Dj of the job. A natural way of transforming yj into a feasible allo-
cation would be to multiply each of its entries by 1/xj . While this process guarantees
that the job is fully completed, we might violate the parallelism constraint of job j .
Intuitively, the gap decreasing constraints (6) prevent us from getting bad mappings.
For instance, consider the example which realizes the lower bound of Ω(n) on the
integrality gap of the first relaxed formulation. The mappings of jobs j ∈ Si for i ≥ 1
violate constraints of type (6), since for t ∈ (2i−1,2i] we have yj (t) = 1 yet xj = 1

2 .

Note 1 Henceforth, we refer to (LP-D) as the relaxed linear program of (IP), in which
(4) is replaced with (5) and (6) is added.

The integrality gap of (LP-D) is at least C
C−k

. To see this, consider a BFS instance
with n jobs, T = 1 and C = kn − δ for some k and some small δ > 0. For every
job j set Dj = kj = k, vj = 1 and dj =1. Any BFS solution can schedule at most
n − 1 jobs. Yet, an optimal fractional solution to (LP-D) can fully allocate n − 1 jobs
and fractionally allocate a (1 − δ

k
)-fraction of the last job, gaining n − δ

k
. Thus, the

integrality gap is bounded below by:

n − δ
k

n − 1
= kn − δ

kn − k
= C

C − k + δ
(7)

This bound approaches C
C−k

as δ decreases.
In the appendix we present further insights on the choice of (6), by considering

an alternative formulation of BFS as a configuration LP and showing its equivalence
to (LP-D). In fact, (LP-D) can be viewed as an efficient way of implementing the
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Reallocate(y)
1. While y contains non-MND mappings

1.1. Let j be a job generating a maximal(a, b)-violation according to 
.
1.2. ReallocationStep(y, j, a, b)

ReallocationStep(y, j, a, b)
1. Let j ′ be a job such that yj ′(a) < yj ′(b)

2. Tmax = {t ∈ [a, b] : yj ′(t) = yj ′(b)}
3. δ = max{yj ′(t) : t ∈ [a, b] \ Tmax}
4. Δ = min{ yj (a)−yj (b)

1+|Tmax| ,
yj ′ (b)−yj ′ (a)

1+|Tmax| , yj ′(b) − δ}
5. Reallocate as follows:

5.1. yj ′(t) ← yj ′(t) − Δ for every t ∈ Tmax
5.2. yj ′(a) ← yj ′(a) + Δ · |Tmax|
5.3. yj (a) ← yj (a) − Δ · |Tmax|
5.4. yj (t) ← yj (t) + Δ for every t ∈ Tmax

configuration LP. The remainder of this section is dedicated to constructing an ap-
proximation algorithm which gives an upper bound to the integrality gap of:

inf

{(

1 + C

C − k

)

(1 + ε) : ε > 0

}

= 1 + C

C − k
(8)

3.2 The Canonical MND Form

We now present a canonical solution form of solutions for (LP-D), in which all of the
mappings are monotonically non decreasing (defined next). This canonical form will
allow us to construct an approximation algorithm for BFS with a good approximation
factor.

Definition 1 A monotonically non-decreasing (MND) mapping (allocation) yj :
Tj → [0, kj ] is a mapping (allocation) which is monotonically non-decreasing in
the interval [s(yj ), e(yj )].

MND mappings propose implementational advantages, such as the allocation al-
gorithm being non-preemptive, as well as theoretical advantages which will allow us
to construct a good approximation algorithm for BFS. We first present the main result
of this subsection:

Theorem 1 There is a poly(n,T ) time algorithm that transforms any feasible solu-
tion y of (LP-D) to an equivalent solution that obtains the same social welfare as y,
in which all mappings are MND mappings.

This theorem is a result of the following reallocation algorithm. Let y be a feasi-
ble solution to (LP-D). To simplify arguments, we add additional “idle” jobs of unit
demand and no value, which are allocated whenever there are free servers. This al-
lows us to assume without loss of generality that in every time slot, all C servers
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are in use. We present a reallocation algorithm that transforms the mappings in y to
MND mappings. The reallocation algorithm will swap between assignments of jobs
to servers, without changing the completed fraction of every job (xj ), such that no
completion time of a job will be delayed. Since the valuation functions are deadline
valuation functions, the social welfare of the resulting solution will be equal to the
social welfare matching y. Specifically, an optimal solution to (LP-D) will remain
optimal.

We introduce some definitions and notations prior to the description of the reallo-
cation algorithm. Denote by Ay(t) = {j : yj (t) > 0} the set of jobs active at time t

in y.

Definition 2 A job j ∈ Ay(b) generates an (a, b)-violation if a < b and yj (a) >

yj (b). Violations are weakly ordered according to a binary relation 
 over T × T ,
such that:

(a, b) 
 (
a′, b′) ⇔ b < b′ or

(
b = b′) ∧ (

a ≤ a′) (9)

Note that there can be several maximal pairs (a, b) according to 
.
Given a solution y to (LP-D), our goal is to eliminate all (a, b)-violations in y

and consequently remain with only MND mappings, keeping y a feasible solution to
(LP-D). The reallocation algorithm works as follows: In every step we try to eliminate
one of the maximal (a, b)-violations, according to the order induced by 
. Let j be
the job generating this maximal (a, b)-violation. The main observation is that there
must be some job j ′ with yj ′(a) < yj ′(b), since in every time slot all C servers are in
use. We apply a reallocation step, which tries to eliminate this violation by shifting
workload of job j from a to later time slots (b in particular), and by doing the opposite
to j ′. To be precise, we increase yj in time slots in Tmax (line 2) by a value Δ > 0
(line 4), and increase yj ′(a) by the amount we decreased from other variables. We
note that if we do not decrease yj ′ for all time slots in Tmax, we will generate (ã, b)-
violations for a < ã and therefore the reallocation algorithm may not stop. See Fig. 2
for an example of a reallocation step.

We choose Δ such that after calling the reallocation step either: (1) yj (a) = yj (b).
(2) yj ′(a) = yj ′(b). (3) The size of Tmax increases. In the second case, if the
(a, b)-violation hasn’t been resolved, there must be a different job j ′′ ∈ Ay(b) with
yj ′′(a) < yj ′′(b), and therefore we can call the reallocation step again. In the third
case, we simply expand Tmax and recalculate Δ. The reallocation algorithm repeat-
edly applies the reallocation step, choosing the maximal (a, b)-violation under 
,
until all mappings become MND mappings. The following claim guarantees the cor-
rectness of the reallocation algorithm.

Claim Let y be a feasible solution of (LP-D) and let j be a job generat-
ing a maximal (a, b)-violation over 
. Denote by ỹ the vector y after calling
ReallocationStep(y, j, a, b) and let (ã, b̃) be the maximal violation in ỹ over 
.
Then:

1. ỹ is a feasible solution of (LP-D).
2. (ã, b̃) 
 (a, b).
3. No new (a, b)-violations are added to ỹ.
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Fig. 2 Resolving an (a, b)-violation generated by j

Proof Denote by yj , ỹj the mappings of j before and after the reallocation step,
and denote yj ′ , ỹj ′ similarly. By the choice of (a, b), for every t ∈ (a, b] there is no
(t, b)-violation and thus:

∀t ∈ (a, b] yj (t) ≤ yj (b) (10)

∀t ∈ (a, b] yj ′(t) ≤ yj ′(b) (11)

By the construction of the reallocation step, since we reduce yj ′ by Δ for every time
slot in Tmax and halt when one of the strong inequalities reach equality or when the
size of Tmax increases, we have:

∀t ∈ [a, b] ỹj (t) ≤ ỹj (a) (12)

∀t ∈ [a, b] ỹj ′(t) ≤ ỹj ′(b) (13)

since by the choice of Δ, for every t ∈ Tmax we have yj (t) + Δ ≤ yj (a) − Δ|Tmax|
(and similarly for (13)). Notice that no constraint of (LP-D) is violated by ỹ: the real-
location algorithm keeps xj , xj ′ fixed, therefore no demand constraint (1) is violated;
the allocated workload at every time unit remains the same, and the reallocation al-
gorithm only decreases yj (a) and yj ′(b). This proves 1, since the initial solution y is
feasible.

By the maximality of (a, b) and since yj (a), yj ′(b) are upper bounds on the entries
of ỹj , ỹj ′ in [a, b], we couldn’t have created any (ã, b̃)-violation for b < b̃. Consider
the second type of violations which might have been caused, i.e., an (ã, b)-violation
for ã > a. By (13), j ′ does not generate such a violation. Since b ∈ Tmax and by (10),
the same goes for j , proving 2 and 3. �

The reallocation algorithm converges in poly(n,T ) time. In each iteration, we
resolve the maximal (a, b)-violation after at most nT calls to the reallocation step. By
the claim proved in this section, the maximal violation strictly decreases. Since the
maximal number of possible violations is bounded by O(nT 2), the overall running
time of the reallocation algorithm is polynomial in n and T .

Note 2 The running time of our algorithms depend on T . Since the output size is
Θ(nT ), our algorithms are polynomial in the size of the output.
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3.3 From Deadline Valuation Functions to General Valuation Functions

In this section, we extend our linear program relaxation to accommodate general val-
uation functions. The main difficulty here is how to provide a proper formulation of
the objective function, that is, maximizing social welfare. Deadline valuation func-
tions are simple to handle, since the value vj gained from completing any job j is
fixed, regardless of the job completion time. The job completion time e(yj ) is not
explicitly required in the formulation: deadlines are implicitly imposed by prevent-
ing resources from being allocated to jobs after their deadlines; specifically, the LP
relaxation does not hold variables yj (t) for time slots later than the job deadline dj .
Avoiding the use of e(yj ) in the LP formulation is essential, since it cannot be explic-
itly used in a linear program: the completion time, which is the maximal t for which
yj (t) > 0, cannot be derived by a set of linear constraints. Whereas for deadline val-
uation functions the use of e(yj ) could be avoided, the more general case requires
knowledge of the actual job completion time.

Our solution for general valuation functions makes use of deadline valuation func-
tions, for which we know how to formulate the objective function of maximizing so-
cial welfare. The main idea is to decompose every general valuation function vj (t)

into T deadline valuation functions, one per possible completion time. Formally, ev-
ery player j will be represented by T virtual sub-players j1, j2, . . . , jT , where each
subplayer je represents a copy of player j that has a deadline valuation function with
deadline de

j = e and corresponding value of ve
j = vj (e). The LP relaxation may allo-

cate resources to any subplayer, as long as the total amount of resources allocated to
all subplayers of player j does not exceed Dj . The parallelism bound of each sub-
player remains kj . The modified linear program (LP) for general valuation functions
is given below:

(LP) max
n∑

j=1

∑

e∈T
ve
j x

e
j

s.t.
∑

t≤de
j

ye
j (t) = Dj · xe

j ∀je (14)

∑

je

ye
j (t) ≤ C ∀t ∈ T (15)

∑

e∈Tj

xe
j ≤ 1 ∀j ∈ J (16)

ye
j (t) ≤ kjx

e
j ∀je, t ≤ de

j (17)

ye
j (t) ≥ 0 ∀je, t ≤ de

j (18)

The new constraint (16) guarantees that the total amount of resources allocated to
subplayers of each player j does not exceed Dj . We claim that (LP) is a relaxed
formulation of BFS with general valuation functions. To see this, consider a feasible
solution to BFS where every scheduled job j is allocated according to an allocation
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aj . We can easily translate this solution into a feasible solution to (LP): the allocation
aj corresponds to a subplayer je(aj ) having a deadline e(aj ). The value gained by
this subplayer is exactly vj (e(aj )), which is exactly the value gained from job j in
the feasible solution to BFS.

Consider an optimal fractional solution to (LP). We can assume without loss of
generality that all of the resource mappings in this solution are MND. This is true,
since we can apply the reallocation algorithm without violating any constraint. As
a result, the mapping corresponding to each subplayer in the system will be MND.
This will be useful in Sect. 3.5, where we will show how to decompose an optimal
fractional solution into a set of feasible BFS solutions.

Before continuing with the construction of the scheduling algorithm, notice that
we did not assume at any point of the discussion that the valuation functions were
monotonically non-increasing. This is a natural assumption in practice. However,
this can potentially invalidate our claim that (LP) is a relaxed formulation of BFS.
An optimal fractional solution to (LP) can mach an allocation aj to a subplayer je

with e > e(aj ) and v(e) > v(e(aj )) and gain increased value. In the next subsection,
we show that we can assume that without loss of generality, all valuation functions are
monotonically non-increasing; specifically, a scenario as described in this paragraph
is unlikable.

Note 3 The algorithms we construct in the following subsections refer to (LP), the
relaxed linear program for general valuation functions after adding constraint (16),
instead of (LP-D). Specifically, the decomposition algorithm described in Sect. 3.5
works on a optimal fractional solution for (LP). The linear programming relaxation
(LP-D) for deadline valuation functions can be obtained directly from (LP) by view-
ing each player as having a single subplayer jdj (making (16) redundant).

3.4 Non-monotone Valuation Functions

Even though in natural settings valuation functions are monotonically non-increasing,
as the value gained by users from their job being completed usually decreases over
time, we show that this assumption is not mandatory. We reduce the case of general
valuation functions to the former setting, where the valuation functions are monoton-
ically non-increasing. Practically speaking, if a job is completed in some time t with
the valuation function receiving a higher value at a time later than t , we can simply
delay the job until that time. For the sake of completeness, we show that both models
are equivalent from a theoretical perspective.

Every non-monotone valuation function vj will be lifted to an equivalent valuation
function, breaking non-monotonicity violations of the original valuation function.
Formally, we substitute every valuation function vj with a new valuation function v̄j

defined as follows:

v̄j (t) = max
t ′≥t

{
vj

(
t ′
)}

(19)

Recall that the value gained by a user allocated according to an allocation aj is de-
fined by the latest time slot in which j is allocated, that is, vj (aj ) = vj (e(aj )). Let ȳ

be a vector of mappings obtained by solving (LP) with the valuation functions v̄j . We
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Coloring Algorithm(S )
1. Sort the MND allocations a ∈ S according to e(a) in descending order.
2. For every MND allocation a in this order

2.1 Color a in some color c such that c remains a feasible integral solution.

show how to transform it into a value-equivalent vector under the original valuation
functions vj . As in Sect. 3.2, we simplify arguments by adding an “idle” job which
is allocated in all of the free spaces, thus we assume that the capacity is full in every
time slot.

Consider some mapping ȳj (or equivalently, a mapping matching a subplayer je)
such that vj (ȳj ) < v̄j (ȳj ). Let t = e(ȳj ) and let:

t̄ = arg max
t ′≥t

{
vj

(
t ′
)}

(20)

Rewriting the assumption, we get vj (t) < vj (t̄). By the definition of t , ȳj (t) >

ȳj (t̄) = 0. Hence, since the capacity is full in every time slot, there must be some
job j ′ with ȳj ′(t) < ȳj ′(t̄) ≤ kj ′ . Let δ > 0 be a small enough value. We decrease
both ȳj (t) and ȳj ′(t̄) by δ and increase ȳj (t̄) and ȳj ′(t) by δ. Notice that we can
choose a small enough value δ such that no parallelization bound is violated and the
end time of j ′ does not change. Reapplying this step gives us the desired reduction.

3.5 Decomposing an Optimal MND Fractional Solution

The approximation algorithm presented in this section constructs a set of feasible
solutions to BFS out of a fractional optimal solution to (LP) given in the canonical
MND form. The algorithm is similar to the coloring algorithm used in [4, 16] for the
weighted job interval scheduling problem. The first step of the algorithm constructs
a multiset S ⊂ ⋃n

j=1 Aj of allocations out of an optimal fractional solution given in
MND form and then divides the allocations in S into a set of feasible solutions to
BFS.

Step I: Construction of S Let N be a large number to be determined later. Consider
a job j which is substituted by a set of subplayers j1, j2, . . . , jT (or a single sub-
player jdj for the case of deadline valuation functions). Let y be an optimal solution
of (LP) after applying the reallocation algorithm. For every subplayer je, let ae

j be
the allocation corresponding to ye

j , defined as follows:

ae
j (t) = ye

j (t)

xe
j

∀t ∈ Tj (21)

Note that ae
j is an allocation by the definition of xe

j and by (6). We construct S as
follows: Let x̄e

j denote the value xe
j rounded up to the nearest integer multiplication

of 1
N

. For every subplayer je , we add Nx̄e
j copies of ae

j to S .
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Step II: Coloring Allocations The coloring algorithm (described above) colors
copies of MND allocations in S such that any set of allocations with identical color
will induce a feasible integral solution to BFS. Let 1,2, . . . ,COL denote the set of
colors used by the coloring algorithm. We use a ∈ c to represent that an allocation a

is colored in color c. Given a color c, let c(t) = ∑
a∈c a(t) denote the total load of

MND allocations colored in c at time t . The following two claims prove that the num-
ber of colors used is relatively small. This allows us to construct an α-approximation
algorithm in Theorem 2.

Claim Consider an iteration after some allocation a ∈ S is colored. Then, for every
color c, c(t) is monotonically non-decreasing in the range [1, e(a)].

Proof By induction. Initially, ∀t, c(t) = 0 for every color c. Consider an iteration
where a is colored. By the induction hypothesis, c(t) is monotonically non decreas-
ing for every color c in the range [1, e(a)] (the induction hypothesis guarantees that
c(t) is monotonically non decreasing for a possibly larger range, since we color al-
locations in decreasing order of e(·)). Since a is an MND allocation, coloring a with
some color c keeps c(t) non decreasing in [1, e(a)]. �

Claim The coloring algorithm succeeds when:

COL = N ·
(

1 + C

C − k

)(

1 + nT

N

)

(22)

Proof Consider an iteration of the coloring algorithm where some allocation a ∈
Aj of a job j is colored. It is enough to show that there is an available color in
which we can color the allocation a. A color c may be unavailable due to one of the
following reasons: (1) the color c has already been used to color an allocation of j

considered earlier throughout the algorithm, i.e., an allocation in S ∩ Aj ; (2) coloring
a in color c violates the capacity constraint of color c. It remains to bound the number
of unavailable colors of both types.

Consider first type (1). Recall that for every allocation corresponding to subplayer
je we add N · x̄e

j copies of ae
j to Aj , and that x̄e

j ≤ xe
j + 1/N . Using constraint (16),

we get that the total number of colors used to color allocations of j other than a is at
most:

N ·
∑

e

x̄e
j − 1 ≤ N ·

∑

e

(

xe
j + 1

N

)

≤ N ·
(

1 + T

N

)

(23)

where the last inequality follows since each player has T subplayers.
Now, consider a color c belonging to type (2). By the monotonicity of both c(t)

and a, we must have c(e(a)) ≥ C − kj ≥ C − k. The total workload of instances in S
at any time t is at most:

N ·
∑

je

ae
j (t) · x̄e

j ≤ N ·
∑

je

ae
j (t) ·

(

xe
j + 1

N

)

(24)
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≤ N ·
∑

je

ae
j (t) · xe

j + N ·
∑

je

ae
j (t) · 1

N
(25)

≤ CN + knT (26)

≤ CN ·
(

1 + nT

N

)

. (27)

Inequality (25) follows since the left summation represents the total workload at time
t in the optimal fractional solution, which is exactly C; the right summation can be
bounded using ae

j (t) ≤ k for every subplayer je and time t . Thus, the number of

colors in which a cannot be colored due to capacity constraints is at most CN
C−k

(1 +
nT
N

). �

Theorem 2 There is a poly(n,T , 1
ε
) time approximation algorithm that given an op-

timal solution to (LP) returns an

α �
(

1 + C

C − k

)

(1 + ε) (28)

approximation to the BFS problem for every ε > 0.

Proof Let y∗ be an optimal solution of (LP) after applying the reallocation algorithm
and let OPT∗ be the optimal social welfare matching y∗. We construct a multiset S as
described in Step I and decompose S into COL solutions for BFS according to Step
II, with a total value of:

N ·
∑

je

vj

(
ae
j

) · x̄e
j ≥ N · OPT∗ (29)

Set N = nT
ε

(and therefore COL = Nα). The running time of the coloring algorithm
is polynomially bounded by n,N,T and thus polynomially bounded by n,T , 1

ε
. The

algorithm will allocate jobs according to the allocations colored by the best color c,
in terms of social welfare. Denote by Alg the social welfare gained by this algorithm.
Since:

Alg ≥ N · OPT∗

COL
= OPT∗

α
(30)

We get an α-approximation. We note that for deadline valuation functions, by apply-
ing similar arguments to the ones given in the proof of (22), we can show that taking
N = n

ε
suffices. �

4 Truthfulness-in-Expectation

Up until now we have assumed that players report their true valuation functions to the
cloud provider and that prices are charged accordingly. However, in reality, players
may choose to untruthfully report a valuation function bj which differs from their
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true valuation function vj if they may gain from it. In this section, we construct an
efficient mechanism that charges costs from players such that reporting their valuation
function untruthfully cannot benefit them. Unlike known black-box reductions for
constructing such mechanisms, our construction calls the approximation algorithm
only once, significantly improving the complexity of the mechanism.

We begin by introducing the common terminology used in mechanism design. Ev-
ery participating player chooses a type out of a known type space. In our model, play-
ers choose a valuation function vj out of the set of monotonically non-increasing val-
uation functions (or deadline valuation functions) to represent their true type. Denote
by Vj the set of types from which player j can choose and let V = V1 ×· · ·×Vn. For
a vector v, denote by v−j the vector v restricted to entries of players other than j and
denote V−j accordingly. Define O as the set of all possible outcomes of the mecha-
nism and let vj (o) for o ∈ O represents the value gained by player j under outcome o.
A mechanism M = (f,p) consists of an allocation rule f : V → O and a pricing rule
pj : V → R for each player j . Players report a bid type bj ∈ Vj to the mechanism,
which can be different from their true type vj . The mechanism, given a reported type
vector b = (b1, . . . , bn) computes an outcome o = f (b) and charges pj (b) from each
player. Each player strives to maximize its utility: uj (b) = vj (oj ) − pj (b), where oj

in our model is the allocation according to which job j is allocated, if at all. Mech-
anisms such as this, where the valuation function does not consist of a single scalar
are called multi-parameter mechanisms. Our goal is to construct a multi-parameter
mechanism where players benefit by declaring their true type. Another desired prop-
erty is that players do not lose when truthfully reporting their values.

Definition 3 A deterministic mechanism is truthful if for any player j , reporting its
true type maximizes uj (b). That is, given any bid bj ∈ Vj and any v−j ∈ V−j , we
have:

uj

(
(vj , v−j )

) ≥ uj

(
(bj , v−j )

)
(31)

where vj ∈ Vj is the true type of player j . A randomized mechanism is truthful-in-
expectation if for any player j , reporting its true type maximizes the expected value
of uj (b). That is, (31) holds in expectation.

Definition 4 A mechanism is individually rational (IR) if uj (v) does not receive
negative values when player j bids truthfully, for every j and v−j ∈ V−j .

4.1 The Fractional VCG Mechanism

We start by giving a truthful, individually rational mechanism that can return a frac-
tional feasible allocation, that is, allocate fractions of jobs according to (LP). Con-
sider the following fractional mechanism:

1. Given reported types bj : T → R
+,0, Solve (LP) and get an optimal solution y∗.

Let o ∈ O be the outcome matching y∗ and let OPT∗ be the social welfare when
jobs are allocated according to y∗.

2. Charge pj (b) = hj (o−j ) − ∑
i �=j bi(oi) from every player j , where hj is any

function independent of oj .
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This is the well known VCG mechanism. Recall that (LP) maximizes the social wel-
fare, i.e., the sum of values gained by all players. Players gain gj (v) = OPT∗ −
hj (o−j ) by bidding truthfully and therefore the mechanism is optimal, since deviat-
ing can only decrease

∑
i vi(o). Note that by dividing both valuation functions and

charged prices by some constant, the fractional VCG mechanism remains truthful.
This will be useful later on. Individual rationality of the fractional VCG mechanism
is obtained by setting the functions hj according to Clarke’s pivot rule [15].

4.2 A New Efficient Truthful-in-Expectation Mechanism

Lavi and Swamy [11] give a black-box reduction for combinatorial auction pack-
ing problems from constructing a truthful-in-expectation mechanism to finding an
approximation algorithm that verifies an integrality gap of the “natural” LP for the
problem. Their reduction finds an exact decomposition of the optimal fractional solu-
tion (scaled down by some constant β) into a distribution over feasible integer solu-
tions. By sampling a solution out of this distribution and charging payments accord-
ing to the fractional VCG mechanism (scaled down by β), they obtain truthfulness-
in-expectation. The downside of the reduction given in [11] is that the approximation
algorithm A is used as a separation oracle for an additional linear program used as
part of the reduction, making their construction inefficient. We follow along the lines
of [11] in order to construct a truthful-in-expectation mechanism for the BFS prob-
lem, and show how to achieve the same results as [11] by calling our approximation
algorithm once.

Recall that the algorithm from Theorem 2 constructs a set of feasible solutions to
BFS out of an optimal solution to LP. Ideally, we would have wanted to replace the
exact decomposition found by [11] with the output of our decomposition algorithm
(by drawing one of the colors uniformly). However, this does not work since our
decomposition is not an exact one, because the values xe

j have been rounded up to x̄e
j

prior to the construction of S .
To overcome this issue, we use a simple alternative technique to round the entries

in x to integer multiplications of 1
N

. We construct a vector x̃ such that E[x̃e
j ] = xe

j for

every subplayer je, as follows: Assume that xe
j = q

N
+ r for q ∈ N and 0 ≤ r < 1

N
.

Then, set x̃e
j = q+1

N
with probability N · r and x̃e

j = q
N

otherwise. Note that E[x̃e
j ] =

xe
j as required. Now, we construct S out of x̃ and call the coloring algorithm. By uni-

formly drawing one of the colors c and scheduling jobs according to the allocations
colored in c, we obtain an expected welfare of: E[ N

COL

∑
je vj x̃

e
j ] = OPT∗

α
. By charg-

ing fractional VCG prices, scaled down by α, we obtain truthfulness-in-expectation.
Notice that this mechanism is not individually rational, since unallocated jobs may
be charged. Lavi and Swamy [11] solve this problem by showing how to modify the
pricing rule so that the mechanism will be individually rational. Notice that the num-
ber of colors used by the coloring algorithm must always be COL, even though it is an
upper bound on the number of colors needed. Otherwise, players might benefit from
reporting their valuation functions untruthfully by effecting the number of solutions.

Theorem 3 There is a truthful-in-expectation, individually rational mechanism for
BFS that provides an expected α-approximation of the optimal social welfare.
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Finally, we discuss the process of computing the payments pj (b). Note that to
directly calculate the payments charged by VCG, one must solve a linear program for
every player j . It is possible to construct a much more efficient mechanism: Babaioff
et al. [2] describe an implicit pricing scheme that requires only a single invocation of
the approximation algorithm to construct both an allocation rule and pricing rules of
a truthful-in-expectation mechanism. This result can be plugged into our mechanism,
thus decreasing the number of calls to our approximation algorithm to one. However,
their scheme induces a mechanism that is only individually rational in expectation
(specifically, it may charge negative prices) and causes a multiplicative (constant)
loss to social welfare. To conclude, a truthful-in-expectation mechanism requiring a
single call to the approximation algorithm exists, however it not being rational makes
it unpractical.

Appendix: The Configuration LP: A Different View of the LP Formulation

We present further insights on the choice of (6). An alternative formulation of BFS
is its representation as a configuration LP. For every job j and every allocation aj ∈
Aj we have a variable zj (aj ) representing whether job j has been fully allocated
according to aj or not. The configuration LP is defined as follows:

max
n∑

j=1

∑

aj ∈Aj

vj · zj (aj ) (CONF-LP-D)

s.t.
∑

aj ∈Aj

zj (aj ) ≤ 1 ∀j ∈ J

∑

j :t≤dj

∑

aj ∈Aj

aj (t) · zj (aj ) ≤ C ∀t ∈ T

zj (aj ) ≥ 0 ∀j ∈ J , aj ∈ Aj

The first constraints allow us to choose at most one allocation per job and the
second constraints are capacity constraints. Note that since allocations are defined
over the reals, the number of allocations in a set Aj is uncountable. However, the
following proposition shows that (LP-D), is actually an efficient representation of
(CONF-LP-D).

Proposition 1 The optimal values of fractional social welfare of (LP-D) and (CONF-
LP-D) are equal.

Proof Consider a solution y of the relaxed linear program and recall that xj =
1

Dj

∑
t yj (t). For every job j we construct an allocation aj matching the values

{yj (t)} by setting: aj (t) = yj (t)

xj
. This gives us a feasible allocation, since

∑
t aj (t) =

Dj and aj (t) ≤ kj for every t ∈ Tj by (6). Now, set zj (aj ) = xj and zj (a) = 0 for
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every a ∈ Aj \ {aj }. It is easy to see that z is a feasible solution of the configuration
LP.

In the opposite direction, consider a solution z of the configuration LP. Define for
every t ∈ Tj :

aj (t) =
∑

a∈Aj
zj (a) · a(t)

xj

where xj = ∑
a∈Aj

zj (a). Notice that aj is a feasible allocation, since aj (t) ≤ kj for
every t ∈ Tj and since:

∑

t∈Tj

aj (t) =
∑

t∈Tj

∑
a∈Aj

zj (a) · a(t)

xj

=
∑

a∈Aj
zj (a) · ∑t∈Tj

a(t)

xj

= Dj

By the definition of aj , the total capacity taken by aj is identical to the capacity
taken by allocations according to z. Moreover, the contribution of aj to the objective
function is the sum of contributions by allocations in Aj . To conclude, we translate
aj to its matching vector yj by setting yj (t) = aj (t) · xj for every t ∈ Tj . �
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