
Theory Comput Syst (2013) 52:403–440
DOI 10.1007/s00224-012-9392-5

Knowledge Compilation Meets Database Theory:
Compiling Queries to Decision Diagrams

Abhay Jha · Dan Suciu

Published online: 6 March 2012
© Springer Science+Business Media, LLC 2012

Abstract The goal of Knowledge Compilation is to represent a Boolean expression
in a format in which it can answer a range of “online-queries” in PTIME. The online-
query of main interest to us is model counting, because of its application to query
evaluation on probabilistic databases, but other online-queries can be supported as
well such as testing for equivalence, testing for implication, etc. In this paper we
study the following problem: given a database query q, decide whether its lineage
can be compiled efficiently into a given target language. We consider four target
languages, of strictly increasing expressive power (when the size of compilation is
restricted to be polynomial in the data size): read-once Boolean formulae, OBDD,
FBDD and d-DNNF. For each target, we study the class of database queries that admit
polynomial size representation: these queries can also be evaluated in PTIME over
probabilistic databases. When queries are restricted to conjunctive queries without
self-joins, it was known that these four classes collapse to the class of hierarchical
queries, which is also the class of PTIME queries over probabilistic databases. Our
main result in this paper is that, in the case of Unions of Conjunctive Queries (UCQ),
these classes form a strict hierarchy. Thus, unlike conjunctive queries without self-
joins, the expressive power of UCQ differs considerably with respect to these target
compilation languages. Moreover, we give a complete characterization of the first
two target languages, based on the query’s syntax.

Keywords Probabilistic databases · Knowledge compilation · Binary decision
diagrams · OBDD · FBDD · d-DNNF

A. Jha (�) · D. Suciu
University of Washington, Seattle, WA, USA
e-mail: abhaykj@cs.washington.edu

D. Suciu
e-mail: suciu@cs.washington.edu

mailto:abhaykj@cs.washington.edu
mailto:suciu@cs.washington.edu

404 Theory Comput Syst (2013) 52:403–440

1 Introduction

The goal of Knowledge Compilation [6, 13, 27] is to represent a Boolean expres-
sion in a language in which it can answer a range of problems, also called “online-
queries”, in PTIME. Typical problems are satisfiability, validity, implication, model
counting, substitution with constants, and substitution with functions. For exam-
ple, the model counting problem asks for the number of satisfying assignments to
a Boolean expression; the more general probability computation problem asks for
the probability of that expression being true, if every variable is true/false indepen-
dently with some probability. If one compiles the Boolean expression into (say) an
FBDD, then the model counting problem and the probability computation problem
can be solved in linear time in the size of the FBDD. Different compilation languages
can solve efficiently different classes of problems, in time polynomial in the size of
compiled expression [13]. This motivates the need to know if an expression can be
compiled into a small-sized or compact representation in a given language.

The provenance of a query on a relational database is an expression that describes
how the answer was derived from the tuples in the database [17]. In this paper, we are
interested in the flavor of provenance called PosBool in [25] (see also [18]), which we
will refer to as lineage. The lineage is a Boolean expression over Boolean variables
corresponding to tuples in the input database. Our goal in this paper is to identify
queries whose lineage admits a compact compilation. Our main motivation comes
from (but is not limited to) probabilistic databases, where the problem is the follow-
ing: given a query and a probabilistic database (i.e. each tuple has a given proba-
bility), compute the probability of each query answer [10]. If the lineage has been
compiled into a compact format that supports the probability computation, then one
can compute the output probabilities efficiently. In this paper we study queries whose
lineage always admits a compact compilation, on any database instance. We are only
interested in the data complexity i.e., we assume the query to be fixed (and, in partic-
ular its size is constant). Our query language is that of unions of conjunctive queries,
UCQ, and, as usual, we restrict our discussion to Boolean queries.

We consider four compilation targets. For each target T , we denote by UCQ(T)

the class of UCQ queries whose lineage admits a compact compilation in T for all
input databases: the precise definition of the term “compact” depends on the com-
pilation target, but usually means that the target has polynomial size. There are two
different ways of defining a compact compilation: (i) Uniform: A compact compi-
lation can be found in polynomial time, (ii) Non-Uniform: A compact compilation
exists, but there are no restrictions on how to find it. The first interpretation is more
strict, but makes more practical sense if one is looking for tractable algorithms for
compilation; all our upper bounds are for uniform compilation. The second interpre-
tation is more useful in complexity theory, since the results show the expressibility,
and limitation of different models of compilation/computation; all our lower bounds
are for non-uniform compilation. Unless stated otherwise, we always assume that the
compilation is uniform, except in Sect. 7 where we focus exclusively on non-uniform
compilation.

Our first target is the class of read-once expressions, denoted RO. A read-once
Boolean expression is an expression consisting of ∧, ∨, ¬ operators in such a way

Theory Comput Syst (2013) 52:403–440 405

that every input variable is used only once. A read-once Boolean formula is one
that can be represented by a read-once expression. read-once formulas admit an el-
egant characterization due to Gurvich [19] (see [16]). Thus, UCQ(RO) is the class
of queries q such that for every input database, the lineage of q on that database is
a read-once formula. Our second and third targets are Ordered and Free Binary De-
cision Diagram. A Binary Decision Diagram1(BDD) is a rooted DAG where each
internal node is labeled with a variable and has two outgoing edges labeled 0 and 1,
and each sink node is labeled either 0 or 1. A BDD represents a Boolean function,
as follows. Given an assignment to the Boolean variables, the value of the function
is obtained by traversing the BDD starting at the root node, and at each internal node
following either the 0 or the 1 edge, according to the value of that node’s variable.
The unique sink node reached at the end of the traversal gives the value (0 or 1) of
the Boolean function under that assignment. A BDD is free (hence FBDD) if any
path from the root to a sink node reads every variable at most once. An FBDD is
ordered (hence OBDD) if there exists a total order on the Boolean variables s.t. any
path from the root to a sink node reads the variables in this order (it may skip some
variables). Thus, UCQ(OBDD) and UCQ(FBDD) denote the class of queries q s.t.
that for any database instance D, one can construct an OBDD (FBDD) for the lineage
of q on D, in time polynomial in D; in particular, the resulting OBDD or FBDD also
has size polynomial in D. Finally, our fourth target is the language of deterministic-
Decomposable Negation Normal Form(d-DNNF) introduced by Darwiche [12] (see
also [13]), which are DAGs whose leaves are labeled with literals (Boolean variables
or negated Boolean variables), and internal nodes are labeled either an independent-∧
(where the two children must have distinct sets of Boolean variables), or with disjoint-
∨ (where the two children must be exclusive Boolean formulas). We also allow for
one more type of internal node: not (¬). UCQ(dDNNF) represents the class of queries
s.t. one can construct a d-DNNF of its lineage in PTIME for any input database.

In addition to these four classes defined by a compilation target, we also consider
UCQ(P), the class of queries q with the property that, for every probabilistic database
D, the probability of q on D can be computed in PTIME in the size of D. It follows
from known results that these five classes form an increasing hierarchy: UCQ(RO) ⊆
UCQ(OBDD) ⊆ UCQ(FBDD) ⊆ UCQ(dDNNF) ⊆ UCQ(P).

Dalvi and Suciu [9, 10] have studied the evaluation problem over probabilistic
databases for conjunctive queries without self-joins, denoted here CQ−, and showed
that the class of queries computable in PTIME, CQ−(P), consists precisely of hi-
erarchical queries (reviewed in Sect. 2). Olteanu and Huang [20] have shown a re-
markable result: that for any hierarchical query, its lineage is a read-once formula. In
other words, they explained that the reason why hierarchical queries can be computed
in PTIME is because their lineage is read once. This immediately implies (assuming
FP �= #P) that the following five classes collapse: CQ−(RO) = CQ−(OBDD) =
CQ−(FBDD) = CQ−(UCQ) = CQ−(P).

In this paper we show that, over unions of conjunctive queries (UCQ), these
classes no longer collapse. In fact they form a strict hierarchy:

UCQ(RO) � UCQ(OBDD) � UCQ(FBDD) � UCQ(dDNNF) ⊆ UCQ(P)

1BDD are also known as Branching Program(BP) in the literature.

406 Theory Comput Syst (2013) 52:403–440

Table 1 Several representative queries defined in Table 2. All queries are hierarchical, and have the ad-
ditional syntactic properties shown. 0̂ denotes the minimal element of the query’s CNF-lattice; μ its Mo-
bius function. Queries q2, qV , qW separate the corresponding classes. We conjecture that q9 separates
UCQ(dDNNF) from UCQ(P). ∗: assuming FP �= #P ; ?: conjectured

Query Syntactic properties Membership in UCQ(T), where T is

RO OBDD FBDD dDNNF P

q1 inversion-free, read-once yes yes yes yes yes

q2 inversion-free no yes yes yes yes

qV has inversion, all lattice points have
separators

no no yes yes yes

qW lattice point 0̂ has no separator but is
erasable

no no no yes yes

q9 lattice point 0̂ has no separator and has
μ = 0 and is non-erasable

no no no? no? yes [11]

h1 lattice point 0̂ has no separator and has
μ �= 0

no no no no∗ no∗ [8, 11]

Table 2 Important queries used
throughout the paper h30 = R(x0), S1(x0, y0)

h31 = S1(x1, y1), S2(x1, y1)

h32 = S2(x2, y2), S3(x2, y2)

h33 = S3(x3, y3), T (y3)

h1 = R(x1), S(x1, y1) ∨ S(x2, y2), T (y2)

q1 = R(x1), S(x1, y1) ∨ T (x2), S(x2, y2)

q2 = R(x1), S(x1, y1), S(x2, y2), T (x2)

qV = h1 ∨ R(x3), T (y3)

qW = (h30 ∨ h32) ∧ (h30 ∨ h33) ∧ (h31 ∨ h33)

q9 = (h30 ∨ h33) ∧ (h31 ∨ h33) ∧ (h32 ∨ h33) ∧ (h30 ∨ h31 ∨ h32)

This means that the reason why certain queries can be computed in PTIME over
probabilistic databases is no longer their read-once-ness, or any other efficient com-
pilation method (We were not able to separate UCQ(dDNNF) from UCQ(P) but we
conjecture that they are also separated). Instead, each notion of efficiency is distinct.
We refer to Table 1 to discuss our results.

Our results make use of three syntactic properties of a query, called inversion [8],
separator [11], and hierarchical queries [10], reviewed in Sect. 2. The following strict
implications hold: inversion-free implies existence of separators at all levels, which
implies the query is hierarchical.

We give a complete characterization of UCQ(RO) and UCQ(OBDD). First,
UCQ(OBDD) coincides with inversion-free queries. UCQ(RO) coincides with
queries that are both inversion-free and can be written using ∧,∨,∃ such that ev-
ery relation symbol occurs only once. For example, consider the query q1 in Ta-
ble 1, q1 = ∃x1.∃y1.R(x1), S(x1, y1) ∨ ∃x2.∃y2.T (x2), S(x2, y2); in this paper we
drop existential quantifiers when they are clear from the context, and write the
query as q1 = R(x1), S(x1, y1) ∨ T (x2), S(x2, y2). The query can also be written

Theory Comput Syst (2013) 52:403–440 407

as ∃x.((R(x) ∨ T (x)) ∧ ∃y.(S(x, y))): here each symbol R,S,T occurs only once
and, since q1 is also inversion-free, it follows that it is in UCQ(RO). Note that our
characterization of UCQ(RO) is unrelated to Gurvich’s characterization of read-once
Boolean expressions [16, 19], or to algorithms for checking read-once-ness in [21,
23]: these results apply to the Boolean formula, while our results apply directly to the
query.

For UCQ(FBDD) and UCQ(dDNNF), we only give sufficient conditions by mak-
ing use of the CNF-lattice associated to a query (introduced in [11]), where each
lattice element x is labeled by a subquery, denoted λ(x). A sufficient condition
for a query to be in UCQ(FBDD) is for every lattice element to have a separator
and to satisfy certain additional conditions (see Sect. 6). A sufficient condition for
UCQ(dDNNF) is that every lattice element must have a separator, except those lat-
tice elements that can be erased (a notion we define in Sect. 6). For comparison, the
necessary and sufficient condition for UCQ(P) is that every lattice element must have
a separator, except those lattice elements where the Mobius function is 0 (μ = 0) [11].
If an element can be erased, then its Mobius function is 0, but the converse is not true,
as illustrated by q9 in Table 1. We conjecture that q9 is not in UCQ(dDNNF).

The most difficult results in this paper are the separation results UCQ(OBDD) �

UCQ(FBDD) � UCQ(dDNNF); they are separated by the queries qV and qW re-
spectively in Table 1. In each case we prove that the query does not belong to
the smaller class, but that it belongs to the larger class. The separation between
UCQ(OBDD) and UCQ(FBDD) extends even to the non-uniform definition of the
complexity class. More precisely, we show qV /∈ UCQ(OBDD), even if one as-
sumes the non-uniform definition of UCQ(OBDD), and that qV ∈ UCQ(FBDD);
similarly qW /∈ UCQ(FBDD), even for a non-uniform definition of this class, and
qW ∈ UCQ(dDNNF). These results are significant for the following reason. All lin-
eage expressions for queries in UCQ are very simple: they are monotone, and have
a DNF expression of polynomial size. This also applies to the lineage expressions of
qV and qW . Thus, our lower bounds make a contribution to the general separation
problem of polynomial-size OBDD, FBDD, and d-DNNF. Early lower bounds for
FBDD were for non-monotone formulas, with exponential size DNFs. The first “sim-
ple” Boolean formula shown to have exponential FBDD was given by Gál in [14],
followed by a “very simple” formula given by Bollig and Wegener [1]. But it is not
very surprising that the “very simple” has no polynomial size FBDDs, since comput-
ing the probability of that formula is #P-hard: the “very simple” formula is precisely
the lineage of the non-hierarchical query R(x), S(x, y), T (y), for which computing
the probability is #P-hard. In contrast, for both qV and qW one can compute the
probability in polynomial time: hence, the fact that they do not admit polynomial
size OBDDs or polynomial size FBDDs respectively is more surprising. On the other
hand, we can use Bollig and Wegener’s result to prove that, for every non-hierarchical
query, its lineage has no polynomial size FBDD.

The lineage of the query qV , that we use for the first major separation between
UCQ(OBDD) and UCQ(FBDD) is, to the best of our knowledge, the first “simple”
Boolean formula separating polynomial-size OBDD from FBDD. Previous Boolean
formulas separating the two classes are non-monotone, and do not have polynomial
size DNFs. The classic example is the Weighted Bit Addressing problem (WBA),

408 Theory Comput Syst (2013) 52:403–440

defined as F(X1, . . . ,Xn) = X∑
i=1,n Xi

(where X0 = 0). Bryant [5] has shown that
it has no polynomial size OBDD, while Gergov and Meinel [15] and independently
Sieling and Wegener [24] have shown that WBA has a polynomial sized FBDD. More
examples are given in [26]. Our characterization of UCQ(OBDD) and UCQ(FBDD)

allows one to give a class of simple Boolean expressions that separate polynomial-
size OBDD from FBDD.

The lineage of the query qW that we use for our second major separation between
UCQ(FBDD) and UCQ(dDNNF) is also, to the best of our knowledge, the first “sim-
ple” Boolean formula separating polynomial-size FBDD from d-DNNF. The previous
separation relies on a result due to Bollig and Wegener [2]: they give an example of
two Boolean formulas Φ1,Φ2 that have polynomial size OBDD, Φ1 ∧ Φ2 ≡ false,
yet Φ1 ∨ Φ2 cannot have polynomial size FBDD. Hence Φ1 ∨ Φ2 separates d-DNNF
from FBDD.

Finally, we note that no formula with exponential lower bound on d-DNNF size is
presently known. In particular, we leave open the question whether UCQ(dDNNF)

� UCQ(P). However, our algorithm in Sect. 6 suggests how d-DNNF may be con-
structed for general queries, which further suggests that this is not possible for q9.
We conjecture that q9 is not in UCQ(dDNNF), and, hence, that its lineage has no
polynomial size d-DNNF.

The paper is organized as follows. We give the basic definitions and review the
relevant results in [11] in Sect. 2, then discuss read-once, OBDD, FBDD, and d-
DNNF in Sect. 3, Sect. 4, Sect. 5, Sect. 6. We discuss results for non-uniform setting
in Sect. 7 and conclude in Sect. 8.

2 Background and Definitions

In this paper we discuss unions of conjunctive queries (UCQ), which are expressions
defined by the following grammar:

Q ::= R(x̄) | ∃x.Q1 | Q1 ∧ Q2 | Q1 ∨ Q2 (1)

R(x̄) is a relational atom with variables and/or constants, whose relation symbol
R is from a fixed vocabulary. We replace ∧ with comma, and drop ∃, when no con-
fusion arises. Comma or ∧ operator takes precedence over ∨. For example we write
R(x), S(x, y) ∨ T (y) for ∃x.(R(x) ∧ ∃y.S(x, y)) ∨ ∃y.T (y).

A query is an expression as defined by (1), up to logical equivalence. We consider
only Boolean queries in this paper. A conjunctive query (CQ) is a query that can
be written without ∨. A conjunctive query admits an alternative representation, as a
set of atoms, R1(x̄1), . . . ,Rm(x̄m). Given two conjunctive queries q, q ′, the logical
implication q ⇒ q ′ holds iff there exists a homomorphism q ′ → q between their
representations as sets of atoms [7].

Let D be a database instance. Denote Xt a distinct Boolean variable for each tuple
t ∈ D. If t /∈ D, Xt ≡ false. Let Q be a UCQ. The lineage of Q on D is the
Boolean expression ΦD

Q , or simply ΦQ if D is understood from the context, defined
inductively as follows, where ADom(D) denotes the active domain of the database

Theory Comput Syst (2013) 52:403–440 409

instance:

ΦR(ā) = XR(ā), Φ∃x.Q =
∨

a∈ADom(D)

ΦQ[a/x] (2)

ΦQ1∧Q2 = ΦQ1 ∧ ΦQ2, ΦQ1∨Q2 = ΦQ1 ∨ ΦQ2 (3)

Given a probability p(Xt) ∈ [0,1] for each Boolean variable Xt , we denote
P(ΦD

Q) the probability that the Boolean formula ΦD
Q is true, when each Boolean

variable Xt is set to 1 independently, with probability p(Xt).
A probabilistic database is a pair (D,p) where D is a database and p(t) ∈ [0,1]

assigns a probability to each tuple t ∈ D. Given a Boolean query Q and a probabilistic
database (D,p), the query probability P(Q) is defined as P(Q) = P(ΦD

Q), where in
the latter expression each Boolean variable Xt has a probability equal to that of its
corresponding tuple, p(Xt) = p(t).

The query evaluation problem on probabilistic databases is the following: given
a query Q and a probabilistic database (D, t), compute P(Q). Usually we are inter-
ested in the data complexity of the query evaluation problem: for a fixed Q, determine
the complexity of computing P(Q) as a function of the input database (D,p).

Definition 1 UCQ(P) is the class of UCQ queries Q s.t. for any probabilistic
database (D,p), the probability P(Q) can be computed in PTIME in the size of D.

A complete characterization of the class UCQ(P) was given in [11]. We review
it here, since we will reuse some of the same concepts that characterize the class
UCQ(P) to characterize various compilation targets.

We start by discussing connected queries. Consider a conjunctive query q given by
the set of its atoms R1(x̄1), . . . ,Rm(x̄m), and assume this representation is minimal,
i.e., removing any atom results in an inequivalent query; it is known that this mini-
mal representation is unique up to isomorphism [7]. Define the following undirected
graph G: there is one node for each atom, and there is an edge from atom i to atom j

if Ri(x̄i) and Rj (x̄j) share a common variable. We say that the query q is connected
if the graph G is connected.

Lemma 1 Suppose we restrict all conjunctive queries to be without constants. Let q

be a conjunctive query. Then the following conditions are equivalent. (1) The query q

is connected. (2) For every two conjunctive queries q1, q2, if q1 ∧ q2 ⇒ q then either
q1 ⇒ q or q2 ⇒ q . (3) For every two conjunctive queries q1, q2, if q ≡ q1 ∧ q2 then
either q ≡ q1 or q ≡ q2.

Proof (1) implies (2). Assuming q1 ∧ q2 ⇒ q we obtain a homomorphism q →
q1 ∧ q2. Since neither q1 nor q2 have constants, the homomorphism must map ev-
ery variable in q to a variable in q1 ∧ q2. Since q is connected, the image of this
homomorphism must be a connected graph, and, therefore, it is included either in q1

or in q2; this means that the homomorphism is either q → q1 or q → q2, implying
either q1 ⇒ q or q2 ⇒ q .

410 Theory Comput Syst (2013) 52:403–440

(2) implies (3). Assume q1 ∧ q2 ≡ q . In particular, q1 ∧ q2 ⇒ q , and by property
(2) we have q1 ⇒ q or q2 ⇒ q . Assuming the former, we derive q1 ⇒ q1 ∧ q2, which
further implies q1 ≡ q1 ∧ q2 ≡ q . The latter case is symmetric.

(3) implies (1). Suppose that q is not connected. Suppose its minimal representa-
tion has m atoms. Let G be the graph corresponding to its minimal representation.
We can partition its nodes into two sets, each with strictly less than m atoms, s.t. they
do not share any variables. Thus, we have written q = q1 ∧ q2 where q1, q2 share no
common variables and each has strictly less than m atoms. By condition (3) it follows
that either q1 ⇒ q or q2 ⇒ q . Assuming the former, we have q ≡ q1, contradicting
the fact that the minimal representation of q has m atoms. The latter case follows
similarly too. �

The restriction to conjunctive queries without constants is necessary for the
lemma to hold. Otherwise, consider the connected query q = R(x, y), S(y, z), and
q1 = R(x, a), q2 = S(a, z), where a is a constant and x, y, z are variables: we have
q1 ∧ q2 ⇒ q but neither q1 ⇒ q nor q2 ⇒ q holds.

We now define the key notions needed to characterize UCQ(P), and which we
need throughout this paper:

– A component, c, is a conjunctive query that is connected.
– Every conjunctive query can be written as a conjunction of components. That is,

q = c1, c2, . . . , ck , s.t. ci and cj do not share any common variables, for all i �= j . If
q = c1, c2, . . . and q ′ = c′

1, c
′
2, . . . are two conjunctive queries given as conjunction

of components, and if they do not have any constants, then the logical implication
q ⇒ q ′ holds iff ∀j.∃i s.t. ci ⇒ c′

j .
– A disjunctive query is a disjunction of components, d = c1 ∨ · · · ∨ ck . Given two

disjunctive queries d = c1 ∨ c2 ∨· · · and d ′ = c′
1 ∨ c′

2 ∨· · · , the logical implication
d ⇒ d ′ holds iff ∀i.∃j s.t. ci ⇒ c′

j .
– A UCQ in DNF is a disjunction of conjunctive queries, Q = q1 ∨ · · · ∨ qm. Given

two queries in DNF, Q = q1 ∨ q2 ∨ · · · and Q′ = q ′
1 ∨ q ′

2 ∨ · · · , the logical impli-
cation Q ⇒ Q′ holds iff ∀i.∃j s.t. qi ⇒ q ′

j .
– A UCQ in CNF is a conjunction of disjunctive queries, Q = d1 ∧ · · · ∧ dm. Given

two queries in CNF, Q = d1 ∧ d2 ∧ · · · and Q′ = d ′
1 ∧ d ′

2 ∧ · · · , if they do not have
any constants, then the implication Q ⇒ Q′ holds iff ∀j.∃i s.t. di ⇒ d ′

j .

Obviously, any component is both a conjunctive query and a disjunctive query;
also, every conjunctive query is a UCQ in DNF, and every disjunctive query is a
UCQ in CNF.

The containment condition for DNF is due to Sagiv and Yannakakis [22]. The
containment condition for CNF is from [11], and only holds if the queries have no
constants. To see that this requirement is needed, consider the following three dis-
junctive queries: d1 = R(x, a), d2 = S(a, z), and d = R(x, y), S(y, z), where a is a
constant and x, y, z are variables. Define the following two UCQ’s: Q = d1, d2 and
Q′ = d . Both are in CNF, and Q ⇒ Q′, yet neither d1 ⇒ d nor d2 ⇒ d holds.

Following [11] we first perform the following transformations on the query. They
preserve the lineage of the query and hence membership in UCQ(P) and all the
classes considered in this paper.

Theory Comput Syst (2013) 52:403–440 411

Remove constants Every query with constants is rewritten into an equivalent
query without constants, over an extended vocabulary, by repeatedly substi-
tuting a relation R(A1, . . . ,Ak) with 2 relations: R1 = σAi �=a(R) and R2 =
ΠA1...Ai−1Ai+1...Ak

(σAi=a(R)), for every attribute position i and every constant a

that occurs in the query. For example, R(x, a), S(x) ∨ R(x, y), T (x) is rewritten as
R2(x), S(x)∨R2(x), T (x)∨R1(x, y), T (x), where R1(x, y) = σy �=a(R(x, y)), and
R2(x) = πx(σy=a(R(x, y))).

Ranking Assume an ordered domain. A query is ranked if it remains consistent after
adding all predicates of the form x < y, for all pairs of variables x, y that co-occur
in some atom, such that x occurs before y. For example, R(x, y),R(y, z),R(x, z)

is ranked because x < y ∧ y < z ∧ x < z is consistent, while R(x, y), S(y, x) is
not ranked (x < y ∧ y < x is inconsistent), and R(x, x, y) is not ranked (x <

x ∧x < y is inconsistent). Every query is rewritten into an equivalent, ranked query,
over an extended vocabulary, by repeatedly substituting a relation R(A1, . . . ,Ak)

with three relations R1 = σAi<Aj
(R), R2 = ΠA1...Aj−1Aj+1...Ak

(σAi=Aj
(R)), R3 =

ΠA1...Aj ...Ai ...Ak
(σAi>Aj

(R)), for every two attributes Ai,Aj s.t. i < j . We give
here the main intuition by illustrating with q = R(x, y),R(y, x), and refer to [11]
for further details. Denoting R1(x, y) = σx<y(R), R2(x) = πx(σx=y(R(x, y))),
R3(y, x) = πyx(σx>y(R)), we rewrite the query as R2(x)∨R1(x, y),R3(x, y). The
new query is ranked.

The reason for the first transformation is to ensure that the implication criteria
for CNF expressions hold. As a consequence, every UCQ has a unique, minimal
representation in DNF, and a unique, minimal representation in CNF. The reason for
the second transformation will become clear below. We will assume throughout the
paper that a CNF or DNF expression of a query is minimized.

The first step in characterizing UCQ(P) is to describe a class of disjunctive queries
that are hard for #P, using the notion of a separator. Consider a query, and a subex-
pression of the form ∃w.Q (see grammar equation (1)): the scope of the variable w

is the subexpression Q.

Definition 2 A variable w is called a root variable if it occurs in all atoms in its
scope.

For a simple illustration, consider ∃x.∃y.R(x)∧S(x, y). Then x is a root variable,
but y is not. However, we can write the query equivalently as ∃x.R(x)∧(∃y.S(x, y)):
now both x and y are root variables.

Definition 3 A disjunctive query d has a separator if it can be written as d ≡ ∃w.Q,
such that w is a root variable, and for every two atoms g,g′ using the same relational
symbol R, the variable w occurs in the same position in g and in g′. In this case the
variable w is called a separator variable in the expression ∃w.Q.

The hardness part of characterizing UCQ(P) consists of showing that, if a dis-
junctive query has no separator then it is hard for #P: hence, it cannot be in UCQ(P)

unless FP = #P. Recall that we assume all queries to be without constants, ranked,
and minimized.

412 Theory Comput Syst (2013) 52:403–440

Theorem 1 ([11]) Let d be a disjunctive query s.t. each component has at least one
variable. If d has no separator, then d is hard for #P.

If d has any component without variables then it trivially has no separator. For
example, consider d = R() ∨ S(x): the first component, R(), has no variables, and
clearly d has no separator, e.g. if we write it as ∃x.(R() ∨ S(x)) then x is not a root
variable. However, it is always easy to get rid of the components without variables,
then apply Theorem 1. Indeed, write the disjunctive query as d = d0 ∨ d ′ where
d0 contains all components without variables and d ′ contains all components with
variables. Thus, d0 is a disjunction R1() ∨ R2() ∨ · · · of zero-ary relational symbols,
and d ′ is a disjunction of components c1 ∨ c2 ∨ · · · , each having at least one variable.
None of the symbols Ri() occurs in any component cj , otherwise cj would not be
connected. Thus, d0 and d ′ are independent probabilistic events, and P(d) = 1− (1−
P(d0))(1−P(d ′)), in other words computing P(d) reduces to computing P(d ′), and
this is the reason why the theorem focuses only on the latter. Note that the theorem
holds only if the query is ranked: for a counter-example, R(x, y),R(y, x) has no
separator, yet is in UCQ(P) (this follows from the ranking shown above, and from
Theorem 2 below); this is the reason why we rank queries.

Conversely, if d has a separator, d = ∃w.Q, then its probability can be computed
as P(d) = 1 − ∏

i (1 − P(Q[ai/w])), where a1, . . . , an is the active domain of the
database, because no two queries among Q[a1/w], . . . ,Q[an/w] have any tuple in
common. Furthermore, this can be computed efficiently, provided that each query
Q[ai/w] is in UCQ(P). Although we disallowed constants in queries, the expression
Q[ai/w] is OK because all occurrences of a relational symbol have the constant a

in the same position; we simply remove a from all atoms, renaming all relational
symbols, and decreasing their arity by 1.

Example 1 Query q1 in Table 1 has a separator, because2 q1 ≡ ∃w.(R(w),S(w,y1)∨
T (w),S(w,y2)). We can compute its probability as P(q1) = 1 − ∏

i (1 − P(R(ai),

S(ai, y1)∨T (ai), S(ai, y2))). Query h1, on the other hand, does not have a separator:
if we write it as ∃w.(R(w),S(w,y1)∨S(w,y2), T (y2)) then w is not a root variable,
and if we write it as ∃w.(R(w),S(w,y1)∨S(x2,w),T (w)) then w occurs in different
positions in S(w,y1) and S(x2,w). Therefore, h1 is hard for #P.

Consider a UCQ in CNF: Q = d1 ∧ · · · ∧ dk . For each subset s ⊆ [k] denote ds =∨
i∈s di . The inclusion/exclusion formula gives us P(Q) = −∑

s �=∅(−1)|s|P(ds)

and, therefore, if all ds are in UCQ(P) (in particular, they have separators), then so
is Q. The formula is exponential in the size of the query, but this does not affect data
complexity. However, the condition ds ∈ UCQ(P) is not necessary for all s: some
terms in the inclusion/exclusion formula may cancel out, and Q may be in UCQ(P)

even if some disjunctive queries ds are hard.
To characterize precisely when Q is in UCQ(P), [11] defines the CNF lattice

(L,≤) for Q. Each element x ∈ L corresponds to a distinct disjunctive query, denoted
λ(x) = ds , for some s ⊆ [k], up to logical equivalence; that is, if ds1 ≡ ds2 then they

2We omitted the inner quantifiers ∃y1 and ∃y2.

Theory Comput Syst (2013) 52:403–440 413

Fig. 1 CNF Lattices for the queries qV , qW , and q9 from Table 2. In the lattices for qW and q9,
μ(0̂, 1̂) = 0; in all other cases, μ(x, 1̂) �= 0. In qW the element 0̂ is erasable; in q9, the element 0̂ is
not erasable

correspond to the same element in x ∈ L. The order relation ≤ is reversed logical
implication: x ≤ y iff λ(y) ⇒ λ(x).

The maximal element in the lattice is denoted 1̂, and corresponds to d∅ ≡ false:
all other elements correspond to non-trivial disjunctive queries ds . The minimal el-
ement of the lattice is denoted 0̂, and corresponds to λ(0̂) = d1 ∨ · · · ∨ dk . Three
examples are shown in Fig. 1.

We say x covers y if y ≤ x and there is no z ∈ L s.t. y < z < x. We call x an atom
if it covers 0̂; it is a co-atom if it is covered by 1̂. Denote by L∗ the set of co-atoms.
The meet closure of S ⊆ L is the lattice: S = {∧T | T ⊆ S}. Note that

∧∅ = 1̂, the
meet closure of any set S contains the maximal element 1̂.

The Mobius function of a lattice (L,≤) is the function μL : L × L → Z de-
fined by μL(x, x) = 1, μL(x, y) = −∑

x<z≤y μL(z, y). Note that μL(x, y) = 0
whenever x �≤ y. We will drop the L, i.e. denote μL by simply μ, henceforth
when it is clear from the context. Mobius’ inversion formula applied to P(Q) is:
P(Q) = −∑

x<1̂ μ(x, 1̂)P (λ(x)). Now it becomes obvious that we only need to

compute P(ds) for those queries for which μ(x, 1̂) �= 0. This justifies:

Definition 4 (Safe queries) ([11]) (1) Let Q = d1 ∧ · · · ∧ dk , and k ≥ 2. Then Q

is safe if for every element x in its CNF lattice, if μ(x, 1̂) �= 0, then the disjunctive
query λ(x) is safe (recursively). (2) Let d = d0 ∨ d1, be a disjunctive query where
d0 contains all components without variables, and d1 contains all components with
at least one variable. Then d is safe if d1 has a separator w and d1[a/w] is safe
(recursively), for a constant a.

The characterization of UCQ(P) is:

Theorem 2 ([11]) Any safe query is in UCQ(P). Any unsafe query is hard for #P.

The first part of the theorem follows from our discussion so far. The second part
is proven in [11] by using Theorem 1.

414 Theory Comput Syst (2013) 52:403–440

This completes the characterization of UCQ(P) from [11]. We still need to intro-
duce two more notions that we use in the rest of the paper: hierarchical queries and
inversion-free queries.

Hierarchical Queries Let q be a conjunctive query, and denote Vars(q) the set of
variables used in the query and at (x) the set of atoms containing a variable x ∈
Vars(q). We say that q is hierarchical if for any two variables x, y, we have at (x) ⊆
at (y) or at (x) ⊇ at (y), or at (x)∩ at (y) = ∅. A UCQ query Q is hierarchical if it is
the union of hierarchical conjunctive queries. We give an alternative definition next:

Definition 5 Let Q be a query expression given by the grammar equation (1). We
say that it is a hierarchical expression if every variable is a root variable.

It is easy to check that a query is hierarchical iff it can be written as a hierarchical
expression. For example, the query R(x, y), S(x, z) is hierarchical, because it can
be written as ∃x.(∃y.R(x, y)∧∃z.S(x, z)). Examples of non-hierarchical queries are
R(x), S(x, y), T (y) and R(x, y),R(y, z),R(x, z). The following is easy to see:

Proposition 1 If Q is safe, then it is hierarchical.

Proof By induction on the structure of Q. If Q = d1 ∧ · · · ∧ dk , then each di cor-
responds to a co-atom x in the CNF lattice, hence μ(x, 1̂) = −1 �= 0, and therefore
di must be safe, hence it is hierarchical by induction, hence Q is hierarchical. If
Q = d0 ∨ d1 and d1 has a separator, d1 = ∃w.Q1, then Q1[a/w] is safe, hence it is
hierarchical by induction, hence ∃w.Q1 is hierarchical because w occurs in all atoms
of Q1. �

The converse is not true: for example h1 in Table 1 is hierarchical, but unsafe.
Thus, all non-hierarchical queries are #P-hard, but the converse fails in general.

Inversions Inversions were first defined in [8]. In this paper we show how to use
inversions to characterize UCQ(RO) and UCQ(OBDD). Let Q = q1 ∨ · · · ∨ qk be a
query in DNF. The unification graph G has as nodes all pairs of variables (x, y) that
co-occur in some atom, and has an edge between (x, y) and (x′, y′) if the following
holds: x, y co-occur in some atom g , x′, y′ co-occur in some atom g′, the atoms g

and g′ are over the same relation symbol and x, y appear at the same positions in g as
x′, y′ in g′. In other words, g and g′ are unifiable, and the unification equates x = x′
and y = y′. Given x, y ∈ Vars(qi), denote x � y if at (x) �⊆ at (y).

Definition 6 (Inversion) ([8]) An inversion in Q is a path of length ≥ 0 in G from a
node (x, y) to a node (x′, y′) s.t. x � y and x′ ≺ y′. If no such path exists, we say Q

is inversion-free.

If a query is non-hierarchical then it has an inversion. Indeed, let x, y be two
variables occurring in the same non-hierarchical conjunctive query, such that at(x) ∩
at(y) �= ∅ and neither of the two sets at(x), at(y) contains the other. Consider the

Theory Comput Syst (2013) 52:403–440 415

node (x, y) in the unification graph (such a node exists because at(x) ∩ at(y) �= ∅).
Since we have both x � y and x ≺ y, the empty path starting and ending at (x, y) is
an inversion. The converse fails: h1 in Table 1 is hierarchical, yet has an inversion,
from (x1, y1) to (x2, y2).

We give now an alternative, syntactic characterization of an inversion-free query,
which we need later. Consider a query expression Q given by the grammar equa-
tion (1). Let g be an atom in Q, over the relation symbol R of arity k; thus g contains
k distinct variables. Assume the existential quantifiers of these k variables are in the
following order: ∃x1,∃x2, . . . ,∃xk . In other words, each variable xi+1 is within the
scope of xi . Define πg to be the permutation for which g = R(xπg(1), . . . , xπg(k)).

Definition 7 A query expression Q given by the grammar equation (1) is an
inversion-free expression if it is a hierarchical expression, and for any two atoms
g1, g2 with the same relational symbol, πg1 = πg2 .

If Q is a hierarchical expression and R a relational symbol, then we write πR for
the common permutation πg of all atoms g with symbol R. We have the following
equivalence:

Proposition 2 Q is inversion free iff it can be written as an inversion-free expression.

Proof We first show how to write an inversion-free query as an inversion-free ex-
pression. Let Q be inversion free. We will define an order relation x ≫ y on Q’s
variables s.t. (a) for every atom g, ≫ is total over the set of variables occurring
in g, and (b) if g, g′ are two atoms with the same relation symbol R then the or-
der imposed by ≫ on the attributes of R is the same in g and g′. The order ≫
gives us immediately the permutation πg for every atom g; since Q can be writ-
ten as a union of conjunctive queries, each of which is hierarchical, it follows that
Q can be written as an inversion-free expression. To define ≫, we first define a
weaker relation �: x � y if there exists a path in the unification graph from a node
(x, y) to a node (x′, y′) s.t. x′ � y′. Clearly � is antisymmetric, because if we have
both x � y and x � y then the graph has an inversion. We prove that � is transi-
tive. Indeed, suppose x � y and y � z. By definition there exists a unification path
(y, z), (y1, z1), (y2, z2), . . . , (yk, zk) s.t. yk � zk . Consider the first edge of this path:
there exists two atoms g,g1 with the same relation name, g contains y, z, and g1
contains y1, z1 on the same position. Then g must contain x as well (otherwise x ≺ y

contradicting x � y). Denote x1 the variable on the same position in g1: since x � y

and y � z we have x1 � y1 and y1 � z1. Repeating the same argument we find
variables xi s.t. xi � yi and yi � zi , for i = 1, k. Since yk � zk , it also follows that
xk � zk (because xk � yk implies at(xk) ⊇ at(yk) hence at(xk) �⊆ at(zk)), proving
that x � z. Therefore, � defines a partial order on the set of variables. It is not a
total order yet, because it may leave pairs of variables unordered. To make it a total
order, we use the fact that the query Q is ranked, and define x ≫ y to be: x � y or
(x �� y and there exists an atom g containing both x and y s.t. x occurs before y). It
is easy to check that ≫ is a partial order, and for any atom g it is total over its set of
variables.

416 Theory Comput Syst (2013) 52:403–440

Now, suppose Q can be written as an inversion-free expression and still has an
inversion from a node (x, y) to node (x′, y′) s.t. x � y and x′ ≺ y′. Let π be the
order in which variables are introduced in the inversion-free expression. Then x, y

appear in the same order in π as x′, y′. W.l.o.g., lets assume x occurs before y. Then
x′ occurs before y′. But we have y′ � x′, hence x′ couldn’t have been a root variable
when it was introduced which violates the fact that every inversion-free expression is
also a hierarchical expression, a contradiction. This completes the proof. �

For example, consider q1 in Table 1. On one hand we can write it as a union of con-
junctive queries, q1 = R(x1), S(x1, y1) ∨ T (x2), S(x2, y2). The unification graph has
four nodes, (x1, y1), (y1, x1), (x2, y2), (y2, x2), and two edges ((x1, y1), (x2, y2)) and
((y1, x1), (y2, x2)). We have both x1 � y1 (because at(x1) = {R(x1), S(x1, y1)} �⊆
at(y1) = {S(x1, y1)}), and similarly x2 � y2. Hence, there is no inversion in the graph,
and the query is inversion free. The proposition gives us an alternative way to see that,
by writing the query as q1 = ∃x1.R(x1),∃y1.S(x1, y1)∨∃x2.T (x2),∃y2.S(x2, y2): in
both S-atoms the existential variables xi, yi are introduced in the same order, for
i = 1,2.

On the other hand, consider the query h1 = R(x1), S(x1, y1) ∨ S(x2, y2), T (y2).
Here x1 � y1 and x2 ≺ y2, hence the edge ((x1, y1), (x2, y2)) forms an inver-
sion in the unification graph. One can see that we cannot write h1 in a way that
satisfies Definition 7: if we write it hierarchically as ∃x1.R(x1),∃y1.S(x1, y1) ∨
∃y2.T (y2).∃x2.S(x2, y2), then the variables in S(x2, y2) are introduced in a differ-
ent order from those of S(x1, y1).

We end with a simple remark. If d is a disjunctive query that is inversion free, then
it has a separator. Indeed, write d = ∨

i ci , and write each component as a hierarchical
expression, ci = ∃xi.Qi . Re-write d as ∃w.(

∨
i Qi[w/xi]). Then w is a separator

variable: it obviously occurs in all atoms, and in every atom with relation symbol R,
it must occur in position πR(1).

3 Queries with Read-Once Lineage

A Boolean expression Φ is read once (RO) if it can be written using the connec-
tors ∨,∧,¬ such that every Boolean variable occurs at most once. We consider
only positive Boolean expressions in this paper, and therefore will use only ∨ and
∧. The probability of a read-once Boolean expression can be computed in linear
time, because of independence: P(Φ1 ∧ Φ2) = P(Φ1) · P(Φ2) and P(Φ1 ∨ Φ2) =
1 − (1 −P(Φ1))(1 −P(Φ2)); this justifies our interest in this class of expressions. In
this section we characterize the queries that have read-once lineages. An elegant char-
acterization of read-once Boolean expressions was given by Gurvich [19] (see [16]),
but we will not use that characterization. Note that our characterization is of queries,
while Gurvich’s characterization is of Boolean expressions.

Definition 8 UCQ(RO) is the class of queries Q s.t. for every database instance D,
the lineage of Q on D is a read once Boolean expression.

Theory Comput Syst (2013) 52:403–440 417

Recall that CQ− denotes the set of conjunctive queries without self-joins. Dalvi
and Suciu [9, 10] showed that CQ−(P) is precisely the class of hierarchical queries.
Olteanu and Huang [20] showed that all hierarchical queries in CQ− have read-once
lineages, implying CQ−(RO) = CQ−(P) = “hierarchical queries”. In this section we
characterize the class UCQ(RO).

Definition 9 Let Q be a query expression given by the grammar equation (1). We
say that Q is hierarchical-read-once if it is hierarchical (see Definition 5), and ev-
ery relational symbol occurs at most once. A query is hierarchical-read-once if it is
equivalent to a hierarchical-read-once expression.

Obviously, every hierarchical CQ− query is also hierarchical-read-once; our defi-
nition is more interesting when applied to UCQ. The following is a necessary condi-
tion for hierarchical-read-once-ness:

Proposition 3 If Q is a hierarchical read-once expression then it is also an inversion-
free expression.

The proof is immediate, since no two distinct atoms in Q may refer to the same
relational symbol, hence the condition πg1 = πg2 is satisfied vacuously.

For a simple example, consider query q1 in Table 1. It is equivalent to the ex-
pression ∃x.(R(x) ∨ T (x)) ∧ ∃y.S(x, y), which is both hierarchical and read-once.
Notice that in the definition we require Q to be at the same time hierarchical and
read-once. Sometimes we can achieve these two goals separately, but not simultane-
ously: for example h1 = R(x1), S(x1, y1) ∨ S(x2, y2), T (y2) is hierarchical, and can
also be written as ∃x.∃y.(R(x) ∨ T (y)) ∧ S(x, y), which is read-once. Since h1 has
an inversion, by Proposition 3 it cannot be written simultaneously as a hierarchical
and read-once expression.

Theorem 3 Q ∈ UCQ(RO) iff it is hierarchical-read-once.

The “if” direction is a straightforward extension of the technique used in [20] to
prove that hierarchical queries in CQ− are read-once. For the “only-if”, we construct
one database instance D that is “large enough” (depending only on the query), and
prove the following: if Q’s lineage on D is read-once, then Q is hierarchical-read-
once.

Proof If : We prove by induction on the structure of a hierarchical-read-once ex-
pression Q that its lineage is read-once; this proof extends that of [20]. If Q =
Q1 ∨ / ∧ Q2, then Q1,Q2 have no relation symbols in common, and their lineage
given by (3) is also read-once. If Q = ∃x.Q1 then x must be a root variable, which
implies that the lineages of Q1[a1/x], . . . , Q1[an/x] do not share any Boolean vari-
ables; hence, the lineage given by (2) is also read-once.

Only if : Assume Q ∈ UCQ(RO); thus ΦD
Q is read-once, for every database in-

stance D; we show that Q must be equivalent to a hierarchical-read-once expression.
First, we use Theorem 4 to argue that, if Q ∈ UCQ(RO) then Q ∈ UCQ(OBDD),

418 Theory Comput Syst (2013) 52:403–440

hence Q is inversion-free. Referring to Definition 7, for every relation symbol R we
denote πR the permutation mapping the variable nesting order to the order in which
they occur in an atom with relation symbol R.

We will construct a special database instance D: from the read-once-ness of ΦD
Q ,

we will extract a hierarchical-read-once expression for Q. Let k be the total number
of variables plus the total number of atoms in Q. We first construct the active domain
for D. Start by choosing k constants a1, a2, . . . , ak called “root constants”: these will
be used to populate the attribute πR(1) of the relation R, for each relation symbol R.
Next, choose k2 constants aij ,1 ≤ i, j ≤ k: these will populate the attribute πR(2) of
each relation R, such that aij occurs only in those tuples that also contain ai . Next,
choose k3 constants for the next level of the hierarchy, etc. This way we construct ka

tuples for a relation of arity a: note that the functional dependencies πR(i + 1) →
πR(i) hold for every relation R and every i = 1, . . . ,arity(R) − 1.

Thus, we have fixed the database D. Next, we prove the following statement by in-
duction: Let Q be any inversion-free query where the total number of variables plus
atoms is at most k, and consider its lineage over our fixed database D, ΦD

Q : if the
lineage is read-once, then Q can be written as a hierarchical-read-once expression.
Our induction proceeds on the structure of the read-once expression ΦD

Q , abbrevi-
ated ΦQ.

Case 1: Suppose ΦQ = φ1 ∧ φ2. Then φ1, φ2 have no common Boolean variables.
We prove something stronger: that the variables come from disjoint sets of relations.
Assume contrary, that both have a Boolean variable over the relational symbol R. To
simplify the discussion we will assume R is unary; our argument extends in general
too. Note that if m1 is a minterm of φ1 and m2 is a minterm of φ2, then m1m2 must
be a minterm of ΦQ. This is because φ1, φ2 have no tuples in common, hence if an-
other minterm m′

1m
′
2 ⇒ m1m2, then m′

1 ⇒ m1 and hence m1 couldn’t have been a
minterm of φ1. Now, suppose XR(a1) occurs in φ1 and not in φ2, and XR(a2) occurs
in φ2 and not in φ1. Then XR(a1)XR(a2) occurs in some minterm in ΦQ. Since the
lineage is invariant under permutations of the active domain, for all 1 ≤ i < j ≤ k

the term XR(ai)XR(aj) occurs in some minterm of ΦQ. Consider a third tuple of R,
say R(a3). It must occur in either φ1 or φ2: assume w.l.o.g. it occurs in φ2, and
since ΦQ has a minterm that contains XR(a2)XR(a3), φ2 must have a minterm that
contains it. Hence, after conjoining with φ1, we obtain a minterm in ΦQ that con-
tains XR(a1)XR(a2)XR(a3), and, therefore, for every 1 ≤ i < j < l ≤ k there exists a
minterm in ΦQ containing XR(ai)XR(aj)XR(al). Repeating this argument leads us to
conclude that ΦQ has a minterm containing XR(a1) . . .XR(ak): this is a contradiction
because the minterms of ΦQ cannot have more variables than the number of atoms
in Q.

Thus, φ1 contains only tuples over the relations R1,R2, . . . and φ2 contains only
tuples over the relations S1, S2, . . . Denote Q1 = Q[S1 = S2 = · · · = true] the query
obtained from Q by replacing all atoms referring to Si with true; similarly denote
Q2 = Q[R1 = R2 = · · · = true]. The lineage of Q1 on D is φ1: hence, by induction
hypothesis, Q1 is equivalent to a hierarchical-read-once expression. Similarly Q2.
We prove now that Q ≡ Q1 ∧ Q2. Since every atom logically implies true, we
obtain immediately Q ⇒ Q1 and Q ⇒ Q2, hence Q ⇒ Q1 ∧ Q2. For the converse,
write Q1 ∧ Q2 as a union of conjunctive queries

∨
i qi , and let Dqi

be the canonical

Theory Comput Syst (2013) 52:403–440 419

database for qi : it suffices to prove that Q is true on Dqi
for every qi . Both Q1

and Q2 are inversion-free, hence qi is inversion free and the order πR must be same in
qi and Q. Therefore the canonical database Dqi

satisfies all functional dependencies
that hold in D and we can find an isomorphic copy of Dqi

in D, since we have chosen
D “large enough”. Set all Boolean variables corresponding to this copy to true and
all others to false: we have φ1 ∧ φ2 = true (because Q1 ∧ Q2 is true on Dqi

),
which implies ΦQ = true, implying that Q is true on Dqi

.
Case 2: ΦQ = φ1 ∨ φ2. We distinguish two cases:
Case 2.1: Every minterm in ΦQ consists of tuples that have the same root constant.

Thus, it may contain variables like XR(a1,a13)XR(a1,a15)XS(a1) (same root constant a1)
but not XR(a1,a13)XS(a2) (distinct root constants a1, a2). Then we claim Q must be a
disjunctive sentence. Indeed, consider the DNF expression for Q = q1 ∨ q2 ∨ · · ·
and assume w.l.o.g. that q1 is not connected, hence q1 = c ∧ c′ where c, c′ are two
components. Then the lineage of q1 includes minterms with mixed root constants,
contradiction. Hence, Q is a disjunctive sentence. Now we use the fact that Q is
inversion-free; in particular it has a separator, Q = ∃x.Q1, and its lineage is ΦQ =∨

i=1,k ΦQ1[ai/x]. Since ΦQ is read-once, so is each ΦQ1[ai/x] (since the latter is
obtained from ΦQ by setting to false all tuples with root constant aj , for j �= i).
Hence, we apply induction hypothesis to Q1[ai/x] and obtain a hierarchical-read-
once expression: this proves that ∃x.Q1 is hierarchical-read-once.

Case 2.2: ΦQ = φ1 ∨φ2 and there is at least one mixed minterm, containing tuples
with two distinct root constants, say XR1(a1,b̄)XR2(a2,c̄), and assume w.l.o.g. that this
minterm appears in φ1. We will show that all R2-tuples occur in φ1, i.e. φ2 does
not have R2 tuples. We consider the case when R1 and R2 are distinct relational
symbols: the case when they are the same symbol is similar. We use again the fact
that Q is invariant under permutations of D to argue that ΦQ must contain minterms
that contain the tuples XR1(a1,b̄)XR2(aj ,c̄′), for any j ≤ k. All these minterms must be
in φ1, since φ2 may not contain XR1(a1,b̄). Thus, φ1 must contain all tuples over R2.
With a similar argument, it must also contain all tuples over R1.

Denote R1,R2, . . . the relation symbols that occur only in φ1 and S1, S2, . . . the
other symbols. By our assumption, at least one symbol is in the first list (because
there is a mixed minterm in φ1) and at least one symbol is in the second list (because
φ2 is not empty). We prove that no minterm contains tuples with relation symbols
from both lists. Indeed, if the minterm is mixed, then we have seen that its sym-
bols appear either only in φ1 (hence they are all Ri symbols), or only in φ2 (hence
they are all Sj symbols). Suppose the minterm contains a unique root constant, say
a1, i.e. the minterm contains XRi(a1,...)XSj (a1,...). Since the minterms are closed un-
der isomorphisms of the domain, there are minterms containing XRi(a2,...)XSj (a2,...),
XRi(a3,...)XSj (a3,...), etc. All these must belong to φ1 (because they contain Ri); hence
φ1 contains all tuples over Sj , and therefore Sj must also be in the list R1,R2, . . .

Define Q1 = Q[R1 = R2 = · · · = false] i.e. formula obtained from Q by setting
all relation symbols Ri to false. Similarly, define Q2 = Q[S1 = S2 = · · · = false].
We show that Q = Q1 ∨ Q2, and since by induction hypothesis Q1,Q2 have a
hierarchical-read-once expression, so does Q. First note that Qi ⇒ Q, i = 1,2, since
false implies anything, hence Q1 ∨ Q2 ⇒ Q. We will now show Q ⇒ Q1 ∨ Q2,
and here we use an argument similar to the above. Let Q = ∨

qi and let Dqi
be

420 Theory Comput Syst (2013) 52:403–440

a canonical database for qi . Since D was chosen large enough, there exists an iso-
morphic copy of Dqi

in D, and, consequently, a minterm in ΦQ consisting of the
conjunction of its tuples. This minterm either consists of Ri tuples, hence Dqi

|= Q2,
or of Sj tuples, hence Dqi

|= Q1. �

It is decidable if a given query Q is hierarchical-read-once, because for a fixed
vocabulary there are only finitely many hierarchical-read-once expressions: simply
iterate over all of them and check equivalence to Q. This implies that it is decid-
able whether Q ∈ UCQ(RO). For example, one can check that q2 in Table 1 is not
in UCQ(RO), by enumerating all hierarchical-read-once expressions over the vocab-
ulary R, S, T ; we will return to q2 in the next section.

4 Queries and OBDD

OBDD were introduced by Bryant [3] and studied extensively in the context of model
checking and knowledge representation. A good survey can be found in [27]; we give
here a quick overview. A BDD, is a rooted DAG with two kinds of nodes. A sink node
or output node is a node without any outgoing edges, which is labeled either 0 or 1.
An inner node, decision node, or branching node is labeled with a Boolean variable
X and has two outgoing edges, labeled 0 and 1 respectively. Every node u uniquely
defines a Boolean expression Φu as follows: Φu = false and Φu = true for a
sink node labeled 0 or 1 respectively, and Φu = ¬X ∧ Φu0 ∨ X ∧ Φu1 for an inner
node labeled with X and with successors u0, u1 respectively. The BDD represents a
Boolean expression Φ: Φ ≡ Φu where u is the root of the BDD. A Free BDD, or
FBDD is one in which every path from the root to a sink node contains any variable
X at most once. Given an FBDD that represents Φ , one can compute the probability
P(Φ) in time linear in the size of the FBDD: this justifies our interest in FBDD.

While it is trivial to construct a large FBDD for Φ (e.g. as a tree of size 2n that
checks exhaustively all n variables X1, . . . ,Xn), it is not trivial at all to construct
a compact FBDD. To simplify the construction problem, Bryant [4] introduced the
notion of Ordered BDD, OBDD, which is an FBDD such that there exists a total
order Π on the set of variables s.t. on each path from the root to a sink, the variables
X1, . . . ,Xn are tested in the order Π (variables may be skipped). One also writes Π -
OBDD, to emphasize that the OBDD has order Π . Therefore, the OBDD construction
problem has been reduced to the problem of finding a variable order Π .

One can construct an OBDD for any read-once formula Φ in time linear in Φ , by
an inductive argument: if Φ = Φ1 ∧ Φ2 first construct OBDDs for Φ1 and Φ2, and
replace every sink-node labeled 1 in Φ1 with (an edge to) the root of Φ2; for Φ1 ∨Φ2,
replace every sink-node labeled 0 in Φ1 with the root of Φ2.

Definition 10 UCQ(OBDD) is the class of queries Q s.t. for every database D, one
can construct an OBDD for ΦD

Q in time polynomial in |D|.

We show an example in Fig. 2. In this section we prove the following:

Theorem 4 Q ∈ UCQ(OBDD) iff it is inversion-free.

Theory Comput Syst (2013) 52:403–440 421

Fig. 2 OBDD for the query
R(x), S(x, y) (cf. [20])

We have seen that q2 from Table 1 is not read-once. However, q2 ∈ UCQ(OBDD),
because it is inversion-free, therefore we obtain the following separation:

Proposition 4 q2 ∈ UCQ(OBDD) − UCQ(RO).

The significance of this result is the following. Olteanu and Huang [20] showed
that for any hierarchical query Q, one can construct an OBDD for ΦD

Q in time
O(|D|), proving that CQ−(RO) = CQ−(OBDD). Our proposition shows that these
classes no longer collapse over UCQ.

We also note that all inversion-free queries are hierarchical (Sect. 2), therefore any
non-hierarchical query is not in UCQ(OBDD).

In the remainder of the section we prove Theorem 4, in two stages: first showing
that one can construct in PTIME an OBDD for inversion-free formulae, and every
query with inversion has exponential size OBDD over some database.

4.1 Tractable Queries

Given an OBDD of Φ over variables x̄ = {x1, x2, . . . , xn} with variable order Π , the
width at level k, k ≤ n is the number of distinct subformulae that result after checking
first k variables in the order Π , i.e. |{Φxπ(1)...xπ(k)=b̄ | b̄ ∈ {0,1}k}|. The width of an
OBDD is the maximum width at any level. If the width is w, then a trivial upper
bound on the size of the OBDD is nw. In what follows, we give a variable ordering
for inversion-free queries under which the width is always constant (exponential in
query size) and hence the size of the OBDD is linear. Note that if the size of OBDD
is polynomial, then the construction of the OBDD can be done in PTIME in our
setting, since the lineage of a UCQ is always a monotone formula and checking the
equivalence of monotone formulas is in PTIME.

422 Theory Comput Syst (2013) 52:403–440

We first need to define the notion of a shared BDD. A shared BDD for a set of
formulas Φ1,Φ2, . . . ,Φm is a BDD where the sink nodes are labeled with {0,1}m i.e.
they give the valuation for each of the Φi , 1 ≤ i ≤ m. This means a node reached by
following the assignments x̄ from the root can be thought of as representing a set of
subformulae Φ1x̄ ,Φ2x̄ , . . . ,Φkx̄ . Shared BDD evaluate a set of formulae simultane-
ously: this enables us to compute any combination function of the formulae. So, for
instance, one can derive the OBDD of Φ1 ⊗ Φ2 for any Boolean operation ⊗ from
the shared OBDD for Φ1,Φ2.

The following is a well-known lemma for OBDD synthesis.

Lemma 2 (cf. [27]) Let Φ1,Φ2 be two Boolean functions and consider a fixed vari-
able order Π . If there exist Π -OBDD of width w1, w2 for Φ1, Φ2 respectively, then
there exists a shared Π -OBDD of width w1w2 for Φ1,Φ2.

Proposition 5 If Q is inversion-free, then for every database D its lineage has an
OBDD with width w = 2g , where g is the number of atoms in the query. Therefore,
the size of the OBDD is linear in the size of the database.

We give a simple proof, using Lemma 2, that constructs the OBDD inductively on
the hierarchical expression for Q: the resulting OBDD has size O(|D|).

Proof Consider a hierarchical expression for Q, and let πR be the permutation as-
sociated to the symbol R (Definition 7). Let D be a database, and assume that its
active domain ADom(D) is an ordered domain. We start by defining a linear order Π

on all tuples in D. Fix any linear order on the relational symbols, R1 < R2 < · · · .
We add all relation symbols to ADom(D), placing them at the beginning of the
order. We associate to each tuple in D a string in (ADom(D))∗, as follows: tuple
R(aπR(1), aπR(2), . . . , aπR(k)) is associated to the string a1a2 . . . akR. That is, the first
element is the constant on the root attribute position; the second element is the con-
stant on the attribute position corresponding to a quantifier depth 2, etc. We add the
relation name at the end. Next, we order the Boolean variables in the lineage ex-
pression ΦD

Q lexicographically by their string, and denote Π the resulting order. We
prove that Π -OBDD has width w = 2g , inductively on the structure of the inversion-
free expression Q. If Q = Q1 ∨ / ∧ Q2 then we use Lemma 2. If Q = ∃x.Q1, then
ΦQ = ∨

a∈ADom(D) ΦQ[a/x]. Let the active domain consist of a1 < a2 < · · · < an, in
this order. The OBDDs for ΦQ[a1/x], . . . ,ΦQ[an/x] are over disjoint sets of Boolean
variables (because x is a root variable); assume that their width is w. The OBDD for
ΦQ consists of their union, where we redirect the 0 sink nodes of ΦQ[ai/x] to the
root node of ΦQ[ai+1/x]: the width is still w. The OBDD of a single ground atom, say
R(ā), has width only 2. This completes the proof. �

Corollary 1 If a set of components c1, c2, . . . , cm is inversion-free, then for every
database D, they have a shared-OBDD with size linear in the size of the database.

Theory Comput Syst (2013) 52:403–440 423

4.2 Hard Queries

For k ≥ 1, define the following queries (see also Fig. 1):

hk0 = R(x0), S1(x0, y0)

hki = Si(xi, yi), Si+1(xi, yi) i = 1, k − 1

hkk = Sk(xk, yk), T (yk)

Denote hk = ∨
i=0,k hki . The queries hk were shown in [8, 11] to be hard for #P

and are used to prove the hardness of a much larger class of unsafe queries. We
show here that they have a remarkable property w.r.t. OBDD: if the same variable
order Π is used to compute all queries hk0, hk1, . . . , hkk , then at least one of these
k + 1 OBDDs has exponential size. Note that each query is inversion-free, hence it
admits an efficient OBDD, e.g. Fig. 2 illustrates hk0: what we prove is that there is no
common order under which all have an efficient OBDD. This tool is quite powerful,
allowing us to give a rather simple proof that queries with inversion have exponential
size OBDD (Proposition 7). There is no analogous tool for proving #P-hardness: all
queries hki are in PTIME, for i = 0, k, and this tells us nothing about the larger query
where they occur.

The complete bipartite graph of size n is the following database D over the vo-
cabulary of hk : relation R has n tuples R(a1), . . . ,R(an), relation T has n tuples
T (b1), . . . , T (bn), and each relation Si has n2 tuples Si(aj , bl), for i = 1, k, and
j, l = 1, n.

Proposition 6 Let D be the complete bipartite graph of size n, and fix any ordering
Π on the corresponding Boolean variables. For any i = 0, k, let ni be the size of
some Π -OBDD for the lineage of hki on D. Then

∑k
i=0 ni > k · 2

n
2k .

Proof Denote the Boolean variables associated to the tuples R(ai), i = 1, n with
X1,X2, . . .; those associated to the tuples Sp(ai, bj) with Z

p
ij ; and those associated to

the tuples T (bj) with Yj . We will refer generically to any variable as vi , and assume
the order Π is v1, v2, . . . Denote Φkp the lineage of hkp on D; by assumption, we
have Π -OBDD for each of them. Assume w.l.o.g. that each OBDD is complete i.e.
every path from root to sink contains every variable exactly once.

In any OBDD of a Boolean expression Φ , the number of nodes at level h

(i.e. after first h variables v1 . . . vh have been eliminated) is the size of the set
{Φ[(v1 . . . vh) = b̄] | b̄ ∈ {0,1}h}. This is because every distinct subformula will re-
sult in a new separate node. A standard technique in proving lower bounds on the size
of OBDD is to find a level where the number of distinct formulae must be exponen-
tial. This immediately gives the same exponential lower bound on the size of OBDD
for that ordering.

For any level h, denote h1, h2 the number of X, and of Y variables respectively in
the initial sequence v1, v2, . . . , vh of Π . Define h to be the first level for which h1 +
h2 = n. Denote Xset = {Xi | Xi ∈ {v1, . . . , vh}} and Xunset = X \ Xset , and similarly
Yset , Yunset , Zset , Zunset . W.l.o.g. assume h1 ≥ n/2.

424 Theory Comput Syst (2013) 52:403–440

Consider the OBDD for Φk0 = ∨
ij XiZ

1
ij . Suppose there exists j s.t. ∀i.(Xi ∈

Xset ⇒ Z1
ij ∈ Zunset); then for each assignment b̄ to Xset , we get a different sub-

formula Φk0[Xset = b̄]. Since the number of such formulae is 2h1 ≥ 2n/2, we obtain
n0 > 2n/2, which proves the claim. Hence we can assume there is no such j . This
means ∀j , ∃i s.t. Xi ∈ Xset and Z1

ij ∈ Zset .
Define S to be a set of pairs (i, j) as follows. For each j s.t. Yj ∈ Yunset , choose

some i s.t. Z1
ij ∈ Zset : then include (i, j) in S. Note that the cardinality of S is n −

h2 = h1.
For each p = 1, . . . , k − 1, denote Cp the subset of S consisting of indices (i, j)

s.t. Z1
ij , . . . ,Z

p
ij ∈ Zset and Z

p+1
ij ∈ Zunset ; and let Ck = S − ⋃

p=1,k−1 Cp . Thus,
C1, . . . ,Ck forms a partition of S. Denoting c1, . . . , ck their cardinalities we have
c1 + · · · + ck = h1.

Next, for each p = 1, . . . , k − 1, consider the OBDD for Φkp = ∨
ij Z

p
ijZ

p+1
ij .

Forall (i, j) ∈ Cp we have Z
p
ij ∈ Zset and Z

p+1
ij ∈ Zunset . Each assignment of the

former variables leads to a different expression over the latter variables: hence there
are at least 2cp distinct expressions, therefore the number of nodes in this OBDD is
np ≥ 2cp .

Finally, consider the OBDD for Φkk = ∨
ij Zk

ij Yj . Forall (i, j) ∈ Ck we have Zk
ij ∈

Zset and Yj ∈ Yunset . Using the same argument, we obtain nk ≥ 2ck .
Putting everything together we obtain:

∑

i=1,k

ni ≥
∑

i=1,k

2ci ≥ k2
∑

i ci
k

= k2
h1
k > k2

n
2k

Notice that n0 does not appear above, but we used it in order to construct the set S.
This proves our claim. �

Proposition 7 Let Q be a query, and suppose it has an inversion of length k > 0.
Let D0 be a complete bipartite graph of size n (i.e. a database over the vocabulary of
hk). Then there exists a database D for Q s.t. |D| = O(|D0|) and any OBDD for Q

has size Ω(k2n/2k).

We use the inversion of length k to construct a database D that mimics the query
hk over a complete bipartite graph. Assuming an OBDD for Q on this database, we
show that one can set the Boolean variables to 0 or 1, to obtain a lineage for each hki .
What is interesting is that this construction cannot be used to prove #P-hardness of
Q by reduction from hk : in other words, Q over D is not equivalent to hk over D0.
But we make Q equivalent to each hki , and by Proposition 6 this is sufficient to prove
that Q has a no compact OBDD.

Proof Write Q = ∨
qj in DNF, and let (x0, y0), (x1, y1), . . . , (xk, yk) be an inver-

sion in Q. Assume w.l.o.g. that the inversion is of minimal length: this implies there
exist atoms r, s1, s

′
1, . . . , sk, s

′
k, t with the following properties: r ∈ at(x0) − at(y0),

Theory Comput Syst (2013) 52:403–440 425

t ∈ at(yk) − at(xk), and for every i = 1, k, si contains xi−1, yi−1, s′
i contains xi, yi ,

they unify, and the unification equates xi−1 = xi and yi−1 = yi . In particular, the
atoms si and s′

i have the same relation symbol. Assume that xi, yi are variables in
the query qji

, for i = 0, k. We assume that these k queries are distinct: if not, simply
create a fresh copy of the query, creating new copies of its variables. Thus, qj0 con-
tains the atoms r, s1, query qj1 contains the atoms s′

1, s2 and so on. Next, we perform
variable substitutions in the queries qj0, . . . , qjk

in order to equate all variables in si
and s′

i , except for xi−1, yi−1, xi, yi . In other words, all atoms along the inversion path
have the same variables, except for the variables forming the actual inversion. For ex-
ample, if the queries were R(x0, u0), S1(x0, y0, u0); S1(x1, y1, u1), S2(x1, y1, u1, v1);
S2(x2, y2, u2, v2), . . . then we equate u0 = u1 = u2 = · · · and v1 = v2 = · · · This
is possible in general because Q is ranked: we only equate variables between qji

and qjl
, but not within the same qji

. We now construct the database D as follows.
Its active domain consists of all constants a1, . . . , an, b1, . . . , bn and all variables
z ∈ Vars(qji

) s.t. z �= xi , z �= yi , for i = 0, k. For each i = 0, k, and each j = 1, n,
l = 1, n, let qji

[aj , bl] denote the set of tuples obtained by substituting xi with aj

and yi with bl . Define D to be the union of all these sets: D = ⋃
i,j,l qji

[aj , bl].
Because of our earlier variable substitutions, si[aj , bl] and s′

i[aj , bl] are the same
tuple: this tuple corresponds to the tuple Si(aj , bl) in the bipartite graph. Similarly,
r(aj) and t (bl) correspond to the tuples R(aj) and T (bl) in the bipartite graph. Thus,
the bipartite graph D0 is isomorphic to a subset of the database D. Consider now any
OBDD for ΦD

Q , over a fixed variable ordering Π . We can obtain an OBDD for hki for
every i = 0, k as follows. Assume 0 < i < k. Then we keep unchanged the Boolean
variables corresponding to Si(aj , bl) and Si+1(aj , bl), (that is, the atoms s′

i[aj , bl]
and si+1[aj , bl]). All other Boolean variables corresponding to tuples in qji

[aj , bl]
are set to true; all remaining Boolean variables are set to false. Then the lineage
ΦD

Q becomes the lineage Φ
D0
hki

. The case i = 0 is similar (here we keep unchanged the
Boolean variables corresponding to R(aj) and S1(aj , bl)), and so is the case i = k.
Thus, we obtain k +1 OBDD’s for all queries hki , and all use the same variable order
Π . The claim follows now from Proposition 6. �

If Q has an inversion of length 0, then it is non-hierarchical and as we discuss later
in Theorem 7 Q /∈ UCQ(FBDD), and hence Q /∈ UCQ(OBDD) either.

5 Queries and FBDD

We now turn to FBDD, also known as read-once Branching Programs. Unlike OBDD,
here we no longer require the same variable order on different paths. FBDD are
known to be strictly more expressive than OBDD over arbitrary (non-monotone)
Boolean expressions, for example the Weighted Bit Addressing problem admits poly-
nomial sized FBDD, but no polynomial size OBDD [5, 15, 24]. On the other hand,
to the best of our knowledge no monotone formula was known to separate these two
classes. Moreover, over conjunctive queries without self-joins, FBDD are no more
expressive than OBDD, since the latter already capture CQ−(P). In this section we
show that FBDD are strictly more expressive than OBDD over UCQ. In particular,

426 Theory Comput Syst (2013) 52:403–440

we give a simple (!) monotone Boolean expression for which one can construct a
FBDD in PTIME, but no polynomial size OBDD exists.

Definition 11 UCQ(FBDD) is the class of queries Q s.t. for any database D, one
can construct an FBDD of ΦD

Q in time polynomial in |D|.

Clearly UCQ(OBDD) ⊆ UCQ(FBDD): we prove now that the inclusion is strict,
using a simple example.

Example 2 Consider qV in Table 1. This query has an inversion between S(x1, y1)

and S(x2, y2), hence it does not admit a compact OBDD. We show how to construct
a compact FBDD. Write it in CNF:

qV = (
R(x1), S(x1, y1) ∨ T (y3)

) ∧ (
S(x2, y2), T (y2) ∨ R(x3)

)

= d1 ∧ d2

Its CNF lattice is shown in Fig. 1. The minimal element of the lattice is:

d3 = d1 ∨ d2 = R(x3) ∨ T (x3)

Each of d1, d2, d3 is inversion-free, hence they have OBDDs, denote them F1, F2, F3.
Of course, F1 and F2 use different variable orderings and cannot be combined into
an OBDD for qV . Consider the database given by the bipartite graph (Sect. 4) and
assume the following order on the active domain: a1 < · · · < an < b1 < · · · < bn. Our
FBDD starts by computing d3. If d3 = 0, then qV = 0; this is a sink node. If d3 = 1,
then, depending on which sink node in F3 we have reached, either d1 = 1 or d2 = 1,
and we need to continue with either F2 or F1 respectively. This way, no path goes
through both F1 and F2. Note that the FBDD is not ordered, since some paths use
the order in F1, others that in F2. Figure 3 illustrates the construction. The FBDD
inspects the variables in this order: XR(a1),XR(a2), . . . ,XR(an),XT (b1), . . . ,XT (bn).
(This is F3.) Each edge XR(ai) = 0 leads to the next node, XR(ai+1), etc. Consider
now an edge XR(ai) = 1. Here we know d2 is true, but we still need to evaluate d1.
We create a new copy of F1 where we set all variables XR(a1), . . . ,XR(ai−1) to 0
(i.e. eliminate these nodes and redirect their incoming edge to their 0-child) and set
XR(ai) to 1. Then we connect the edge XR(ai) = 1 to the root node of this copy of F1.
Similarly, we connect an edge XT (bj) = 1 to the root of a copy of F2 where we set
XR(a1) = · · · = XR(an) = XT (b1) = · · · = XT (bj−1) = 0 and XT (bj) = 1. The result is
an FBDD of size3 O(n3) (since F1,F2 have sizes O(n2)).

Thus:

Proposition 8 qV ∈ UCQ(FBDD) − UCQ(OBDD).

3In this particular example one could reduce the size to O(n2) by sharing nodes among the multiple copies
of F1 and similarly for F2.

Theory Comput Syst (2013) 52:403–440 427

Fig. 3 FBDD for the query qV

The significance of this result is the following. The lineage of qV is, to the best of
our knowledge, the first “simple” Boolean expression (i.e. monotone, and with poly-
nomial size DNF) that has a polynomial size FBDD but no polynomial size OBDD.
Previous examples separating these classes where Weighted Bit Addressing prob-
lem (WBA) [5, 15, 24], and other examples given in [26], and these were not “sim-
ple”. Our result also constrasts UCQ to CQ−: for the latter it follows from [20] that
CQ−(OBDD) = CQ−(FBDD).

In the reminder of this section we will give a partial characterization of
UCQ(FBDD), by providing a sufficient condition, and a necessary condition for
membership. We start with the sufficient condition.

Definition 12 Let d = ∨
ci and d ′ = ∨

c′
j be two disjunctive queries, s.t. the logical

implication d ′ ⇒ d holds. We say that d dominates d ′ if for every component c′
j in d ′

and for every atom g in c′
j one of the following conditions hold: (a) the relation sym-

bol of g does not occur in d , or (b) there exists a component ci and a homomorphism
ci → c′

j whose image contains g.

In Example 2, d3 dominates d1: if one considers the component R(x1), S(x1, y1)

in d1, then the atom R(x1) is the image of a homomorphism, while the atom S(x1, y1)

does not occur at all in d3. Similarly d3 dominates d2.
In analogy to the definition of safe queries Definition 4 we define here rf-safe

queries4:

4r is for restricted, since we do not have a full characterization yet.

428 Theory Comput Syst (2013) 52:403–440

Definition 13 (1) Let Q = d1 ∧ · · · ∧ dk , and k ≥ 2. Then Q is rf-safe if for every
element x in its CNF lattice the disjunctive query λ(x) is rf-safe, and for every two
lattice elements x ≤ y, λ(x) dominates λ(y). (2) Let d = d0 ∨ d1, be a disjunctive
query, where d0 contains all components ci without variables, and d1 contains all
components ci with at least one variable. Then d is rf-safe if d1 has a separator w and
d1[a/w] is rf-safe, for a constant a.

For example, query qV is rf-safe, since d3 dominates both d1 and d2. Our sufficient
characterization of UCQ(FBDD) is:

Theorem 5 Every rf-safe query is in UCQ(FBDD).

Proof of Theorem 5 We start with a definition. Consider a monotone, Boolean ex-
pression, written as a disjunction of minterms: Φ = ∨

i=1,n Ti . We also view Φ as a
set of minterms, writing Ti ∈ Φ . Each minterm Ti is a set of variables: thus, Ti ⇒ Tj

means that, as sets, Tj ⊆ Ti .

Definition 14 Let Φ , Φ ′ be two monotone, Boolean expressions, s.t. Φ ′ ⇒ Φ . We
say that Φ dominates Φ ′ if for every minterm T ′ ∈ Φ ′, and for every Boolean variable
X ∈ T ′, one of the following conditions hold: (a) either X does not occur in Φ , or (b)
there exists a minterm T ∈ Φ s.t. X ∈ T and T ⊆ T ′.

The following is easy to check:

Lemma 3 If the disjunctive query d dominates d ′, then for any database D, the
lineage ΦD

d dominates ΦD
d ′ .

Consider an FBDD for Φ , and a node x. Any path from the root to x corresponds
to an assignment of a subset of Boolean variables; we call that an assignment at x.

Call an FBDD for Φ greedy if each sink node x labeled 1 has an additional label
consisting of (a) a set s ⊆ [n] and (b) and index i, such that, for any assignment at
x, the following properties hold: Ti = 1 (i.e. all variables in Ti are set to 1 by the
assignment). (2) For any j ∈ s, Tj = 0. (3) For any k /∈ s, if the assignment sets a
value of a variable in Tk , then that variable is in Ti (hence it is set to 1).

A greedy FBDD does exactly what the name says: it evaluates the Boolean DNF
expression greedily. If a variable X = 0 then it skips all minterms that contain X:
these minterms now belong to the set s. If a variable X = 1, then it continues to read
only variables Y that co-occur with X in some minterm.

Let Φ = ∧
i=1,m Φi , where each Φi is a monotone, Boolean expression. Let

(L,≤) be the CNF-lattice for Φ constructed as follows. Its elements x are in one-
to-one correspondence with Boolean expressions Φs = ∨

i∈s Φi , where s ⊆ [m],
up to logical equivalence (i.e. if Φs1 ≡ Φs2 then they correspond to the same ele-
ment x); λ(x) = Φs denotes the Boolean expression associated to x. And x ≤ y if
λ(y) ⇒ λ(x).

Theory Comput Syst (2013) 52:403–440 429

Lemma 4 Let Φ = ∧
i=1,m Φi , and (L,≤) be its CNF lattice. Suppose that, for all

x ≤ y, λ(x) dominates λ(y). Let Fx be a greedy FBDD of size nx for λ(x), for each
x ∈ L. Then there exists a greedy FBDD for Φ , of size O(m · (∏nx)).

Proof (Sketch) We construct the FBDD by generalizing the idea of Example 2. Let
x0 = 0̂ be the smallest element in the lattice. The FBDD starts with Fx0 . Consider a
sink node. If it is labeled 0, then we leave it labeled 0: we know that Φ1 = · · · = Φm =
0, hence so is Φ . If it is labeled 1, then we have two additional labels: a minterm
Ti (known to be 1), and a set of minterms, TT (all known to be 0). Let s ⊆ [m]
be the set s.t. i ∈ s iff Ti does not imply Φi : thus, from that sink node we have to
continue to evaluate Φs . We assume, inductively, to have an FBDD for Φs . Then we
modify it, by setting all variables in Ti to 1, and setting all other variables occurring
in the set of minterms TT to 0: dominance ensures that the new FBDD still computes
correctly Φs . �

The proof of Theorem 5 follows now directly from the last two lemmas. �

rf-safe is not a complete characterization of UCQ(FBDD). The following query
qT , is not rf-safe, but one can construct a polynomial-size FBDD for it.

qT = (
T1(x),A(x),V (x, y, z) ∨ T3(z),C(z) ∨ T2(y),B(y),D(y)

)
,

(
T2(y),B(y),V (x, y, z) ∨ T1(x),A(x) ∨ T3(z),C(z)

)
,

(
T3(z),C(z),V (x, y, z) ∨ T1(x),A(x) ∨ T2(y),B(y),D(y)

)

Next, we present our separation result. Recall the query qW from Table 1. We
prove here:

Theorem 6 qW /∈ UCQ(FBDD).

We will return to this query in the next section.

Proof Consider the following three queries:

d1 = R(x)S1(x, y) ∨ S2(x, y)S3(x, y)

d2 = R(x)S1(x, y) ∨ S3(x, y)T (y)

d3 = S1(x, y)S2(x, y) ∨ S3(x, y)T (y)

Thus, qW = d1 ∧ d2 ∧ d3. We first prove a surprising fact that given an FBDD
for qW , we can construct a shared FBDD for d1, d2, d3. Note that in general it is not
possible to split an FBDD into a shared FBDD: we exploit the properties of d1, d2, d3

to do this.

Lemma 5 Given any FBDD for qW of size N , there exists a shared FBDD for
d1, d2, d3 of size polynomial in N and data instance.

430 Theory Comput Syst (2013) 52:403–440

Call a node shared if for any two paths x̄, ȳ from root to the node, dix̄ = diȳ , for
i = 1, 2, 3. Hence if all nodes were shared, then the FBDD would also be shared. To
prove the lemma, we show that if a node is not shared then the subformula represented
by that node is actually an inversion-free query, so we could just replace the FBDD
below that node with a shared OBDD. Hence, one can make every node shared, and
therefore the FBDD shared.

Proof of Lemma 5 (Transformation into a shared FBDD) Each node x in an FBDD
for F represents a Boolean expression Fx , obtained by setting some variables in F . If
two paths P 1,P 2, lead to the same x, then F [P 1] = F [P 2], where F [P 1] denotes
the formula obtained by applying the partial assignment P 1. Let F be the lineage of
qW = d1 ∧ d2 ∧ d3, and write it as F = G1 ∧ G2 ∧ G3, where Gi is the lineage of
di . In general, two paths P 1,P 2 in the FBDD(qW) that lead to the same node do not
have to equate d1, i.e. we may have G1[P 1] �= G1[P 2].

Definition 15 An FBDD for gW is called shared if for any two paths P 1,P 2, if
F [P 1] = F [P 2] then for all i = 1,2,3, Gi[P 1] = Gi[P 2].

This lemma is significant, because it says that we can transform FBDD(qW) to
compute each of the three queries d1, d2, d3 separately. In general, this is not possible
for an arbitrary conjunction of Boolean formulas. What makes this work in our case
is that, whenever a node x fails to keep track separately of the three subqueries then
the formula at x depends only on d1, d2 or only on d2, d3. Both these queries are
inversion-free, hence in both cases we can construct a shared OBDD for the remain-
ing computation of the two queries, replacing the rest of the FBDD(qW)

Call a node x shared if for any two paths P 1,P 2 leading to x, we have Gi[P 1] =
Gi[P 2], for i = 1,2,3. We will leave shared nodes unchanged. If x is an non-shared
node, then we show how to replace it with a shared OBDD for the remaining formu-
las. (Some of x’s descendants may become unreachable, and they can be removed
later.)

Suppose x is a non-shared node. Let P 1,P 2 be two paths leading to a node x in
the FBDD(F). Then Fx = F [P 1] = F [P 2]. Suppose G1[P 1] �= G1[P 2].

Case 1: For every pair of constants a, b, the path P 1 sets either S3(a, b) = 0 or
T (b) = 0. Then G2[P 1] has only terms R(a′), S1(a

′, b′) and similarly G3[P 1] has
only terms S1(a

′, b′), S2(a
′, b′). Denote the three queries below:

d1 = R(x), S1(x, y) ∨ S2(x, y), S3(x, y)

e2 = R(x), S1(x, y)

e3 = S1(x, y), S2(x, y)

Let D1,D2,D3 be the set of tuples that are unset in G1[P 1], G2[P 1], and G3[P 1].
Then Fx is the conjunction of the lineages of d1, e2, e3 on these three databases. Since
d1, e2, e3 are inversion-free, we can compute a shared OBDD that evaluates all three
of them in parallel on D1,D2,D3 (Corollary 1): thus, we have separated the FBDD
at x and below x.

Theory Comput Syst (2013) 52:403–440 431

Case 2: There exists a pair of tuples X = S3(a, b), Y = T (b) s.t. P 1 leaves
them either unset, or set to 1. Set X = Y = 1. Then G2, G3 become true, and
therefore G1[P,X = 1, Y = 1] = F [P,X = 1, Y = 1], for P ∈ {P 1,P 2}. Since
F [P 1] = F [P 2] we obtain G1[P 1,X = 1, Y = 1] = G1[P 2,X = 1, Y = 1]. Hence,
the only way in which G1[P 1] and G1[P 2] may differ is that either one has the
term S2(a, b) and the other has S2(a, b), S3(a, b), or one is true and the other has
the term S3(a, b). The first case is impossible because it means that one of the two
paths has set S3(a, b) to true. The second case implies Fx = G2[P] ∧ G3[P] for
P ∈ {P1,P2} and we repeat the argument above.

This completes the case when G1 differs on two paths. The case when G3 differs
is similar and omitted. So suppose G1[P 1] = G1[P 2] and G3[P 1] = G3[P 2]. Then,
we prove that we also have G2[P 1] = G2[P 2]. Indeed, this follows immediately by
inspecting the three query lineages: G1 is

∨
a,b R(a)S1(a, b)∨S2(a, b), S3(a, b) and

G2 is
∨

a,b R(a), S1(a, b) ∨ S3(a, b), T (b). Thus, the subformula of R(a), S1(a, b)

in G1[P 1] is the same as that in G2[P 1]; since G1[P 1] = G1[P 2], it means that
this part of G2 is the same in P 1 and in P 2. Similarly, from G3[P 1] = G3[P 2]
we conclude that the part S3(a, b), T (b) in G2 is the same in P 1 and P 2. Hence,
G2[P 1] = G2[P 2]. �

Let h′
1 = R(x1), S(x1, y1), S(x2, y2), T (y2). We can show that

Lemma 6 h′
1 /∈ UCQ(FBDD).

We start at the root and choose 2n−1 paths (our database is bipartite as in Sect. 4)
as follows: for each node we go in both directions if the given node isn’t a prime
implicant in the subformula at that node, otherwise we choose only the 0-edge. Then
we exploit the fact that each of these paths has only set a limited number of variables
to show that any two paths can differ on the assignment of only a few variables, hence
most of them must end in distinct subformulas.

Proof of Lemma 6 Define Φ1 to be
∨n

i,j=1 risi,j , Φ2 as
∨n

i,j=1 si,j tj and Fn to be

Φ1 ∧ Φ2. Then we show FBDD(Fn) = nΩ(log(n)). We start at the root and choose
2n−1 paths P as follows: for each node we go in both directions if the given node
isn’t a prime implicant in either Φ1 or Φ2: we call such nodes branching; otherwise
we choose only the 0-edge. We ignore redundant (i.e. the two branches for 0, 1 point
to the same node) nodes. We stop a path after we have branched on n − 1 nodes.
We can always find n − 1 nodes to branch on since our function cannot become 0
before we branched on n − 1 nodes. This is because each branching variable can
set at most n3 minterms to 0. We have n4 minterms to set to 0 and that can’t be
done with n − 1 branching nodes. The set of variables on a branch p are denoted
by Vars(p) and p(v) denotes the assignment of the variable v in p. The Boolean
formula fp = Fn[p(x)/x], x = Vars(p) is obtained by applying the assignments on
path p to Fn.

Definition 16 Given a Boolean formula f , call a variable v determined, if there exists
b ∈ {0,1} s.t. for any p ∈ P fp = f implies v ∈ Vars(p) and p(v) = b. Conversely
any variable x /∈ Vars(f) that is not determined is called undetermined.

432 Theory Comput Syst (2013) 52:403–440

Now the essence of the proof is that two paths that result in the same function can
only differ on the undetermined variables. The following lemma characterizes the
variables that can be undetermined.

Lemma 7 Given a path p and a variable x /∈ Vars(fp); x is undetermined for fp iff
x = si,j for some 1 ≤ i, j ≤ n and

1. ri = 0 or si,j1 = 1 for some 1 ≤ j1 ≤ n on p and
2. tj = 0 or si1,j = 1 for some 1 ≤ i1 ≤ n on p.

Proof Follows immediately by doing a simple case analysis. �

Note that for any fp , the number of paths q s.t. fq = fp is bounded above by
2#undetermined variables infp . This is because q and p can only differ on the assignment of
undetermined variables. We now bound the number of undetermined variables for any
path p. Let nr, nt be the number of r, t variables set to 0 on path p; ns be the number
of s variables set to 1. Then by Lemma 7 the number of undetermined variables is
at most (nr + ns)(nt + ns). Let mr,mt ,ms similarly be the number of branching
variables amongst nr, nt , ns . Then, ms = ns and nr ≤ mr + ms, nt ≤ mt + ms . The
first equality ms = ns holds because non-branching variables are always set to 0. Also
a non-branching variable from r, t is set to 0 iff it becomes a prime implicant; which
can only happen if one of the variables from s is set to 1 and conversely setting one
variable from s makes at most one prime implicant. This proves the second and third
inequality.

Hence the number of undetermined variables is at most (mr + 2ms)(mt + 2ms) ≤
4(mr + ms + mt)

2. Now consider all paths p where l = mr + ms + mt = log(n)
8 .

Consider the complete binary tree of depth n − 1 on the branching variables. Flip the
edges coming out of r, t nodes in the tree, i.e. 0 to 1 and vice-versa. We map any such
path p to a path in this tree by choosing opposite assignment to variables from r, t.
This is a 1-1 mapping. And the set of such paths in our tree is exactly the set of paths
where the number of nodes tested to be 1 are l, which is

(
n−1

l

)
. Hence the size of the

FBDD is at least (n−1
l)

24l2
which for l = log(n)

8 gives the required bound. �

Now to finish the proof, we finally show a reduction from a shared FBDD of
d1, d2, d3 to h′

1.

Lemma 8 Given a shared FBDD for qW of size N , there exists an FBDD for h′
1 of

size at most N .

This is, perhaps, the most surprising step, because it seems to reduce a query that
is hard for #P (h′

1) to a query that is in PTIME (qW). However, what we describe
below is not a reduction: instead is a transformation of an FBDD.

The goal of the reduction is to set S1(a, b) = ¬S2(a, b) = S3(a, b) in FBDD(qW):
it can be easily seen (by inspecting the definition of the two queries) that the new
FBDD computes h′

1. Since we have shown in Lemma 6 that h′
1 has no polynomial

size FBDD, this completes the proof.

Theory Comput Syst (2013) 52:403–440 433

The difficulty of this step is to show that the FBDD has enough memory to re-
member if any of S1(a, b), S2(a, b), or S3(a, b) was set. We show that it does have
enough memory, by using the fact that it is a shared FBDD, i.e. it computes the
queries d1, d2, d3 simultaneously.

Proof of Lemma 8 Start with the shared FBDD for qW , given by Lemma 5. We want
to enforce

S1(a, b) = ¬S2(a, b) = S3(a, b) (4)

for every tuple S1(a, b).
Modify each node x as follows. If it is a test for R(a) or for T (b), then make no

change: it will continue to be a test for the same variable. If it is a test for Si(a, b),
i = 1,3, then we will either replace it with a test for S(a, b), or will “know” the value
of Si(a, b) and will follow only the 0 or the 1 branch. We give the details next.

Suppose node x tests for S1(a, b). Denote Gi,x , i = 1,2,3 the three Boolean ex-
pressions at x: the FBDD is shared, so it can keep track of them separately.

Step 1: Inspect G3,x . Recall that the original G3 contained S1(a, b), S2(a, b) ∨
S3(a, b), T (b). There are a few cases: (a) G3,x does not contain S1(a, b) at all: then
we know S2(a, b) = 0 on all paths leading to x. (b) G3,x contains S1(a, b) (a prime
implicant). Then on all paths to x must set S2(a, b) = 1. In both (a) and (b) we know
how to set S1(a, b) according to (4). (c) G3,x contains S1(a, b), S2(a, b): then we
know S2(a, b) is unset, and continue with step 2.

Step 2. At this point we know S2(a, b) is unset. Inspect G1. The original G1 was
R(a), S1(a, b) ∨ S2(a, b), S3(a, b). We know S2(a, b) is unset, hence the cases are:
(a) G1,x does not contain S2(a, b): then we know S3(a, b) = 0 on all paths to x.
(b) G1,x contains S2(a, b) (a prime implicant). Then on all paths to x, S3(a, b) = 1.
In cases (a) and (b) we know how to set S1(a, b) according to the constraint equa-
tion (4). (c) G1,x contains S2(a, b), S3(a, b). Then we know S3(a, b) is also unset,
and it means we can read S(a, b).

So far we have assumed that neither G1,x nor G3,x are true. Suppose G3,x

is true. Let x be a maximal node where G3 becomes true, i.e. the same doesn’t
hold for any of the children of x. Due to our previous construction when we
transformed the FBDD into a shared one, the entire subgraph reachable from x

is isolated. First, we consider all variables S1, S2, S3 already set at x, and update
the subgraph under x accordingly. We will need to cope with the variables read
within this subgraph. Here, we first rewrite the query d1, d2 = R(x), S1(x, y) ∨
S2(x1, y1), S3(x1, y1), S3(x2, y2), T (y2). Given our constraint equation (4), this query
is equivalent to R(x), S1(x, y). We simply replace the entire subtree at x with an
OBDD for R(x), S(x, y). This completes the proof. �

Our hardness result for FBDD is more limited in scope than that for OBDD; in
particular it says nothing about non-hierarchical queries. This, however, follows from
a very strong result by Bollig & Wegener [1]. They showed that, for arbitrary large n,
there exists a bipartite graph G s.t. the formula Φ = ∨

(i,j)∈G XiYj has no polynomial

434 Theory Comput Syst (2013) 52:403–440

size FBDD.5 This immediately implies that the query Q = R(x), S(x, y), T (y) is not
in UCQ(FBDD), because from any FBDD for Q on the complete, bipartite graph one
can obtain and FBDD for Φ by setting all variables XS(i,j) = 1 for (i, j) ∈ G and
setting XS(i,j) = 0 for (i, j) �∈ G. In particular, this implies:

Theorem 7 (cf. [1]) If Q is non-hierarchical, then Q /∈ UCQ(FBDD).

6 Queries and d-DNNFs

d-DNNFs were introduced by Darwiche [12]; a good survey is [13], we review them
here briefly. A Negation Normal Form is a rooted DAG, internal nodes are labeled
with ∨ or ∧, and leaves are labeled with either a Boolean variable X or its negation
¬X. Each node x in an NNF represents a Boolean expression Φx , and the NNF is
said to represent Φz, where z is the root node. A Decomposable NNF, or DNNF, is
one where for every ∧ node, the expressions of its children are over disjoint sets of
Boolean variables. A Deterministic DNNF, or d-DNNF is a DNNF where for every
∨ node, the expressions of its children are mutually exclusive. Given a d-DNNF one
can compute its probability in polynomial time, by applying the rules P(Φx ∧Φy) =
P(Φx)P (Φy) and P(Φx ∨Φy) = P(Φx)+P(Φy) (and similarly for nodes with out-
degree greater than 2); this justifies our interest in d-DNNF. Any FBDD of size n

can be converted to an d-DNNF of size 5n [13]: for any interior node labeled with
variable X in the FBDD, write its formula as (¬X) ∧ Φy ∨ X ∧ Φz, where y and z

are the 0-child and the 1-child: obviously, the ∨ is “deterministic”, and the ∧’s are
“decomposable”.

It is open whether d-DNNFs are closed under negation [13, pp. 14]; NNFs are
obviously closed under negation, but the d-DNNF impose asymmetric restrictions on
∧ and ∨, so by switching them during negation, the resulting NNF is no longer a
d-DNNF. For that reason, we extend here d-DNNF’s with ¬-nodes, and denote the
result d-DNNF¬: probability computation can still be done in polynomial time on a
d-DNNF¬.

Definition 17 UCQ(dDNNF) is the class of queries Q s.t. for any database D, one
can construct a d-DNNF for ¬ΦD

Q in time polynomial in |D|. UCQ(dDNNF¬) is the

class of queries Q s.t. one can construct a d-DNNF¬ for ΦD
Q in time polynomial in

|D|.

UCQ(FBDD) ⊆ UCQ(dDNNF) ⊆ UCQ(dDNNF¬) ⊆ UCQ(P); the first inclu-
sion is can be shown to be strict.

Proposition 9 qW ∈ UCQ(dDNNF) − UCQ(FBDD).

5Their graph is the following: fix n = p2 where p is a prime number. Then G = {(a + bp, c + dp) |
c ≡ (a + bd) mod p}.

Theory Comput Syst (2013) 52:403–440 435

The significance of this result is the following. This is, to the best of our knowl-
edge, the first example of a “simple” Boolean expression (meaning monotone, and
with a polynomial size DNF) that has a polynomial size d-DNNF but not FBDD. The
previous separation of FBDD and d-DNNF is based on a result by Bollig and We-
gener [2], which we review briefly. Consider a Boolean matrix of variables Xij . Let
Φ1 denote the formula “there are an even number of 1’s and there is a row consisting
only of 1’s”. Let Φ2 denote the formula “there are an odd number of 1’s and there
is a column consisting only of 1’s”; in [2] the authors show that Φ1 ∨ Φ2 does not
have a polynomial size FBDD. However, this formula has a polynomial size d-DNNF,
because each of Φ1,Φ2 has polynomial size OBDD and Φ1 ∧ Φ2 ≡ false. Note,
however, that these formulas are non-monotone and have exponential size DNF’s
(they are not in AC0). By contrast, the lineage of qW is monotone, has polynomial
size DNF, and separates FBDD from d-DNNF.

In the rest of the section, we give a sufficient criterion for a query Q = d1 ∧
· · · ∧ dm, to be in UCQ(dDNNF¬), which is quite interesting because it explains the
border between d-DNNF and PTIME in terms of lattice-theoretic concepts. We need
to define some lattice theoretic concepts first. Let the CNF lattice of Q be (L,≤).

We now describe the construction algorithm. If m = 1 then Q is a disjunctive
query; in this case it must have a separator (assuming FP �= #P (Theorem 1)),
d1 = ∃w.Q1 and we write: ¬Q = ∧

a∈ADom(D) Q1[a/w]. The ∧ operator is “decom-
posable”, i.e. its children are independent.

If m ≥ 2, we express Q = Q1 ∧Q2, and consider the following derivation for ¬Q,
where we write ∨d to indicate that a ∨ operation is disjoint:

¬(Q1 ∧ Q2) = ¬Q1 ∨ ¬Q2

= ¬Q1 ∨d [Q1 ∧ ¬Q2]
= ¬Q1 ∨d ¬[¬Q1 ∨ Q2]
= ¬Q1 ∨d ¬[

(¬Q1 ∧ ¬Q2) ∨d Q2
]

= ¬Q1 ∨d ¬[¬(Q1 ∨ Q2) ∨d Q2
]

(5)

The effect of the decomposition above is that it reduces Q to three subqueries,
namely Q1, Q2, and Q1 ∨Q2, whose CNF lattices are meet-sublattices of L, obtained
as follows. Let Q = Q1 ∧ Q2, where Q1 = dl1 ∧ dl2 ∧ · · · and Q2 = do1 ∧ do2 ∧ · · · .
Denote by v1, . . . , vm,u1, . . . , uk the co-atoms of this lattice, such that v1, v2, . . .

are the co-atoms corresponding to dl1, dl2, . . . and u1, u2, . . . are the co-atoms for
do1, do2,

– The CNF lattice of Q1 is M , where M = {v1, . . . , vm}.
– The CNF lattice of Q2 is K , where K = {u1, . . . , uk}.
– The CNF lattice of Q1 ∨ Q2 = ∧

i,j (dli ∨ doj) is N , where N = {vi ∧ uj |
i = 1,m; j = 1, k}. Here vi ∧ uj denotes the lattice-meet, and corresponds to the
query-union.

Note that each of the three lattices above, M̄, K̄, N̄ is a strict subset of L.
This justifies the following definition of d-safe queries, analogous to safe queries

Definition 4.

436 Theory Comput Syst (2013) 52:403–440

Definition 18 (1) Let Q = Q1 ∧ Q2. Then Q is d-safe if Q1,Q2,Q1 ∨ Q2 are all
d-safe. (2) Let d = c1 ∨ · · · ∨ ck be a disjunctive query, and let d = d0 ∨ d1, where d0
contains all components ci without variables, and d1 contains all components ci with
at least one variable. Then d is d-safe if d1 has a separator w and d1[a/w] is d-safe.

Theorem 8 If Q is d-safe, then it is in UCQ(dDNNF¬).

To illustrate this algorithm, we now show how to construct a d-DNNF for qW .

Proof of Proposition 9 Consider qW = d1 ∧ d2 ∧ d3 in Fig. 1.
Denote the three lower points in the lattice as:

d12 = d1 ∨ d2

d23 = d2 ∨ d3

d123 = d1 ∨ d2 ∨ d3

We express QW as d1 ∧ (d2 ∧ d3), and using (5) get

¬QW = ¬d1 ∨d ¬[¬(
d1 ∨ (d2 ∧ d3)

) ∨d (d2 ∧ d3)
]

d1 is hierarchical-read-once, and d2 ∧ d3 is inversion-free; hence they both have
compact d-DNNF. d1 ∨ (d2 ∧ d3) = d12 is inversion-free and hence it also admits a
compact d-DNNF. �

We prove now that every d-safe query is also safe. Fix a lattice L. Every non-empty
subset S ⊆ L − {1̂} corresponds to a query,

∧
u∈S λ(u). We define a nondeterministic

function NE that maps a non-empty set S ⊆ L − {1̂} to a set of elements NE(S) ⊆ S,
as follows. If S = {v} is a singleton set, then NE(S) = {v}. Otherwise, partition S non-
deterministically into two disjoint, non-empty sets S = M ∪ K , define N = {v ∧ u |
v ∈ M,u ∈ K}, and define NE(S) = NE(M)∪NE(K)∪NE(N). Thus, NE(S) is non-
deterministic, because it depends on our choice for partitioning S. The intuition is the
following: in order for the query

∧
u∈S λ(u) to be d-safe, all lattice points in NE(S)

must also be d-safe: they are “non-erasable”.
Call an element z ∈ L erasable if there exists a non-deterministic choice for

NE(L∗) that does not contain z. Recall that L∗ is the set of co-atoms of L. The intu-
ition is that, if z is erasable, then there exists a sequence of applications of rules from
Definition 18, which avoids computing z; in other words, it “erases” z from the list
of queries in the lattice for which it needs to compute the d-DNNF¬, and therefore
Qz is not required to be d-safe. We prove that only queries Qz where μL(z, 1̂) = 0
can be erased:

Lemma 9 If z is erasable in L, then μL(z, 1̂) = 0.

Proof We prove the following claim, by induction on the size of the set S: if z /∈
NE(S), z �= 1̂, then μS(z, 1̂) = 0 (if z /∈ S, then we define μS(z, 1̂) = 0). The lemma
follows by taking S = L∗ (the set of all co-atoms in L).

Theory Comput Syst (2013) 52:403–440 437

If S = {v}, then NE(S) = {v} and S = {v, 1̂}: therefore, the claim hold vacu-
ously. Otherwise, let S = M ∪ K , and define N = {v ∧ u | v ∈ M,u ∈ K}. We have
NE(S) = NE(M)∪NE(K)∪NE(N). If z /∈ NE(S), then z /∈ NE(M), z /∈ NE(K), and
z /∈ NE(N). By induction hypothesis μM(z, 1̂) = μK(z, 1̂) = μN(z, 1̂) = 0. Next, we
notice that (1) M,K,N ⊆ S, (2) S = M ∪ K ∪ N and (3) M ∩ K = N . Then, we ap-
ply the definition of the Möbius function directly, using a simple inclusion-exclusion
formula:

μS(z, 1̂) = −
∑

u∈S,z<u≤1̂

μS(u, 1̂)

= −
(∑

u∈M,z<u≤1̂

μS(u, 1̂) +
∑

u∈K,z<u≤1̂

μS(u, 1̂) −
∑

u∈N,z<u≤1̂

μS(u, 1̂)

)

= μM(z, 1̂) + μK(z, 1̂) − μN(z, 1̂) = −0 − 0 + 0 = 0 �

The lemma implies immediately:

Proposition 10 For any UCQ query Q, if Q is d-safe, then it is safe. The converse
does not hold in general: query q9 is safe but is not d-safe.

It is conjectured that q9 /∈ UCQ(dDNNF¬). Note that the proposition only states
that q9 is not d-safe, but it is not known whether d-safety is a complete characteriza-
tion of UCQ(dDNNF¬).

Proof We prove the statement by induction on Q. We show only the key induction
step, which is when Q = ∧

i di , and L is its CNF lattice. Let Z ⊆ L denote the
nodes corresponding to d-unsafe queries: if Q is d-safe, then all elements in Z are
erasable. This implies that ∀z ∈ Z, μ(z, 1̂) = 0. Hence, we can apply Möbius’ inver-
sion formula to the lattice L, and refer only to queries that are d-safe; by induction
hypothesis, these queries are also safe, implying that Q is safe.

We show that q9 is safe, but is not d-safe. We will denote the lattice points with
query di ∨ dj ∨ · · · in Fig. 1 as dij.... The query at 0̂ is the only hard query (since
it is equivalent to h3), and μ(0̂, 1̂) = 0. On the other hand, we prove that 0̂ cannot
be erased. Indeed, the co-atoms of the lattice are L∗ = {d1, d2, d3, d4}; given the
symmetry of d1, d2, d3, there are only three ways to partition the co-atoms into two
disjoint sets L∗ = M ∪ K :

– M = {d1, d2, d3}, K = {d4}. In this case the lattice M is {0̂, d12, d13, d23, d1, d2,

d3, 1̂}, and μM(0̂, 1̂) = −1, proving that this query is unsafe, and, therefore, d-
unsafe.

– M = {d1, d2}, K = {d3, d4}. In this case the lattice K is {0̂, d3, d4, 1̂}, and has
μK(0̂, 1̂) = 1, hence, by the same argument, is d-unsafe.

– M = {d1}, K = {d2, d3, d4}. Here, too, K = {0̂, d23, d2, d3, d4, 1̂}, and
μK(0̂, 1̂) = 1.

�

438 Theory Comput Syst (2013) 52:403–440

7 Results on Non-uniform Classes

In this section we look at the non-uniform compact classes for different targets T .

Definition 19 For target T ∈ {OBDD,FBDD,d-DNNF}, denote by UCQn(T) the
class of all queries Q ∈ UCQ s.t. Φ

Q
D has a compilation in T of size polynomial in

|D| for all D.

Note that in case of RO, a formula is either RO or not RO. Furthermore, thanks
to the result due to Gurvich [19], this can be done in PTIME for monotone formulas
that form the lineages of UCQ. On the other hand, a formula may have a compact
OBDD, FBDD, or d-DNNF, but our algorithm may not be able to construct it. Hence
UCQn(T) ⊇ UCQ(T).

For OBDD though, it follows from the results of Sect. 4, that

Proposition 11 UCQn(OBDD) = UCQ(OBDD).

The proof follows from Proposition 7, which implies that queries not in
UCQ(OBDD) do not have a polynomial size OBDD, i.e., UCQ − UCQ(OBDD) ⊆
UCQ − UCQn(OBDD). Hence UCQn(OBDD) ⊆ UCQ(OBDD), which means the
two sets must be equal.

We do not have a full characterization for FBDD, d-DNNF, so we do not know
if the same is true for them. The main separation results though still hold for non-
uniform classes as well.

Proposition 12

UCQn(OBDD) � UCQn(FBDD)

UCQn(FBDD) � UCQn(dDNNF)

UCQn(FBDD) � UCQ(P)

Proof We can construct an FBDD for qV in PTIME (Theorem 5), but it doesn’t al-
ways admit a compact OBDD (Proposition 7). This proves the first result. Similarly
one can construct a d-DNNF for qW in PTIME (Proposition 9), but it admits no poly-
nomial size FBDD (Theorem 6). This proves the last two separations. �

8 Conclusion

We have studied the problem of compiling the query lineage into compact repre-
sentations. We considered four compilation targets: read-once, OBDD, FBDD, and
d-DNNF. We showed that over the query language of unions of conjunctive queries,
these four classes form a strict hierarchy. For the first two classes we gave a com-
plete characterization based on the query’s syntax. For the last two classes we gave
sufficient characterizations.

Theory Comput Syst (2013) 52:403–440 439

Our two main separation results, between UCQ(OBDD) and UCQ(FBDD),
and between UCQ(FBDD) and UCQ(dDNNF), are the first examples of “simple”
Boolean expressions (meaning: monotone, and with polynomial size DNFs) that sep-
arate those two classes.

We leave three open problems: complete characterizations of FBDD and d-DNNF,
and separation of the latter from PTIME. Also, as future work, it would be interest-
ing to investigate compact representations of lineages in other semirings described
in [17].

Acknowledgements This work was supported by IIS-0713576 and IIS-0627585.

References

1. Bollig, B., Wegener, I.: A very simple function that requires exponential-size read-once branching
programs. Inf. Process. Lett. 66, 53–57 (1998)

2. Bollig, B., Wegener, I.: Complexity theoretical results on partitioned (nondeterministic) binary deci-
sion diagrams. Theory Comput. Syst. 32, 487–503 (1999). doi:10.1007/s002240000128

3. Bryant, R.E.: Symbolic manipulation of boolean functions using a graphical representation. In: DAC,
pp. 688–694 (1985)

4. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput. 35(8),
677–691 (1986)

5. Bryant, R.E.: On the complexity of VLSI implementations and graph representations of boolean
functions with application to integer multiplication. IEEE Trans. Comput. 40(2), 205–213 (1991)
doi:10.1109/12.73590

6. Cadoli, M., Donini, F.M.: A survey on knowledge compilation. AI Commun. 10(3,4), 137–150 (1997)
7. Chandra, A., Merlin, P.: Optimal implementation of conjunctive queries in relational data bases. In:

Proceedings of 9th ACM Symposium on Theory of Computing, Boulder, Colorado, pp. 77–90 (1977)
8. Dalvi, N., Suciu, D.: The dichotomy of conjunctive queries on probabilistic structures. In: PODS,

pp. 293–302 (2007)
9. Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB J. 16(4), 523–544

(2007)
10. Dalvi, N., Suciu, D.: Management of probabilistic data: foundations and challenges. In: PODS, pp. 1–

12. ACM Press, New York (2007)
11. Dalvi, N.N., Schnaitter, K., Suciu, D.: Computing query probability with incidence algebras. In:

PODS, pp. 203–214 (2010)
12. Darwiche, A.: On the tractable counting of theory models and its application to belief revision and

truth maintenance. CoRR cs.AI/0003044 (2000)
13. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17(1), 229–264 (2002)
14. Gál, A.: A simple function that requires exponential size read-once branching programs.

Inf. Process. Lett. 62(1), 13–16 (1997). doi:10.1016/S0020-0190(97)00041-0. http://www.
sciencedirect.com/science/article/B6V0F-3SNV288-T/2/39afb175413bd7ee03397bb582be0161

15. Gergov, J., Meinel, C.: Efficient boolean manipulation with obdd’s can be extended to fbdd’s. IEEE
Trans. Comput. 43(10), 1197–1209 (1994)

16. Golumbic, M.C., Mintz, A., Rotics, U.: Factoring and recognition of read-once functions using
cographs and normality and the readability of functions associated with partial k-trees. Discrete Appl.
Math. 154(10), 1465–1477 (2006)

17. Green, T., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS, pp. 31–40 (2007)
18. Green, T.J.: Containment of conjunctive queries on annotated relations. In: ICDT, pp. 296–309 (2009)
19. Gurvich, V.: Repetition-free boolean functions. Usp. Mat. Nauk 32, 183–184 (1977)
20. Olteanu, D., Huang, J.: Using OBDDs for efficient query evaluation on probabilistic databases. In:

SUM, pp. 326–340 (2008)
21. Roy, S., Perduca, V., Tannen, V.: Faster query answering in probabilistic databases using read-

once functions. In: Proceedings of the 14th International Conference on Database Theory, ICDT’11,
pp. 232–243. ACM, New York (2011). doi:10.1145/1938551.1938582

http://dx.doi.org/10.1007/s002240000128
http://dx.doi.org/10.1109/12.73590
http://arxiv.org/abs/cs.AI/0003044
http://dx.doi.org/10.1016/S0020-0190(97)00041-0
http://www.sciencedirect.com/science/article/B6V0F-3SNV288-T/2/39afb175413bd7ee03397bb582be0161
http://www.sciencedirect.com/science/article/B6V0F-3SNV288-T/2/39afb175413bd7ee03397bb582be0161
http://dx.doi.org/10.1145/1938551.1938582

440 Theory Comput Syst (2013) 52:403–440

22. Sagiv, Y., Yannakakis, M.: Equivalences among relational expressions with the union and difference
operators. J. ACM 27, 633–655 (1980)

23. Sen, P., Deshpande, A., Getoor, L.: Read-once functions and query evaluation in probabilistic
databases. In: VLDB (2010)

24. Sieling, D., Wegener, I.: Graph driven bdds—a new data structure for boolean functions. Theor. Com-
put. Sci. 141(1&2), 283–310 (1995)

25. Tannen, V.: Provenance for database transformations. In: EDBT, p. 1 (2010)
26. Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and Applications. SIAM,

Philadelphia (2000)
27. Wegener, I.: BDDs–design, analysis, complexity, and applications. Discrete Appl. Math. 138(1–2),

229–251 (2004)

	Knowledge Compilation Meets Database Theory: Compiling Queries to Decision Diagrams
	Abstract
	Introduction
	Background and Definitions
	Hierarchical Queries
	Inversions

	Queries with Read-Once Lineage
	Queries and OBDD
	Tractable Queries
	Hard Queries

	Queries and FBDD
	Queries and d-DNNFs
	Results on Non-uniform Classes
	Conclusion
	Acknowledgements
	References

