
Theory Comput Syst (2012) 51:404–424
DOI 10.1007/s00224-012-9407-2

Generating Fast Indulgent Algorithms

Dan Alistarh · Seth Gilbert · Rachid Guerraoui ·
Corentin Travers

Published online: 4 May 2012
© Springer Science+Business Media, LLC 2012

Abstract Synchronous distributed algorithms are easier to design and prove correct
than algorithms that tolerate asynchrony. Yet, in the real world, networks experience
asynchrony and other timing anomalies. In this paper, we address the question of how
to efficiently transform an algorithm that relies on synchronous timing into an algo-
rithm that tolerates asynchronous executions. We introduce a transformation tech-
nique from synchronous algorithms to indulgent algorithms (Guerraoui, in PODC,
pp. 289–297, 2000), which induces only a constant overhead in terms of time com-
plexity in well-behaved executions.

Our technique is based on a new abstraction we call an asynchrony detector,
which the participating processes implement collectively. The resulting transforma-
tion works for the class of colorless distributed tasks, including consensus and set
agreement. Interestingly, we also show that our technique is relevant for colored
tasks, by applying it to the renaming problem, to obtain the first indulgent renam-
ing algorithm.

Keywords Distributed algorithms · Asynchrony · Indulgent algorithms

Dan Alistarh was supported by the NCCR MICS Project.
Corentin Travers had additional support from INRIA team REGAL and ANR project SPREADS.

D. Alistarh (�) · R. Guerraoui
EPFL, Lausanne, Switzerland
e-mail: dan.alistarh@epfl.ch

S. Gilbert
National University of Singapore, Singapore, Singapore

C. Travers
LaBRI, Université de Bordeaux 1, Bordeaux, France

mailto:dan.alistarh@epfl.ch

Theory Comput Syst (2012) 51:404–424 405

1 Introduction

The complexity of distributed tasks has been thoroughly studied both in the syn-
chronous and asynchronous timing models. To better capture the properties of real-
world systems, Dwork, Lynch, and Stockmeyer [11] proposed the partially syn-
chronous model, in which the distributed system may have both synchronous and
asynchronous periods, but eventually stabilizes and becomes synchronous. This line
of research inspired the introduction of indulgent algorithms [13], i.e. algorithms that
guarantee correctness and efficiency when the system is synchronous, and maintain
safety even when the system is asynchronous. Several indulgent algorithms have been
designed for specific distributed problems, such as consensus (e.g., [8, 17]). However,
designing and proving correctness of such algorithms is usually a difficult task, espe-
cially if the algorithm has to provide good performance guarantees.

In this paper, we introduce a general transformation technique from synchronous
algorithms to indulgent algorithms, which induces only a constant overhead in terms
of time complexity. Our technique is based on a new primitive called an asynchrony
detector, which identifies periods of asynchrony in a fault-prone asynchronous sys-
tem. We showcase the resulting transformation to obtain indulgent algorithms for the
important class of colorless agreement tasks, that includes consensus and set agree-
ment. We also apply our transformation to the distinct class of colored tasks, to obtain
the first indulgent algorithm for the renaming problem [4].

Central to our technique is a new abstraction, called an asynchrony detector, which
we design as a distributed service for detecting periods of asynchrony. The service
detects asynchrony both at a local level, by determining whether the view of a pro-
cess is consistent with a synchronous execution, and at a global level, by determining
whether the collective view of a set of processes could have been observed in a syn-
chronous execution. We present an implementation of an asynchrony detector, based
on the idea that each process maintains a log of the messages sent and received, which
it exchanges with other processes. This creates a view of the system for every process,
which we use to detect asynchronous executions.

Based on this abstraction, we introduce a general technique allowing synchronous
algorithms to tolerate asynchrony, while maintaining time efficiency in well-behaved
executions. The main idea behind the transformation is the following: as long as the
asynchrony detector signals a synchronous execution, processes run the synchronous
algorithm. If the system is well behaved, then the synchronous algorithm yields an
output, on which the process decides. Otherwise, if the detector notices asynchrony,
we revert to an existing asynchronous backup algorithm with weaker termination and
performance guarantees.

We first showcase the technique by transforming algorithms for agreement tasks,
also called colorless tasks, which includes consensus and set agreement. Intuitively, a
colorless task allows processes to adopt each other’s output values without violating
the task specification, while ensuring that every value returned has been proposed
by a process. We show that any synchronous algorithm solving a colorless task can
be made indulgent at the cost of two extra rounds of communication. For example,
if a synchronous algorithm solves synchronous consensus in t + 1 rounds, where t

is the maximum number of crash failures (i.e. the algorithm is time-optimal), then

406 Theory Comput Syst (2012) 51:404–424

the resulting indulgent algorithm will solve consensus in t + 3 rounds if the system is
initially synchronous, or will revert to a safe backup, e.g. Paxos [16, 17] or ASAP [2],
otherwise.

The crux of the technique is the hand-off procedure: we ensure that, if a process
decides using the synchronous algorithm, any other process either decides or adopts a
state which is consistent with the decision. In this second case, we show that a process
can recover a consistent state by examining the views of other processes. The validity
property will ensure that the backup protocol generates a valid output configuration.

We also apply our technique to the renaming problem [4], and obtain the first
indulgent renaming algorithm. Starting from the synchronous protocol of [6], our
protocol renames in a tight namespace of N names and decides in �logN�+3 rounds,
in synchronous executions. Since the original synchronous algorithm terminated in
�logN� + 1 rounds, this suggests that the cost of tolerating asynchrony can be made
constant for colored tasks as well. In asynchronous executions, the protocol renames
in a namespace of size N + t , which is optimal [14].

Roadmap In Sect. 2, we present the model, while Sect. 3 presents an overview
of related work. We define asynchrony detectors in Sect. 4. Section 5 presents the
transformation for colorless agreement tasks, while Sect. 6 applies it to the renaming
problem. In Sect. 7 we discuss our results.

2 Preliminaries

We consider an eventually synchronous system with N ≥ 3 processes Π = {p1,p2,

. . . , pN }, in which t < N/2 processes may fail by crashing. A process that does not
crash during an execution is correct. We say a process is alive (or non-failed) if it has
not crashed up to the current point in the execution.

Processes communicate via message-passing in rounds, which we model much as
in [3, 8, 9]. More precisely, time is divided into rounds, which are synchronous, i.e.,
each process has a local clock that signals the beginning and end of a round, and
these clocks are synchronized. However, message delivery is asynchronous, i.e. there
is no guarantee that a message sent by a process in a round is also delivered to the
recipient in the same round. Each message is received at most once, no message is
altered, and no message is received without being sent. We assume that a process
always receives its own message in every round. Also, we assume that there exists a
global stabilization time GST ≥ 0 after which the system becomes synchronous, i.e.
every message sent by a correct process during the execution is delivered, and every
message sent after GST is received in the same round in which it was sent. We denote
such a system by ES(N, t).

Although indulgent algorithms are designed to work in this partially synchronous
setting, they are optimized for the case in which the system is initially synchronous,
i.e. when GST = 0. We denote the synchronous message-passing model with t < N

failures by S(N, t). In case the system stabilizes at a later point in the execution,
i.e. 0 < GST < ∞, then the algorithms are still guaranteed to terminate, although
they might be less efficient. If the system never stabilizes, i.e. GST = ∞, indulgent
algorithms might not terminate, although they always maintain safety.

Theory Comput Syst (2012) 51:404–424 407

For simplicity, in this paper we consider full-information protocols, i.e. algorithms
in which each process sends its whole state to all other processes, in every round.
We note that our transformation technique will work for protocols that are not full
information, as the process state needed by the transformation is maintained by the
asynchrony detector. The algorithms we consider are deterministic. For simplicity,
we assume that their proposal values are always integers.

Rounds and Message Delays Note that, given this setup, we can ensure that every
process receives at least N − t messages that have been sent in each round, as follows.
In each round, each process sends its message, then waits until the synchronous round
timeout. If the number of messages received before the timeout is at least N − t , then
the process performs local computation, and moves to the next round. Otherwise, the
process waits until it receives at least N − t messages sent in the current round, and
only then moves to the next round. Note that this waiting step may cause the process
to become desynchronized with respect to the timeout for the current round. On the
other hand, it ensures that every process receives at least N − t messages for each
round. Since the system is eventually synchronous, this ensures that no process waits
forever for the N − t messages sent in a round. The implementation of these extended
rounds is described in detail in Sect. 4. Note that a process discards any message sent
in a round R if it has already progressed to a later round R′ > R. Also, a process that
did not receive (N − t) messages in round R before the timeout (and thus experienced
an asynchronous round) still executes round rounds R + 1,R + 2, . . . and analyzes
the (N − t) messages received in each of these rounds. The property that processes do
not “skip” rounds will prove important when proving correctness of our algorithms.

This round model could also be expressed in the GIRAF [15] model, noting that
(1) the original GIRAF model assumed that process failures also stop after the Global
Stabilization Round (GSR), whereas we allow failures after GSR and (2) we are in-
terested in the round complexity of algorithms when GSR = 0.

Executions and Views We define the trace of an execution α as a sequence of vectors
(REC1,REC2, . . .) with the property that the vector RECr associated with round r

describes the set of messages received by each process in round r . In particular, if
process pi has not crashed by the end of round r , then the set RECr [i] contains the
processes from which process pi has received a message in round r . If pi crashes
during round r , then RECr [i] = ⊥. Notice that each set RECr [i] �= ⊥ is of size at
least N − t . Notice that a trace fully defines an execution.

In the following, we say that a round r is synchronous if (1) every non-failed
process receives a message from each non-failed process in round r and (2) every
message is received before the predefined synchronous timeout for the current round
has elapsed. Similarly, we say that an execution is synchronous if every round in
the execution is synchronous. Note that this implies that if process pi receives a
message m from process pj in round r ≥ 2, then every non-failed process received
all messages sent by process pj in all rounds r ′ < r .

Since the algorithms we consider are deterministic, the view (or state) of a process
p at a round r is given by the messages that p received at round r and in all previous
rounds. We say that two execution prefixes α and β are indistinguishable from the

408 Theory Comput Syst (2012) 51:404–424

point of view of process p if p’s state is the same at the end of α and at the end of β .
We say that the view of process p at round r of an execution prefix α is synchronous
if there exists an r-round synchronous execution prefix β which is indistinguishable
from p’s view at round r . Alternatively, we say that p’s view is consistent with a
synchronous execution.

Colorless and Colored Tasks In the following, a task is a tuple (I, O,�), where I
is the set of vectors of input values, O is a set of vectors of output values, and � is
a total relation from I to O. A solution to a task, given an input vector I , yields an
output vector O ∈ O such that O ∈ �(I).

Intuitively, a colorless task is a terminating task in which any process can adopt
any decision value of any other process, without violating the task specification, and
in which any (decided) output value is a (proposed) input value. We also assume that
the output values have to verify a predicate P , such as agreement (all outputs are
equal) or k-agreement (there are at most k distinct outputs). For example, in the case
of consensus, the predicate P states that all output values should be equal. Let val(V)

be the set of values in a vector V . We precisely define this family of tasks as follows.
A colorless task satisfies the following properties: (1) Termination: every cor-

rect process eventually outputs; (2) Validity: for every O ∈ �(I), val(O) ⊆ val(I);
(3) The Colorless property: If O ∈ �(I), then for every I ′ with val(I ′) ⊆ val(I) :
I ′ ∈ I and �(I ′) ⊆ �(I). Also, for every O ′ with val(O ′) ⊆ val(O) : O ′ ∈ O and
O ′ ∈ �(I). Finally, we assume that the outputs satisfy a generic property (4) Output
Predicate: every O ∈ O satisfies a given predicate P . Consensus and k-set agreement
are canonical examples of colorless tasks.

By contrast, a colored task is a (terminating) task that is not colorless. Renam-
ing [4] is the canonical example of colored task, since it requires that the names
returned be distinct, which prevents a process from adopting another process’s out-
put.

Weak Termination and Quiescence We use the following three notions of termina-
tion for a protocol. The first, called strong termination, or simply termination, means
that after decision, each correct process stops executing the algorithm and returns.
The second, weaker one, which we call weak termination, implies that each correct
process will eventually decide, i.e. returns a decision value to the calling application,
although the process may continue to run the protocol after the decision. Finally, the
third termination condition is called quiescence [1], and means that eventually every
process decides and the protocol stops sending messages (although processes may
continue to participate in the protocol).

The protocols resulting from our transformation only ensure weak termination and
quiescence, and do not ensure strong termination. This is standard for indulgent and
window of synchrony algorithms [2, 3, 9]. Intuitively, the reason is the following:
since we combine two algorithms (a primary synchronous algorithm and a backup),
the fact that a set of processes may decide using the first algorithm may imply that the
set of correct participants to the backup algorithm falls below a majority of processes,
which might break the correctness of the backup. To avoid this scenario, we require
processes to continue executing the algorithm even after they have decided, although

Theory Comput Syst (2012) 51:404–424 409

in synchronous executions the processes are no longer required to take additional
steps or to send new messages. For details, please see Sects. 5 and 6.

3 Related Work

Starting with seminal work by Dwork, Lynch and Stockmeyer [11], a variety of dif-
ferent models have been introduced to express weak strenghtenings of the standard
asynchronous model of computation. These include failure detectors [5], round-by-
round fault detectors (RRFD) [12], and the GIRAF framework [15]. In particular, in-
dulgent algorithms [13] have been introduced to capture the properties of algorithms
that are fast when the system behaves well, and maintain safety otherwise.

In [8, 9], Guerraoui and Dutta address the complexity of indulgent consensus in
the presence of an eventually perfect failure detector. They prove a tight lower bound
of t + 2 rounds on the time complexity of the problem, even in synchronous runs,
thus proving that there is an inherent price to tolerating asynchronous executions.
Our approach is more general than that of this reference, since we transform a whole
class of synchronous distributed algorithms, solving various tasks, into their indulgent
counterparts. On the other hand, since our technique induces a delay of two rounds of
communication over the synchronous algorithm, in the case of consensus, we miss the
lower bound of t +2 rounds by one round. This overhead comes from the generality of
the approach, since the transformation also applies to k-set agreement and renaming.

Recent work studied the complexity of agreement problems, such as consensus [2]
and k-set agreement [3], if the system becomes synchronous after an unknown stabi-
lization time GST . In [2], the authors present a consensus algorithm that terminates
in f +2 rounds after GST , where f is the number of failures in the system. In [3], the
authors consider k-set agreement in the same setting, proving that �t/k� + 4 rounds
after GST are enough for k-set agreement, and that at least �t/k� + 2 rounds are re-
quired. The algorithms from these references work with the same time complexity in
the indulgent setting, where GST = 0. On the other hand, algorithms generated us-
ing our transformation will not work in a window of synchrony that starts later than
round one, since they are optimized to take advantage of the system being initially
synchronous. From the point of view of the technique, references [2, 3] also use the
idea of “detecting asynchrony” as part of the algorithms, although this technique has
been generalized in the current work to address a large family of distributed tasks.

Reference [10] considered a setting in which failures stop after GST , in which case
three rounds of communication are necessary and sufficient. Leader-based, Paxos-like
algorithms, e.g. [16, 17], form another class of algorithms that tolerate asynchrony,
and can also be seen as indulgent algorithms. Compared to our round model, the GI-
RAF framework [15] is more general, since it completely separates the algorithm’s
computation from its round waiting condition, as well as allowing the environment
to provide additional “oracle output”. Our technique assume that rounds are synchro-
nized, although messages are not necessarily delivered in the same round in which
they are sent.

A precise definition of colorless tasks is given in [7]. In this paper, we augment this
previous definition to include the standard validity property, i.e. that a value decided
by a colorless task has to be a value proposed.

410 Theory Comput Syst (2012) 51:404–424

4 Asynchrony Detectors

An asynchrony detector is a distributed service that detects periods of asynchrony
in an asynchronous system that may be initially synchronous. The service returns a
YES/NO indication at each process for every round, and has the property that pro-
cesses which receive YES at some round share a synchronous execution prefix. Next,
we make this definition precise.

Definition 1 (Asynchrony Detector) Let d be a positive integer. A d-delay asyn-
chrony detector in ES(N, t) is a distributed service that eventually returns, for every
round r , either YES or NO, at each process. The detector ensures the following prop-
erties.

1. (Local detection) If process p receives YES at round r , then there exists an r-
round synchronous execution in which p has the same view as its current view at
round r .

2. (Global detection) For all processes that receive YES in round r , there exists an
(r − d)-round synchronous execution prefix S[1,2, . . . , r − d] that is indistin-
guishable from their views at the end of round r − d .

3. (Non-triviality) The detector never returns NO during a synchronous execution.

The local detection property ensures that, if the detector returns YES, then there
exists a synchronous execution consistent with the process view. On the other hand,
the global detection property ensures that, for processes that receive YES from the
detector, the (r − d)-round execution prefix was “synchronous enough”, i.e. there
exists a synchronous execution consistent with what these processes perceived during
the prefix. The non-triviality property ensures that there are no false positives.

4.1 Implementing an Asynchrony Detector

Next, we present an implementation of a 2-delay asynchrony detector in ES(N, t),
which we call AD(2). The pseudocode is presented in Fig. 1.

The general structure of the detector is given in procedure detector. This proce-
dure follows the structure of a generic distributed algorithm, that sends a message
to all processes in every round, then receives all messages for the current round and
processes the messages received to update the current state (see lines 4–11 of the
detector procedure). Whenever used in conjunction with a (synchronous) distributed
algorithm, the detector will piggy-back its messages on the messages sent by the
protocol, to ensure that the detector notices any asynchrony that the algorithm en-
counters.

Asynchrony may be detected using two mechanisms. The first is triggered when
the timeout for the current round has elapsed, i.e. time() > Rc.end(), and less than
N − t messages sent in the current round have been received by the process (line 6).
Then the detector sets synchi to false, and will proceed to return a NO indication. For
consistency, we require processes to wait until they receive N − t messages that were
sent in this round before they can move to the next round of detection (lines 5–7),

Theory Comput Syst (2012) 51:404–424 411

procedure detector()i1

msgi ← ⊥; synchi ← true; Activei ← []; Failedi ← [];2

for each round Rc do3

send(msgi)4

/* wait until round timeout has elapsed and N − t messages have been
received for the current round */

while |receive(Rc)| < (N − t) OR time < Rc.end() do5

/* if the timeout for the current round has elapsed, then the execution
prefix is asynchronous */

if time > Rc.end() then synchi ← false6

wait()7

/* store the messages for the current round */
msgSeti ← receive(Rc)8

(synchi ,msgi) ← process(msgSeti , Rc)9

if synchi = true then output YES10

else output NO11

procedure process(msgSeti , Rc)i1

if synchi = true then2

Activei[Rc] ← processes from which pi receives a message in round Rc3

Failedi[Rc] ← processes from which pi did not receive a message in4

round Rc

if there exists pj ∈ msgSeti with synchj = false then synchi ← false5

else6

for every msgj ∈ msgSeti do7

for round r from 1 to Rc do8

Activei[r] ← msgj .Activej [r] ∪ Activei[r]9

Failedi[r] ← msgj .Failedj [r] ∪ Failedi[r]10

for round r from 1 to Rc − 1 do11

for round k from r + 1 to Rc do12

if (Activei[k] ∩ Failedi[r] �= ∅) then synchi ← false13

if synchi = true then14

msgi ← (synchi , (Activei[r])r∈[1,Rc], (Failedi[r])r∈[1,Rc])15

else msgi ← (synchi ,⊥,⊥)16

return (synchi ,msgi)17

Fig. 1 The AD(2) asynchrony detection protocol

although the execution prefix is already marked as asynchronous. (These N − t mes-
sages will be useful in reconstructing a synchronous view, as described in Sect. 5.)

The second detection mechanism, implemented in the process procedure, ensures
that processes maintain a detailed view of the state of the system by aggregating
all messages received in every round. For each round Rc, each process maintains
an Active set of processes, i.e. processes that sent it a message in the round; all other

412 Theory Comput Syst (2012) 51:404–424

processes are in the Failed set for that round (lines 2–4). Whenever a process receives
a new message, it merges the contents of the Active and Failed sets of the sender with
its own (lines 9–10). Asynchrony is detected by checking if there exists any process
that is in the Active set in some round r , while being in the Failed set in some previous
round r ′ < r (lines 11–13). In the next round, each process sends its updated view of
the system together with a synch flag, which was set to false, if asynchrony was
detected.

4.2 Proof of Correctness

In this section, we prove that the protocol presented in Sect. 4.1 satisfies the definition
of an asynchrony detector. We will ensure that the three properties in the definition
hold, and that the detector AD(2) eventually returns an indication for every round R,
at every non-failed process.

First, it is trivial to check that, by definition, the implementation does not re-
turn false positives during a synchronous execution (condition 3). Next, for the proof
of the remaining detector properties, notice that the timing detection mechanism in
lines 5–7 of the detect procedure has no impact on the first two conditions, since
a process receives YES from AD(2) only if all messages have been received before
the round timeout. Therefore we can ignore this mechanism when proving that these
conditions hold for our implementation.

To see that the local detection condition is satisfied, notice that the contents of
the Active and Failed sets at each process p can be used to construct a synchronous
execution which is coherent with process p’s view.

In the following, we focus on proving the global detection property. We show
that, for a fixed round R > 0, given a set of processes P ⊆ Π that receive YES from
AD(2) at the end of round R + 2, there exists an R-round synchronous execution
S[1,R] such that the views of processes in P at the end of round R are consistent
with S[1,R].

We start the proof by showing a few simple properties of the Active and Failed
sets, and then show how to build a synchronous execution based on the views of
processes in P . We begin by proving that if two processes receive YES from the
asynchronous detector in round R + 2, then they must have received each other’s
round R + 1 messages, either directly, or through a relay process. Note that, because
of the round structure, a process’s round R + 1 message only contains information
that it has acquired up to round R.

In the following, we will use a superscript notation to denote the round at which the
local variables are seen. For example, ActiveR+2

q [R +1] denotes the set Active[R +1]
at process q , as seen from the end of round R + 2.

Lemma 1 Let p and q be two processes that receive YES from AD(2) at the end of
round R + 2. Then p ∈ ActiveR+2

q [R + 1]. Notice that, as a consequence, for every

round r ≤ R, ActiveR
p [r] ⊆ ActiveR+2

q [r], and FailedR
p [r] ⊆ FailedR+2

q [r].

Proof Assume, for the sake of contradiction, that p /∈ ActiveR+2
q [R + 1]. Then, by

lines 9–10 of the process() procedure, none of the processes that send a message to

Theory Comput Syst (2012) 51:404–424 413

q in round R + 2 received a message from p in round R + 1. However, this set of
processes contains at least N − t > t elements, and therefore, in round R +2, process
p receives a message from at least one process that did not receive a message from p

in round R + 1. Therefore p ∈ ActiveR+2
p [R + 2] ∩ FailedR+2

p [R + 1] (recall that p

receives its own message in every round). Following the process() procedure for p,
we obtain that synchp = false in round R + 2, which means that process p receives
NO from AD(2) in round R + 2, contradiction.

Therefore, we have shown that process q must receive process p’s round R + 1
message, either directly or through a relay. The second statement in the Lemma fol-
lows by lines 7–10 of the detector pseudocode. �

Next, we notice that the sets Active and Failed that processes in P see are consis-
tent up to the end of round R. (Recall that P is a set of processes that received YES
from AD(2) at the end of round R + 2.)

Lemma 2 Let p and q be two processes in P as defined above. Then, for all rounds
k < l ≤ R, ActiveR

p [l] ∩ FailedR
q [k] = ∅, where the Active and Failed sets are seen

from the end of round R.

Proof We prove that, given R ≥ l > k, ActiveR
p [l] ∩ FailedR

q [k] = ∅. Assume, for the
sake of contradiction, that there exist rounds k < l ≤ R and a process s such that
s ∈ ActiveR

p [l] ∩ FailedR
q [k]. Lemma 1 ensures that, since p and q communicate in

round R+1 (either directly or through a relay process), it holds that s ∈ FailedR+2
p [k].

This means that s ∈ ActiveR+2
p [l]∩FailedR+2

p [k], for k < l, therefore p cannot receive
YES in round R + 2, contradiction. �

The next lemma provides a sufficient condition for a set of processes to share a
synchronous execution up to the end of some round R. The proof follows from the
observation that the required synchronous execution E can be constructed by exactly
following the contents of the Active and Failed sets by processes at every round in
the execution.

Lemma 3 Let E be an R-round execution prefix in ES(N, t), and P be a set of
processes in Π such that, at the end of round R, the following properties are satisfied:

1. For any p and q in P , not necessarily distinct, and any round r ∈ {1,2, . . . ,R−1},
we have that ActiveR

p [r + 1] ∩ FailedR
q [r] = ∅.

2. |⋂p∈P ActiveR
p [R]| ≥ N − t .

3. For any p and q in P , p ∈ ActiveR
q [R].

Then there exists a synchronous execution prefix E ′ which is indistinguishable from
the views of processes in P at the end of round R.

Proof Recall that an execution is defined by a sequence of vectors (REC1,REC2, . . .),
where RECr [p] contains the set of messages received by process p in round r . We
will build a synchronous execution E ′ based on the sets Activer

p[r], for each process

414 Theory Comput Syst (2012) 51:404–424

p and round r , which are the sets of processes from which p has received messages
in round r of E .

We build the execution trace E ′ in a top-down manner, starting from the last round
R. In this round, only processes in SR := P ∪ ⋂

p∈P ActiveR
p [R] receive messages,

while the rest are assumed to be crashed in E ′. Notice that, in fact, by condition
3, P ⊆ ⋂

p∈P ActiveR
p [R], which means that SR = ⋂

p∈P ActiveR
p [R]. For each pro-

cess p ∈ SR , we define the set of messages it receives in E ′ as follows. If p ∈ P ,
then RECR[p] = ActiveR

p [R]. Otherwise, if p ∈ ⋂
p∈P ActiveR

p [R] \ P , then we set

RECR[p] = ⋂
p∈P ActiveR

p [R] ∪ P . Notice that processes in SR \ P may be crashed
in round R of E , but we simulate them as alive in E ′.

We now need to define the set of messages that each process in SR received in
round R − 1 of E ′. For each process p in SR , we define RECR−1[p] to be simply
ActiveR−1

p [R−1], i.e. the set of messages that p received in round R−1 of execution
E . We work by backward induction on the round number 1 ≤ r ≤ R − 1 to define the
set Sr as

⋂
p∈Sr+1 Activer

p[r]. For each process q ∈ Sr , the set of messages it received

in round r − 1 is Activer−1
q [r − 1].

This defines an execution trace E ′. First, notice that the processes in P have the
same state at the end of E as at the end of E ′ since they received the exactly the same
sets of messages in the two execution prefixes. We now check that the execution E ′
we have built is synchronous.

First, we prove that SR ⊆ SR−1 ⊆ · · · ⊆ S1. We proceed by backward induction
on the round number r ∈ {R,R − 1, . . . ,1}. For the base case, we need to show
that SR ⊆ SR−1. Assume for the sake of contradiction that there exists a process
s ∈ SR \ SR−1. Then there exists a process q in SR that did not receive a message
from s in round R − 1, although every process in P received a message from s in
round R, i.e. for every p ∈ P , we have that s ∈ ActiveR

p [R]. However, by condition
3 combined with the definition of SR , the fact that q ∈ SR implies that every process
in P receives q’s message in round R, which implies that, for every process p ∈ P ,
s ∈ FailedR

p [R − 1]. However, this implies that s ∈ ActiveR
p [R] ∩ FailedR

p [R − 1],
contradicting condition 1 of the Lemma. We therefore obtain that the base case holds.

For the induction step, we have that, for a fixed 1 ≤ k ≤ R − 2, it holds that
SR ⊆ SR−1 ⊆ · · · ⊆ SR−k , and we need to show that SR−k ⊆ SR−k−1. Notice that,
in particular, the induction assumption implies that the set P is included in SR−k .
Assume for the sake of contradiction that there exists a process s ∈ SR−k \ SR−k−1.
Then, by the definition of SR−k−1, there must exist a process q ∈ SR−k such that
s ∈ FailedR−k−1

q [R − k − 1]. However, since q ∈ SR−k and P ⊆ SR−k+1, we get
that every process p in P receives q’s message in round R − k, implying that
s ∈ FailedR

p [R − k − 1] for any p ∈ P . On the other hand, since s ∈ SR−k and

P ⊆ SR−k+1, we have that, for any p ∈ P , s ∈ ActiveR−k
p [R−k]. We therefore obtain

that there exists a process p ∈ P such that ActiveR
p [R − k] ∩ FailedR

p [R − k − 1] �= ∅,
contradicting condition 1 of the Lemma.

The previous argument implies that SR ⊆ SR−1 ⊆ · · · ⊆ S1. Next, we check that
each process receives at least N − t messages in each round 1 ≤ r ≤ R. For rounds
r < R, this follows from the properties of the original execution E . For round R, this
follows from property 2 in the Lemma statement.

Theory Comput Syst (2012) 51:404–424 415

Finally, we prove that no process is falsely suspected to have failed in some
round of the execution E ′ we have built. Specifically, we show that in E ′ it can-
not happen that a message from a process p is received in a round r2 after pro-
cess p has been placed in the Failed set for a round r1 with r1 < r2. Assuming
for the sake of contradiction that this can occur for rounds r1 < r2 < R, by the
structure of the execution E ′, we obtain that there exist processes q1 and q2 in
P ∪ ⋂

p∈P ActiveR
p [R] such that p ∈ ActiveR−1

q1
[r2] and p ∈ FailedR−1

q2
[r1]. Since

every process in P ∪ ⋂
p∈P ActiveR

p [R] sends a message to a process in P in round

R, it then follows that there exist processes p1 and p2 in P such that p ∈ ActiveR
p1

[r2]
and p ∈ FailedR

p2
[r1] in the original execution E . This contradicts condition 1 in the

statement of the Lemma.
Finally, we prove that synchrony cannot be broken in the last round R. First, notice

that condition 3 and the fact that we allow only processes in
⋂

p∈P ActiveR
p [R] to

finish round R ensure that no process that is alive at the end of E ′ is considered failed
by any other process in P .

The only case left is if a process q1 that is alive in round R, i.e. q1 ∈ SR := P ∪⋂
p∈P ActiveR

p [R], receives in R a message from a process p that is in FailedR
q2

[r1],
for some process q2 ∈ SR and some round r1 < R. Notice that process q2 can-
not be in P , since it would contradict condition 1. Therefore, process q2 is in⋂

p∈P ActiveR
p [R] \ P , so in our construction of E ′ it is simulated as receiving mes-

sages from processes in SR in round R. Since q2 has p ∈ FailedR
q2

[r1], there must

exist a process q that sends a message to q2 in round R such that p ∈ FailedR−1
q [r1]

(the process q could be q2 itself). Notice that q /∈ P , since otherwise condition 1
would be contradicted. Then q is in P , which again contradicts condition 1 since
FailedR

q [r1] ∩ ActiveR
q1

[R] �= ∅.
We can therefore conclude that the trace obtained describes a synchronous execu-

tion E ′ which is indistinguishable from E from the point of view of processes in P . �

We now prove that if a set of processes P receive YES from AD(2) at the end of
some round R + 2, then there exists a synchronous execution consistent with their
views at the end of round R, for any R > 0.

Lemma 4 Let R > 0 be a round and P be a set of processes that receive YES from
AD(2) at the end of round R+2. Then there exists a synchronous execution consistent
with their views at the end of round R.

Proof We show that the views of processes in P at the end of round R have to verify
the conditions in Lemma 3, which ensures the existence of the desired synchronous
execution.

Condition 1 holds by Lemma 2. For condition 2, assume for the sake of contra-
diction that |⋂p∈P ActiveR

p [R]| < N − t . Therefore there exist at most N − t − 1
common processes from which all processes in P receive messages in round R. We
show that, intuitively, there will not be enough processes left from which processes
in P may receive messages from in round R + 2 while still all receiving YES from
the AD(2).

416 Theory Comput Syst (2012) 51:404–424

More formally, in round R + 2, for each process p in P receiving the set Mp

of messages with |Mp| ≥ N − t , there exists another process q in P such that one
process s ∈ Mp was seen as failed by q in round R, i.e. s ∈ FailedR

q [R]. However,

by Lemma 1, q ∈ ActiveR+2
p [R + 1], therefore, by the structure of the algorithm, s ∈

ActiveR+2
p [R + 2] ∩ FailedR+2

p [R], a contradiction with the fact that s receives YES

from the asynchrony detector in round R+2. Therefore |⋂p∈P ActiveR
p [R]| ≥ N − t .

Finally, we derive condition 3 from Lemma 1. This result ensures that, for ev-
ery two processes p and q in P , p ∈ ActiveR+2

q [R + 1], and q ∈ ActiveR+2
p [R + 1].

Assume for contradiction that p /∈ ActiveR
q [R], i.e. that q does not directly receive

p’s message in round R. By definition, this implies that p ∈ FailedR
q [R]; therefore,

p ∈ FailedR+2
q [R] ∩ ActiveR+2

q [R + 1], contradicting the fact that q receives YES
from AD(2) in round R + 2. The converse claim follows symmetrically.

Therefore, all the conditions of Lemma 3 hold, so there exists a synchronous ex-
ecution E ′ which is consistent with the views of each process in P up to the end of
round R. �

Returning to the proof, we have obtained so far that conditions (1) through (3) of
the asynchrony detector definition hold for the AD(2) protocol. Finally, we need to
prove that, for every round R, the detector returns an indication at every non-failed
process.

Lemma 5 (Termination) The AD(2) implementation ensures that, eventually, every
non-failed process obtains a YES/NO indication for every round R.

Proof For the sake of contradiction, consider a non-failed process p that does not
obtain an indication for a given round R. Without loss of generality, let R be the first
such round in the execution. By examination of the code, this may only occur if p is
stuck waiting on line 5 of the protocol and never receives the N − t required messages
for round R. However, since there exist at least N − t correct processes, each of these
processes eventually sends a message for round R in this execution (since R is the
first round in which a process gets stuck). Since the system is eventually synchronous,
all these N − t messages eventually get delivered, therefore process p eventually
progresses past line 5 of the protocol, contradicting our assumption on R. �

Therefore, we have verified all the properties of an asynchrony detector.

Theorem 1 The AD(2) algorithm in Fig. 1 is a correct implementation of an asyn-
chrony detector.

5 Generating Indulgent Algorithms for Colorless Tasks

5.1 Transformation Description

We present an emulation technique that generates an indulgent protocol in ES(N, t)

out of any protocol in S(N, t) solving a given colorless task T , at the cost of two

Theory Comput Syst (2012) 51:404–424 417

extra communication rounds for decision. If the system is not synchronous, the gen-
erated protocol will run a given backup protocol Backup which ensures safety, even
in asynchronous executions. For example, if a protocol solves synchronous consensus
in t + 1 rounds (i.e. it is optimal), then the resulting protocol will solve consensus in
t + 3 rounds if the system is initially synchronous. Otherwise, the protocol reverts to
a safe backup, such as Paxos [16], or ASAP [2].

We fix a protocol A solving a colorless task in the synchronous model S(N, t).
The running time of the synchronous protocol is known to be of R rounds. In the first
phase of the transformation, each process p runs the AD(2) asynchrony detector in
parallel with the protocol A, as long as the detector returns a YES indication at ev-
ery round. Note that the protocol’s messages are included in the detector’s messages
(or vice-versa), preventing the possibility that the protocol encounters asynchronous
message deliveries without the detector noticing. If the detector returns NO during
this first phase, the process stops running the synchronous protocol, and continues
running only AD(2). If the process receives YES at the end of round R + 2, then it
returns the decision value that A produced at the end of round R. Note that, since
AD(2) returns YES at process p at the end of round R + 2, it follows that it must
have returned YES at p at the end of round R as well. The local detection property
of the asynchrony detector implies that the protocol A has to return a decision value,
since it executes a synchronous execution. The decision value is then returned to the
calling application.

After deciding, the process executes a backup algorithm such as Paxos [16], or
ASAP [2], if the task is consensus, or K4 [3], if the task is k-set agreement. Im-
portantly, note that the process runs this backup algorithm starting in decided state,
keeping its current decision. For all the backup algorithms we consider [2, 3, 16], this
implies that the process will not send any message or take any steps as part of the
algorithm, unless it receives a message from a process that has not yet decided.

On the other hand, if the process receives NO from AD(2) in round R + 2, i.e.
asynchrony was detected, then the process needs to run the second phase of the trans-
formation. In phase two, the process will run a backup agreement protocol that toler-
ates periods of asynchrony, e.g. [2, 3, 16]. The main question is how to initialize the
backup protocol, given that some of the processes may have already decided in phase
one, without breaking the properties of the task. We solve this problem as follows.

Let p be a process in this situation and let Supp (the support set) be the set of
processes that received YES from AD(2) in round R + 1 that process p receives
messages from in round R + 2. There are two cases. (1) If the set Supp is empty, then
the process starts running the backup protocol using its initial proposal value. (2) If
the set Supp is non-empty, then the process obtains a new proposal value as follows.
It picks one process q from Supp and adopts its state at the end of round R − 1. Then,
in round R, it simulates process q receiving the messages received by every process
j in the support set in round R. More precisely, the process simulates the state of
process q after receiving the messages in

⋂
j∈Supp msgSetR+1

j [R] in round R, where
we maintain the notation used in Sect. 4. We say that in this case process p adopts a
view. We will show that in this case, the simulated protocol A will necessarily return
a decision value at the end of simulated round R. The process p then runs the backup
protocol, using as initial value the decision value resulting from the simulation of the
first R rounds.

418 Theory Comput Syst (2012) 51:404–424

5.2 Proof of Correctness

We now prove that the resulting protocol verifies the task specification. The proofs
of validity and the colorless property follow immediately from the properties of the
A and Backup protocols, therefore we will concentrate on proving that the resulting
protocol also satisfies the output predicate P , and that the transformation satisfies
weak termination and quiescence after R + 2 rounds in synchronous executions. We
begin by proving that the output predicate P holds.

Lemma 6 (Output Predicate) The indulgent transformation protocol satisfies the out-
put predicate P associated to the task T .

Proof Assume for the sake of contradiction that there exists an execution in which
the output of the transformation breaks the output predicate P . If all process deci-
sions are made at the end of round R + 2, then, by the global detection property of
AD(2), there exists a synchronous execution of A in which the same outputs are de-
cided, and these outputs break the predicate P , a contradiction with the correctness
of A. If all decisions occur after round R + 2, first notice that, by the validity and
colorless properties, the inputs processes propose to the Backup protocol are always
valid inputs for the task. It follows that, since all decisions are output in an execution
of the Backup protocol, there exists an execution of the Backup protocol in which the
predicate P is broken, again a contradiction.

Therefore, at least one process outputs at the end of round R + 2, and some pro-
cesses decide at some later round. We prove the following claim.

Claim 1 Given a process d that decides at the end of round R + 2, let Q =
{q1, . . . , q�} be the set of alive (non-crashed) processes at the end of round R + 2.
Then (i) all processes in Q will have a non-empty support set Supp and (ii) there
exists an R-round synchronous execution consistent with the views that processes in
Q adopt at the end of round R + 2.

Proof First, let d be a process that decides at the end of round R + 2. Then, in round
R + 2, process d received a message from at least N − t processes that got YES from
AD(2) at the end of round R + 1. (In fact, all processes that d receives messages from
in this round had received a YES indication.) Since N ≥ 2t + 1, it follows that every
process that has not crashed by the end of round R + 2 will have received at least one
message from a process that has received YES from AD(2) in round R + 1. Hence,
all non-crashed processes that get NO from AD(2) in round R + 2 will adopt a view,
which ensures the first claim.

Recall that the set Q = {q1, . . . , q�} denotes the non-crashed processes at the end
of round R + 2. By the above claim, we know that these processes either decide or
simulate an execution. We prove that all views simulated in this round are consistent
with a synchronous execution up to the end of round R, in the sense of Lemma 3.

First, we prove that the intersection of their simulated views in round R contains
at least N − t messages. Without loss of generality, we assume that d is the only de-
ciding process in this round, and all the other processes have to adopt views. (For the

Theory Comput Syst (2012) 51:404–424 419

set of processes that decide at the end of round R + 2, the existence of the execution
follows by Lemma 4.)

We first notice that the processes from which d receives messages in round R + 2
are necessarily in this intersection. Assume for contradiction that there is a process s

from which d receives a message in round R + 2, and a process q that receives YES
from the asynchrony detector at the end of round R + 1 such that s /∈ ActiveR+1

q [R].
Then, it follows that none of the processes that q receives a message from in round
R + 1, which we denote by the set Mq , have s ∈ ActiveR[R]—that is, none of them
received a message from s in round R. This implies that s ∈ FailedR

i [R] for every
process i ∈ Mq . Since |Mq | ≥ N − t , it follows that the deciding process d receives
a message from a process in Mq in round R + 1, therefore s ∈ FailedR+2

d [R]. On
the other hand, the process s is in ActiveR+2

d [R + 2], which contradicts the fact that
d receives a YES indication from the detector. This proves the second condition of
Lemma 3.

To prove the first condition of Lemma 3, note that, by the above argument, process
d’s view of round R, i.e. the set ActiveR+2

d [R], contains all messages simulated as
received in round R by the processes that receive NO in round R + 2. More precisely,
for each process p that adopts a view at the end of round R + 2, the set of messages
msgSetp[R] it simulates receiving in round R is included in ActiveR+2

d [R]. Assume
for the sake of contradiction that there exist processes p1 and p2 that adopt views at
R + 2 and rounds 1 ≤ r1 < r2 ≤ R such that FailedR

p1
[r1] ∩ ActiveR

p2
[r2] �= ∅. Let s

be a process in this non-empty intersection.
We show that s is necessarily in FailedR+2

d [r1] ∩ ActiveR+2
d [r2], generating a con-

tradiction. For this, notice that, in round R, process p1 receives a message from a pro-
cess that has s in its Failed set for round r1 at the end of R − 1. Since msgSetR+2

p1
[R]

is included in ActiveR+2
d [R], it follows that s ∈ FailedR+2

d [r1]. Similarly, we consider
process p2 and obtain that s ∈ ActiveR+2

d [r2]. Since r1 < r2, we obtain a contradiction
with the fact that d receives YES from the detector and decides at the end of round
R + 2.

Finally, we need to show that given any two processes p1 and p2 that either adopt
a view or decide at the end of round R + 2, we have that p1 ∈ msgSetRp2

[R] and

p2 ∈ msgSetRp1
[R]. If p1 and p2 both decide at R + 2, the claim follows easily from

Lemma 4. If p1 and p2 both adopt views from processes q1 and q2 in the support
set, respectively, the claim follows from Lemma 1, since both q1 and q2 receive YES
from the detector at the end of round R + 1. Finally, if p1 adopts a view from q1 and
p2 decides, then the claim follows from Lemma 4, applied to processes q1 and p2 at
the end of round R + 1.

Therefore, the three necessary conditions hold, and we can apply Lemma 3 to ob-
tain that there exists a synchronous execution of the protocol A in which the processes
in Q obtain the same decision values as the values obtained through the simulation
or decision at the end of round R + 2. �

Returning to the proof of the output predicate Lemma, recall that we assumed there
exists process d which outputs at the end of round R + 2. From the above claim,
it follows that all non-crashed processes simulate synchronous views of the first R

420 Theory Comput Syst (2012) 51:404–424

rounds. Therefore all non-crashed processes will receive an output from the syn-
chronous protocol A. Moreover, these synchronous views of processes are consistent
with a synchronous execution, therefore the set of outputs received by non-crashed
processes verifies the predicate P . Hence all the inputs that the processes propose to
the Backup protocol verify the predicate P . Since Backup respects validity, it follows
that the outputs of Backup will also verify the predicate P , since the task we consider
is colorless. This concludes the proof of the output predicate condition. �

We now prove that in a synchronous execution, every process decides by round
R + 2, and no process sends any messages after round R + 2, ensuring quiescence.

Lemma 7 In a synchronous execution prefix of R + 2 rounds, every process decides
by the end of round R + 2, and no process sends any messages after round R + 2.

Proof Since the execution prefix is synchronous, each correct process receives a YES
notification from the detector at the end of round R + 2, and therefore decides. It
follows that each correct process starts running the Backup algorithm in decided
state, keeping its decision. All the backup algorithms we consider, i.e. Paxos [16],
ASAP [2], or K4 [3], have the property that a process in decided state sends no ad-
ditional messages (and in fact takes no additional steps) unless it receives a message
from a process that is not in decided state. Since all the processes are in decided state,
it follows that no process sends any message while running the backup protocol, en-
suring quiescence. �

We can therefore conclude that the transformation generates a correct indulgent al-
gorithm at the cost of two additional communication rounds.

Theorem 2 Given a synchronous algorithm A solving a colorless task T in R com-
munication rounds, and a backup algorithm Backup such as [2, 3, 16], the transfor-
mation yields an indulgent algorithm that preserves safety in every execution, that
requires R + 2 rounds to decide in synchronous executions.

6 A Protocol for Strong Indulgent Renaming

6.1 Protocol Description

In this section, we present an emulation technique that transforms any synchronous
renaming protocol into an indulgent renaming protocol. For simplicity, we will as-
sume that the synchronous renaming protocol is the one by Chaudhury et al. [6],
which is time-optimal, terminating in �logN�+ 1 synchronous rounds. The resulting
indulgent protocol will rename in N names using �logN� + 3 rounds of communi-
cation if the system is initially synchronous, and will eventually rename into N + t

names if the system is asynchronous, by safely reverting to a backup constituted
by the asynchronous renaming algorithm by Attiya et al. [4]. Again, the protocol is
structured into two phases.

Theory Comput Syst (2012) 51:404–424 421

First Phase During the first �logN� + 1 rounds, processes run the AD(2) asyn-
chrony detector in parallel with the synchronous renaming algorithm. If the detector
returns NO at one of these rounds, then the process stops running the synchronous al-
gorithm, and continues only with the detector. If at the end of round �logN� + 1, the
process receives YES from AD(2), then it also receives a name namei as the decision
value of the synchronous protocol.

Second Phase At the end of round �logN�+1, the processes start the asynchronous
renaming algorithm of [4]. More precisely, each process builds a vector V with a sin-
gle entry, which contains the tuple 〈vi,namei , Ji, bi, ri〉, where vi is the processes’
initial value. The entry namei is the proposed name, which is either the name returned
by the synchronous renaming algorithm, if the process received YES from the detec-
tor, or ⊥, otherwise. The entry Ji counts the number of times the process proposed a
name—it is 1 if the process has received YES from the detector, and 0 otherwise; bi

is the decision bit, which is initially 0. Finally, ri is the round number when the entry
was last updated, which is in this case �logN� + 1. (This last entry in the vector is
implied in the original version of the algorithm in [4].)

The processes broadcast their vectors V for the next two rounds, while continuing
to run the asynchrony detector in parallel. The contents of the vector V are updated at
every round, as follows: if a vector V ′ containing new entries is received, the process
adds all the new entries to its vector; if there are conflicting entries corresponding to
the same process, the tie is broken using the round number ri .

If, at the end of round �logN� + 3 the process receives YES from the detector,
then it decides on namei . Regardless of whether it decides or not at the end of this
round, each process continues running the asynchronous renaming protocol of [4] as
a backup. (Note that, in a synchronous execution, all processes decide by the end of
round �logN�+ 3, and therefore no more steps are taken as part of the asynchronous
renaming protocol.)

6.2 Proof of Correctness

The first step in the proof of correctness of the transformation provides some proper-
ties of the asynchronous renaming algorithm of [4]. More precisely, the first Lemma
states that the asynchronous renaming algorithm remains correct even though pro-
cesses propose names initially, that is at the beginning of round �logN� + 2. The
proof follows from a simple examination of the protocol and proofs from [4].

Lemma 8 The asynchronous renaming protocol of [4] ensures termination, name
uniqueness, and a name space bound of N + t , even if processes propose names at
the beginning of the first round of the execution. Also, a process that has decided on a
name will not send any messages for the remainder of the execution, unless it receives
a message from a process that has not yet decided.

The previous Lemma ensures that the transformation guarantees weak termination,
i.e. that every correct process eventually decides a name. The non-triviality property
of the asynchrony detector ensures that every process will decide in �logN� + 3

422 Theory Comput Syst (2012) 51:404–424

rounds in any synchronous run. By an identical argument to the one in Lemma 7, we
obtain the algorithm is quiescent after �logN� + 3 synchronous rounds, based on the
properties of the asynchronous renaming protocol of [4]. Therefore, in the following,
we will concentrate on name uniqueness and namespace bounds. We start by proving
that the protocol does not generate duplicate names.

Lemma 9 (Uniqueness) Given any two names ni, nj returned by processes in an
execution, we have that ni �= nj .

Proof Assume for the sake of contradiction that there exists a run in which two pro-
cesses pi,pj decide on the same name n0. First, we consider the case in which both
decisions occurred at round �logN� + 3, the first round at with a process can decide
using our emulation. Notice that, if a decision is made, the processes necessarily de-
cide on the decision value of the simulated synchronous protocol. (Note that a simple
examination of the asynchronous renaming protocol of [4] shows that a process can-
not decide after two rounds of communication, unless it had already proposed a value
at the beginning of the first round.)

By the global detection property of AD(2) it then follows that there exists a syn-
chronous execution of the synchronous renaming protocol in which two distinct pro-
cesses return the same value, contradicting the correctness of the protocol. Similarly,
we can show that if both decisions occur after round �logN� + 3, we can reduce the
correctness of the transformation to the correctness of the asynchronous protocol.

Therefore, the remaining case is that in which one of the decisions occurs at round
�logN�+3, and the other decision occurs at a later round, i.e. it is a decision made by
the asynchronous renaming protocol. In this case, let pi be the process that decides on
name n0 at the end of round �logN� + 3. This implies that process pi received YES
at the end of round �logN� + 3 from AD(2). Therefore, since pi sees a synchronous
view, there exists a set S of at least N − t processes that received pi ’s message
reserving name n0 in round �logN�+2. It then follows that each non-crashed process
receives a message from a process in S in round �logN� + 3. By the structure of
the protocol, we obtain that each process has the entry 〈vi, n0,1,0, �logN� + 1〉 in
their V vector at the end of round �logN� + 3. It follows from the structure of the
asynchronous protocol of [4] that no process other than pi will ever decide on the
name n0 at any later round, which concludes the proof of the Lemma. �

We prove that the transformation ensures the following guarantees on the size of
the namespace.

Lemma 10 (Namespace Size) The transformation ensures the following properties:
(1) In synchronous executions, the resulting algorithm will rename in a namespace
of at most N names. (2) In any execution, the resulting algorithm will rename in a
namespace of at most N + t names.

Proof For the proof of the first property, notice that, in a synchronous execution,
any output combination for the transformation is an output combination for the syn-
chronous renaming protocol.

Theory Comput Syst (2012) 51:404–424 423

For the second property, let � ≥ 0 be the number of names decided on at the end
of round �logN� + 3 in a run of the protocol. These names are between 1 and N ,
since the synchronous protocol we simulate [6] solves strong renaming. Lemma 9
guarantees that none of these names is decided on in the rest of the execution. On
the other hand, Lemma 8 and the namespace bound of N + t for the asynchronous
protocol ensure that the asynchronous protocol decides exclusively on names between
1 and N + t , which concludes the proof of the claim. �

We can therefore conclude that the protocol is a correct renaming protocol, giv-
ing a tight namespace in synchronous executions, and a namespace of N + t names
otherwise.

Theorem 3 The given protocol solves renaming in �logN�+ 3 rounds and N names
if the system is synchronous, and in N + t names otherwise.

7 Conclusions and Future Work

In this paper, we have introduced a general transformation technique from syn-
chronous algorithms to indulgent algorithms, and applied it to obtain indulgent solu-
tions for distributed tasks, such as consensus, set agreement and renaming. Our results
suggest that, even though it is generally hard to design asynchronous algorithms in
fault-prone systems, one can obtain efficient algorithms that tolerate asynchronous
executions starting from synchronous algorithms.

In terms of future work, we first envision generalizing our technique to generate al-
gorithms that also work in a window of synchrony, and investigating its limitations in
terms of time and communication complexity. Another interesting research direction
would be to analyze if similar techniques exist in the case of Byzantine failures—in
particular, if, starting from a synchronous fault-tolerant algorithm, one can obtain a
Byzantine fault-tolerant algorithm, tolerating asynchronous executions.

Acknowledgements The authors would like to thank Hagit Attiya and Nikola Knežević for their feed-
back on previous drafts of this paper, and the anonymous reviewers for their useful comments.

References

1. Aguilera, M.K., Chen, W., Toueg, S.: Heartbeat: A timeout-free failure detector for quiescent reliable
communication. In: WDAG, pp. 126–140 (1997)

2. Alistarh, D., Gilbert, S., Guerraoui, R., Travers, C.: How to solve consensus in the smallest window
of synchrony. In: DISC, pp. 32–46 (2008)

3. Alistarh, D., Gilbert, S., Guerraoui, R., Travers, C.: Of choices, failures and asynchrony: the many
faces of set agreement. In: Proceedings of the 20th International Symposium on Algorithms and Com-
putation, ISAAC ’09, pp. 943–953. Springer, Berlin (2009)

4. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asynchronous environ-
ment. J. ACM 37(3), 524–548 (1990)

5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for asynchronous systems (preliminary version).
In: ACM Symposium on Principles of Distributed Computing, August, pp. 325–340 (1991)

6. Chaudhuri, S., Herlihy, M., Tuttle, M.R.: Wait-free implementations in message-passing systems.
Theor. Comput. Sci. 220(1), 211–245 (1999)

424 Theory Comput Syst (2012) 51:404–424

7. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Tielmann, A.: The disagreement power of an ad-
versary. In: DISC, pp. 8–21 (2009)

8. Dutta, P., Guerraoui, R.: The inherent price of indulgence. In: PODC ’02: Proceedings of the Annual
ACM Symposium on Principles of Distributed Computing, pp. 88–97 (2002)

9. Dutta, P., Guerraoui, R.: The inherent price of indulgence. Distrib. Comput. 18(1), 85–98 (2005)
10. Dutta, P., Guerraoui, R., Keidar, I.: The overhead of consensus failure recovery. Distrib. Comput.

19(5–6), 373–386 (2007)
11. Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the presence of partial synchrony. J. ACM

35(2), 288–323 (1988)
12. Gafni, E.: Round-by-round fault detectors (extended abstract): unifying synchrony and asynchrony.

In: Proceedings of the Seventeenth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’98, pp. 143–152. ACM, New York (1998)

13. Guerraoui, R.: Indulgent algorithms. In: PODC’ 2000, July, pp. 289–297. ACM, New York (2000)
14. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability. J. ACM 46(2), 858–

923 (1999)
15. Keidar, I., Shraer, A.: Timeliness, failure-detectors, and consensus performance. In: PODC, pp. 169–

178 (2006)
16. Lamport, L.: Generalized consensus and paxos. Microsoft research technical report MSR-TR-2005-33

(2005)
17. Lamport, L.: Fast paxos. Distrib. Comput. 19(2), 79–103 (2006)

	Generating Fast Indulgent Algorithms
	Abstract
	Introduction
	Roadmap

	Preliminaries
	Rounds and Message Delays
	Executions and Views
	Colorless and Colored Tasks
	Weak Termination and Quiescence

	Related Work
	Asynchrony Detectors
	Implementing an Asynchrony Detector
	Proof of Correctness

	Generating Indulgent Algorithms for Colorless Tasks
	Transformation Description
	Proof of Correctness

	A Protocol for Strong Indulgent Renaming
	Protocol Description
	First Phase
	Second Phase

	Proof of Correctness

	Conclusions and Future Work
	Acknowledgements
	References

