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Abstract We focus on the problem of scheduling n weighted selfish tasks on m iden-
tical parallel machines and we study the performance of nonpreemptive coordination
mechanisms. A nonpreemptive coordination mechanism consists of m local schedul-
ing policies that decide the processing order of the tasks on each machine without
delays or interruptions. We discuss the existence of Nash equilibria for this setting
and show that it is not a guaranteed property of all nonpreemptive coordination mech-
anisms. Next, we focus on the wider class of randomized Nash equilibria and prove
lower bounds on the price of anarchy. Our lower bounds are presented in comparison
to the currently best known coordination mechanism (which uses delays) and lead
to the conclusion that preemption or delays are required in order to improve on the
currently best known solution.
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1 Introduction

The advent of networking had a huge impact on the landscape of computer science
and gave rise to environments where several self-interested entities share compu-
tational and communication resources. The rapid growth of the Internet has drawn
attention to such settings and tools from game theory have been widely applied to
model the interactions among selfish agents [26, 31].
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In this framework, selfish entities are considered rational players who wish to min-
imize some defined personal cost (e.g. the time required for the processing of a task
requested by the entity) and are expected to reach a solution state from which they
are not willing to deviate. The most famous such concept is the Nash equilibrium,
which is an outcome such that no player benefits by switching to a different choice
unilaterally. The performance of the whole system is measured by a social cost (e.g.
the maximum or the average of the players’ costs) and, in general, Nash equilibria
are not optimal from this perspective. This inefficiency is captured by the price of
anarchy [18, 27, 30]. More specifically, the price of anarchy measures the worst case
ratio of the social cost in a Nash equilibrium to the optimal social cost.

A natural question that arises is whether and how this inefficiency might be con-
tained. In distributed settings, such as those encountered in networked environments,
imposing a centralized control upon the users and forcing them to coordinate and
produce a socially desirable outcome is not an available alternative. Instead, the de-
signer is restricted to defining system-wide rules and protocols a priori. This idea is
traditional in game theory and is known as mechanism design [24, 25]. In this frame-
work various approaches have been proposed such as applying economic incentives
[4, 7, 11] or the Stackelberg strategy [3, 16, 29, 33]. One fundamental characteris-
tic of these approaches is that global knowledge is required and the communication
costs involved are heavy. In such settings where communication is impossible or the
communication costs involved are too high, coordination mechanisms [6, 17] rem-
edy the situation. Coordination mechanisms define local rules that do not require any
information other than the state on a specific shared resource of the system.

In the described framework consider a selfish task scheduling game (in literature
one may also encounter the names selfish task allocation, selfish load balancing, and
selfish routing on parallel links). The game consists of n selfish tasks expecting to
be processed on a system of m machines. The objective of each task is to minimize
its completion time by selecting, as a strategy, the machine that will process it. The
coordination mechanism for this game defines the scheduling policies of the m ma-
chines. The scheduling policies are strictly local and have no knowledge about the
state of other machines. We are interested in the performance of the system which
is measured by the total makespan, i.e. the completion time of all tasks. Tasks may
select a probability distribution among the available machines as a strategy and, in
this case, the social cost will be the expected makespan. The price of anarchy of a
coordination mechanism is, among all possible sets of selfish tasks, the worst case
ratio of the expected makespan in a Nash equilibrium to the optimal makespan.

In this paper we will study selfish scheduling games where all tasks are allowed
to select any machine, all tasks have complete information about the weights of the
other tasks and about the scheduling policies, all machines have identical processing
speed and all machines have nonpreemptive policies. A policy is nonpreemptive if no
task is delayed or interrupted while it is being processed.

1.1 Related Work

The price of anarchy and the existence of Nash equilibria for selfish scheduling on
identical machines have received significant attention. The study of selfish scheduling
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was initiated in [18] by Koutsoupias and Papadimitriou. The model there is equiva-
lent to a specific coordination mechanism, the one where every machine completes
all tasks simultaneously at time equal to the sum of their processing times. This
coordination mechanism, which we will call the KP mechanism has been studied
extensively. For m = 2, the authors in [18] proved that the price of anarchy of the
KP mechanism is % and for general m, they showed that it is Q(log)ﬁgm ). In [22],
Mavronicolas and Spirakis managed to prove a tight upper bound for the KP mecha-
nism regarding the fully mixed case, where all tasks play all machines with positive
probability. The price of anarchy of the KP mechanism for general m was settled in-
dependently in [10] and [19] and was shown to be (~')(1 Olgﬁgm ). In [12], Fotakis et al.
show that the KP mechanism admits at least one pure strategy Nash equilibrium for
any set of tasks. In [22], Mavronicolas and Spirakis show that the randomized Nash
equilibrium, in which all tasks assign positive probability to all machines, is unique.

Subsequently attention was driven to coordination mechanisms other than the KP
mechanism. In [6], Christodoulou et al. propose and study several coordination mech-
anisms for machines with identical processing speed. For 2 machines they propose
the Largest First—Shortest First coordination mechanism. The policies of the mech-
anism are as follows. The first machine schedules the tasks it receives in decreasing
weight order, while the second machine schedules the tasks in increasing weight or-
der. The price of anarchy of this mechanism is %. For m > 2, Christodoulou et al.
propose the Largest First coordination mechanism, where all machines schedule the
tasks in decreasing weight order and each machine j imposes a delay je, with € in-
finitesimal. The price of anarchy of Largest First is f—L — % and is the best known
among coordination mechanisms for selfish scheduling on machines with identical
speed. Note that this mechanism does not fall in the nonpreemptive category since
it uses delays. The mechanisms described above have a unique pure strategy Nash
equilibrium for every set of tasks. The Largest First—Shortest First mechanism may
also admit randomized Nash equilibria with social cost equal to that of the unique
pure strategy Nash equilibrium.

We conclude this subsection by providing pointers to earlier work in the area of
selfish scheduling, in settings other than that of machines with identical speed. Sev-
eral such extensions of selfish scheduling have been studied, such as the case of ma-
chines with different processing speed [10, 18] and the restricted assignment model,
where tasks are restricted to subsets of the machines [2]. In [15], Immorlica et al.
study several coordination mechanisms, focusing on pure strategy Nash equilibria.
Truthful coordination mechanisms, i.e., mechanisms such that no task benefits from
declaring a false weight, are considered in [1, 6]. More general cases are studied in
[5, 9, 20, 21] and different social costs, such as the average task cost, are studied in

[5, 13, 14, 34]. Results in the area of selfish scheduling are surveyed in [8, 32].

1.2 Our Contributions

We focus on coordination mechanisms whose local scheduling policies simply decide
the order in which the received tasks will be processed, i.e., nonpreemptive coordi-
nation mechanisms. We study the existence of Nash equilibria in games defined by a
nonpreemptive coordination mechanism and a set of tasks. We prove that there exist
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identical machine scheduling games with nonpreemptive coordination mechanisms
that do not accept any pure strategy Nash equilibrium, so naturally we turn our dis-
cussion to the broader class of randomized Nash equilibria.

We compare the performance of nonpreemptive coordination mechanisms, under
the price of anarchy metric, with the % 3 — 3,; brice of anarchy achieved by Largest
First, wh1ch is the best known coordlnatlon mechanism. We prove constant lower
bounds % 5 form =2 and 3 5 for m > 2 and, this way, establish that we can’t produce
a nonpreemptive coordination mechanism that outperforms the Largest First mecha-
nism. We also extend the lower bound on the price of anarchy of every nonpreemptive
coordination mechanism to Q(blg(’lg;%).

Combining our lower bounds with upper bounds from earlier work, we derive that
the price of anarchy of the best nonpreemptive coordination mechanism for m = 2
is between i and Z. For general m the price of anarchy of the best nonpreemptive

| log
coordlnatlon mechanism is O (3 me— go lgog’m) and Q(%).

2 The Model

A game of scheduling n weighted tasks on m parallel machines with identical speed
is fully described by (c, w), where ¢ and w are as follows:

1. ¢ is a coordination mechanism, i.e., a set of m local scheduling policies. The
scheduling policy of each machine j observes the weights of the tasks allocated
to j and decides the completion time of each task.

2. w={w,ws,...,w,} is a vector of n task weights, with w; being the weight
of task i. We will assume that the tasks will be given in increasing weight order
and that tasks with the same weight can be ordered from smallest to largest in a
predefined manner.

The set of pure strategies of every task is the set of machines {1, 2, ..., m}. A ran-
domized strategy is naturally a probability distribution over the set {1, 2, ..., m}. If
pi,j is the probability that task i assigns to machine j, then the n x m array p = {p; ;}
describes an outcome of the game. For the game (c, w) and outcome p, we denote
as t; j(c, w, p—;) the expected completion time of task i if all other tasks play their
strategies as in p and i plays purely machine j. Outcome p is a Nash equilibrium in
(c,w)ifandonlyifforalli=1,...,nandforall j=1,...,m

pi,j>0 =t jlc,w,p)<tiilc,w,p) forallk=1,...,m

This means that every task assigns positive probability only to machines that mini-
mize its expected completion time. Thus, no task can improve its completion time by
changing its selected probability distribution in p.

The social cost of the system will be the expected maximum among the task com-
pletion times, i.e., the expected makespan. We will write s(c, w, p) for the expected
makespan of outcome p in the game (¢, w). The price of anarchy of a coordination
mechanism c is defined as the worst case ratio of the expected makespan in a Nash
equilibrium to the optimal makespan, for all possible sets w. We will write opt(w, m)
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for the optimal makespan, which is given by the optimal allocation of the n tasks to
the m machines, independent of the behavioral model. Summarizing we get that

s(c,w, p)
PoA(c) = max max ——
w  Nash p opt(w, m)

2.1 Nonpreemptive Coordination Mechanisms

In this subsection, we will define nonpreemptive coordination mechanisms and in-
troduce some notation. A nonpreemptive coordination mechanism is a coordination
mechanism that consists of m nonpreemptive policies. A nonpreemptive policy for
some machine j is one that, given a set of task weights (the weights of the tasks
allocated to machine j), decides the processing order of the tasks. Such a policy is
described by an infinite set ¢; of task weight orderings, such that c¢; includes ex-
actly one ordering for every possible set of task weights received. The task whose
weight has the k-th position in the ordering, is served k-th in order. Assume that ¢;
contains the ordering (wq,, Wq,, . . ., Wg, ). The task with weight w,, has completion
time wg, + Wa, + - - - + Wy, . Obviously, ¢; can’t contain any other ordering of the set
{wa,, Way, - .., Wq, }. Now consider the following example:

¢;j=1{(1,2),(5,9,3),(2,4,5), 4,1,2),...}.

This policy means that if machine j receives tasks 1, 2, and 3 with weights w; =1,
wy =2, and w3 = 4, then task 3 is processed first with completion time 4, task 1 is
processed second with completion time 5, and task 2 is processed last with comple-
tion time 7.

If there are weights with equal value, the ordering makes them distinct by assign-
ing subscripts from assumed smallest to assumed largest. This means that the ordering
for weights 4, 4, and 3, could be (42, 3, 41), where 4 is the weight of the task that is
considered smaller among the two with weight 4. Note that the game might include
more than two tasks with weight 4 but in case a machine receives any two of them
it will name them 4; and 4, depending on which one is considered smaller (4;) and
which one is considered larger (4,). Regarding the tie breaking rule, recall that the
tasks are given in assumed increasing weight order. So if w; = w; and j > i, then
w; is the one considered larger by the scheduling policy. We will write, for example,
that a policy includes (4, 3,4) if it includes (41, 3, 4») or (42, 3,41).

We write ¢ = {c1,¢2,...,cm}, With cj, j =1, ..., m, the policy of machine j, for
an m-machine nonpreemptive coordination mechanism.

3 Equilibria and Nonpreemptive Coordination Mechanisms

Task scheduling games with coordination mechanisms can be thought of as varia-
tions of congestion games [17, 23, 28]. Congestion games consist of n players and
m resources, with each player wishing to use a subset of the resources. The cost of
each player on any resource is a function of the number of players using it. Thus,
all players on a resource j suffer the same cost. The total cost of a player i is the
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sum of the costs of the resources that i uses. In the task scheduling model, studied
in this paper, we have n players, m resources and each player wishing to use exactly
one resource. The difference with congestion games is that the cost of player i on
resource j does not only depend on the number of players using j. It also depends
on their weights. Moreover, the costs assigned to the players by resource j are not
symmetrical and depend on the order in which the tasks will be processed. Thus, task
scheduling games share many similarities with congestion games but they are not a
subclass of them.

What is of interest to us in this section is that congestion games have been shown to
possess at least one pure strategy Nash equilibrium [28]. Moreover, the coordination
mechanisms for selfish scheduling that have been studied so far, also possess at least
one pure strategy Nash equilibrium for every set of task weights w (see Sect. 1.1).
Thus, it is natural to ask whether this is a rule for nonpreemptive coordination mech-
anisms. We get the following result.

Theorem 1 A game (c, w), with ¢ a nonpreemptive coordination mechanism and w
a set of task weights, does not necessarily possess a pure strategy Nash equilibrium.

Proof We prove this by presenting an example. Consider a game with n = 4 tasks
with weights w1 =1, wy = 1, w3 = 2, and wgq = 2. Note that the tasks are always
given in (assumed) increasing weight order. Now suppose that the policies ¢y, ¢ of
the coordination mechanism c are as follows.

c=c={@2.1),21,22),(11,2,12), (21,2, D,...}.

This game does not admit a pure strategy Nash equilibrium. Our reasoning is as
follows:

1. For the case where all tasks select the same machine, it is trivial to see that there
will be 3 tasks (all but the one served first) with incentive to switch to the other
machine.

2. For the case where 3 tasks select one machine and 1 task the other one.

(a) In case the task that is alone has weight 1, the other task with weight 1 has an
incentive to join it, since its completion time drops from 5 to at most 2.

(b) In case the task that is alone has weight 2, the task with weight 1, (task 2—
remember that they are given in increasing weight order) has an incentive to
join it, since its cost drops from 4 to 3.

3. For the case where each machine is assigned 2 tasks.

(a) In case the tasks with weight 2 go to the same machine, then the task with
weight 2, (task 4) has an incentive to switch to the other machine, since its
cost drops from 4 to 3.

(b) In case each machine receives tasks with weight 1 and 2, then the task with
weight 1; (task 1) has an incentive to switch to the other machine, since its
completion time drops from 3 to 1.

This exhausts all possibilities. g

The existence of at least one randomized Nash equilibrium follows directly from
Nash’s Theorem, since the number of players and the number of strategies are finite.
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4 Lower Bounds on the Price of Anarchy of Nonpreemptive Coordination
Mechanisms

In this section we focus on the price of anarchy of nonpreemptive coordination mech-
anisms. First we examine nonpreemptive coordination mechanisms for m > 2 ma-
chines. The following theorem gives an interesting preliminary result.

Theorem 2 The price of anarchy of every nonpreemptive coordination mechanism
for m > 2 machines is at least %

Proof The main idea behind the proof is that for every coordination mechanism c
for m > 2, the game with n = m tasks with weight wy =wy =---=w,, =1 has a
Nash equilibrium with expected makespan % Here we describe how this equilibrium
is reached. Players observe each policy ¢; and are interested in whether it includes
(11, 1) or (12, 11). If (12, 11) € ¢c; we will call j a big-first machine. Otherwise we
will call j a small-first machine.

It is certain that we can find either two big-first machines, or two small-first ma-
chines, since the machines are at least 3 and the possible orderings for {1, 1,} are 2.
Let these two machines be j; and j». Suppose that tasks start making their selections
ignoring j; and j,. Assume that there are kj; big-first machines and k; small-first
machines, other than j; and j,. This means that kj, + ks + 2 = m. The k;, tasks that
are considered larger are allocated to the kj, big-first machines, one task per machine.
The k, tasks that are considered smaller are allocated to the k; small-first machines,
one task per machine. Since there are m tasks, there are 2 tasks i; and i, that have
not selected their strategies. These two tasks play j; and j, with probability % each.
Without loss of generality we may assume that 7 is the task that is processed first if
it ends up in the same machine with i;. This means that either it is considered larger
and ji, jo are big-first or it is considered smaller and ji, j, are small-first.

This allocation has expected makespan % due to the possible event that i1 and
io end up on the same machine. The optimal allocation is obviously one task per
machine with makespan 1. We claim that the allocation of the previous paragraph
is a Nash equilibrium, something that would prove the theorem. Our reasoning is as
follows:

1. All tasks outside j; and j are alone in a machine and have optimal cost.

2. Task iy is processed first no matter what happens, so it also has optimal cost.

3. Task iy has expected completion time % on both j; and j,. It will not benefit by
switching to some other big-first machine, since all such machines have another
task that is considered larger than i; and it will have to wait for its processing for
a total cost of 2. For a similar reason it will not benefit by switching to some other
small-first machine.

So, it follows that no task can improve its cost by a unilateral move, thus, the outcome

is a Nash equilibrium. This proves the theorem. |

This provides a constant lower bound that will prove useful in our discussion on
the power of nonpreemptive coordination mechanisms. However this result is only
preliminary and can be extended as the next theorem shows.
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Theorem 3 The price of anarchy of every nonpreemptive coordination mechanism
. . loglogm

for m machines is Q(W)'

Proof Consider a coordination mechanism ¢ for m machines and a game with n =m
tasks, such that all tasks have weight 1. The proof is similar to the one of Theorem 2.
The idea is that we do not find 2 machines with identical policy for 2 tasks with
weight 1, but k£ machines with identical policy for 1,2, ...,k — 1, and k tasks with
weight 1, for some k that depends on m as described in the next paragraph. The
number of possible policies in Theorem 2 were just 2, namely {(1), (11, 12), ...} and
{(1), (12, 1y), ...}. The number of orderings for j tasks of length 1 is j!. Hence,
the number of possible policies for 1,2,...,k — 1, and k tasks with weight is [} =
1121, kL.

With m > [y (k — 1) 4+ 1, we are certain we can find k machines ji, j,..., jk,
that have the same policy for up to k tasks with weight 1. Now, tasks start making
their selections ignoring ji, ja, ..., jk. Again assume that there are k; big-first ma-
chines (as defined in the proof of Theorem 2) and k; small-first machines, other than
Jis j2s .., jk. This means that kp + kg + k = m. The k;, tasks that are considered
larger are allocated to the k;, big-first machines, one task per machine. The k; tasks
that are considered smaller are allocated to the k; small-first machines, one task per
machine. Since there are m tasks in total, there are k tasks i1, is, ..., i; that have not
selected their strategies. These tasks play ji, j2, ..., jx with probability % each. We
claim that this is a Nash equilibrium. This is verified as follows:

1. The tasks outside ji, jo, ..., jr are alone in a machine and have optimal cost.

2. Consider a task i among the ones that play ji, ja, ..., jk, with uniform probability.
Assume that it is always processed last, in the purpose of obtaining an upper bound
on the completion time of this task on any of the machines ji, j, ..., jx. Then
there is probablhty that it will have to wait for each of the k — 1 other tasks

on the machine. Then its expected completion time would be 1 + &L which is
an upper bound on its actual completion time. Applying the same reasomng as
the one used in the proof of Theorem 2, we get that there is no benefit for i in
switching to any of the other machines, since its completion time will rise to 2.

3. Again consider a task i among the ones that play ji, ja,..., jkx, With uniform
probability. All these machines have the exact same policy for up to k tasks with
weight 1 and all k tasks play each of them with probablhty . So everything is
symmetric and task i has the same expected completion tlme on each of the &k
machines.

So this is a Nash equilibrium and we need to calculate its expected makespan. This
setting, where k tasks play k machines with uniform probability, is identical to the
setting where k balls are thrown to k bins at random. It is known that the expected
maximum number of balls in a bin is ® (5o Olgoik 7). This directly gives an £2 (5557 Olgoﬁ)]; 7)
lower bound on the price of anarchy of c, since the optimal makespan of the game
isl.Fromm=[(k—1)+1=112!.. . kl(k — 1) + 1, we get

k
logm = © (Zjlogj) =0O(k*logk) = k*logk = O (logm).
j=1
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This gives logk = ®(loglog m). Combining this with the £2(; 01;1%)]; 7) lower bound on

the price of anarchy of ¢, we prove the theorem. g

Next, we focus on the case of m =2 machines. We will prove that the price of
anarchy of every nonpreemptive coordination mechanism for m = 2 is at least % by
following an extensive case analysis. We begin with the following lemma.

Lemma 1 Suppose ¢ = {c1, c2} is a nonpreemptive coordination mechanism such
that both machines have the same policy for two tasks with weights w1, wy € {2, 3}
and w1 < wy. Then PoA(c) > g—‘.

Proof For the described c, consider the game (c, {w1, w>}). There always exists the
Nash equilibrium p, where both tasks play both machines with probability % Noting
that w; < wp, we get that

1 1 w
s(,w, p)=~(w) +w2) + ~wy = PoA(c)> 1+ —-.
2 2 2wy
For wy, wy € {2, 3}, this last inequality proves the lemma. (|

Next, we need to examine mechanisms with the following property. One policy
includes (2, 3) and the other includes (3, 2), one policy includes (21, 2,) and the other
includes (23, 21), and one policy includes (31, 32) and the other includes (32, 31). We
will refer to this as the Mirror Property. Without loss of generality we may assume
that (2, 3) € ¢; which gives the following cases.

c1 =1{2,3),(22,21),(31,32), ...} and c2 = {(3, 2), (21, 22), (32, 31), .. .}.
c1=1{2,3),21,22),(31,32), ...} and c2 = {(3, 2), (22, 21), (32, 31), ...
c1 =1{2,3),(22,21),(32,31), ...} and c2 = {(3, 2), (21, 22), (31, 32), ...
c1 =1{2,3),(21,22),(32,31), ...} and c2 = {(3, 2), (22, 21), (31, 32), .. .}.

Eal e e
AR

In the remainder of the section we will only examine mechanisms of the first form.
We will prove that the price of anarchy of every one of them is at least % and we will
show that the other 3 cases are symmetric. We will say that mechanisms that match
the first case satisfy the Specific Mirror Property.

At this point we proceed as follows. We present and prove several lemmata, which
lead to the conclusion that for any ordering of {21, 2>, 3} in ¢y, the price of anarchy
of ¢ is at least %. The next lemma examines the case where ¢ includes (3, 25, 21) and
the ones that follow examine the remaining 5 cases.

Lemma 2 If c¢ satisfies the Specific Mirror Property and (3,2,21) € c1 then
PoA(c) > 1.

Proof We examine 3 cases for the described c.
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1. Case where c; includes (3, 2, 2). In this case the game (c, {2, 2, 3, 3}) has the Nash
equilibrium

1 0
11

— 12 2
P=11 0
0 1

Confirmation that this is indeed a Nash equilibrium comes from computing all
values t; j(c, w, p—;). For this outcome we have
@ t1(c,w, poy) = 74 %2 = % and #1 2(c, w, p—1) > %5 + %5 =5.
(b) t,1(c,w, p2)=5and 1 2(c, w, p—2) =3.
© f31(c,w, p-3) =23+ 15=4and 132(c, w, p_3) > 16+ 13 = 3.
(d) t42(c, w, p—4) =3, which is the optimal cost for task 4.
These values verify that every task assigns positive probability only to machines
that minimize its expected completion time. So, this outcome is a Nash equilib-
rium with expected makespan 6, while the optimal makespan is 5. Thus, in this
case the price of anarchy of c is at least g.

2. Case where c; includes (2, 3, 2). In this case the game (c, {2, 2, 2, 3}) has the Nash
equilibrium

N— — O O
R—= O = =

with expected makespan 6, while the optimal makespan is 5. So, also in this case
PoA(c) = &.

3. Case where c; includes (2, 2, 3). In this case the game (c, {2, 2, 3}) has the Nash
equilibrium

p:

—_— O WIN
O =W

with expected makespan %, while the optimal makespan is 4. This proves that the
price of anarchy of c, in this case, is at least %.

These 3 cases prove the lemma. g

Lemma 3 If c¢ satisfies the Specific Mirror Property and (3,21,27) € c1 then
PoA(c) > 1.

Proof For the described c, the game (c, {2, 2, 3}) has the Nash equilibrium

BS]

I
B= = —
Hw O O
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with expected social cost %, while the optimal is 4. Thus, we get that PoA(c) >
197 O
6~ 6

Lemma 4 If c satisfies the Specific Mirror Property and (2,2,3) € cy, then
PoA(c) > §.

Proof Assume c is such that (3,2,3) € c; or (3,3, 2) € ¢3. Then (c, {2, 2, 3, 3}) has
the equilibrium

O = -
—_——0 O

0

with makespan 6, while the optimal makespan is 5. This proves that the price of
anarchy of c, in this case, is at least g. So, we need to prove that the same holds when
(2,3, 3) € cy. Since ¢; contains (21, 2,, 3) or (21, 23, 3) and ¢, contains (2, 31, 3») or
(2,35, 31), there are 4 cases we need to examine. For each one of them, we will give
an equilibrium of the game (c, {2, 2, 3, 3}) with expected makespan greater than 6.
This will complete the proof.

1. When (27,21,3) € ¢y and (2, 32, 31) € c; the equilibrium is

<

I
O LI = AW
—_——= O =

2. When (2,21,3) € c1 and (2, 31, 32) € ¢> the equilibrium is

:

3. When (21,25,3) € ¢; and (2,35, 31) € ¢2 th

|

4. When (21, 2,3) € ¢y and (2, 31, 32) € ¢> the equilibrium is

|

WY O =W
W= = ONIA

(¢)

equilibrium is

QU = AW
—w O R—

“wiY O =W
NW = O
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Lemma S5 [f c satisfies the Specific Mirror Property, with (2,3,2) € cy and (3,2,2) €
c2, then PoA(c) > %

Proof For such c, the game (c, {2, 2,2, 3,3}) always has a Nash equilibrium, in
which machine 1 has load 5 (one task with weight 2 and one with weight 3) and
machine 2 has load 7 (the remaining 3 tasks). Such an equilibrium has makespan 7,
while the optimal is 6. We now present how to construct such an equilibrium.

1. We first decide which task with weight 3 will be allocated to machine 1 (with
completion time 5). It must be selected such that it does not have incentive to
switch to machine 2 in an allocation such as described above. So, we select the
task that would have completion time at least 6 if it were on machine 2 together
with 3 other tasks with weights 2, 2, and 3. So, this task is in a best response state.
The other task with weight 3 is processed first in the allocation examined, so it is
also in a best response.

2. Now we decide which task with weight 2 to allocate to machine 1. If (27, 3,21) €
c1, then we allocate task 3, while if (21, 3, 2») € ¢, then we allocate task 1. We
can easily confirm that they are in best response in both cases.

This completes the proof. g

Lemma 6 If c satisfies the Specific Mirror Property, with (21,3,27) € ¢ and
(3.2,2) ¢ c2, then PoA(c) > Z.

Proof For the described c, the game (c, {2, 2, 3}) has the equilibrium

2 5
_| 3 7
P=|1 10|
1 0
with social cost %, while the optimal is 4. This competes the proof. g

The final case that remains to be examined is when (27, 3, 21) € c1, (3,22,21) ¢
¢z, and (3,21, 22) ¢ c;. This will be done in Lemma 9, which makes use of the results
presented in Lemma 7 and Lemma 8 below.

Lemma 7 If c satisfies the Specific Mirror Property, with (21,2,23) € c1, then
PoA(c) > 2.

Proof For the described c, the game (c, {2, 2, 2, 2}) always has a Nash equilibrium
with expected makespan 5, while the optimal is 4. We examine all possible cases and
give a Nash equilibrium with expected makespan 5 for each one.

1. If (23,21, 23) € c3, then the Nash equilibrium is the following.

— O OwI—
O = =N
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2. If (23,25, 21) € c2, then the Nash equilibrium is the following.

=
I
QO R—W|— —

—_ =W O

3. For any other c;, the Nash equilibrium is the following.

[SY [ -]

This completes the proof.

Ov= O =

O

Lemma 8 If ¢ satisfies the Specific Mirror Property, with (21,23,22) € c1, then

PoA(c) > 3.

Proof For the described c, the game (c, {2, 2, 2, 2}) always has a Nash equilibrium
with expected makespan 5, while the optimal is 4. We examine all possible cases and
give a Nash equilibrium with expected makespan 5 for each one.

1. If (23,21, 23) € c3, then the Nash equilibrium is the following.

— O OwI—

S = ==

2. If (23,23, 21) € c2, then the Nash equilibrium is the following.

<
I
N—= O = =

D= —= O O

3. For any other c;, the Nash equilibrium is the following.

N— = = O

This completes the proof.

D=0 O =

O

Lemma 9 If ¢ satisfies the Specific Mirror Property, with (22,3,21) € c1, (3,23,
21) ¢ ca2, and (3,21,23) ¢ c2, then PoA(c) > g.
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Proof For the described ¢, we will examine all possible cases for the scheduling
policy of c3.

1.

If (21,3,27) € c2, then the game (c, {2, 2,2, 3}) has the following Nash equilib-
rium.

D= —_ O O
N—= O = =

The expected social cost in this case is 6, while the optimal would be 5.
If (22,3,21) € c2, then the game (c, {2, 2, 2, 3}) has the following Nash equilib-
rium.

0 1
10 1
P=11 o0
3 5
8 38
The expected social cost in this case is %, while the optimal would be 5.

If (22,21, 3) € 2, then the game c, {2, 2, 3, 3} either

hS]

I
— O~ O
O == =

o

=

aS]

|
O == O
—_— O N— =

is a Nash equilibrium, depending on the ordering of {2, 31, 35} that is included
in ¢7. In both cases, the expected social cost is 6, while the optimal would be 5.
Finally, if (21,25, 3) € ¢2, and under the assumption that ¢; does not include
(21,27,23) or (21, 23,27), then the game (c, {2, 2, 2, 3}) has the following Nash
equilibrium.

S == O
—_— ON—= =

The expected social cost in this case is 6, while the optimal would be 5. Removing
the assumption, we would get from Lemma 7 and Lemma 8 that the mechanism
would have price of anarchy at least g.

This completes the proof. O

Now, we can see that Lemmas 2 through 9 cover all possible cases of mechanisms

that satisfy the Specific Mirror Property, i.e., ¢c1 = {(2, 3), (22, 21), (31, 32), ...} and
c2=1{(3,2),(21,22),(32,31),...}. We observe that the case analysis of Lemmas 2
through 9 can be modified to prove the remaining 3 cases of mechanisms that satisfy
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the Mirror Property, mentioned earlier. If instead of (27,21) € c¢1 and (21, 2>) € ¢,
we have (21, 27) € ¢ and (27, 21) € c2, we adjust the case analysis as follows. We re-
verse the “direction” of the tasks with weight 2 in all orderings of the mechanism. For
example, if an ordering of a policy in our case analysisis (..., 23,...,21,...,22,...),
we turn itinto (...,21,...,23,...,22,...),orifitis (...,21,...,22,...), we turn it
into (...,23,...,21,...). We also change the strategies of the tasks with weight 2
as follows. The task which is placed last in the increasing order switches strategies
with the task which is placed first, the task which is placed second to last switches
with the task which is placed second and so on. This produces a case analysis that is
symmetric to the one we followed previously and proves the same result. The same
idea is applied if instead of (31,3,) € ¢; and (32,31) € 2, we have (32,31) € c|
and (31, 32) € 2. This proves that all mechanisms which satisfy the Mirror Property
have price of anarchy at least %. Combining this with Lemma 1, we get the following
theorem.

Theorem 4 The price of anarchy of every nonpreemptive coordination mechanism
for m =2 machines is at least %.

5 Discussion

The results presented in this paper, derive two key properties. The first one is that
games defined by nonpreemptive coordination mechanisms, do not necessarily pos-
sess pure Nash equilibria. The second property is tied to the performance of these
mechanisms, with respect to randomized Nash equilibria, regarding the price of an-
archy metric. We established constant lower bounds % for 2 machines and % for 3 or
more machines. These lower bounds lead to the following corollary.

Corollary 1 The price of anarchy of every nonpreemptive coordination mechanism
is at least % - ﬁ As a consequence, we are not able to design a nonpreemptive
coordination mechanism that performs better than the preemptive Largest First coor-
dination mechanism of [6].

This suggests that if there exists a coordination mechanism that has price of an-
archy better than % - ﬁ, which is the best known, it must use preemption or task
delays.

Regarding the case of general m, we provide an Q(mlg(’lg;%) lower bound, on
the price of anarchy of nonpreemptive coordination mechanisms, in this paper. It is
trivial to design a nonpreemptive coordination mechanism that has price of anarchy
0(101;1%);1;71) by just setting the same scheduling policy to all machines. Then, the
bound follows directly as discussed by Christodoulou et al. in [6]. Combining this
with the % price of anarchy of the Largest First—Shortest First nonpreemptive co-
ordination mechanism of [6], we conclude our discussion with the following corol-

lary.
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Corollary 2 The price of anarchy of the best nonpreemptive coordination mechanism

. . 7 4 .. loglogm
Jor 2 machines is at least ¢ and at most 5. For general m it is Q(ilogloglogm) and
logm
o( loglogm )-
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