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Abstract We present PermiSTM, a single-version STM that satisfies a practical no-
tion of permissiveness, usually associated with keeping many versions: it never aborts
read-only transactions, and it aborts other transactions only due to a conflicting trans-
action (writing to a common data item), thereby avoiding spurious aborts. PermiSTM
also avoids unnecessary contention on the memory, being disjoint-access parallel.

We first present a variant of PermiSTM that uses k-compare-single-swap primi-
tive. Then we present a variant with similar properties using only CAS, and show how
the livelocks it may incur can be avoided with best-effort hardware transactions.

Keywords Transactional memory · Versions · Permissiveness · Disjoint access
parallelism · Compare-and-swap · k-compare-single-swap · Best-effort hardware
transactional memory

1 Introduction

Transactional memory is a leading paradigm for programming concurrent applica-
tions for multicores. It is considered as part of software solutions (abbreviated STMs)
and as a basis for novel hardware designs, which exploit the parallelism offered by
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contemporary multicores and multiprocessors. A transaction encapsulates a sequence
of operations on a set of data items: it is guaranteed that if a transaction commits, then
all its operations appear to be executed atomically. A transaction may abort, in which
case none of its operations are executed. The data items written by the transaction are
its write set, the data items read by the transaction are its read set, and their union is
the transaction’s data set.

When an executing transaction may violate consistency, the STM can forcibly
abort it. Many existing STMs, however, sometimes spuriously abort a transaction,
even when, in fact, the transaction may commit without compromising data consis-
tency [15]. Frequent spurious aborts can waste system resources and significantly im-
pair performance; in particular, this reduces the chances of long transactions, which
often only read the data, to complete.

Avoiding spurious aborts has been an important goal for STM design, and sev-
eral conditions have been proposed to evaluate how well it is achieved [13, 15, 17,
21, 27]. One of these conditions, called multi-versioned (MV) permissiveness [27],
focuses on read-only transactions (whose write set is empty), and ensures they never
abort; update transactions, with nonempty write set, may abort when in conflict with
other transactions writing to the same data items. As its name suggests, multi-version
permissiveness was meant to be provided by a multi-version STM, maintaining mul-
tiple versions of each data item. It has been suggested [27] that refraining to abort
read-only transactions mandates the overhead associated with maintaining multiple
versions: additional storage, a complex data structure to represent the precedence
graph (to track versions), as well as an intricate garbage collection mechanism, to
remove old versions. Indeed, MV-permissiveness is satisfied by current multi-version
STMs, both practical [5, 12, 27, 28] and more theoretical [21, 25], keeping many
versions per data item. It can be achieved by other multi-version STMs [4, 30], if
sufficiently many versions of the data items are maintained.

This paper shows that it is possible to achieve MV-permissiveness while keep-
ing only a single version of each data item. We present PermiSTM, a single-version
STM that is MV-permissive, indicating that multiple versions are not the only de-
sign choice when seeking to reduce spurious aborts. By maintaining a single version,
PermiSTM avoids the space complexity associated with keeping many versions. This
also eliminates the need for intricate mechanisms of keeping and garbage collecting
old versions.

PermiSTM is lock-based, like many contemporary STMs, e.g., [5, 8, 9, 11, 31].
For each data item, it maintains a single version, a lock, as well as a read counter,
counting the number of pending transactions that have read the data item. Read-only
transactions never abort (without having to declare them as such, in advance); update
transactions abort only if some data item in their read set is written by another com-
mitted transaction, i.e., at least one of the conflicting transactions commits. Although
it is blocking, PermiSTM is deadlock-free, i.e., some transaction can always make
progress.

The design choices of PermiSTM offer several benefits, most notably:

– Simple lock-based design makes it easier to argue about correctness.
– Read counters avoid the overhead of incremental validation, thereby improving

performance, as demonstrated in [9, 22], especially in read-dominated workloads.
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Read-only transactions do not require validation at all, while update transactions
validate their read sets only once.

– Read counters circumvent the need for a central mechanism, like a global version
clock. Thus, PermiSTM is strongly disjoint-access parallel [3, 19], namely, pro-
cesses executing transactions with disconnected data sets do not contend on the
same base objects (see formal definition in Sect. 2.2).

It has been proved [27, Theorem 2] that a weakly disjoint-access parallel STM [3]
cannot be MV-permissive. PermiSTM, satisfying the even stronger property of strong
disjoint-access parallelism, shows that this impossibility result critically depends on
the assumption that a transaction delays only due to a pending operation (by another
transaction). In PermiSTM, a transaction may delay or even block due to another
pending transaction reading from its write set, even if no operation of the reading
transaction is pending.

The next section presents the model that is used to describe transactions and the
properties of STMs. To simplify the exposition of PermiSTM, Sect. 3 presents a vari-
ant in which transactions that are not read-only use a k-compare-single-swap (kCSS)
primitive [23] at commit-time; the properties of the algorithm are discussed in Sect. 4.
Section 5 outlines the modifications needed to obtain an STM with similar properties
using only CAS; this results in more costly read operations. In Sect. 6, we show how
hardware transactional memory can be employed to avoid livelocks that may occur
in the latter variant. Finally, we conclude and discuss related work in Sect. 7.

2 Preliminaries

We briefly describe the transactional memory approach. We concentrate on describ-
ing the features that are required to present and prove our algorithms; more details on
this model can be found in [20].

A transaction is a sequence of operations executed by a single process. We have
read and write operations on data items and operations to commit or abort the trans-
action: A read operation specifies the data item to read, and returns the value read
by the operation; a write operation specifies the data item and a value to be written;
a try-commit operation returns an indication whether the transaction committed or
aborted; an abort operation returns an indication that the transaction is aborted.

A transaction begins with a sequence of read and write operations, possibly fol-
lowed by a try-commit or abort; a transaction has at most one try-commit or abort
operation as its last operation (but not both). If the last operation of a transaction is
try-commit or abort, then the transaction is complete, and is said to be committed or
aborted, respectively; otherwise, the transaction is pending.

The collection of data items accessed by a transaction is its data set; the data
items it writes are its write set, and the data items its reads are its read set. A read-
only transaction accesses the memory only through read operations (its write set is
empty); otherwise, it is an update transaction.

Two operations conflict if they are on the same data item; the conflict is trivial
if both are read operations, and nontrivial otherwise. Two overlapping transactions
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Fig. 1 The CAS primitive boolean CAS(obj, exp, new) {
// Atomically
if obj = exp then

obj ← new
return TRUE

return FALSE

}

conflict if they include operations that conflict; the conflict is trivial or nontrivial,
depending on the type of conflict between the operations.

While trying to commit, a transaction might be aborted, in which case, we say it
is forcibly aborted.1

A software implementation of transactional memory (STM) provides data repre-
sentation for transactions and data items using base objects, and algorithms, specified
as primitives on the base objects, which asynchronous processes follow in order to
execute the operations of the transactions.

We employ the following primitives: READ(o) returns the value in base object o;
WRITE(o, v) sets the value of base object o to v; CAS(o, exp,new) (compare&swap)
writes the value new to base object o if its value is equal to exp, and returns a success
or failure indication (see Fig. 1).

An event is a computation step by a process, consisting of local computation and
the application of a primitive to base objects, followed by a change to the process’s
state, according to the results of the primitive. We say that the process accesses the
base objects.

A configuration is a complete description of the system at some point, i.e., the
state of each process and the state of each shared base object. In the unique initial
configuration, every process is in its initial state and every base object contains its
initial value.

An execution interval α is a finite or infinite alternating sequence C0, φ0,C1, φ1,

C2, . . . , where Ck is a configuration, φk is an event and the application of φk to Ck

results in Ck+1, for every k = 0,1, . . . . An execution is an execution interval in which
C0 is the initial configuration.

The interval of a transaction T in an execution α is the execution interval that
starts at the first event of T , and ends with the last event of T , if T completes in α, or
with the end of α, if T does not complete in α. Note that if α is infinite and T does
not complete in α, then the interval of T is infinite.

Two transactions overlap if their intervals overlap; otherwise, they are non-
overlapping.

2.1 Multi-Version Permissiveness

The following condition restricts the situations in which a transaction is forcibly
aborted.

1In the full model, read and write operations may also cause a transaction to forcibly abort; however, this
does not happen in our algorithms.
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Definition 1 An STM is multi-versioned (MV-)permissive [27] if a transaction is
forcibly aborted only if it is an update transaction that has a nontrivial conflict with
another update transaction.

Specifically, read-only transactions are never forcibly aborted in an MV-permissive
STM.

2.2 Disjoint-Access Parallelism (DAP)

Disjoint-access parallelism [19] captures the intuition that transactions on disjoint
parts of the data should not interfere with each other. The conflict graph of an execu-
tion interval captures the distance between overlapping transactions by representing
(trivial and nontrivial) conflicts between transactions that overlap in time. The ver-
tices in the conflict graph represent transactions, and edges connect two overlapping
transactions with intersecting data sets.

Two transactions T1 and T2 are disjoint-access if there is no path between them in
the conflict graph of the shortest execution interval containing the intervals of T1 and
T2.

Two processes concurrently access a base object o if both have pending accesses
to o at some configuration; they concurrently contend on o if one of these accesses is
not a read.

An STM is weakly disjoint-access parallel if two processes p1 and p2, executing
transactions T1 and T2, respectively, concurrently contend on the same base object,
only if T1 and T2 are not disjoint-access. Note that this allows p1 and p2 to concur-
rently read the same object even if they are disjoint-access. In contrast, an STM is
strongly disjoint-access parallel if two processes p1 and p2, executing transactions
T1 and T2, concurrently access the same base object, only if T1 and T2 are not disjoint-
access. Clearly, a strongly disjoint-access parallel STM is also weakly disjoint-access
parallel (but not necessarily vice versa).

3 The Design of PermiSTM

The design of PermiSTM is simple. The first and foremost goal is to ensure that
a read-only transaction never aborts, while maintaining only a single-version. This
suggests that the data read by a read-only transaction T should not be overwritten un-
til T completes. A natural way to achieve this goal is to associate a read counter with
each data item, tracking the number of pending transactions reading from the data
item. Transactions that write to the data items respect the read counters; an update
transaction commits and updates the data items in its write set only in a “quiescent”
configuration, where no (other) pending transaction is reading a data item in its write
set. This yields read-only transactions that return consistent values without requiring
validation and without specifying them as such in advance.

To guarantee consistent updates of data items, we use ordinary locks to ensure
that only one transaction is modifying a data item at each point. Thus, before writing
its changes, an update transaction acquires locks. To avoid deadlocks, the transaction
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acquires the locks at commit time, when all the data items are known, in a predeter-
mined order.

Having two different mechanisms to ensure consistency (locks and counters) in
our design, requires care in putting them together. One question is when during the
execution, a transaction decrements the read counters of the data items in its read
set? The following simple example demonstrates how a deadlock may happen if an
update transaction does not decrement its counters before acquiring locks:

T1: read(a) write(b) try-commit
T2: read(b) write(a) try-commit

T1 and T2 increment the read counters of a and b, respectively, and later, at commit
time, T1 acquires a lock on b, while T2 acquires a lock on a. To commit, T1 has to
wait for T2 to complete and decrement the read counter of b, while T2 has to wait for
the same to happen with T1 and data item a.

This necessitates that counters be decremented before acquiring locks, and raises
the issue of ensuring that the values read are still consistent while the transaction
writes new values. Since an update transaction first decrements read counters, it en-
sures consistency by acquiring locks also for data items in its read set. Therefore,
before committing, an update transaction first decrements its read counters, and then
acquires locks on all data items in its data set, in a fixed order (while validating the
consistency of its read set); this avoids deadlocks due to blocking cycles, and live-
locks due to repeated aborts.

Finally, read counters are incremented as they are encountered during the execu-
tion of the transaction. What happens if read-only transactions wait for locks to be
released? The next example demonstrates how this can create a deadlock:

T1: read(a) read(b)

T2: write(b) write(a) try-commit

If T2 acquires a lock on b, then T1 cannot read b until T2 completes; T2 cannot
commit as it has to wait for T1 to complete and decrement the read counter of a;
MV-permissiveness does not allow either transaction to be forcibly aborted. In order
to avoid the deadlock, read counters get preference over locks, and they can always
be incremented.

Since committing a transaction and writing its updates to items in its write set are
not done atomically, a committed transaction that has not yet completed updating all
the data items in its write set, can yield an inconsistent view for a transaction reading
one of these data items. If a read operation simply reads the value in the data item, it
might miss the up-to-date value of the data item. Consider the following example: T1

writes to data items a and b, and T2 reads these data items after T1 committed. If T1

writes the new values to the data items after T2 reads the value from data item a, but
before T2 reads the value from data item b, the view of T2 has the value of a before
T1, and the value of b after T1 completed, which are not consistent.

T1: write(a) write(b) try-commit end-of-commit
T2: read(a) read(b)
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Fig. 2 The
k-compare-single-swap
primitive

boolean kCSS(o[k], e[k], new) {
// Atomically
if o[1] = e[1] and . . . o[k] = e[k] then

o[1] = new
return TRUE

return FALSE

}

Therefore, a read operation has to read the current value of the data item, which
can be found either in the data item, or in the data set of the transaction.2 In the
example, this means that when T2 reads a data item, and it discovers that T1, the
owner of the data item, has committed, T2 reads the new value of the data item from
the write set of T1; this ensures T2 has a consistent view even if the values are not
written yet in the data items.

To simplify the exposition of PermiSTM, an update transaction is committed while
ensuring that the read counters of the data items in its write set are all zero, using a
k-compare-single-swap primitive (kCSS). The kCSS primitive [23] is similar to CAS,
but compares the values of k independent base objects (see Fig. 2). Later, we describe
how the implementation is modified to use only CAS.

3.1 Data Structures

Figure 3 presents the data structures of data items and transactions’ descriptors used
in our algorithm. We associate a lock and a read counter with each data item, as
follows:

– A lock includes an owner field, and an unbounded sequence number, seq, that
are accessed atomically. The owner field is set to the id of the update transaction
owning the lock and is 0 if no transaction holds the lock. The seq field holds the
sequence number of the data, it is incremented whenever a new value is committed
to the data item, and is used to assert the consistency of reads.

– A simple read counter, rcounter, tracks how many pending transactions are reading
the data item.

– The data field holds the value that was last written to the data item, or its initial
value if no transaction has written to the data item yet.

The descriptor of a transaction consists of the read set, the write set, and the status of
the transaction. The read and write sets are collections of data items.

– A data item in the read set includes a reference to an item, data is the value read
from the data item, and seq is the sequence number of this value.

– A data item in the write set includes a reference to an item, data is the value to be
written in the data item, and seq is the sequence number of the new value, i.e., the
current sequence number plus 1.

– A status indicates if the transaction is COMMITTED or ABORTED, initially NULL.

2This is analogous to the notion of current version of a transactional object in DSTM [18].
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Fig. 3 Data structures used in
the algorithm: an item (top) and
a transaction descriptor (bottom)

The current value and sequence number of a data item are defined as follows: If
the lock of the data item is owned by a committed transaction that writes to this data
item, then the current value and sequence number of the data item appear in the write
set of the owner transaction. Otherwise (owner is 0, or the owner is not committed, or
the data item is not in the owner’s write set), the current value and current sequence
number appear in the data item.

3.2 The Algorithm

Next we give a detailed description of the main methods for handling the operations,
appearing in Pseudocode 1; additional methods appear in Pseudocode 2. The reserved
word self in the pseudocode is a self-reference to the descriptor of the transaction
whose code is being executed.

read method: If the data item is already in the transaction’s write set (line 2), the
transaction returns the value from the write set (line 3). If the data item is already in
the transaction’s read set (line 4), the transaction returns the value from the read set
(line 5). Otherwise, it increments the read counter of the data item (line 7). Then, the
reading transaction adds the data item to its read set (line 9) with the current value
and sequence number of the data item (line 8).

write method: If the data item is not already in the transaction’s write set (line 13),
the transaction adds the data item to its write set (line 14). The transaction sets data
of the data item in the write set to the new value to be written (line 15). No lock is
acquired at this stage.

tryCommit method: The transaction decrements all the read counters of the data items
in its read set (line 18). If the transaction is read-only, i.e., the write set of the
transaction is empty (line 19), then the transaction commits (line 20) and returns
(line 21).
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Pseudocode 1 Methods for read, write and try-commit operations
1: Data read(Item item) {
2: if item in writeset then
3: dataitem ← writeset.get(item) // the data item is already in the write set
4: else if item in readset then
5: dataitem ← readset.get(item) // the data item is already in the read set
6: else
7: incrementReadCounter(item)
8: dataitem ← getCurVal(item) // read the data from the data item
9: readset.add(item,dataitem)

10: return dataitem.data
11: }

12: write(Item item, Data data) {
13: if item not in writeset then
14: writeset.add(item,〈item,0,0〉)
15: writeset.set(item,〈item,0,data〉) // set the value to be written in the write set
16: }

17: tryCommit() {
18: decrementReadCounters() // decrement read counters
19: if writeset is empty then // read-only transaction
20: WRITE(status, COMMITTED)
21: return

// update transaction
22: acquireLocks() // lock all the data set
23: if ABORTED = READ(status) then return
24: commitTx() // commit update transaction
25: for each item in writeset do // commit the changes to the items
26: dataitem ← owner.writeset.get(item)
27: WRITE(item.data, dataitem.data)
28: releaseLocks() // release locks on all the data set
29: }

30: acquireLocks() {
31: dataset ← writeset.union(readset) // items in the data set (read and write sets)
32: for each item in dataset by their order do
33: repeat
34: cur ← getCurVal(item) // current value
35: if item in readset then // check validity of read set
36: dataitem ← readset.get(item) // value read by the transaction
37: if dataitem.seq ! = cur.seq then // the data is overwritten
38: abort()
39: return
40: until CAS(item.lock, 〈0,cur.seq〉, 〈self ,cur.seq〉)
41: if item in writeset then
42: dataitem ← writeset.get(item)
43: writeset.set(item,〈item,cur.seq+1,dataitem.data〉)
44: }
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Pseudocode 2 Additional methods for PermiSTM
45: commitTx() {
46: k ← writeset.size()+1
47: kCompare[0] ← status // the location to be compared and swapped
48: for item in writeset do // k − 1 locations to be compared
49: kCompare[i] ← writeset.get(item).rcounter
50: repeat no-op
51: until kCSS(kCompare, 〈NULL,0 . . .0〉, COMMITTED) // until no reading transactions

is pending
52: }

53: incrementReadCounter(Item item) {
54: repeat m ← READ(item.rcounter)
55: until CAS(item.rcounter, m, m + 1)
56: }

57: decrementReadCounters() {
58: for each item in readset do
59: repeat m ← READ(item.rcounter)
60: until CAS(item.rcounter, m, m − 1)
61: }

62: releaseLocks() {
63: dataset ← writeset.union(readset)
64: for each item in dataset do
65: dataitem ← dataset.get(item)
66: WRITE(item.lock, 〈0,dataitem.seq〉)
67: }

68: DataItem getCurVal(Item item) {
69: lck ← READ(item.lock)
70: data ← READ(item.data)
71: dataitem ← 〈item, lck.seq, data〉 // values from the data item
72: if lck.owner ! = 0 then
73: sts ← READ(lck.owner.status)
74: if sts = COMMITTED then
75: if item in lck.owner.writeset then
76: dataitem ← lck.owner.writeset.get(item) // values from the write set of

the owner
77: return dataitem
78: }

79: abort() {
80: dataset ← writeset.union(readset)
81: for each item in dataset do
82: lck ← READ(item.lock)
83: if lck.owner = self then // the transaction owns the data item
84: WRITE(item.lock, 〈0,lck.seq〉) // release lock
85: WRITE(status, ABORTED)
86: }
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Otherwise, this is an update transaction and it acquires locks on all data items in
the data set (line 22); commit the transaction (line 24) and the changes to the data
items (lines 25–27); and release locks on all data items in the data set (line 28). The
transaction may abort while acquiring locks due to a nontrivial conflict with another
update transaction (line 23).

acquireLocks method: The transaction acquires locks on all data items in its data set
by their order (line 32). If the data item is in the read set (line 35), the transaction
confirms that the sequence number in the read set, seq, (line 36) is the same as
the current sequence number of the data item (line 34). If the sequence number has
changed (line 37) then the data read is overwritten by another committed transaction
and the transaction aborts (line 38). This is the only case in which a transaction
aborts.
The transaction uses CAS to acquire the lock: it swaps owner from 0 to the descriptor
of the transaction; if the data item is in its read set this is done while asserting that
seq is unchanged (line 40). If the CAS fails then owner is non-zero since there is
another owner (or seq has changed), so the transaction spins, re-reading the lock
(line 40) until owner is 0.
If the data item is in the write set of the transaction (line 41), then it sets seq to the
sequence number of the current value plus 1 (line 43).

commitTx method: The transaction computes k, which is the size of the write set plus
one (line 46), collects in an array the k locations to be compared, i.e., the status of
the transaction (line 47) and the read counters of data items in its write set (line 49).
Then, it uses kCSS to set status to COMMITTED, while ensuring that all read counters
of data items in the transaction’s write set are 0 (line 51). If the read counter of one
of these data items is not 0, a pending transaction is reading from this data item,
thus the transaction spins, until all rcounters are 0.

4 Properties of kCSS-Based PermiSTM

4.1 Safety

Proving the safety of PermiSTM is simplified since it is lock-based. For each commit-
ted transaction, we identify a serialization point inside the interval of the tryCommit
method, and show that committed transactions appear to execute alone at their se-
rialization point. Moreover, we prove that the intermediate views of all transactions
(including aborted ones) are consistent with these serialization points (in a sense that
is made precise below).

For the rest of the proof, fix an execution α of the algorithm.
The serialization point of a read-only transaction is when it calls the tryCommit

method; in particular, the serialization point is after the return of the last read oper-
ation in the transaction. The serialization point of an update transaction is when its
status is set to COMMITTED (line 51).

The serialization points induce a serialization s of the execution [26], namely, a
sequential execution of committed transactions, one at a time, in which each trans-
action executes alone at its serialization point. Note that the serialization s preserves
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the order of non-overlapping transactions (since the serialization point is inside the
transaction’s interval).

A prefix T ′ of a transaction T is an initial sequence of read and write operations
of the transaction. The intermediate view of the transaction T after the prefix T ′
is a sequence of item-value pairs, containing data items and values read or written
in T ′, in the order of the operations; below, this is abbreviated the view of T ′. The
prefix T ′ is consistent with the serialization s if the same view is obtained when
T ′ is executed alone after s′, the prefix of s including all the transactions whose
serialization point is in the shortest prefix of α that includes T ′. Intuitively, this means
that there is a virtual serialization point, in which the transaction (locally) considers
itself to execute the prefix T ′ alone; however, none of the changes in T ′ are observed
by other transactions, until T commits.

We show that any prefix of a transaction T is consistent with s. T might abort
later, but as long as it is executing, its prefixes are consistent with the serialization s.
We further show that the result of a committed transaction is as if the transaction
executed alone at its serialization point.

The first, simple lemma shows that an update transaction commits only if the read
counters of all data items in its read set are zero. This follows from the code, since
the transaction uses kCSS to set status to COMMITTED, while ensuring that all read
counters of data items in its write set are 0 (line 51).

Lemma 1 An update transaction does not commit (by a successful execution of kCSS

in line 51) as long as the read counter of a data item in its write set is greater than 0.

Lemma 2 Every prefix T ′ of a transaction T is consistent with the serialization s.

Proof The proof is by induction on k, the number of operations in T ′. The base case
is when k = 0, and the claim vacuously holds.

For the induction step, assume that the prefix T ′′ with the first k ≥ 0 operations of
T , is consistent with s, namely, the same view is obtained when T ′′ is executed alone
after s′′, the prefix of s that includes all transactions whose serialization point is in
the shortest prefix of α that includes T ′′.

Let T ′ be the prefix with the first k + 1 operations of T . Let s′ be the prefix of
s, extending s′′, which includes all transactions whose serialization point is in the
shortest prefix of α that includes T ′.

The read counter of any item that T stores in its read set during the prefix T ′′
is greater than 0, until T decrements its read counter in tryCommit. Therefore, no
transaction writing to this item commits (by Lemma 1), and its current value does not
change. Therefore, the view obtained when T ′′ is executed alone after s′ is the same
as when T ′′ is executed alone after s′′.

Consider the (k + 1)-st operation of T . The view of the prefix T ′′ determines the
type of operation (read or write), the data item d to which it is applied, and the value
written (if this is a write operation).

If the (k + 1)-st operation is a write operation, it writes the same value to the same
data item as in the sequential execution corresponding to s′. Thus, T ′ is consistent
with the prefix s′ of s, and the lemma holds.
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For the rest of the proof, assume that the (k +1)-st operation reads from d . If there
is a write or a read operation to d in T ′′, then the value of d is returned from the write
set (line 3) or the read set (line 5), respectively, and the lemma holds by the induction
hypothesis.

Otherwise, T increments the read counter of d (line 7) and calls getCurVal (line 8).
We show that getCurVal returns the current value of d (as defined at the end of
Sect. 3.1). T reads the lock and sequence number (line 69), and the value of d

(line 70); if no transaction owns d , T returns the value read from the data item
(line 71). If a transaction T1 owns d (line 72) and T1 is committed (line 74), T returns
the value T1 writes to d from the write set of T1 (line 76).

T increments the read counter of d (line 7) before calling getCurVal; after that, the
read counter of d is greater than 0 until T calls the tryCommit method. By Lemma 1,
T1 commits before T increases the read counter of d and no other transaction writes
to d and commits since then. Thus, T returns the value that is written to d by the
committed transaction with the latest serialization point preceding T ′, i.e., the latest
write to d in s′, or the initial value, if no transaction writes to d in s′. Together with
the fact that the view of T ′′ is consistent with the prefix s′, we get that the view of T ′
is consistent with s′. �

The next lemma shows that a write-after-read conflict is a necessary and sufficient
condition for a transaction to be forcibly aborted. The sufficiency is used to complete
the safety proof, while the necessity is used later, to show that PermiSTM is MV-
progressiveness.

Lemma 3 A transaction T is forcibly aborted in its tryCommit method if and only if
another committed transaction writes to a data item after T read it.

Proof If the value of a data item is read from the data item (line 71), then the current
sequence number is read from the data item as well (line 69). Otherwise, the value and
sequence number are read atomically from the write set of the committing transaction
(line 76).

In the tryCommit method, T verifies that none of the sequence numbers of data
items in its read set have changed (line 37) when acquiring the locks on its data set.
This includes sequence numbers T reads from the write set of a committed transac-
tion, as the sequence number in the write set of an update transaction is set (line 43)
while acquiring the locks on the data items (line 22) before committing (line 24).
T aborts if and only if one of them changes (line 38), indicating another committed
transaction writes to the data item after T read it. �

Lemma 2 ensures that every prefix of a transaction T is consistent with the serial-
ization, even if the transaction is aborted. The lemma holds until T calls its tryCommit
method. If T commits successfully, the next lemma carries the consistency into the
tryCommit method.

Lemma 4 A committed transaction appears to execute alone at its serialization
point.
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Proof By Lemma 2, the view of T after its last read operation is as if T is exe-
cuted alone after a prefix of the serialization s that includes the transactions whose
serialization point are before T calls the tryCommit method. If T is read-only, its se-
rialization point is when it calls tryCommit and hence, T appears to execute alone at
its serialization point.

If T is an update transaction, T decrements the read counters of its read set
(line 18) and then acquires locks on all data items in its data set (line 22).

By Lemma 3, if another transaction changes the values of a data item read by
T during this interval, then T aborts. Therefore, if T commits then the values were
not changed and the view of T is as if T is executed alone after the prefix of s that
includes the transactions whose serialization point are before T locks all items in its
data set. Since the items in the read set are locked, their values do not change until T

sets its status to COMMITTED (which is the serialization point of T ). Since the items
in the write set are locked, their value is updated without interference from other
transactions. Therefore, T appears to execute alone at its serialization point. �

4.2 Disjoint-Access Parallelism

All operations may access data items in the data set of the transaction. Write and abort
operations additionally access only the descriptor of the transaction; this may result
in contention only between transactions with non-disjoint data sets. Read and try-
commit operations, in addition read the descriptor of the transaction owning the data
item. The code implies that a transaction owns an item only if it is in its data set; thus,
PermiSTM is strongly disjoint-access parallel (and hence also weakly disjoint-access
parallel).

In fact, kCSS-based PermiSTM is even strictly disjoint-access parallel [16],
namely, processes executing transactions with disjoint data sets do not contend on
the same memory location. Note that transactions with disjoint data sets may concur-
rently read the descriptor of a third transaction owning items the transactions read;
this, however, is allowed by strict disjoint-access parallelism.

4.3 MV-Permissiveness

By the code, read-only transactions are never forcibly aborted. Additionally, by
Lemma 3, an update transaction is forcibly aborted only if a committed transaction
writes to a data item in its read set.

Theorem 1 PermiSTM is MV-permissive.

A read-only transaction is also obstruction-free [18]: it may delay due to con-
tention with concurrent transactions, updating the same read counters, but once it is
running solo it is guaranteed to commit.

After an update transaction acquires locks on all data items in its data set it may
wait for other transactions reading data items in its write set to complete, it may even
starve due to a continuous sequence of transactions reading from its write set; thus,
PermiSTM is blocking. However, kCSS-based PermiSTM guarantees strong progres-
siveness [17], namely, even when there are nontrivial conflicts, at least one of the
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transactions involved is not aborted. This holds because transactions are forcibly
aborted only due to another committed transaction with a nontrivial read-after-write
conflict.

5 CAS-Based PermiSTM

This section describes the modifications to PermiSTM that allow the use of CAS

instead of a kCSS primitive.
We still wish to guarantee that an update transaction commits only in a “quiescent”

configuration, in which no other transaction is reading a data item in its write set (see
proof in the next section). To avoid using kCSS when update transactions commit, we
shift the responsibility of “notifying” the update transaction that it cannot commit to
the read operations, charging them with the task of preventing the update transactions
from committing in a non-quiescent configuration.

A transaction commits by changing its status from NULL to COMMITTED; a way
to prevent an update transaction from committing is by invalidating its status. For this
purpose, we attach a sequence number to the transaction status. Prior to committing,
an update transaction reads its status, which now includes the sequence number, and
repeats the following for each data item in its write set: spin on the data item’s read
counter until the read counter becomes zero, then annotate the zero with a reference
to its descriptor, and the status sequence number. The transaction changes its status
to COMMITTED only if the sequence number of its status has not changed since it has
read it. Once it completes annotating all zero counters, and unless it is notified by
some read operation that one of the counters changed and it is no longer “quiescent”,
the update transaction can commit—using only a CAS.

A read operation increases the read counter, and then reads the current value of
the data item. The only change is when it encounters a “marked” counter. If the
update transaction annotating the data item already committed, the read operation
simply increases the counter. Otherwise, the read operation invalidates the status of
the update transaction, by increasing its status sequence number. If more than one
transaction is reading a data item from the write set of the update transaction, at least
one of them prevents the update transaction from committing, by changing its status
sequence number.

The data structures used by the algorithm appear in Fig. 4. The status of a trans-
action descriptor now includes the state of the transaction (NULL, COMMITTED, or
ABORTED), as well as a sequence number, seq, that is used to invalidate the status;
these fields are accessed atomically. The read counter, rcount, of a data item is a tuple
including a counter of the number of readers, the owner transaction of the data item
(holding its lock), and seq matching the status sequence number of the owner.

We reuse the core implementation of operations from Pseudocodes 1 and 2. The
most crucial modification is in the protocol for incrementing the read counter, which
invalidates the status of the owner transaction when increasing the data item’s read
counter. Pseudocode 3 presents these modifications.

In order to commit, an update transaction waits for the read counter of every data
item in its write set to become 0 (lines 90–91). When a read counter is 0, the update
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Fig. 4 Data structures used in
CAS-based PermiSTM

transactions annotates the 0 with its descriptor and status sequence number (line 92).
Finally it sets the status to COMMITTED using CAS. If the status was invalidated
and the last CAS fails, the transaction re-reads the status (line 89) and goes over the
procedure again. A successful CAS implies that the transaction committed while no
other transaction is reading any data item in its write set.

A read operation that finds the read counter of the data item “marked” (lines 97–
98) continues as follows: use CAS to invalidate the status of the owner transaction—
by increasing its sequence number (line 99), if the status sequence number has
changed, either the owner is committed or its status was already invalidated; finally,
the reader transaction simply increases the read counter using CAS (line 100). If in-
creasing the read counter fails, the reader repeats the procedure.

While decreasing the read counters, the reader transaction cleans each read counter
by setting its owner and seq fields to 0 (line 105).

In addition, the methods tryCommit and abort are adjusted to write the state indica-
tor through the new status fields, i.e., by applying WRITE(status, 〈val,status.seq+1〉)
instead of WRITE(status, val), where val is COMMITTED or ABORTED.

5.1 Properties of CAS-Based PermiSTM

In order to prove the safety property of CAS-based PermiSTM, we revisit Lemma 1;
the other proofs hold also for this variant as the relevant code remains the same.

Lemma 1′ An update transaction does not commit (line 93) while the read counter
of a data item in its write set is greater than 0.

Proof Before committing (line 93), an update transaction T reads its status (line 89)
and sets its status sequence number in the zero read counter of every data item in its
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Pseudocode 3 Methods for CAS-based PermiSTM
87: commitTx() {
88: repeat
89: sts ← READ(status)
90: for each item in writeset do
91: repeat cntr ← READ(item.rcounter) // spin until no readers
92: until CAS(item.rcounter, 〈0,cntr.owner,cntr.seq〉, 〈0,self ,sts.seq〉)

// commit in a “quiescent” configuration
93: until CAS(status, 〈NULL,sts.seq〉, 〈COMMITTED,sts.seq+1〉)
94: }

95: incrementReadCounter(Item item) {
96: repeat
97: cntr ← READ(item.rcounter)
98: if cntr.owner ! = 0 then // the read counter is “marked”
99: CAS(cntr.owner.status, 〈NULL,cntr.seq〉, 〈NULL,cntr.seq+1〉)
100: until CAS(item.rcounter, cntr, 〈cntr.counter+1,cntr.owner,cntr.seq〉)
101: }

102: decrementReadCounters() {
103: for each item in readset do
104: repeat cntr ← READ(item.rcounter)
105: until CAS(item.rcounter, cntr, 〈cntr.counter−1,0,0〉) // clean counter
106: }

write set (lines 90–92). If another transaction T ′ reads any data item in the write set
of T after T annotated the read counter (line 92) and before T committed (line 93)
then T ′ uses the sequence number in the read counter to invalidate the status of T

(line 99), and therefore T fails to apply the CAS to the status attribute and does not
commit. �

Consider three transactions: two transactions, T1 and T2, read data items a and b,
respectively, while the third transaction, T3, updates these data items.

T1: read(a)

T2: read(b)

T3: write(a) write(b) try-commit

The data sets of T1 and T2 do not intersect, but they may contend on the same base
object, when checking and possibly invalidating the status of T3.

CAS-based PermiSTM is strongly disjoint-access parallel, as this memory con-
tention is always due to T3, which intersects both T1 and T2. (In the terminology
of [1] this means that CAS-based PermiSTM has 2-local contention.)

CAS-based PermiSTM is MV-permissive, nevertheless, it may have livelocks. In
the last example, the read operation of T1 may invalidate the status of T3 and then
discover that T3 was fast enough to complete a full round re-marking the read counter
of a with a new sequence number, so the read operation of T1 fails to increment the
read counter of a. However, if T3 has not committed yet, then the read operation of
T1 may invalidate T3 once more.
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This scenario, in which neither the update transaction commits nor any of the read
operations increments the read counter, can repeat itself over and over again. The
next section shows how to avoid this problem using hardware transactional memory.

6 Using Best-Effort Hardware TM to Avoid Livelocks

Best-effort hardware transactional memory (BEHTM) (cf. [6, 7]) aims to facilitate
concurrent programming by extending common architectures with hardware support
for transactions. BEHTM is particularly effective for short transactions with static
data set of minimal size. Current BEHTM must be applied carefully while adhering
to several strict limitations, otherwise, a hardware transaction may constantly fail.
Most notably, BEHTM limits the number of data items that can be accessed within a
transaction; in some cases the maximal number is 4 [6]. BEHTM transactions are also
limited in terms of the instructions they can execute, since interrupts and exceptions
cause hardware transactions to abort.

A hardware transaction that accesses two memory locations atomically provides
an escape from the tie-up described at the end of the previous section, for CAS-based
PermiSTM; it ensures that at least one read operation avoids the livelock. Instead of
applying CAS twice, (lines 99 and 100), the reader (T1 or T2, in our example) uses
the hardware transaction HT1 depicted in Pseudocode 4 to atomically invalidate the
status of the transaction owning the data item (T3), while increasing the read counter.3

This guarantees that at least the read operation that invalidates the status of the update
transaction succeeds in increasing the counter of the data item it is reading.

To avoid complications due to transactional and non-transactional accesses to the
same variable [2, 14], other methods accessing the status of the transaction and read
counters of data items are replaced with best-effort hardware transaction code; this is
also depicted in Pseudocode 4.

Note that our hardware transactions adhere to the limitations, mentioned above,
which reduce the chances of transactions to spuriously abort. Transactions HT3,HT4
and HT5 read and write to a single memory location; transaction HT2 reads a single
memory location; and HT1 reads and writes two memory locations. Clearly this does
not exceed the limit on the number of memory locations a hardware transaction may
access. Additionally, none of the transactions performs prohibited instructions, such
as division, remote or system calls. Since the transactions are very short, they are less
likely to have interrupts or hardware exceptions during their execution.

If, for some reason, one of the hardware transactions spuriously aborts, we cannot
guarantee progress for any of the read operations. However, best-effort TM guaran-
tees consistency, so the safety of the algorithm is preserved.

7 Discussion

This paper presents PermiSTM, a single-version STM that is MV-permissive and
disjoint-access parallel. PermiSTM has simple design, based on read counters and

3An alternative is to use DCAS, but we wanted to explore how to use the recently proposed architectures
supporting BEHTM [10, 24, 29].
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Pseudocode 4 Best-effort hardware transaction code replacing methods in the CAS-
based PermiSTM

incrementReadCounter(Item item) {
repeat

BETM_BEGIN HT1
cntr ← BETM_READ(item.rcounter)
if cntr.owner ! = 0 then

sts ← BETM_READ(cntr.owner.status)
if sts = 〈NULL,cntr.seq〉 then

// The atomicity of the next two writes avoids the livelock
BETM_WRITE(cntr.owner.status, 〈NULL,cntr.seq+1〉)
BETM_WRITE(item.rcounter, 〈cntr.counter+1,cntr.owner,cntr.seq〉)

else
BETM_WRITE(item.rcounter, 〈cntr.counter+1,cntr.owner,cntr.seq〉)

BETM_COMMIT HT1
until HT1 is COMMITTED

}

commitTx() {
repeat

repeat
BETM_BEGIN HT2
sts ← BETM_ READ(status)
BETM_COMMIT HT2

until HT2 is COMMITTED

for each item in writeset do
repeat

BETM_BEGIN HT3
cntr ← BETM_ READ(item.rcounter)
if cntr.rcounter ! = 0 then

BETM_ABORT HT3
BETM_WRITE(item.rcounter, 〈0,self ,sts.seq〉)
BETM_COMMIT HT3

until HT3 is COMMITTED

BETM_BEGIN HT4
sts4 ← BETM_ READ(status)
if sts4 ! = sts then

BETM_ABORT HT4
BETM_WRITE(status, 〈COMMITTED,sts.seq+1〉)
BETM_COMMIT HT4

until HT4 is COMMITTED

}

decrementReadCounters() {
for each item in readset do

repeat
BETM_BEGIN HT5
cntr ← BETM_ READ(item.rcounter)
BETM_WRITE(item.rcounter, 〈cntr.counter−1,0,0〉)
BETM_COMMIT HT5

until HT5 is COMMITTED

}
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locks, to provide consistency without incremental validation. This also simplifies the
correctness argument.

In PermiSTM, update transactions are not obstruction free [18], since they may
block due to other transactions with a nontrivial conflict.

Read-only transactions in PermiSTM modify the read counters of all data items in
their read set incurring a cost of O(k). This matches the lower bound for read-only
transactions that never abort, for strongly disjoint-access parallel STMs [3].

Section 5 describes a CAS-based variant of PermiSTM that avoids kCSS by ex-
plicitly changing the implementation of the commitTx method and the methods that
access the read counters. An alternative is to use the kCSS implementation from
CAS [23]. They implement LL, SC operations from CAS primitives, and use them
to change the value of the first location, and to get a SNAPSHOT operation to confirm
that the values in the other locations match the expected values. The SNAPSHOT op-
eration repeatedly collects the values from the locations until two successive collects
have the same values. Being a general purpose implementation, the kCSS operation
first takes a snapshot of all the locations, and only then confirms they match the ex-
pected values. This incurs an overhead that can be avoided in PermiSTM, which looks
for a very specific snapshot in which all counters are zero.

The design of PermiSTM allows to decompose the algorithm in a fairly straightfor-
ward manner, to use short hardware transactions that access at most two memory lo-
cations. This guarantees progress even in the face of contention (as shown in Sect. 6),
while the implementation of [23] may suffer from livelocks when kCSS operations
obstruct each other.

Our work joins recent efforts to exploit the capabilities of best-effort hardware
transactional memory [6, 7], and suggests how it can be utilized to avoid livelocks in
a generic kCSS implementation.

Several design principles of PermiSTM are inspired by TLRW [9], which uses
read-write locks. The lock contains a byte per each slotted reader, and a reader-count
that is modified by other, unslotted readers. TLRW, however, is not permissive as
read-only transactions may abort due to a timeout while attempting to acquire a lock.
We avoid this problem by tracking readers through read counters (somewhat similar
to SkySTM [22]) instead of read locks.

UP-MV STM [27] maintains many versions for each data item to be MV-
permissive. It keeps the shortest suffix of versions needed to allow all active read-
only transactions to commit, and removes old versions that are no longer required. To
support this, the implementation holds a global transaction set, with the descriptors
of all completed transactions yet to be collected by the garbage collection mecha-
nism, and maintains the transactions precedence graph by keeping pointers between
transactions. Our algorithm improves on the multi-version UP-MV STM [27], which
is not disjoint-access parallel4 (nor strictly disjoint-access parallel [16]), since UP-
MV STM uses a global set of completed transactions. UP-MV STM requires that
operations execute atomically; its progress properties depend on the precise manner
this atomicity is guaranteed, which is not detailed. We remark that simply enforcing

4In [3, 27] disjoint-access parallel STMs are referred to as weakly disjoint-access parallel as opposed to
strongly disjoint-access parallel implementations.
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atomicity with a global lock or a mechanism similar to TL2 locking [8] could make
the algorithm blocking.
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