
Theory Comput Syst (2014) 55:658–684
DOI 10.1007/s00224-012-9438-8

Playing Mastermind with Constant-Size Memory

Benjamin Doerr · Carola Winzen

Published online: 11 November 2012
© Springer Science+Business Media New York 2012

Abstract We analyze the classic board game of Mastermind with n holes and a
constant number of colors. The classic result of Chvátal (Combinatorica 3:325–329,
1983) states that the codebreaker can find the secret code with Θ(n/ logn) questions.
We show that this bound remains valid if the codebreaker may only store a constant
number of guesses and answers. In addition to an intrinsic interest in this question,
our result also disproves a conjecture of Droste, Jansen, and Wegener (Theory Com-
put. Syst. 39:525–544, 2006) on the memory-restricted black-box complexity of the
OneMax function class.

Keywords Mastermind · Query complexity · Memory-restricted algorithms

1 Introduction

The original Mastermind game is a board game for two players invented in the sev-
enties by Mordecai Meirowitz. It has pegs of six different colors. The goal of the
codebreaker, for brevity called Paul here, is to find a color combination made up by
the codemaker, called Carole in the following. He does so by guessing color combi-
nations and receiving information on how close his guess is to Carole’s secret code.
Paul’s aim is to use as few guesses as possible.

For a more precise description, let us call the colors 1 to 6. Write [n] := {1, . . . , n}
for any n ∈ N. Carole’s secret code is a length-4 string of colors, that is, a z ∈ [6]4.
In each iteration, Paul guesses a string x ∈ [6]4 and Carole replies with a pair
(eq(z, x),π(z, x)) of numbers. The first number, eq(z, x), which is usually indi-
cated by black answer-pegs, is the number of positions in which Paul’s and Carole’s

This is the full version of [6].

B. Doerr · C. Winzen
D1: Algorithms and Complexity, Max Planck Institute for Informatics, Campus E1 4,
66123 Saarbrücken, Germany

Theory Comput Syst (2014) 55:658–684 659

string coincide. The other number, π(z, x), usually indicated by white answer-pegs,
is the number of additional pegs having the right color, but being in the wrong posi-
tion. Formally eq(z, x) := |{i ∈ [4] | zi = xi}| and π(z, x) := maxρ∈S4 |{i ∈ [4] | zi =
xρ(i)}| − eq(z, x), where S4 denotes the set of all permutations of the set [4]. Paul
“wins” the game if he guesses Carole’s string, that is, if Carole’s answer is (4,0).

We are interested in strategies for Paul that guarantee him to find the secret code
with few questions. We thus adopt a worst-case view with respect to Carole’s secret
code. This is equivalent to assuming that Carole may change her hidden string at any
time as long as it remains consistent with all previous answers (devil’s strategy).

Previous Results Mathematics and computer science literature has produced a
plethora of results on the Mastermind problem. For the original game with 6 col-
ors and 4 positions, Knuth [10] showed that Paul needs at most four queries until
being able to identify Carole’s string (which he may query in the fifth iteration to win
the game).

Chvátal [3] studied a general version of this game with k colors and n positions,
that is, the secret code is a length-n string z ∈ [k]n. Denote by d(n, k) the minimum
number of guesses that enable Paul to win the game for any secret code. Chvátal
proved that for any arbitrarily small constant ε > 0 and for k < n1−ε colors we have
d(n, k) = O(

n log k
logn−log k

). More precisely, he showed that for any ε > 0, n sufficiently

large and for any k ≤ n1−ε , a number of (2 + ε)
n(1+2 log k)
logn−log k

guesses chosen from [k]n
independently and uniformly at random, with high probability, leads to a different
sequence of answers for each possible code, which implies that the answers uniquely
determine the secret code. In particular, this probabilistic construction shows the ex-
istence of such a sequence of guesses, and thus, of a strategy determining the secret
code with (2 + ε)

n(1+2 log k)
logn−log k

guesses. This remains true if Carole replies only with
black answer-pegs, that is, if for any of Paul’s guesses x she reveals to him only
eq(z, x); the number of bits in which her and Paul’s string coincide.

For larger values of k, the following is known. For n ≤ k ≤ n2, Chvátal proved
d(n, k) ≤ 2n logk + 4n and for k = ω(n2 logn) he showed (k − 1)/n ≤ d(n, k) ≤
�k/n� + d(n,n2). These results have subsequently been improved. Chen, Cunha,
and Homer [2] showed that d(n, k) ≤ 2n�logn� + 2n + �k/n� + 2 for k ≥ n.
Goodrich [8] proved d(n, k) ≤ n�logk� + �(2 − 1/k)n� + k for arbitrary k. This
was again improved by Jäger and Peczarski [9], who showed an upper bound of
n�logn� − n + k + 1 for the case k > n and n�logk� + k for the case k ≤ n.

For k = 2 colors, the Mastermind problem is related to the well-studied coin
weighing problem. For this reason, first results on this problem date back to years
as early as 1963, when Erdős and Rényi [7] showed that d(n,2) = Θ(n/ logn).

Concerning the computational complexity, Stuckman and Zhang [12] showed
that it is N P -hard to decide whether a given sequence (x(i), (eq(i), π(i)))ti=1 of
queries x(i) and answers (eq(i), π(i)) of black and white answer-pegs has a secret
code leading to these answers, i.e., whether there exists a string z ∈ [k]n such that
eq(z, x(i)) = eq(i) and π(z, x(i)) = π(i) for all i ∈ [t]. Goodrich [8] proved that this
is already N P -hard if we only ask for consistence with the black answer-peg replies
eq(i).

660 Theory Comput Syst (2014) 55:658–684

Our Results Originally motivated by a conjecture on black-box complexities
(cf. Sect. 2), we study a memory-restricted version of the Mastermind problem. Since
this original motivation asks for the case of two colors only, we restrict ourselves to
the number k of colors being constant.

The memory-restriction can be briefly described as follows. Given a memory of
size m ∈ N, Paul can store up to m guesses and Carole’s corresponding replies. Based
only on this information, Paul decides on his next guess. After receiving Carole’s re-
ply, based only on the content of the memory, the current guess, and the current an-
swer, he decides which m out of the m + 1 strings and answers he keeps in the mem-
ory. Note that our memory restriction means that Paul truly has no other memory,
in particular, no separate iteration counters and boolean variables (possibly hidden
as case distinctions) may be used. So formally Paul’s strategy consists of a guess-
ing strategy which can be fully described by a mapping from m-sets of guesses and
answers to strings x ∈ [k]n, and a forgetting strategy which maps (m + 1)-sets of
guesses and answers to m-subsets thereof.

Clearly, a memory-restriction does not make Paul’s life easier. The O(n/ logn)

strategies by Erdős and Rényi [7] and by Chvátal [3] do use the full history of guesses
and answers and thus only work with a memory of size Θ(n/ logn). Surprisingly, this
amount of memory is not necessary. In fact, one single memory cell suffices.

Theorem 1 Let k ∈ N≥2. For all n ∈ N, Paul has a size-one memory strategy winning
the Mastermind game with k colors and n positions in O(n/ logn) guesses. This
remains true if we allow Carole to play a devil’s strategy and she only reveals the
number of fully correct pegs eq(x, z) (“black answer-peg version of Mastermind”).

The bound in Theorem 1 is asymptotically tight. A lower bound of Ω(n/ logn) is
already true without memory restrictions. This follows easily from an information-
theoretic argument, cf. [7] or [3]. Our result disproves a conjecture of Droste, Jansen,
and Wegener [4], who believed that a lower bound of Ω(n logn) should hold for the
2-color black answer-peg Mastermind problem with memory-restriction one.

The proof of Theorem 1 is quite technical. For a clearer presentation of the ideas,
we first consider the size-two memory-restricted model, cf. Sect. 3. The proof of
Theorem 1 is given in Sect. 4. Before going into the proofs, in the following sec-
tion we sketch the connection between Mastermind games and black-box complexi-
ties.

2 Mastermind and Black-Box Complexities

In this section, we describe the connection between the Mastermind game and black-
box complexity. The reader only interested in the Mastermind result may skip this
section without loss.

Roughly speaking, the black-box complexity of a set of functions is the number
of function evaluations needed to find the optimum of an unknown member from
that set. Since problem-unspecific search heuristics such as randomized hill-climbers,

Theory Comput Syst (2014) 55:658–684 661

Algorithm 1: Scheme of a black-box algorithm for optimizing f : S → R

Initialization: Sample x(0) according to some probability distribution p(0) on1

S ;
Query f (x(0));2

for t = 1,2,3, . . . do3

Depending on ((x(0), f (x(0))), . . . , (x(t−1), f (x(t−1)))) choose a4

probability distribution p(t) on S and sample x(t) according to p(t);
Query f (x(t));5

evolutionary algorithms, simulated annealing etc. do optimize by repeatedly gener-
ating new search points and evaluating their objective values (“fitness”), the black-
box complexity is a lower bound on the efficiency of such general-purpose heuris-
tics [4].

Black-Box Complexity Let S be a finite set. A (randomized) algorithm following
the scheme of Algorithm 1 is called black-box optimization algorithm for functions
S → R.

For such an algorithm A and a function f : S → R, let T (A,f) ∈ R ∪ {∞} be
the expected number of fitness evaluations until A queries for the first time some
x ∈ arg maxf . We call T (A,f) the runtime of A for f . For a class F of functions
S → R, the A-black-box complexity of F is T (A, F) := supf ∈F T (A,f), the worst-
case runtime of A on F . Let A be a class of black-box algorithms for functions
S → R. Then the A-black-box complexity of F is T (A, F) := infA∈A T (A, F). If
A is the class of all black-box algorithms, we also call T (A, F) the unrestricted
black-box complexity of F .

As said, the unrestricted black-box complexity is a lower bound for the efficiency
of randomized search heuristics optimizing F . In fact, it is a lower bound for the
efficiency of any randomized black-box algorithm. Unfortunately, often this lower
bound is not very useful. For example, Droste, Jansen, and Wegener [4] observed
that the N P -complete MAXCLIQUEproblem on graphs of n vertices has a black-box
complexity of only O(n2).

Black-Box Algorithms with Bounded Memory As a possible solution to this
dilemma, Droste, Jansen, and Wegener suggested to restrict the class of algorithms
considered from all black-box optimization algorithms to a reasonably large sub-
set. A natural restriction is to forbid the algorithm to exploit the whole history of
search points evaluated. This is motivated by the fact that many heuristics, e.g., evo-
lutionary algorithms, only store a bounded size population of search points. Simple
hill-climbers, the Metropolis algorithm or simulated annealing (see, e.g., [13] and the
references therein) even store only one single search point.

Algorithm 2 is the scheme of a black-box algorithm with bounded memory of
size μ. It is important to note that a black-box algorithm with bounded memory
is not allowed to access any information other than the one stored in the μ pairs
(x(1), f (x(1))), . . . , (x(μ), f (x(μ))) which are currently stored in the memory and, in
the selection step, also the information provided by (x(μ+1), f (x(μ+1))).

662 Theory Comput Syst (2014) 55:658–684

Algorithm 2: Scheme of a black-box algorithm with memory of size μ for opti-
mizing function f : S → R

Initialization: M ← ∅;1

for t = 1,2, . . . do2

Depending (only) on M choose a probability distribution p on S and3

sample x(μ+1) according to p; //variation step
Query f (x(μ+1));4

Select M ⊆ M ∪ {(x(μ+1), f (x(μ+1)))} of size |M| ≤ μ; //selection step5

Mastermind and the ONEMAXFunction Class A test function often regarded to an-
alyze how the randomized search heuristic under investigation progresses in easy
parts of the search space, is the simple ONEMAXfunction ONEMAX : {0,1}n →
R, x → ∑n

i=1 xi . Note that ONEMAX(x) = eq((1, . . . ,1), x) for all x ∈ {0,1}n. In
fact, for any z ∈ {0,1}n, eq(z, ·) yields an equivalent optimization problem. Let us
denote by ONEMAXn := {eq(z, ·) | z ∈ {0,1}n} the class of all these functions.

Many classical randomized search heuristics like randomized local search or the
(μ + λ) evolutionary algorithm (with μ,λ constants) need Θ(n logn) function eval-
uations to optimize ONEMAXn. This stems from the fact in a typical run of such an
algorithm, new solutions are obtained from flipping mostly a constant number of bits
in an existing solution. By the coupon collector theorem (see, e.g., [11]), Ω(n logn)

such modifications are necessary to ensure that each bit is touched at most once.
As a moments thought reveals, black-box algorithms optimizing ONEMAXn cor-

respond to strategies for Paul in the Mastermind game (without memory restriction)
with two colors and only black answer-pegs used. Hence the unrestricted black-box
complexity of ONEMAXn is Θ(n/ logn) by the results of Erdős and Rényi [7] and
Chvátal [3].

This connection was apparently overlooked so far in the randomized search heuris-
tics community, where Droste, Jansen, and Wegener [4] proved an upper bound of
O(n) and later Anil and Wiegand [1] proved the asymptotically correct bound of
O(n/ logn). Since already the first bound is lower than what many randomized search
heuristics achieve, Droste, Jansen, and Wegener suggested to investigate the memory-
restricted black-box complexity of ONEMAXn. They conjectured in [4, Sect. 6] that
a memory restriction of size one leads to a black-box complexity of order Θ(n logn).

Again, clearly, the memory-restricted black-box complexity of ONEMAXn and
optimal strategies for Mastermind with two colors, black answer-pegs only, and a
corresponding memory restriction are equivalent questions. Consequently, our result
can be rephrased to saying that the black-box complexity of ONEMAXn even with
the memory restricted to one is Θ(n/ logn). This disproves the conjecture of Droste,
Jansen, and Wegener.

From the view-point of building a useful complexity theory for randomized search
heuristics, Theorem 1 indicates that a memory restriction alone does not suffice to
overcome the drawbacks of the unrestricted black-box model.

Theory Comput Syst (2014) 55:658–684 663

3 The Mastermind Game with Memory of Size Two

Since the proof of Theorem 1 is quite technical, we shall give in this section a simpler
proof showing that with a memory of size two Paul can win the game using only
O(n/ logn) guesses. Already this proof contains many ingredients needed to prove
Theorem 1; e.g., the use of the random guessing strategy with limited memory, the
block-wise determination of the secret code, and the simulation of iteration counters
in the memory.

Let k ≥ 2 be the number of colors used. In particular for k = 2, it will be con-
venient to label the colors from 0 to k − 1. Let us denote the set of colors by
C := [0 .. k − 1] := {0,1, . . . , k − 1}. We assume that k is a constant and that the
number n of positions in the string is large, that is, all asymptotic notation is with
respect to n.

Theorem 2 Paul has a size-two memory strategy winning the black answer-peg ver-
sion of the Mastermind game with k colors and n positions in O(n/ logn) guesses.
This remains true if we allow Carole to play a devil’s strategy.

As many previous works, the proof of Theorem 2 heavily relies on random guess-
ing. For the case of k = 2 colors, already Erdős and Rényi [7] showed that there is a
t = Θ(n/ logn) such that t guesses x(1), . . . , x(t) chosen from {0,1}n independently
and uniformly at random, together with Carole’s black answer-peg answers, uniquely
define the hidden code. This was generalized by Chvátal [3] to the following result.

Theorem 3 (From [3]) Let ε > 0, let n > n(ε) be sufficiently large and let k < n1−ε .
Let x(1), . . . , x(t) be t ≥ (2+ε)

n(1+2 log k)
logn−log k

samples chosen from Cn independently and
uniformly at random. Then for all z ∈ Cn, the set

S consistent := {y ∈ Cn | ∀i ∈ [t] : eq(y, x(i)) = eq(z, x(i))}
satisfies E[|S consistent|] ≤ 1 + 1/n.

Since the strategy implicit in Theorem 3 needs a memory of size Θ(n/ logn), we
cannot apply it directly in our setting. We can, however, adapt it to work on smaller
portions (“blocks”) of the secret code, and this with much less memory.

Let y ∈ Cn and let B ⊆ [n] be a block (i.e., an interval) of size s := �√n�. As we
shall see, by t = O(s/ log s) times guessing a string obtained from y by replacing the
colors in B by randomly chosen ones (and guessing k additional reference strings),
we can determine z|B , the part of the secret code z in block B .

We can do so with a memory of size two only. We store the string obtained from
y by altering it on B (sampling string) in one cell. Note that we do not need to
remember y, as we only need to ensure that our guesses agree in the positions [n] \B .
We use the other memory cell (storage string, in the following typically denoted
by x) to store the random substrings of length s substituted into y at B , and Carole’s
answers. Note that each such answer can be encoded in binary using 	n = O(logn)

entries of the string. Hence the t guesses and answers can be memorized using a

664 Theory Comput Syst (2014) 55:658–684

Algorithm 3: An almost size-two memory-restricted algorithm winning the k-
color black answer-peg only Mastermind game in O(n/ logn) guesses. Remark:
x denotes the unique string in M with xn = 1 and y denotes the unique string in
M with yn = 0.

Initialization: y ← [0 . . .0];1

Query eq(z, y) and update M ← {(y, eq(z, y))};2

for i = 1 to �(n − 1)/s� do3

x ← [0 . . .0|1]; //initialization of x4

Query eq(z, x) and update M by adding (i = 1) or replacing (i > 1)5

(x, eq(z, x)) in M;
for q = 0 to t + k − 1 do6

if q < k then y ← substitute(y,Bi, [q . . . q]); //reference string7

else y ← substitute(y,Bi, r) where r ∈ C|Bi | u.a.r.; //random guess8

Query eq(z, y) and update M by replacing (y, eq(z, y));9

x ← [x1 . . . xp1(x)|BLOCKi (y)|binary	n
(eq(z, y))|1|0 . . .0|1]; //add10

y’s information to x

Query eq(z, x) and update M by replacing (x, eq(z, x));11

while
i(y) < |Bi | do12

y ← substitute(y,Bi,w), where w ∈ S consistent
i u.a.r.;13

Query eq(z, y) and update M by replacing (y, eq(z, y));14

while eq(z, y) < n do15

y ← substitute(y, {n}, c), where c ∈ C u.a.r., and query eq(z, y);16

total number of t (s + 	n) = O(n/ logn) positions. Let us remark that we do need to
query the scores eq(z, x) of the storage strings only in order to be able to add the pair
(x, eq(z, x)) to the memory M (here and henceforth we denote by M the memory,
which is a set containing pairs (x, eq(z, x)) of a previous query x and its answer
eq(z, x)). The answers eq(z, x) themselves, however, are irrelevant to us.

This approach allows us to determine s positions of z using t = O(s/ log s)

guesses. Hence we can determine the secret code z with t�n/s� = O(n/ logn)

guesses as desired.
In Algorithm 3 (notation used will be introduced below) we make this strategy

more precise by giving it in pseudo-code. Note, however, that this algorithm does not
fully satisfy the size-two memory restriction. The reason is that the queries do not
only depend on the current state of the memory, but also on iteration counters and,
e.g. in lines 9 and 11, on the program counter. Further below, in Algorithm 4 we shall
remove this shortcoming with a few additional technicalities, which we are happy to
spare for the moment.

Before we argue for the correctness of Algorithm 3, let us fix the notation.
For a string x ∈ Cn we also write x = [x1 . . . xn]. To ease reading, we allow our-
selves to indicate different structural components of x by vertical bars, e.g., x =
[x1 . . . xp|xp+1 . . . xn]. For i ∈ [�(n−1)/s�] let Bi := {(i −1)s +1, . . . , is}∩ [n−1],

Theory Comput Syst (2014) 55:658–684 665

the positions of the ith block. Set

BLOCKi (x) := x|Bi
:= [x(i−1)s+1 . . . xmin{is,n−1}],

the ith block of x. For any string r ∈ C|Bi | we define

substitute(x,Bi, r) := [x1 . . . x(i−1)s |r|xmin{is,n−1}+1 . . . xn],
the string x with the ith block substituted by r . Similarly, let substitute(y, {n}, c)
:= [y1 . . . yn−1|c]. Note that we do not assign the nth position to any of the blocks. We
do so because in Algorithms 3 and 4 we shall use the nth position to indicate which
one of the two strings in the memory M is the storage string (the unique x ∈ M with
xn = 1) and which one is the sampling string (the unique string y ∈ M with yn = 0).

Let p1(x) := max{i ∈ [n − 1] | xi = 1}, the largest position i < n of x with entry
“1”. As mentioned above, we encode Carole’s answers eq(z, y) ∈ [0 .. n] in binary,
using 	n := �logn� + 1 positions, and we denote this binary encoding of length 	n

by binary	n
(eq(z, y)). By
i(y) we denote the contribution of the ith block to the

value eq(z, y); i.e.,
i(y) is the number of positions in the ith block in which Paul’s
guess y and Carole’s secret code z coincide. Formally,
i(y) := eq(z|Bi

, y|Bi
). Lastly,

let S consistent
i be the set of strings w of length |Bi | such that substitute(z,Bi,w)

is consistent with all of Carole’s replies (formal definition follows). We shall see
below that both
i(y) and S consistent

i can be computed solely from the content of the
memory cells (lines 12–14).

We now argue for the correctness of Algorithm 3. Let us consider the state of the
memory after having sampled all t random samples for the ith block (that is, we are
in lines 12–14). We show that, based on the information given in the memory, we
can restore the full history of guesses for the ith block. To this end, first note that for
any guess y done in line 9, we used s + 	n + 1 positions in x for storing its informa-
tion (line 10; we add the additional “1” at the end to ease determining via p1(x) the
positions in x which have not yet been used for storing information). In lines 6–11
we first asked and stored k non-random guesses xc = substitute(y,Bi, [c . . . c])
and we stored these reference strings together with Carole’s replies eq(z, xc) =
∑	n

h=1 2h−1xc(s+	n+1)−h, c ∈ [0 .. k − 1]. Therefore, for j ∈ [t], the j th random
sample is r(j) = [x(k+j−1)(s+	n+1)+1 . . . x(k+j−1)(s+	n+1)+|Bi |] and the correspond-
ing query was y(j) = substitute(y,Bi, r

(j)). We have stored Carole’s reply to
this guess in binary, and we can infer eq(z, y(j)) = ∑	n

h=1 2h−1x(k+j)(s+	n+1)−h. This
shows how to regain the full guessing history.

Next we show how to compute the contributions
i(y
(j)) of the entries in the ith

block. To this end, note that the constant substrings [c . . . c] in the reference strings
xc in total contribute exactly |Bi | to the sum eq(z, x0) + · · · + eq(z, xk). Formally,∑k−1

c=0 eq([z(i−1)s+1 . . . zmin{is,n−1}], [c . . . c]) = |Bi |. Since all other positions of the
sampling string y are not changed during the phase in which we determine the ith
block, each of them either contributes 0 to the sum

∑k−1
c=0 eq(z, xc), or it contributes

k. We thus infer that

i(y
(j)) = eq(z, y(j)) − eq(z, x0) + · · · + eq(z, xk) − |Bi |

k
.

666 Theory Comput Syst (2014) 55:658–684

Consequently, in lines 12–14, the algorithm can compute
i(y
(j)) for all j ∈ [t].

From this it can infer

S consistent
i := {z̃ ∈ C|Bi | | ∀j ∈ [t] : eq(z̃,BLOCKi (y

(j))) =
i(y
(j))},

the set of possible code segments in Bi . By Theorem 3, the expected size of S consistent
i

is bounded from above by 1 + 1/|Bi |. Thus, in lines 12–14 we need an expected
number of 1 + 1/|Bi | samples w chosen from S consistent

i uniformly at random until
we find a y = substitute(y,Bi,w) with
i(y) = s (which implies that the ith
block of y coincides with Carole’s secret code). This shows how we determine the
entries of the ith block in an expected total number of t = O(s/ log s) guesses.

When Algorithm 3 executes line 15, all but the last entry of y coincide with Ca-
role’s secret code. Hence trying random colors in the nth position finds the hidden
code z with an additional expected number of k = Θ(1) guesses.

To turn Algorithm 3 into a size-two memory-restricted one, we use the first 	n

entries of x to store in binary the iteration counter i, which indicates the index of
the block currently being under consideration. This will move the storage space for
the guesses and answers by 	n positions to the right. Formally, we define i(x) :=
∑	n−1

h=0 2hx	n−h. The inner for loop needs no additional memory to be simulated,
because we can learn from p1(x) how many guesses q(x) have been queried already.
More precisely, since storing each guess requires s + 	n + 1 positions and the first 	n

positions are used for indicating the number of already determined entries, we have
q(x) := (p1(x) − 	n)/(s + 	n + 1).

Lastly, we need to replace the sequential queries in lines 9 and 11 of Algorithm 3
(as this exploits information stored in the program counter). Fortunately, again we
can deduce from the memory alone the state of the algorithm. We define a function
Part(y, x) which equals 1 if the information of y has been added to the storage
string x already and which equals 0 otherwise. That is, we set

Part(y, x) =

⎧
⎪⎨

⎪⎩

1, if
∑	n

i=1 2i−1xp1(x)−i = eq(z, y) and

BLOCKi(x)(y) = [xp1(x)−	n−|Bi(x)| . . . xp1(x)−	n−1]
0, otherwise.

Note that Part(y, x) = 1 indicates that the information of y has been stored in x

also in the case that our current sample equals the previous one. This is no problem
as then the current guess does not give any new information. Hence the use of Part
modifies the algorithm to sample t random guesses without immediate repetition.
Note that the probability to sample the same string r ∈ C|Bi(x)| twice in a row is at
most 1/2 (if the last block consists only of one position and k = 2) and is typically
much smaller. Hence, occurrences of this event have no influence on the asymptotic
number of guesses needed to win the game.

With these modifications, Algorithm 3 becomes the truly size-two memory-
restricted Algorithm 4.

Theory Comput Syst (2014) 55:658–684 667

Algorithm 4: A size-two memory-restricted algorithm winning the k-color black
answer-peg only Mastermind game in O(n/ logn) guesses. Remark: x denotes
the unique string in M with xn = 1 and y denotes the unique string in M with
yn = 0.

Initialization: Let M ← ∅; // clear memory1

if M = ∅ then2

y ← [0 . . .0]; //first reference string3

Query eq(z, y) and update M ← {(y, eq(z, y))};4

else if |M| = 1 then5

x ← [0 . . .0|1]; //initialization of storage string6

Query eq(z, x) and update M ← M ∪ {(x, eq(z, x))};7

else if i(x) < �(n − 1)/s� then8

if x = [0 . . .0|1] or
i(x)(y) = |Bi(x)| then9

x ← [binary	n
(i(x) + 1)|BLOCKi(x)+1(y)|10

binary	n
(eq(z, y))|1|0 . . .0|1];

//clear storage string and add first reference string
Query eq(z, x) and update M by replacing (x, eq(z, x));11

else if Part(y, x) = 1 and q(x) < t + k then12

if q(x) < k then y ← substitute(y,Bi(x), [q(x) . . . q(x)]);13

//reference string
else y ← substitute(y,Bi(x), r) where r ∈ C|Bi(x)| u.a.r.; //random14

guess
Query eq(z, y) and update M by replacing (y, eq(z, y));15

else if Part(y, x) = 0 and
i(x)(y) < |Bi(x)| then16

x ← [x1 . . . xp1(x)|BLOCKi(x)(y)|binary	n
(eq(z, y))|1|0 . . .0|1]; //add17

y’s info to x

Query eq(z, x) and update M by replacing (x, eq(z, x));18

else if Part(y, x) = 1 and q(x) = t + k then19

y ← substitute(y,Bi(x),w) where w ∈ S consistent
i(x) chosen u.a.r.;20

Query eq(z, y);21

if
i(x)(y) = |Bi(x)| then Update M by replacing (y, eq(z, y));22

else if i(x) = �(n − 1)/s� then23

y ← substitute(y, {n}, c) where c ∈ C\{yn} u.a.r.;24

Query eq(z, y);25

Go to line 2;26

4 Reducing the Memory to Size One

Compared to the situation in Sect. 3, Paul faces two additional challenges in the size-
one memory-restricted setting. The obvious one is that he has less memory available,
in particular, after a large part of the code has been determined and needs to be stored.

668 Theory Comput Syst (2014) 55:658–684

The more subtle one is that he cannot any longer query a search point and then store
whatever is worth storing in the second memory cell. With one memory cell, all he
can do is to guess a new string and keep or forget it.

4.1 Linear Time Strategies

Before we give a proof of Theorem 1, let us discuss a linear time winning strategy;
i.e., a strategy that allows Paul to find Carole’s secret code in a linear expected number
of guesses; using one memory cell only. This linear time strategy will be used in the
proof of Theorem 1 to determine the last Θ(n/ logn) entries of the secret code.

The basic idea of the linear time strategy is to test each position one by one, from
left to right. Since we have just one memory cell, we need to indicate in this one string
which entries have been determined already. We do so by keeping all not yet deter-
mined entries at one identical value different from the one of the entry determined
last. To this end we set, for all x ∈ Cn,

tn(x) := min{i ∈ [n] | ∀j ∈ {i, . . . , n} : xj = xi},
the tail number of x. The way to make progress from x is to randomly change the
tn(x)th entry of x to a random other value, or to change the entries in positions tn(x)+
1 to n to the same random other value. The latter is a successful move if xtn(x) is
already correct, but is not marked as determined by being different from the other tail
entries.

The following lemma describes the linear time strategy.

Lemma 4 Let x ∈ Cn. Furthermore, let us denote Carole’s secret code by z ∈ Cn. Let
us assume that the first tn(x) − 1 entries of z have been determined (i.e., Carole can
no longer change the entries of [z1 . . . ztn(x)−1]). Further assume that xi = zi for all
i < tn(x) and that M = {(x, eq(z, x))} is the current content of the memory cell.

There is a size-one memory-restricted guessing procedure NextEntry that—
even if Carole plays a devil’s strategy—after an expected constant number of suc-
cessive calls modifies the memory such that the string y now in the memory satisfies
yi = zi for all i ≤ tn(x) and tn(y) = tn(x) + 1. Every call of NextEntry requires
only one guess.

Interestingly, for the definition of NextEntry, we need to distinguish between
the cases of k = 2 and k ≥ 3 colors, as certain arguments exploit particular properties
of these cases. For k = 2 colors and Carole not playing a devil’s strategy but choosing
a random secret z ∈ {0,1}n, we have analyzed this algorithm already in [5].

4.1.1 The Case of k = 2 Colors C = {0,1}

In this section we prove that for k = 2 colors C = {0,1}, NextEntry is a procedure
that requires, in expectation, three calls to modify the memory content by replacing
the current string x that is assumed to satisfy the conditions of Lemma 4, by a string
y with tn(y) = tn(x) + 1 and yi = zi for all i ≤ tn(x).

For all i ∈ [n] let en
i be the ith unit vector of length n.

Theory Comput Syst (2014) 55:658–684 669

Algorithm 5: Routine NextEntry for k = 2 colors

Assumption: The string x ∈ {0,1}n in the memory satisfies tn(x) < n and1

xi = zi for all i < tn(x);
Sample y ∈ {x ⊕ en

tn(x)
, x ⊕ ∑n

i=tn(x)+1 en
i } uniformly at random;2

Query eq(z, y);3

if y = x ⊕ en
tn(x) then4

if eq(z, y) > eq(z, x) then M ← {(y, eq(z, y))};5

else6

if eq(z, x) + eq(z, y) = n + tn(x) then M ← {(y, eq(z, y))};7

Proposition 5 For k = 2 colors, Algorithm 5 verifies Lemma 4. In expectation, three
calls to routine NextEntry suffice.

Proof Let x ∈ {0,1}n be a bit string with tn(x) < n and xi = zi for all i < tn(x).
Algorithm 5 samples with probability 1/2 the string y = x ⊕ en

tn(x), and with prob-
ability 1/2 it samples y = x ⊕ ∑n

i=tn(x)+1 en
i . That is, either it flips only the tn(x)th

bit of x or it flips all “tail bits” but the tn(x)th one.
If y = x ⊕ en

tn(x)
, clearly we have ztn(x) = ytn(x) if and only if eq(z, y) > eq(z, x).

Therefore, let us assume that Algorithm 5 samples y = x ⊕ ∑n
i=tn(x)+1 en

i . We
show that ztn(x) = ytn(x)(= xtn(x)) holds if and only if eq(z, x)+ eq(z, y) = n+ tn(x).
By definition we have yi = xi = zi for all i < tn(x). Thus, the first tn(x) − 1 bits of
x and y contribute 2(tn(x) − 1) to the sum eq(z, x) + eq(z, y); formally,

eq([z1 . . . ztn(x)−1], [x1 . . . xtn(x)−1]) + eq([z1 . . . ztn(x)−1], [y1 . . . ytn(x)−1])
= 2(tn(x) − 1).

On the other hand, for all i > tn(x) either have zi = xi or zi = 1 − xi = yi . Thus,
the last n − tn(x) bits of x and y contribute exactly n − tn(x) to the sum eq(z, x) +
eq(z, y); formally,

eq([ztn(x)+1 . . . zn], [xtn(x)+1 . . . xn]) + eq([ztn(x)+1 . . . zn], [ytn(x)+1 . . . yn])
= n − tn(x).

By definition we also have ytn(x) = xtn(x) and, thus,

eq(z, x) + eq(z, y)

= eq([z1 . . . ztn(x)−1], [x1 . . . xtn(x)−1])
+ eq(ztn(x), xtn(x)) + eq([ztn(x)+1 . . . zn], [xtn(x)+1 . . . xn])
+ eq([z1 . . . ztn(x)−1], [y1 . . . ytn(x)−1])
+ eq(ztn(x), xtn(x)) + eq([ztn(x)+1 . . . zn], [ytn(x)+1 . . . yn])

= 2(tn(x) − 1) + n − tn(x) + 2 eq(ztn(x), xtn(x))

= n + tn(x) + 2 eq(ztn(x), xtn(x)) − 2

670 Theory Comput Syst (2014) 55:658–684

This shows that eq(z, x) + eq(z, y) = n + tn(x) if and only if eq(ztn(x), xtn(x)) = 1;
i.e., if and only if ztn(x) = xtn(x)(= ytn(x)).

It is immediate that for a secret code z taken from {0,1}n uniformly at random, the
probability to obtain, in one call of NextEntry, a string y with tn(y) = tn(x) + 1
and yi = zi for all i < tn(y) is 1/2. This shows that, if Carole does not play a devil’s
strategy and if her string is taken from {0,1}n uniformly at random, we need, on
average, two successive calls to procedure NextEntry until we obtain a string y as
desired.

Proposition 5 follows from the easy observation that it takes, on average, three
iterations until both y = x ⊕ en

tn(x), and y = x ⊕ ∑n
i=tn(x)+1 en

i have been sampled.
That is, even if Carole plays a devil’s strategy, three calls of Algorithm 5, on average,
force her to accept one entry ztn(x) ∈ {0,1}. �

To win the two-color Mastermind game in a linear number of guesses, Paul may
just start with querying the string [0, . . . ,0] and then calling Algorithm 5 sufficiently
often.

4.1.2 The Case of k ≥ 3 Colors C = [0 .. k − 1]

The main argument of Proposition 5, namely that
∑k−1

c=0 eq(z, [c . . . c]) = n, seems
hard to extend to more than two colors with no additional memory. However, having
more than two colors can be exploited in a different way as it gives more than one
possibility to mark the tail [xtn(x) . . . xn] of a search point x.

Proposition 6 For k ≥ 3 colors, Algorithm 6 satisfies the claims of Lemma 4.

Proof Let x ∈ Cn with tn(x) < n and xi = zi for all i < tn(x). If y = [x1 . . . xtn(x)−1
|j |xtn(x)+1 . . . xn], then clearly we have eq(z, y) > eq(z, x) if and only if ytn(x) = j =
ztn(x). Therefore, all we need to show is that, using the strategy of Algorithm 6, it takes
a constant number of guesses until for each j ∈ C there exists an ij ∈ C\{j} such that

Algorithm 6: Routine NextEntry for k ≥ 3 colors

Assumption: The string x ∈ Cn in the memory satisfies tn(x) < n and xi = zi1

for all i < tn(x);
With probability (k − 1)/k sample2

y ∈ {[x1 . . . xtn(x)−1|j |xtn(x)+1 . . . xn] | j ∈ C\{xtn(x)}} uniformly at random and
with probability 1/k sample y ∈ {[x1 . . . xtn(x)−1|j . . . j] | j ∈ C\{xtn(x)−1}}
uniformly at random;
Query eq(z, y);3

if y = [x1 . . . xtn(x)−1|j |xtn(x)+1 . . . xn], j �= xtn(x) then4

if eq(z, y) > eq(z, x) then M ← {(y, eq(z, y))}; //ztn(x) = j5

else6

M ← {(y, eq(z, y))};7

Theory Comput Syst (2014) 55:658–684 671

we have queried both x = [z1 . . . ztn(x)−1|ij . . . ij] and y = [z1 . . . ztn(x)−1|j |ij . . . ij]
in two subsequent guesses. This follows essentially from the fact that k is constant.

More precisely—regardless of the current search point x—for any bitstring y =
[z1 . . . ztn(x)−1|j |ij . . . ij] the probability to sample y in the second of two subse-
quent calls to Algorithm 6 is constant. Therefore, the expected number of calls to
Algorithm 6 until y is sampled is constant. The claim follows by the linearity of
expectation. �

4.2 Proof of Theorem 1

Building on NextEntry and the block-wise random guessing strategy introduced in
Sect. 3, we can now prove Theorem 1. That is, we present Paul’s O(n/ logn) winning
strategy for the setting with one single memory cell.

Proof of Theorem 1 The structure of this proof is as follows. First we sketch the main
ideas and give a high-level pseudo-code for the size-one memory-restricted strategy
winning the black answer-peg only Mastermind game with k colors in O(n/ logn)

guesses. After fixing some notation, we then present more details for the different
phases, in particular for the random guessing phase, which is the most critical part of
this proof. We present here the details of Paul’s strategy for the case of k = 2 colors.
The generalization to k ≥ 3 colors is pretty much straightforward. Some remarks on
the differences between the case of k = 2 and k ≥ 3 colors are given at the end of this
proof.

Let us begin with the rough overview of Paul’s strategy. He determines the first
n − Θ(n/ logn) positions using random guessing, where he manages to store the
random substrings and Carole’s answers in the yet undetermined part of his one string
in the memory. As in the proof of Theorem 2, he does so by iteratively determining
blocks of length s := �√n�. The number of blocks determined this way will be b :=
�n−2

s
(1 − K

logn
)�, where K is a suitably large constant.

This is the first phase of the strategy. In the second phase, using the linear time
strategy from Lemma 4, he determines the missing Θ(n/ logn) entries in O(n/ logn)

guesses.
To distinguish between the sampling and the linear time phase, Paul uses the last

two entries suffix(x) := [xn−1xn] of his string x. He has suffix(x) = [01] when
he is in the random guessing phase, and he uses suffix(x) = [cc] for some c ∈ C
to indicate that he applies calls to NextEntry. Once Paul has determined all but the
last two entries (visible from tn(x) = n − 1), he simply needs to sample uniformly at
random from the set of all k2 − 1 remaining possible strings. This clearly determines
z in a constant expected number of additional queries (phase 3).

The total expected number of guesses can be bounded by

number of blocks de-
termined in phase 1

︷ ︸︸ ︷
n−2

s
(1 − Θ(log−1 n))

queries needed to deter-
mine any such block

︷ ︸︸ ︷
O(s

log s
) +

queries needed in
phase 2

︷ ︸︸ ︷
O(n

logn
) +

queries needed in
phase 3

︷ ︸︸ ︷
O(1) = O(n

logn
).

A non-trivial part is the random guessing phase. As in the proof of Theorem 2,
after guessing t + k strings, we want to be able to regain the full guessing history. If

672 Theory Comput Syst (2014) 55:658–684

we simply stored the random substring and Carole’s reply in some unused part of x,
then this changed memory would influence Carole’s next answer and we would be
unable to deduce information on the next guess from it. We solve this difficulty as
follows. We store Carole’s latest reply (i.e., value eq(z, x) currently in the memory)
and we sample new (random) substrings for the current block at the same time. Here
we store the value eq(z, x) in a part of x for which we know the entries of Carole’s
hidden code. By this, we can separate in Carole’s next answer the influence of the
just stored information from the one of the random guess. The precise description of
this Sampling strategy is presented below.

To gain the storage space, for which we know the hidden code, we need to add
another phase, phase 0, in which we apply O(logn) calls to the NextEntry pro-
cedure until we have determined the first 	 := 	n + 1 positions of z (cf. Lemma 4).
This does not change the overall asymptotic number of queries Paul needs to win the
game.

The pseudo-code for this size-one memory-restricted strategy is given in Algo-
rithm 7. Similar to the notation in the proof of Theorem 2, we denote for any
h ∈ [0 .. n] its binary encoding of length 	n by binary	n

(h) and for h ∈ [0 .. s]
we denote its binary encoding of length 	s := �log s� + 1 by binary	s

(h). The
current block of interest i(x) is encoded in positions {n − 	s − 1, . . . , n − 2}; i.e.,
we have i(x) := ∑	s−1

h=0 2hxn−2−h and Bi(x) := {	 + (i(x) − 1)s + 1, . . . , 	 + i(x)s},
and, consequently, BLOCKi(x)(x) := [x	+(i(x)−1)s+1 . . . x	+i(x)s]. The number of ran-
dom guesses for each block is t := �(2 + ε)

s(1+2 log k)
log s−log k

� where ε > 0 is an arbitrar-
ily small constant. Lastly, the actual number of already sampled guesses for block
Bi(x) is denoted by q(x). As in the proof of Theorem 2, q(x) can be computed via
p1(x) := max{i ∈ [n − 	s − 3] | xi = 1}, the largest position i < n − 2 − 	s with
entry xi = 1. Details on how q(x) can be computed are given in the description of
the OptimizeBlockroutine, which, after t random samples have been sampled via
the Samplingroutine, determines BLOCKi(x)(z), stores it in Bi(x), and increases the
block counter i(x) by one.

Let us now present a more detailed description of Algorithm 7.
As in the proof of Theorem 2 let us assume that Carole has chosen a fix code

z ∈ Cn, which she does not change during the game; i.e., to any of Paul’s guesses x

she replies eq(z, x). By adopting a worst-case view below, we implicitly still allow
Carole to change z as long as the new choice is consistent with all previous replies.

If in any iteration we find an x with eq(z, x) = n, we have x = z and all we need
to do is to output x. Thus, in what follows we always assume eq(z, x) < n.

Initialization of Algorithm 7, Lines 1–4 For initialization, Paul picks a c ∈ C uni-
formly at random and guesses the all-“c”s string of length n, x = [c . . . c]. He updates
the memory M ← {(x, eq(z, x))} accordingly. This memory satisfies all conditions
of line 1 of routine NextEntry (Algorithms 5 and 6) with tn(x) = 1.

Phase 0 of Algorithm 7, Lines 5–6 To this string, Paul applies successive calls to
the routine NextEntry. By Lemma 4 he finds a string y ∈ Cn with yi = zi , i ≤ 	,
and tn(y) = 	+ 1 in an expected number of O() guesses. As mentioned above, Paul

Theory Comput Syst (2014) 55:658–684 673

Algorithm 7: A size-one memory-restricted algorithm winning the k-color black
answer-peg only Mastermind game in O(n/ logn) guesses.

Initialization: Let M ← ∅;1

if M = ∅ then2

x ← [c . . . c] for some c ∈ C chosen u.a.r.;3

Query eq(z, x) and update M ← {(x, eq(z, x))};4

if ∃c ∈ C : suffix(x) = [cc] ∧ tn(x) ≤ 	 then5

NextEntry; //find the first 	 entries [z1 . . . z]6

else if ∃c ∈ C : suffix(x) = [cc] ∧ tn(x) = 	 + 1 then7

x ← [0 . . .0︸ ︷︷ ︸
	

|0 . . .0︸ ︷︷ ︸
bs

|x1 . . . x	| 0 . . . 0︸ ︷︷ ︸
n−(2	+bs+	s+2)

|binary	s
(1)|01];

8

//copy prefix (which coincides with the hidden code)
Query eq(z, x) and update M by replacing (x, eq(z, x));9

else if suffix(x) = [01] ∧ i(x) ≤ b ∧ q(x) < t + k then10

Apply Sampling;11

else if suffix(x) = [01] ∧ i(x) ≤ b ∧ q(x) = t + k then12

Apply OptimizeBlock;13

else if suffix(x) = [01] ∧ i(x) = b + 1 then14

x ← [x	+bs+s+1 . . . x2	+bs+s+1|x	+1 . . . x	+bs |c . . . c] with c ∈ C\{x	+bs}15

u.a.r.;
Query eq(z, x) and update M by replacing (x, eq(z, x));16

//prepares x for NextEntry

else if ∃c ∈ C : suffix(x) = [cc] ∧ 	 + bs < tn(x) ≤ n − 2 then17

NextEntry;18

else if ∃c ∈ C : suffix(x) = [cc] ∧ tn(x) = n − 1 then19

Sample y ∈ {[x1 . . . xn−2|p] | p ∈ C 2}\{x} uniformly at random;20

Query eq(z, y);21

if eq(z, y) = n then M ← {(y, eq(z, y))}; //secret code found22

Go to line 2;23

runs this first phase until he has determined the first

	 = �logn� + 2 = 	n + 1

entries. This is the number

	n = �logn� + 1

of entries needed to store in binary any integer value h ∈ [0 .. n] plus 1. These bits
shall be used in phase 1 of Algorithm 7 to indicate the status of the Sampling
routine (first position) and for storing Carole’s latest reply eq(z, x) ∈ [0 .. n] (positions
{2, . . . , 	}). We shall describe this in more detail below.

674 Theory Comput Syst (2014) 55:658–684

First Phase of Algorithm 7, Lines 7–13 After Paul has determined the first 	 entries,
he first needs to prepare the string for the random guessing phase. This is done in lines
7–9. Since we want to use the first 	 entries to store reference values, we need to make
a copy of the prefix (which, by construction, coincides with Carole’s hidden code).
To this end, we query in line 8 the string

y =
⎡

⎢
⎣ 0 . . .0︸ ︷︷ ︸

	+bs entries

|x1 . . . x	| 0 . . . 0︸ ︷︷ ︸
n−(2	+bs+	s+2) entries

|binary	s
(1)

︸ ︷︷ ︸
	s entries

|01

⎤

⎥
⎦ ,

where x is the string that is currently in the memory (i.e., the string we obtained
through phase 0)1 and bs = n − Θ(n/ logn) is the number of positions Paul de-
termines using random guessing. As mentioned in the overview, the last two en-
tries suffix(x) = [xn−1xn] = [01] indicate that we are entering the second phase.
In positions {n − 	s − 1, . . . , n − 2} we indicate in binary the block which we
are currently trying to determine. That is, whenever x is the current string in the
memory with suffix(x) = [01], then the block currently of interest is Bi(x) with
i(x) = ∑	s−1

i=0 2ixn−2−i . We initialize i(x) = 1.
After guessing y and updating the memory by replacing the current one with

{(y, eq(z, y))}, Paul enters the first phase (as indicated by suffix(x)). The over-
all expected number of queries needed until this point is O() = O(logn).

After lines 7–9 have been executed, Paul determines all but n−Θ(n/ logn) entries
by iteratively determining blocks of length s = �√n� via random guessing. In total,
he determines b = �n

s
(1 − K

logn
)� such blocks in this phase. The description of the

routines Sampling (in which k reference strings and t random samples are queried
for the i(x)th block Bi(x)) and OptimizeBlock (in which we use the reference
strings and the random guesses to determine BLOCKi(x)(z), the i(x)th block of the
secret code z) is quite technical. We present the details after the description of the
remaining phases.

Second Phase of Algorithm 7, Lines 14–18 In the second phase of Algorithm 7 we
again apply successive calls to routine NextEntry to determine all but the last two
remaining entries. To this end, we first need to prepare the string. This is done in lines
14–16 of Algorithm 7. It follows from the correctness of the first phase that the string
x queried in line 16 satisfies xi = zi for all 1 ≤ i ≤ 	 + bs. And, by definition, it also
satisfies xtn(x)−1 �= xtn(x) with tn(x) = 	 + bs + 1.

From Lemma 4 we infer that via routine NextEntry we find a string x with
tn(x) = n − 1 and xi = zi for all 1 ≤ i ≤ n − 2 in an expected number of O(n − 2 −
(+ bs)) = O(n/ logn) queries. These are lines 17 and 18 of Algorithm 7.

Third Phase of Algorithm 7, Lines 19–22 Similarly to the last step of Algorithm 4,
all we need to do in the last phase of Algorithm 7 is to determine the last two entries.
This is done by sampling y uniformly at random from the set of possible target strings

{[x1 . . . xn−2|p] | p ∈ {0,1}2}\{x}

1That is, we have tn(x) = 	 + 1, ∀i ≤ 	 : xi = zi , and ∃c ∈ C\{x	}∀i ≥ tn(x) : xi = c.

Theory Comput Syst (2014) 55:658–684 675

and we find y = z after a constant expected number of queries. This phase is recog-
nized by the algorithm by the fact that tn(x) = n−1. Note that we have tn(x) ≤ n−2
in the NextEntry phases—phases 0 and 2—and that we have tn(x) = n in phase 1.

Summing up the expected number of queries needed for each phase, we have
shown that Paul needs, on average,

O(logn) + O(n/ logn) + O(n/ logn) + O(1) = O(n/ logn)

queries until he has identified Carole’s hidden code z.
In the remainder of this proof we present the details of the first phase of Algo-

rithm 7, the random sampling routine Sampling, and the OptimizeBlock rou-
tine. As mentioned above, this description requires some technicalities. Therefore,
we split it into the following parts:

In Part I we present the general structure of the guesses Paul queries in the sampling
phase. Here, we shall also show that the n positions are indeed sufficient to store,
for any of the b blocks of length s, all necessary information about the samples.
Part II provides further notation used in the pseudo-code of Algorithm 8.
In Part III we show how the contributions
i(x)(r) ∈ [0 .. s] of the random samples
r ∈ Cs can be computed solely from the content in the memory. This also shows
that indeed after sampling the t random guesses for the current block of interest, it
is possible to regain the full query history using only the information that has been
stored in the memory.
We conclude the description of phase 1 in Part IV, where we explain how the
memory is being updated once the entries BLOCKi(x)(z) of the secret code z in the
i(x)th block have been determined.

Part I The general structure of a random query x for determining block Bi(x) is the
following.

x =
[

x1︸︷︷︸
(1)

|binary	n
(eq(z, y))

︸ ︷︷ ︸
(2)

|opt(B1)| . . . |opt(Bi(x)−1)
︸ ︷︷ ︸

(3)

| r︸︷︷︸
(4)

|0 . . .0︸ ︷︷ ︸
(5)

| z1 . . . z	︸ ︷︷ ︸
(6)

|

binary	n
(eq(z, x0))|binary	n

(eq(z, x1))|1
︸ ︷︷ ︸

(7)

|

binary	n
(eq(z,ref(1)))|r(1)|
i(x)(r

(1))|1| . . . |binary	n
(eq(z,ref(t ′)))|r(t ′)|
i(x)(r

t ′)|1|
︸ ︷︷ ︸

(8)

0 . . .0|binary	s
(i(x))

︸ ︷︷ ︸
(9)

| 01︸︷︷︸
(10)

]

, (1)

where we use

(1) the first entry x1 ∈ {0,1} to indicate whether we are sampling a new random
substring (x1 = 1) or whether we are doing a storage operation by which we add

676 Theory Comput Syst (2014) 55:658–684

to x all necessary information from the previous guess (x1 = 0). An explanation
of these operations follows below;

(2) 	n entries for encoding the value eq(z, y) ∈ [0 .. n] of the string y that is cur-
rently stored in the memory cell (serves as reference value),

(3) (i(x) − 1)s entries for the already determined blocks B1, . . . ,Bi(x)−1,
(4) s entries for the current block Bi(x) of interest. If we are sampling new informa-

tion (i.e., if x1 = 1), then the substring r is a string taken from Cs uniformly at
random and r is the all-zeros string [0, . . . ,0] of length s otherwise;

(5) (b − i(x))s zeros for the yet untouched blocks Bb′ with i(x) < b′ ≤ b,
(6) 	 entries for storing the length-	 prefix that coincides with Carole’s hidden code

(obtained through phase 0),
(7) 2	n +1 entries for storing the values eq(z, x0) and eq(z, x1) of the two reference

strings x0 and x1 (explanation follows),
(8) t ′(n + s + 	s + 1), t ′ ≤ t , entries for storing, for each random sample,

(i) the value eq(z,ref) for a reference string ref (in binary, requires 	n

positions),
(ii) the random sample r ∈ Cs itself,

(iii) its contribution
i(x)(r) ∈ [0 .. s] to Carole’s reply (in binary, requires 	s

positions), and
(iv) one additional “1” (to ease the computation of the number of guesses q(x)

via p1(x); details follow),
(9) 	s entries for encoding in binary which block we are currently trying to deter-

mine, and
(10) the last two entries, suffix(x), for indicating the current phase of the algo-

rithm.

Clearly, one critical part is the limited storage capacity. For this reason, let us
show that we have enough positions to store all the information needed to compute
S consistent

i(x) , the set of all strings consistent with Carole’s replies for the random guesses
in the i(x)th block Bi(x).

Recall that, by Theorem 3, for determining the i(x)th block BLOCKi(x)(z) of z, we
need t = (2 + ε)

s(1+2 log k)
log s−log k

= Θ(s/ logn) random guesses (ε > 0 being an arbitrarily
small constant). In addition, equivalently to the proof of Theorem 2, we need again
2 reference strings x0 and x1 (reference (7) in Eq. (1)). These two reference strings
will be needed to infer the contributions
i(x)(r) of the random samples r ∈ Cs in the
i(x)th block.

From the structure of the guesses presented in Eq. (1) above, we infer that the total
storage requirement can be bounded from above by

1 + 	n + bs + 	 + 2	n + 1 + t (n + s + 	s + 1) + 	s + 2

= bs + ts + o(n/ logn) ≤ n(1 − K/ logn) + Θ(n/ logn) + o(n/ logn) < n

for sufficiently large, but constant K and sufficiently large n. This shows that, for suf-
ficiently large n, Paul indeed can store all information needed to compute S consistent

i(x)

in one single string of length n.

Theory Comput Syst (2014) 55:658–684 677

Part II Let us now fix the notation used in the pseudo-code of routine Sampling
(Algorithm 8). For all b′ < i(x) we set

opt(Bb ′) := [x	+(b ′−1)s+1 . . . x	+b ′s],
the entries of x in the b′th block. The notation “opt” is justified by the fact that we
shall have opt(Bb′) = BLOCKb′(z) for all b′ < i(x). Furthermore, let

AddReferenceStringInfo(x)

:=
[

0 . . .0︸ ︷︷ ︸
(1),(2)

|opt(B1)| . . . |opt(Bi(x)−1)
︸ ︷︷ ︸

(3)

|0 . . .0︸ ︷︷ ︸
(4)

|

x	+i(x)s+1 . . . x2	+bs
︸ ︷︷ ︸

(5),(6)

|x2 . . . x	|binary	n
(eq(z, x))|1

︸ ︷︷ ︸
(7)

|x2	+bs+2	n+2 . . . xn
︸ ︷︷ ︸

(∗)

]

,

where the references in the expression above are the same as the ones used in
Eq. (1) and where (∗) is simply a copy of the last entries of x. That is, the
AddReferenceStringInfo(x) operation adds to x the values eq(z, x0) and
eq(z, x1) and each of these values is stored in binary notation of length 	n. Lastly, we
denote by Add(eq(z, x)) the operation

Add(eq(z, x))

:=
[

0 . . .0︸ ︷︷ ︸
(1), (2)

|opt(B1)| . . . |opt(Bi(x)−1)
︸ ︷︷ ︸

(3)

|0 . . .0︸ ︷︷ ︸
(4)

|x	+i(x)s+1 . . . xp1(x)
︸ ︷︷ ︸

(5), (6), (7), (8)

|

x2 . . . x	|BLOCKi(x)(x)|binary	s
(
i(x)(BLOCKi(x)(x)))|1

︸ ︷︷ ︸
(†)

|

xp1(x)+	n+s+	s+2 . . . xn
︸ ︷︷ ︸

(∗)

]

, (2)

which adds (in substring (†)) to the memory

• a copy of the value eq(z,ref) of a reference string ref (which was previously
stored in positions {2, . . . , 	}),

• the random sample BLOCKi(x)(x) of the last guess,
• the contribution
i(x)(BLOCKi(x)(x)) of the random sample BLOCKi(x)(x) to

eq(z, x), and
• the one additional “1” that shall ease the computation of q(x), the number of al-

ready queried samples.

All but the first 	 entries (which are set to zero) are copied from x. The references in
Eq. (2) are again the same as in Eq. (1).

Part III Let us now show in detail how to infer the contributions
i(x)(r) of the
random guesses. For clarity, we show how to do this for the first block; i.e., for the

678 Theory Comput Syst (2014) 55:658–684

Algorithm 8: The Sampling routine for k = 2 colors.

Assumption: Memory M = {(x, eq(z, x))} satisfies eq(z, x) < n,1

suffix(x) = [01], i(x) ≤ b, and q(x) < t + 2;
if q(x) = 0 ∧ x1 = 0 then2

x ← [1|binary	n
(eq(z, x))|opt(B1)| . . .3

|opt(Bi(x)−1)|1 . . .1|x	+i(x)s+1 . . . xn];
Query eq(z, x) and update M by replacing (x, eq(z, x));4

else if q(x) = 0 ∧ x1 = 1 then5

x ← AddReferenceStringInfo(x) ;6

Query eq(z, x) and update M by replacing (x, eq(z, x));7

else if 2 ≤ q(x) < t + 2 ∧ x1 = 0 then8

x ← [1|binary	n
(eq(z, x))|opt(B1)| . . .9

|opt(Bi(x)−1)|r|x	+i(x)s+1 . . . xn] for r ∈ Cs chosen u.a.r.;
Query eq(z, x) and update M by replacing (x, eq(z, x));10

else if 2 ≤ q(x) < t + 2 ∧ x1 = 1 then11

x ← Add(eq(z, x));12

Query eq(z, x) and update M by replacing (x, eq(z, x));13

positions {	+1, . . . , 	+ s}. The procedure is similar for all other blocks and we shall
comment on this case at the end of this part.

First note that after executing lines 7 to 9 of Algorithm 7, Paul enters the routine
Sampling with M = {(x0, eq(z, x0))} where

x0 =
[

0 . . . 0︸ ︷︷ ︸
	+bs entries

|z1 . . . z	| 0 . . . 0︸ ︷︷ ︸
n−(2	+bs+	s+2) entries

|binary	s
(1)

︸ ︷︷ ︸
	s entries

|01

]

,

and he queries in the first sampling iteration (lines 2–4 of Algorithm 8)

x1 =
[

1|binary	n
(eq(z, x0))

︸ ︷︷ ︸
1+	n=	 entries

| 1 . . .1︸ ︷︷ ︸
s entries

| 0 . . . 0︸ ︷︷ ︸
(b−1)s entries

|

z1 . . . z	| 0 . . . 0︸ ︷︷ ︸
n−(2	+bs+	s+2) entries

|binary	s
(1)|01

]

with the entries in the first block replaced by the all-ones substring [1, . . . ,1] and
the first 	 entries updated. We can compute the contribution of the first 	 entries
[1|binary	n

(eq(z, x0))] to the value eq(z, x1) via

f̃ (x1) := eq([z1 . . . z], [1|binary	n
(eq(z, x0))])

= eq([x1
	+bs+1 . . . x1

2	+bs], [x1
1 . . . x1

]),

Theory Comput Syst (2014) 55:658–684 679

and, by the same reasoning, the contribution of the first 	 entries in x0 to eq(z, x0)

via f̃ (x0) = eq([x0
	+bs+1 . . . x0

2	+bs], [0 . . .0]). Let us, for a moment, assume that we
now had M = {(x1, eq(z, x1))} and that we had another string

y =
[
z1 . . . z	| r︸︷︷︸

s entries

| 0 . . .0︸ ︷︷ ︸
(b−1)s entries

|z1 . . . z	| 0 . . .0︸ ︷︷ ︸
n−(2	+bs+	s+2) entries

|binary	s
(1)|01

]

for some random substring r ∈ Cs . Then we could compute the contribution of the
random entries r in the first block B1 of y via

̃1(r) = eq(z, y) − eq(z, x0) + eq(z, x1) + (− f̃ (x0)) + (− f̃ (x1)) − s

2
.

Key to this equality is the fact that the first 	 entries of y contribute 	 to Car-
ole’s response eq(z, y) to guess y, whereas the first 	 entries of x0 and x1 con-
tribute f̃ (x0) + f̃ (x1) to the sum eq(z, x0) + eq(z, x1), and the fact that the entries
in the first block—[0 . . .0] and [1 . . .1], respectively—contribute in total s towards
eq(z, x0) + eq(z, x1). All other entries xi, yi, i > 	 + s contribute either 2 or 0 to the
sum eq(z, x0) + eq(z, x1) and every entry contributes 2 if and only if it contributes 1
to the value eq(z, y).

Note, however, that we would now have to choose which of the strings to keep in
the memory and we would eventually loose the information eq(z, x1). Therefore, in
lines 6 and 7 in Algorithm 8, we first query the reference string

x2 = AddReferenceStringInfo(x1)

=
[

0 . . .0︸ ︷︷ ︸
	 entries

| 0 . . .0︸ ︷︷ ︸
s entries

|0 . . .0︸ ︷︷ ︸
(b−1)s

|z1 . . . z	|

binary	n
(eq(z, x0))|binary	n

(eq(z, x1))|1
︸ ︷︷ ︸

2	n+1 entries

|

0 . . . 0︸ ︷︷ ︸
n − (2	 + bs + 2	n +
1 + 	s + 2) entries

|binary	s
(1)|01

]
.

This query is needed only to store the values eq(z, x0) and eq(z, x1) of both reference
strings. Since adding the substring [binary	n

(eq(z, x0))|binary	n
(eq(z, x1))|1]

to the memory string again changes the number of positions in which the guess
and Carole’s hidden string coincide, we need to store this information in the next
query as well. More precisely, we have that x0 and x2 differ in exactly the substring
[binary	n

(eq(z, x0))|binary	n
(eq(z, x1))|1], and the contribution of this sub-

string (compared to the all-zeros substring which it replaces) is eq(z, x2)− eq(z, x0).
Furthermore, we need to indicate that we are sampling a new random substring.

This is the first position in the string and the next 	 − 1 entries are needed to encode
in binary the value eq(z, x2). That is, instead of querying y as above we query (lines
9 and 10 in Algorithm 8)

x3 = [1|binary	n
(eq(z, x2))|r(1)|0 . . .0|z1 . . . z	|binary	n

(eq(z, x0))|
binary	n

(eq(z, x1))|1|0 . . .0|binary	s
(1)|01],

680 Theory Comput Syst (2014) 55:658–684

where the substring r(1) ∈ Cs in B1 is taken uniformly at random. The number of
zeros in the first all-zeros substring is again (b − 1)s and in the second all-zeros
substring it is n− (2	+bs +2	n +1+	s +2). Now, in the same fashion as above, we
can compute the contribution
1(r

(1)) = eq([z	+1 . . . z	+s]) of the substring r(1) ∈ Cs

via

1(r
(1)) = eq(z, x3) −

(eq(z, x0) + eq(z, x1) + (− f̃ (x1)) + (− f̃ (x0)) − s

2

+ (eq(z, x2) − eq(z, x0)) − (− f̃ (x3))
)
. (3)

Note that all the information needed for this computation is contained in the string x3

itself.
Since later we want to be able to regain the full guessing history, in the next guess

we store both the reference value eq(z, x2) as well as the contribution
1(r
(1)). And,

of course, we also need to store the random guess r(1) = BLOCK1(x
3) itself. There-

fore, we query (lines 12 and 13 in Algorithm 8) in the next iteration of Algorithm 7

x4 =
[

0 . . .0︸ ︷︷ ︸
	

|0 . . .0︸ ︷︷ ︸
s

|0 . . .0︸ ︷︷ ︸
(b−1)s

|z1 . . . z	|binary	n
(eq(z, x0))|binary	n

(eq(z, x1))|1|

binary	n
(eq(z, x2))

︸ ︷︷ ︸
=[x3

2 ...x3
]

|BLOCK1(x
3)

︸ ︷︷ ︸
=r(1)

|binary	s
(
1(r

(1)))
︸ ︷︷ ︸

see Eq. (3)

|1|0 . . .0|

binary	s
(1)|01

]

.

Note that, since
1(r
(1)) ∈ [0 .. s], we can encode this value using 	s positions only.

By continuing like this we are able to compute, in any iteration of the first phase,
the contributions
i(x)(r) of the random substrings r ∈ Cs .

As in the proof of Theorem 2 we need to be able to compute how many ran-
dom guesses have been queried already for the current block of interest. As indicated
above, this can be derived from p1(x) as follows. For any random guess r ∈ Cs we
use 	n + s + 	s + 1 entries for storing all information that will be needed later to
regain the full guessing history. Furthermore, we used 2	n + 1 entries for storing the
values eq(z, x0) and eq(z, x1) of the two reference strings x0 and x1, and we store
information only in positions i > 2	 + bs. Hence, the number of guesses for block
Bi(x) can be computed as

q(x) =

⎧
⎪⎨

⎪⎩

0, if p1(x) ≤ 2	 + bs and x1 = 0

1, if p1(x) ≤ 2	 + bs and x1 = 1

2 + p1(x)−(2	+bs+2	n+1)
	n+s+	s+1 , otherwise.

After querying t random guesses (i.e., after querying a total number of t + k

guesses) for the first block, we regain the full guessing history from the string x cur-
rently in the memory as follows. The ith random sample r(i) ∈ Cs which we guessed

Theory Comput Syst (2014) 55:658–684 681

for the first block is

r(i) := [x2	+bs+2	n+1+(i−1)(n+s+	s+1)+	n+1 . . . x2	+bs+2	n+1+(i−1)(n+s+	s+1)+	n+s],
and the corresponding query was

y(i) := [1|x2	+bs+2	n+1+(i−1)(n+s+	s+1)+1 . . . x2	+bs+2	n+1+(i−1)(n+s+	s+1)+	n |
r(i)|x	+s+1 . . . x2	+bs+2	n+1+(i−1)(n+s+	s+1)|0 . . .0|xn−	s−1 . . . xn].

We have stored in binary the contribution
1(r
(i)) of r(1) to the overall function value

eq(z, y(i)) in positions

{2	 + bs + 2	n + 1 + (i − 1)(n + s + 	s + 1) + 	n + s + 1, . . . ,

2	 + bs + 2	n + 1 + (i − 1)(n + s + 	s + 1) + 	n + s + 	s}
and thus we have

1(r
(i)) =

	s−1∑

i=0

2ix2	+bs+2	n+1+(i−1)(n+s+	s+1)+	n+s+	s−i .

By Theorem 3, the expected size of

S consistent
1 := {w ∈ {0,1}s | ∀i ≤ t : eq(y, r(i)) =
1(r

(i))}
is bounded from above by 1 + 1/s. That is, we can now identify BLOCK1(z) in a
constant number of guesses. These are lines 3–5 of routine OptimizeBlock (Al-
gorithm 9).

As mentioned above, determining the other blocks 2, . . . , b is similar. In these
iterations, the (i(x)− 1)s entries in positions {	+ 1, . . . , 	+ (i(x)− 1)s} are already
optimized, that is, they coincide with Carole’s hidden string z. Thus, they are not
changed in any further iteration of Algorithm 9.

Algorithm 9: The OptimizeBlock routine.

Assumption: Memory M = {(x, eq(z, x))} satisfies eq(z, x) < n,1

suffix(x) = [01], i(x) ≤ b, and q(x) = t + 2;
if x1 = 0 then2

y ← [1 . . .1|opt(B1)| . . . |opt(Bi(x)−1)|w|x	+i(x)s+1 . . . xn] for3

w ∈ S consistent
i(x) chosen u.a.r.;

Query eq(z, y);4

if
i(x)(BLOCKi(x)(y)) = s then M ← {(y, eq(z, y))};5

//w = BLOCKi(x)(z)

else6

x ← Update(x);7

Query eq(z, x) and update M by replacing (x, eq(z, x)); //string prepared8

for determining the next block

682 Theory Comput Syst (2014) 55:658–684

Part IV Once BLOCKi(x)(z) = [z	+(i(x)−1)s+1 . . . z	+i(x)s] has been determined, we
need to update the memory such that we can start determining the entries of the next
block. These are lines 7 and 8 in Algorithm 9. Here we abbreviate

Update(x) :=
[

0 . . .0︸ ︷︷ ︸
(a)

|opt(B1)| . . . |opt(Bi(x))
︸ ︷︷ ︸

(b)

|0 . . .0︸ ︷︷ ︸
(c)

|x	+bs+1 . . . x2	+bs︸ ︷︷ ︸
(d)

|

0 . . .0︸ ︷︷ ︸
(e)

|binary	s
(i(x) + 1)

︸ ︷︷ ︸
(f)

| 01︸︷︷︸
(g)

]

,

where

(a) the first 	 entries are set to zero,
(b) we now have i(x) already determined blocks,
(c) the new block of interest, block i(x) + 1, as well as all blocks b′ > i(x) + 1 are

(still) set to zero,
(d) we keep the copy of the prefix [z1 . . . z] in positions {	 + bs + 1, . . . ,2	 + bs},
(e) all information that we have used in the previous query to determine block Bi(x)

is removed (and set to zero),
(f) the index for the current block of interest is increased by one, and
(g) the last two entries still indicate the second phase.

The Case of k ≥ 3 Colors For the general case, the main strategy as given by Algo-
rithm 7 remains the same. What needs to be changed is the Sampling routine where
instead of sampling only two reference strings x0 and x1, we need to sample k refer-
ence strings x0, x1, . . . , xk−1 with BLOCKi(x)(x

c) = [c . . . c] for all c ∈ [0 .. k − 1].
Algorithm 10 shows the generalized sampling routine. Here we define

AddReferenceStringInfo2(x)

:=
[

0 . . .0︸ ︷︷ ︸
(1), (2)

|opt(B1)| . . . |opt(Bi(x)−1)
︸ ︷︷ ︸

(3)

|0 . . .0︸ ︷︷ ︸
(4)

|x	+i(x)s+1 . . . xp1(x)
︸ ︷︷ ︸

(5), (6), (7), (7′)

|

x2 . . . x	|binary	n
(eq(z, x))|1

︸ ︷︷ ︸
(†)

|xp1(x)+	n+s+	s+2 . . . xn
︸ ︷︷ ︸

(∗)

]

,

where

(1)–(7) are the same references as in Eq. (1),
(7’) are the additional positions needed for storing the values eq(z, xj) of the already

queried reference strings x2, . . . , xq(x)−1 (requiring 2	n + 1 positions each),
(†) we add the information of the q(x)th reference string xq(x) to the memory (again

requiring 2	n + 1 positions), and
(∗) is simply a copy of the last entries of the previous guess.

The substring [x2 . . . x] is needed again to infer the contribution of the positions
in which we added the information of the previous reference string xq(x)−1. The
reasoning is the same as in the case of k = 2 colors.

Theory Comput Syst (2014) 55:658–684 683

Algorithm 10: The Sampling routine for k ≥ 3 colors.

Assumption: Memory M = {(x, eq(z, x))} satisfies eq(z, x) < n,1

suffix(x) = [01], i(x) ≤ b, and q(x) < t + k;
if q(x) = 0 ∧ x1 = 0 then2

x ← [1|binary	n
(eq(z, x))|opt(B1)| . . . |opt(Bi(x)−1)|1 . . .13

|x	+i(x)s+1 . . . xn];
Query eq(z, x) and update M by replacing (x, eq(z, x));4

else if q(x) = 0 ∧ x1 = 1 then5

x ← AddReferenceStringInfo(x) ;6

Query eq(z, x) and update M by replacing (x, eq(z, x));7

else if 2 ≤ q(x) < k ∧ x1 = 0 then8

x ← [1|binary	n
(eq(z, x))|opt(B1)| . . . |opt(Bi(x)−1)|q(x) . . . q(x)9

|x	+i(x)s+1 . . . xn];
Query eq(z, x) and update M by replacing (x, eq(z, x));10

else if 2 ≤ q(x) < k ∧ x1 = 1 then11

x ← AddReferenceStringInfo2(x) ;12

Query eq(z, x) and update M by replacing (x, eq(z, x));13

else if k ≤ q(x) < t + k ∧ x1 = 0 then14

x ← [1|binary	n
(eq(z, x))|opt(B1)| . . . |opt(Bi(x)−1)|r|x	+i(x)s+1 . . . xn]15

for r ∈ Cs chosen u.a.r.;
Query eq(z, x) and update M by replacing (x, eq(z, x));16

else if k ≤ q(x) < t + k ∧ x1 = 1 then17

x ← Add(eq(z, x));18

Query eq(z, x) and update M by replacing (x, eq(z, x));19

Since we added more reference string information, we need to adjust the definition
of q(x) accordingly. Since we need 2	n + 1 additional bits for each reference string
xj , 2 ≤ j ≤ k − 1, and we use 	n + s + 	s + 1 entries for storing the information of
each random guess, we have

q(x) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if p1(x) ≤ 2	 + bs and x1 = 0

1, if p1(x) ≤ 2	 + bs and x1 = 1

j, if p1(x) = 2	 + bs + 2	n + 1 + (j − 2)(2	n + 1) and 2 ≤ j < k

k + p1(x)−(2	+bs+(k−1)(2	n+1))
	n+s+	s+1 , otherwise.

It is easily verified that all statements made in the above proof for k = 2 colors
remain correct if we consider the general case of k ≥ 3 colors. Only the computa-
tion of the contributions
i(x)(BLOCKi(x)(x)), Eq. (3), becomes a bit more tedious.
However, all calculations are straightforward. �

Acknowledgements Carola Winzen is a recipient of the Google Europe Fellowship in Randomized
Algorithms. This research is supported in part by this Google Fellowship.

684 Theory Comput Syst (2014) 55:658–684

References

1. Anil, G., Wiegand, R.P.: Black-box search by elimination of fitness functions. In: Proc. of Foundations
of Genetic Algorithms (FOGA’09), pp. 67–78. ACM, New York (2009)

2. Chen, Z., Cunha, C., Homer, S.: Finding a hidden code by asking questions. In: Proc. of the Second
Annual International Conference on Computing and Combinatorics (COCOON’96). Lecture Notes in
Computer Science, vol. 1090, pp. 50–55. Springer, Berlin (1996)

3. Vasek, C.: Mastermind. Combinatorica 3, 325–329 (1983)
4. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search heuristics in black-

box optimization. Theory Comput. Syst. 39, 525–544 (2006)
5. Doerr, B., Winzen, C.: Memory-restricted black-box complexity of OneMax. Inf. Process. Lett. 112,

32–34 (2012)
6. Doerr, B., Winzen, C.: Playing Mastermind with constant-size memory. In: Proc. of the Symposium on

Theoretical Aspects of Computer Science (STACS’12), LIPIcs, vol. 14, pp. 441–452 (2012). Schloss
Dagstuhl—Leibniz-Zentrum fuer Informatik

7. Erdős, P., Rényi, A.: On two problems of information theory. Magy. Tud. Akad. Mat. Kut. Intéz. Közl.
8, 229–243 (1963)

8. Goodrich, M.T.: On the algorithmic complexity of the mastermind game with black-peg results. Inf.
Process. Lett. 109, 675–678 (2009)

9. Jäger, G., Peczarski, M.: The number of pessimistic guesses in generalized black-peg Mastermind.
Inf. Process. Lett. 111, 933–940 (2011)

10. Knuth, D.E.: The computer as a master mind. J. Recreat. Math. 9, 1–5 (1977)
11. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)
12. Stuckman, J., Zhang, G.-Q.: Mastermind is NP-complete. INFOCOMP J. Comput. Sci. 5, 25–28

(2006)
13. Wegener, I.: Simulated annealing beats metropolis in combinatorial optimization. In: Proc. of the 32nd

International Colloquium on Automata, Languages and Programming (ICALP’05). Lecture Notes in
Computer Science, vol. 3580, pp. 589–601. Springer, Berlin (2005)

	Playing Mastermind with Constant-Size Memory
	Abstract
	Introduction
	Previous Results
	Our Results

	Mastermind and Black-Box Complexities
	Black-Box Complexity
	Black-Box Algorithms with Bounded Memory
	Mastermind and the OneMaxFunction Class

	The Mastermind Game with Memory of Size Two
	Reducing the Memory to Size One
	Linear Time Strategies
	The Case of k =2 Colors C={0,1}
	The Case of k>=3 Colors C=[0..k-1]

	Proof of Theorem 1
	Initialization of Algorithm 7, Lines 1-4
	Phase 0 of Algorithm 7, Lines 5-6
	First Phase of Algorithm 7, Lines 7-13
	Second Phase of Algorithm 7, Lines 14-18
	Third Phase of Algorithm 7, Lines 19-22
	The Case of k >=3 Colors

	Acknowledgements
	References

