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Abstract Most modern implementations of regular expression engines allow the use
of variables (also called backreferences). The resulting extended regular expressions
(which, in the literature, are also called practical regular expressions, rewbr, or regex)
are able to express non-regular languages.

The present paper demonstrates that extended regular-expressions cannot be min-
imized effectively (neither with respect to length, nor number of variables), and
that the tradeoff in size between extended and “classical” regular expressions is not
bounded by any recursive function. In addition to this, we prove the undecidability
of several decision problems (universality, regularity, and cofiniteness) for extended
regular expressions. Furthermore, we show that all these results hold even if the ex-
tended regular expressions contain only a single variable.

Keywords Extended regular expressions · Regex · Decidability · Non-recursive
tradeoffs

1 Introduction

Since being introduced by Kleene [23] in 1956, regular expressions have developed
into a central device of theoretical and applied computer science. On one side, re-
search into the theoretical properties of regular expressions, in particular various as-
pects of their complexity, is still a very active area of investigation (see Holzer and
Kutrib [20] for a survey with numerous recent references). On the other side, al-
most all modern programming languages offer regular expression matching in their
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standard libraries or application frameworks, and most text editors allow the use of
regular expressions for search and replacement functionality.

But, due to practical considerations (cf. Friedl [16]), most modern matching en-
gines have evolved to use an extension to regular expressions that allows the user
to specify non-regular languages. In addition to the features of regular expressions
as they are mostly studied in theory (which we, from now on, call proper regu-
lar expressions), and apart from the (regularity preserving) “syntactic sugar” that
most implementations use, these extended regular expressions contain backrefer-
ences, also called variables, which specify repetitions that increase the expressive
power beyond the class of regular languages. For example, the (non-regular) lan-
guage L = {ww | w ∈ {a,b}∗} is generated by the extended regular expression
α := ((a | b)∗)%x x.

This expression can be understood as follows (for a more formal treatment, see
Definition 4): For any expression β , (β)%x matches the same expression as β , and
binds the match to the variable x. In the case of this example, the subexpression
((a | b)∗)%x can be matched to any word w ∈ {a,b}∗, and when it is matched to
w, the variable x is assigned the value w. Any further occurrence of x repeats w,
leading to the language of all words of the form ww with w ∈ {a,b}∗. Analogously,
the expression ((a | b)∗)%x xx generates the language of all www with w ∈ {a,b}∗.

Although this ability to specify repetitions is used in almost every modern match-
ing engine (e.g., the programming languages PERL and Python), the implementa-
tions differ in various details, even between two versions of the same implementation
of a programming language (for some examples, see Câmpeanu and Santean [7]).
Nonetheless, there is a common core to these variants, which was first formalized by
Aho [2]. Later, Câmpeanu et al. [9] introduced a different formalization that is closer
to the real world syntax, which addresses some questions of semantics that were im-
plicitly left open in [2]. In addition to this, the pattern expressions by Câmpeanu and
Yu [8] and the H-expressions by Bordihn et al. [5] use comparable repetition mecha-
nisms and possess similar expressive power.

Still, theoretical investigation of extended regular expressions has been compara-
tively rare (in particular when compared to their more prominent subclass); see e.g.,
Larsen [25], Della Penna et al. [14], Câmpeanu and Santean [7], Carle and Naren-
dran [10], and Reidenbach and Schmid [30].

In contrast to their widespread use in various applications, extended regular ex-
pressions have some undesirable properties. Most importantly, their membership
problem (the question whether an expression matches a word) is NP-complete (cf.
Aho [2]); the exponential part in the best known upper bounds depends on the num-
ber of different variables in the expression. Of course, this compares unfavorably
to the efficiently decidable membership problem of proper regular expressions (cf.
Aho [2]). On the other hand, there are cases where extended regular expressions ex-
press regular languages far more succinctly than proper regular expressions. Consider
the following example:

Example 1 For n ≥ 1, let Ln := {www | w ∈ {a,b}+, |w| = n}. These languages Ln

are finite, and hence, regular. For the sake of this example, we define the length of
an extended regular expression α as the total number of symbols that occur in α (in
literature, this measure is often called size, cf. [21]).
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With some effort, one can prove that every proper regular expression for Ln is at
least of length exponential in n, e.g., by using the technique by Glaister and Shal-
lit [17] to prove that every NFA for Ln requires at least O(2n) states. Due to the
construction used in the proof of Theorem 2.3 in Hopcroft and Ullman [22], this also
gives a lower bound on the length of the regular expressions for Ln.

In contrast to this, Ln is generated by the extended regular expression

αn := ((a | b) · · · (a | b)
︸ ︷︷ ︸

n times (a | b)

)%x xx,

which is of a length that is linear in n.

Due to the repetitive nature of the words of languages Ln in Example 1, it is not
surprising that the use of variables provides a shorter description of Ln. The following
example might be considered less straightforward:

Example 2 Consider the expression α := (a | b)∗((a | b)+)%x x(a | b)∗. It is a well-
known fact that every word w ∈ {a,b}∗ with |w| ≥ 4 can be expressed in the form
w = uxxv, with u,v ∈ {a,b}∗ and x ∈ {a,b}+ (as is easily verified by examining all
four letter words). Thus, the expression α matches all but finitely many words; hence,
its language L(α) is regular.

Example 2 demonstrates that the use of variables can lead to languages that are
(non-trivially) regular. The phenomenon that an expression like α can generate a
cofinite language is strongly related to the notion of avoidable patterns (cf. Cas-
saigne [11]), and involves some very hard combinatorial questions (in particular, Ex-
ample 2 illustrates this connection for the pattern xx over a binary alphabet).

We observe that extended regular expressions can be used to express regular lan-
guages more succinctly than proper regular expressions do, and that it might be hard
to convert an extended regular expression into a proper regular expression for the
same language.

The two central questions studied in the present paper are as follows: First, how
hard is it to minimize extended regular expressions (both with respect to their length,
and with respect to the number of variables they contain), and second, how succinctly
can extended regular expressions describe regular languages? These natural questions
are also motivated by practical concerns: If a given application reuses an expression
many times, it might pay off to invest resources in the search for an expression that is
shorter, or uses fewer variables, and thus can be matched more efficiently.

We approach this question through related decidability problems (e.g., the univer-
sality problem) and by studying lower bounds on the tradeoff between the size of
extended regular expressions and proper regular expressions.

The main contribution of the present paper is the proof that all these decision prob-
lems are undecidable (some are not even semi-decidable), even for extended regular
expressions that use only a single variable. Thus, while bounding the number of vari-
ables in extended regular expressions (or, more precisely, the number of variable
bindings) reduces the complexity of the membership problem from NP-complete to
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polynomial (cf. Aho [2]), we show that extending proper regular expressions with
only a single variable already results in undecidability of various problems.

As a consequence, extended regular expressions cannot be minimized effectively,
and the tradeoff between extended and proper regular expressions is not bounded by
any recursive function (a so-called non-recursive tradeoff, cf. Sect. 2.3 for additional
context). Thus, although the use of the “right” extended regular expression for a reg-
ular expression might offer arbitrary advantages in size (and, hence, parsing speed),
these optimal expressions cannot be found effectively. These results highlight the
power of the variable mechanism, and demonstrate that different restrictions than the
number of variables ought to be considered.

The structure of the further parts of the paper is as follows: In Sect. 2, we intro-
duce most of the technical preliminaries. Section 3 consists of Theorem 10 (the main
undecidability result), its proof, and the required additional technical preliminaries,
while Sect. 4 discusses the consequences and some extensions of Theorem 10.

2 Preliminaries

This paper is largely self-contained. Unexplained notions can be found in Hopcroft
and Ullman [22], Cutland [13], and Minsky [27].

2.1 Basic Definitions

Let N be the set of natural numbers, including 0. The function div denotes integer di-
vision, and mod denotes its remainder (e.g., 5 div 3 = 1 and 5 mod 3 = 2). The symbol
∞ denotes infinity.

The symbols ⊆, ⊂, ⊇ and ⊃ refer to the subset, proper subset, superset and proper
superset relation, respectively. The symbol ∅ denotes the empty set, \ denotes the set
difference (defined by A \ B := {x ∈ A | x /∈ B}). For every set A, P (A) denotes the
power set of A.

We denote the empty string by λ. For the concatenation of two strings w1 and
w2, we write w1 · w2 or simply w1w2. We say a string v ∈ A∗ is a factor of a string
w ∈ A∗ if there are u1, u2 ∈ A∗ such that w = u1vu2. The notation |K| stands for the
size of a set K or the length of a string K .

If A is an alphabet, a (one-sided) infinite word over A is an infinite sequence
w = (wi)

∞
i=0 with wi ∈ A for every i ≥ 0. We denote the set of all one-sided infinite

words over A by Aω and, for every a ∈ A, let aω denote the word w = (wi)
∞
i=0

with wi = a for every i ≥ 0. We shall only deal with infinite words w ∈ Aω that
have the form w = u aω with u ∈ A∗ and a ∈ A. Concatenation of words and infinite
words is defined canonically: For every u ∈ A∗ and every v ∈ Aω with v = (vi)

∞
i=0,

u · v := w ∈ Aω, where w0 · · · · ·w|u|−1 = u and wi+|u| = vi for every i ≥ 0, while vu

is undefined. In particular, note that a aω = aω for every a ∈ A.

2.2 Extended Regular Expressions

We now introduce syntax and semantics of extended regular expressions. Apart from
some changes in terminology, the following definition of syntax is due to Aho [2]:
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Definition 3 Let Σ be an infinite set of terminals, let X be an infinite set of variables,
and let the set of metacharacters consist of λ, (, ), |, ∗, and %, where all three sets are
pairwise disjoint. We define the set of extended regular expressions to be the smallest
set that satisfies the following conditions:

1. Every a ∈ Σ ∪ X ∪ {λ} is an extended regular expression.
2. If α1 and α2 are extended regular expression, then

(a) (α1)(α2) (concatenation),
(b) (α1) | (α2) (alternation),
(c) (α1)

∗ (Kleene star)
are extended regular expressions.

3. For every extended regular expression α and every variable x ∈ X such that %x is
not a factor of α, (α)%x is an extended regular expression (variable binding).

We denote the set of all extended regular expressions by RegEx. A proper regular
expression is an extended regular expression that contains neither %, nor any variable
(hence, proper regular expressions are those expressions that are commonly called
“regular expressions” in theoretical computer science).

If an extended regular expression β is a factor of an extended regular expression
α, we call β a subexpression of α. We denote the set of all subexpressions of α by
SUB(α).

We shall use the notation (α)+ as a shorthand for α(α)∗, and freely omit paren-
theses whenever the meaning remains unambiguous. When doing this, we assume
that there is a precedence on the order of the applications of operations, with ∗ and +
ranking over concatenation ranking over the alternation operator |.

In Aho [2], an informal definition of the semantics of extended regular expressions
is given. In Aho’s approach, extended regular expressions are interpreted as language
generators in the following way: An extended regular expression α is interpreted
from left to right. A subexpression of the form (β)%x generates the same language
as the expression β; in addition to this, the variable x is bound to the word w that
was generated from β (if x already has a value, that value is overwritten). Every
occurrence of x that is not in the context of a variable binding is then replaced with w.

When following this approach, there are some cases where the semantics are
underspecified. For example, Aho [2] does not explicitly address the rebinding
of variables (cf. Example 5, further down), and the semantics of expressions like
((a)%x | b)x are unclear.

Although the proofs in the present paper are not affected by the ambiguities that
arise from the informal approach, we include a formal definition of the semantics,
which is an adaption of the semantics of Câmpeanu et al. [9] to the syntax from
Definition 3:

Definition 4 A match tree of an extended regular expression α is a finite (directed,
ordered) tree Tα , where the nodes of Tα are labeled with elements of Σ∗ × SUB(α),
and Tα is constructed according to the following rules:
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1. The root of Tα is labeled with some (w,α), w ∈ Σ∗.
2. If a node v of Tα is labeled by some (w,a) with a ∈ Σ ∪ {λ}, then v is a leaf, and

w = a holds.
3. If a node v of Tα is labeled by some (w,β) with β = (β1)(β2), then v has exactly

two children v1 and v2 (as left and right child, respectively), with respective labels
(w1, β1) and (w2, β2), where w1,w2 ∈ Σ∗, and w = w1w2.

4. If a node v of Tα is labeled by some (w,β) with β = (β1) | (β2), then v has exactly
one child v′, that is labeled (w,β1) or (w,β2).

5. If a node v of Tα is labeled by some (w,β) with β = (β1)
∗, we distinguish two

cases:
(a) If w = λ, v has exactly one child v1 that is labeled (λ,β), and v1 is a leaf of

Tα .
(b) If w = λ, v has k ≥ 1 children that are labeled by (w1, β1), . . . , (wk,β1) (from

left to right), where w1, . . . ,wk ∈ Σ+ and w = w1 · · ·wk .
6. If a node v of Tα is labeled by some (w,β) with β = (β1)%x, then v has exactly

one child that is labeled (w,β1).
7. If a node v of Tα is labeled by some (w,x), where x is a variable, we let ≺

denote the post-order on the nodes of Tα (that results from a left-to right, depth-
first traversal), and distinguish the following two cases:
(a) If there is no node v1 of Tα with v1 ≺ v such that v1 is labeled with some

(w1, (β1)%x), v is a leaf, and w = λ.
(b) Otherwise, let v1 denote that node with v1 ≺ v that is ≺-maximal among the

nodes that have some (β ′)%x as the second component of their label. Then v

is a leaf, and w = w1, where w1 is the first component of the label of v1.

We define the language L(α) that is generated by an extended regular expression α

as

L(α) := {

w ∈ Σ∗ | (w,α) labels the root of some match tree Tα of α
}

.

Example 5 Consider the following extended regular expressions:

α1 := (

(a | b)∗
)

%x xx
(

(a | b)∗
)

%x x,

α2 := ((

(a | b)∗
)

%x x
)+

,

α3 := (

(a)%x | b)

x,

α4 := (a)%x
(

λ(λ)%x
)∗

x.

These expressions generate the following languages:

L(α1) = {

vvvww | v,w ∈ {a,b}∗},
L(α2) = {

w1w1 · · ·wnwn | n ≥ 1,wi ∈ {a,b}∗},
L(α3) = {aa,b},
L(α4) = {aa}.
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Note that in the case of α4, which was pointed out by one of the anonymous refer-
ees, the semantics given in Definition 4 might be considered counterintuitive, as one
could expect L(α4) = {a,aa}. The results in the present paper do not rely on such
pathological cases, which shall be excluded by Definition 6 a little further down.

In general, the membership problem for RegEx is NP-complete, as shown in Theo-
rem 6.2 in Aho [2]. As explained in that proof, this problem is solvable in polynomial-
time if the number of different variables is bounded. It is not clear how (or if) Aho’s
reasoning applies to expressions like α2 in our Example 5; therefore, and in order
to exclude problematic expressions like α4 Example 5, in we formalize a slightly
stronger restriction than Aho, and consider the following subclasses of RegEx:

Definition 6 For k ≥ 0, let RegEx(k) denote the class of all extended regular expres-
sions α that satisfy the following properties:

1. α contains at most k occurrences of the metacharacter %,
2. if α contains a subexpression (β)∗, then the metacharacter % does not occur in β ,
3. for every x ∈ X that occurs in α, α contains exactly one occurrence of %x.

Intuitively, these restrictions on extended regular expressions in RegEx(k) limit
not only the number of different variables, but also the total number of possible vari-
able bindings, to at most k.

Note that RegEx(0) is equivalent to the class of proper regular expressions; fur-
thermore, observe that RegEx(k) ⊂ RegEx(k + 1) for every k ≥ 0.

Referring to the extended regular expressions given in Example 5, we observe
that, as %x occurs twice in α1, α1 is not element of any RegEx(k) with k ≥ 0, but the
extended regular expression α′

1 := ((a | b)∗)%x xx ((a | b)∗)%y y generates the same
language as α1, and α′

1 ∈ (RegEx(2) \ RegEx(1)). In contrast to this, α2 /∈ RegEx(k)

for all k ≥ 0, as % occurs inside a ()∗ subexpression (as we defined + through ∗).
For any k ≥ 0, we say that a language L is a RegEx(k)-language if there is some

α ∈ RegEx(k) with L(α) = L.
We also consider the class FRegEx of all extended regular expressions that do not

use the operator ∗ (or +), and its subclasses

FRegEx(k) := FRegEx∩RegEx(k)

for k ≥ 0. Thus, FRegEx contains exactly those expressions that generate finite
(and, hence, regular) languages. Analogously, for every k ≥ 0, we define a class
CoFRegEx(k) as the class of all α ∈ RegEx(k) such that L(α) is cofinite. Unlike
the classes FRegEx(k), these classes have no straightforward syntactic definition—
as we shall prove in Theorem 10, cofiniteness is not semi-decidable for RegEx(k) (if
k ≥ 1).

2.3 Decision Problems and Descriptional Complexity

Most of the technical reasoning in the present paper is centered around the following
decision problems:
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Definition 7 Let Σ denote a fixed terminal alphabet. For all k, l ≥ 0, we define the
following decision problems for RegEx(k):

Universality: Given α ∈ RegEx(k), is L(α) = Σ∗?
Cofiniteness: Given α ∈ RegEx(k), is Σ∗ \ L(α) finite?
RegEx(l)-ity: Given α ∈ RegEx(k), is there a β ∈ RegEx(l) with L(α) = L(β)?

As we shall see, Theorem 10—one of our main technical results—states that these
problems are undecidable (to various degrees). We use the undecidability of the uni-
versality problem to show that there is no effective procedure that minimizes extended
regular expressions with respect to their length, and the undecidability of RegEx(l)-
ity to conclude the same for minimization with respect to the number of variables.
Furthermore, cofiniteness and RegEx(l)-ity help us to obtain various results on the
relative succinctness of proper and extended regular expressions. As a side note, note
that cofiniteness for RegEx is a more general case of the question whether a pattern
is avoidable over a fixed terminal alphabet, an important open problem in pattern
avoidance (cf. Currie [12]).

By definition, RegEx(l)-ity holds trivially for all RegEx(k) with k ≤ l. If l = 0, we
mostly use the more convenient term regularity (for RegEx(k)), instead of RegEx(0)-
ity. Note that, even for RegEx(0), universality is already PSPACE-complete (see Aho
et al. [3]).

In order to examine the relative succinctness of RegEx(1) in comparison to
RegEx(0), we build on well-established notions from descriptional complexity (see
Holzer and Kutrib [21] and the less recent Goldstine et al. [18] for survey articles on
the area). In particular, we use the following notion of complexity measures, which is
based on the more general notion of complexity measures for descriptional systems
from [24]:

Definition 8 Let R be a class of extended regular expressions. A complexity measure
for R is a total recursive function c : R → N such that, for every alphabet Σ , the set
of all α ∈ R with L(α) ⊆ Σ∗

1. can be effectively enumerated in order of increasing c(α), and
2. does not contain infinitely many extended regular expressions with the same value

c(α).

This definition includes the canonical concept of the length (as used in Example 1),
as well as most of its natural extensions—for example, in our context, one could
define a complexity measure that gives additional weight to the number or distance
of occurrences of variables, or their nesting level. Kutrib [24] provides more details
on (and an extensive motivation of) complexity measures.

Using this definition, we are able to define the notion of tradeoffs between classes
of extended regular expressions, which is again based on the more general definition
from [24]:

Definition 9 Let k > l ≥ 0 and let c be a complexity measure for RegEx(k) (and
thereby also for RegEx(l)). A recursive function fc : N → N is said to be a recur-
sive upper bound for the tradeoff between RegEx(k) and RegEx(l) if, for all those
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α ∈ RegEx(k) for which L(α) is a RegEx(l)-language, there is a β ∈ RegEx(l) with
L(β) = L(α) and c(β) ≤ fc(c(α)).

If no recursive upper bound for the tradeoff between RegEx(k) and RegEx(l) ex-
ists, we say that the tradeoff between RegEx(k) and RegEx(l) is non-recursive.

The first non-recursive tradeoffs where demonstrated by Meyer and Fischer [26];
since then, there has been a considerable amount of results on a wide range of non-
recursive tradeoffs between various description mechanisms. For a survey on non-
recursive tradeoffs, see Kutrib [24].

2.4 Extended Regular Expressions in the Real World

In this section we take a brief closer look at the relation between our definition of ex-
tended regular expressions, and the variable-like mechanisms in the real-world regex
dialects that inspired that definition. This section is supposed to provide a wider con-
text of the theoretical model discussed in the present paper and can be skipped with-
out loss of continuity.

While the syntax in Câmpeanu et al. [9] is based on the backreferences that can
be found in Perl Compatible Regular Expressions, POSIX, and various related imple-
mentations (cf. Friedl [16]), our definition is syntactically closer to the named capture
groups that originated from Python (ibid.). As an example, consider the extended reg-
ular expression

α := (a) | ((aa+)

%x x+)

,

which is due to Abigail [1]. It is easy to see that this expression generates the language

L(α) = {

an | n ≥ 1, n is not a prime number
}

.

In Python, the same language can be expressed using the expression

(a)|((?P=<x>(aa+))(?P=x)+)

where the (prefix) operator ?P=<x> acts like our (postfix) variable binding operator
%x, while (?P=x) repeats that variable and corresponds to our use of x (without
%). A similar syntax is used in .NET, see p. 137 in Friedl [16].

Although this method of explicit naming and referencing of capture groups is
also supported in newer versions of PERL (from version 5.10 onwards), tradition-
ally, PERL allows only implicit naming of capture groups, using the aforementioned
backrefences. Using these, α would be written

(a)|((aa+)(\3)+)

Here, the backreference \3 repeats the match of the third pair of parentheses (as de-
fined by the third opening parenthesis when reading from the left). To the author’s
knowledge, there is no valid way of expressing pathological examples like α1 from
Example 5 in these programming languages—in particular, the reuse of capture group
names is forbidden. Nonetheless, all expressions from RegEx(1) can be easily con-
verted to each of this dialects. Hence, all “negative” results in the present paper apply
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not only to our theoretical model of RegEx, but to each of these real world regex
dialects.

As an unrelated side note, the author wishes to point out that L(α) is an example
of an extended regular expression over a unary terminal alphabet that generates a
non-regular language (another example of such a language can be found in Carle and
Narendran [10]).

3 The Main Theorem and Its Proof

As mentioned in Sect. 1, the central questions of the present paper are whether we
can minimize extended regular expressions under any complexity measure as defined
in Definition 8, or with respect to the number of variables, and whether there is a
recursive upper bound on the tradeoff between extended and proper regular expres-
sions. We approach these questions by proving various degrees of undecidability for
the decision problems given in Definition 7, as shown in the main theorem of this
section:

Theorem 10 For RegEx(1), universality is not semi-decidable; and regularity and
cofiniteness are neither semi-decidable, nor co-semi-decidable.

The proof of Theorem 10 requires considerable technical preparation and takes up
the remainder of the present section. Readers who are more interested in implications
and applications of Theorem 10 are invited to skip over to Sect. 4.

On a superficial level, we prove Theorem 10 by using Theorem 14 (which we in-
troduce further down in the present section) to reduce various undecidable decision
problems for Turing machines to appropriate problems for extended regular expres-
sions (the problems from Definition 7). This is done by giving an effective procedure
that, given a Turing machine M, returns an extended regular expression that gener-
ates the complement of a language that encodes all accepting runs of M.

On a less superficial level, this approach needs to deal with certain technical pe-
culiarities that make it preferable to study a variation of the Turing machine model.
Most importantly, when applied to “standard” Turing machines, the construction pro-
cedure and the encoding we shall use in the proof do not preserve the finiteness of the
domain of the encoded machine. As the distinction between Turing machines with fi-
nite and infinite domain is a central element of the proofs further down, we introduce
the notion of an extended Turing machine as an intermediate step in the construction
of extended regular expressions from Turing machines.

An extended Turing machine is a 3-tuple X = (Q,q1, δ), where Q and q1 de-
note the state set and the initial state. All extended Turing machines operate on the
tape alphabet Γ := {0,1} and use 0 as the blank letter. The transition function δ is a
function δ : Γ ×Q → (Γ ×{L,R}×Q)∪ {HALT} ∪ ({CHECKR}×Q). The move-
ment instructions L and R and the HALT-instruction are interpreted canonically—if
δ(a, q) = (b,M,p) for some M ∈ {L,R} (and a, b ∈ Γ , p,q ∈ Q), the machine re-
places the symbol under the head (a) with b, moves the head to the left if M = L (or
to the right if M = R), and enters state p. If δ(a, q) = HALT, the machine halts and
accepts.
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Fig. 1 An illustration of tape words of an extended Turing machine (as defined in Sect. 3). The arrow
below the tape symbolizes the position of the head, while the dashed lines show the borders between the
left tape side, the head position and the right tape side. Assuming that all tape cells that are not shown
contain 0, we observe the left tape word tL = 10111 0ω , the right tape word tR = 1001 0ω , and the head
letter a = 1

The command CHECKR works as follows: If δ(a, q) = (CHECKR,p) for some
p ∈ Q, X immediately checks (without moving the head) whether the right side of
the tape (i.e., the part of the tape that starts immediately to the right of the head)
contains only the blank symbol 0. If this is the case, X enters state p; but if the right
side of the tape contains any occurrence of 1, X remains in q . As the tape is never
changed during a CHECKR-instruction, this leads X into an infinite loop, as it will
always read a in q , and will neither halt, nor change its state, head symbol, or head
position. Although it might seem counterintuitive to include an instruction that allows
our machines to search the whole infinite side of a tape in a single step and without
moving the head, this command is expressible in the construction we use in the proof
of Theorem 14, and it is needed for the intended behavior.

We partition the tape of an extended Turing machine X into three disjoint areas:
The head symbol, which is (naturally) the tape symbol at the position of the head, the
right tape side, which contains the tape word that starts immediately to the right of the
head symbol and extends rightward into infinity, and the left tape side, which starts
immediately left to the head symbol and extends infinitely to the left. When speaking
of a configuration, we denote the head symbol by a and refer to the contents of the
left or right tape side as the left tape word tL or the right tape word tR , respectively.
For an illustration and further explanations, see Fig. 1.

A configuration of an extended Turing machine X = (Q,q1, δ) is a tuple
(tL, tR, a, q), where tL, tR ∈ Γ ∗0ω are the left and right tape word, a ∈ Γ is the
head symbol, and q ∈ Q denotes the current state. The symbol �X denotes the suc-
cessor relation on configurations of X , i.e., C �X C′ if X enters C′ immediately
after C.

We define domX(X ), the domain of an extended Turing machine X = (Q,q1, δ),
to be the set of all tape words tR ∈ Γ ∗0ω such that X , if started in the configuration
(0ω, tR,0, q1), halts after finitely many steps.

The definition of domX is motivated by the properties of the encoding that we
shall use. Usually, definitions of the domain of a Turing machine rely on the fact
that the end of the input is marked by a special letter $ or an encoding thereof (cf.
Minsky [27]). As we shall see, our use of extended regular expressions does not allow
us to express the fact that every input is ended by exactly one $ symbol. Without the
CHECKR-instruction in an extended Turing machine X , we then would have to deal
with the unfortunate side effect that a nonempty domX(X ) could never be finite:
Assume w ∈ Γ ∗ such that w 0ω ∈ domX(X ). The machine can only see a finite part
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of the right side of the tape before accepting. Thus, there is a v ∈ Γ ∗ such that both
wv10ω ∈ domX(X ) and wv00ω ∈ domX(X ), as X will not reach the part where wv1
and wv0 differ. This observation leads to wvx 0ω ∈ domX(X ) for every x ∈ Γ ∗, and
applies to various other extensions of the Turing machine model. As Lemma 13—
and thereby most of the main results in Sect. 4—crucially depends on the fact that
there are extended Turing machines with a finite domain, we use CHECKR to allow
our machines to perform additional sanity checks on the input and to overcome the
limitations that arise from the lack of the input markers � and $.

Using a classical coding technique for two-symbol Turing machines (see Min-
sky [27]) and the corresponding undecidability results, we establish the following
negative results on decision problems for extended Turing machines:

Lemma 11 Consider the following decision problems for extended Turing ma-
chines:

Emptiness: Given an extended Turing machine X , is domX(X ) empty?
Finiteness: Given an extended Turing machine X , is domX(X ) finite?

Then emptiness is not semi-decidable, and finiteness is neither semi-decidable, nor
co-semi-decidable.

Proof We show these results on extended Turing machines by reducing each of these
problems for “non-extended” Turing machines or, as we call them, general Turing
machines, to its counterpart for extended Turing machines. A general Turing machine
is a 7-tuple M = (Q,q1, Γ̂ ,0,�,$, δ), where Q is a finite set of states, q1 is the
initial state, 0 ∈ Γ̂ is the blank tape symbol, �,$ ∈ Γ̂ are distinct special symbols
(with �,$ = 0) that are used to mark the beginning and end (respectively) of an input
of M, and

δ : Γ̂ × Q → (

Γ̂ × {L,R} × Q
) ∪ {HALT}

is the transition function. We interpret δ as for extended Turing machines, and us the
same notion of tape words and configurations as for extended Turing machines.

The domain domT(M) of a general Turing machine M = (Q,q1, Γ̂ ,0,�,$, δ),
is defined to be the set of all w ∈ (Γ̂ \ {�,$})∗ such that M, if started in the configu-
ration (0ω, tR,0, q1) with tR = �w$ 0ω, halts after finitely many steps.

The definition of domT(M) corresponds to the definition of the language of a Tur-
ing machine as given by Hopcroft and Ullman [22] and Minsky [27]. As for extended
Turing machines, we consider the following decision problems for general Turing
machines:

Emptiness: Given a general Turing machine M, is domT(M) empty?
Finiteness: Given a general Turing machine M, is domT(M) finite?

Emptiness of domT is undecidable due to Rice’s Theorem; as it is obviously co-semi-
decidable, it cannot be semi-decidable. Furthermore, due to the Rice-Shapiro The-
orem, finiteness of domT is neither semi-decidable, nor co-semi-decidable (cf. Cut-
land [13], Hopcroft and Ullman [22]—in the latter reference, the Rice-Shapiro The-
orem is called “Rice’s Theorem for recursively enumerable index sets” (Chap. 8.4)).
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In order to prove the present lemma’s claims on extended Turing machines, we
now define an effective procedure that, given a general Turing machine M, returns
an extended Turing machine X such that domT(M) is empty (or finite) if and only if
domX(X ) is empty (or finite).

First, assume that M is defined over some tape alphabet Γ̂ ⊇ {$,�,0}. Using the
common technique to simulate Turing machines with larger tape alphabets on Turing
machines with a binary tape alphabet (cf. Chap. 6.3.1 in Minsky [27]), we choose a
k ≥ 1 with 2k ≥ |Γ̂ | and fix any injective function bk : Γ̂ → Γ k (every letter from
Γ̂ is encoded by a block of k letters from Γ ), with bk(0) = 0k (the blank symbol
of M is mapped to k successive blank symbols of X ). We extend this function bk

canonically to an injective morphism bk : Γ̂ ∗0ω → Γ ∗0ω. Moreover, we partition the
tape of X into non-overlapping blocks of k tape cells, each representing a single tape
cell of M as encoded by bk .

The main idea of the construction is that X works in two phases. First, it checks
that its right tape word is bk(�ŵ$ 0ω) = bk(�ŵ$) 0ω for some ŵ ∈ (Γ̂ \ {�,$})∗. If
this is the case, X simulates M, always reading blocks of k letters at a time and
interpreting every block bk(a) as input a for M.

More explicitly, the first phase works as follows: If started on an input w ∈ Γ ∗0ω,
X scans w and checks whether the first block of k letters is bk(�) (using its finite
control to store the k − 1 letters of the block, and evaluating the whole block after
reading its k-th letter). If this is not the case, X enters an infinite loop (and thus,
rejects implicitly). Otherwise, X continues scanning to the right, evaluating every
block of k letters until a block with bk($) is encountered. On its way to the right, X
performs the following checks: If a block contains some bk(a) with a ∈ (Γ̂ \ {�,$}),
X examines the next block. If a block contains bk(�) or some sequence of k letters
that is not an image of any letter from Γ̂ , X enters an infinite loop. If a k-letter
block containing bk($) is found, X moves the head to the last letter of this block and
executes the CHECKR-command. This leads the machine to enter an infinite loop if
any occurrence of the non-blank symbol 1 ∈ Γ follows.

Thus, if there is no ŵ ∈ (Γ̂ \ {�,$})∗ such that w = bk(�ŵ$) 0ω, X will never find
a block bk($), and will never halt. Intuitively, X (implicitly) rejects any input that
does not satisfy its sanity criteria by refusing to halt.

But if w = bk(�ŵ$) 0ω for some ŵ ∈ (Γ̂ \ {�,$})∗, no tape cell containing 1 is
found by CHECKR. Then X enters its second phase: The machine returns to the left
side of w (which it recognizes by the unique block containing bk(�)), and simulates
M on the corresponding input �ŵ$ with bk(�ŵ$) 0ω = w, always using the finite
control to read blocks bk(a) of length k which represent a tape letter a ∈ Γ̂ as input
for M, and halting if and only if M halts. By definition, the left tape side is initially
empty; hence, due to bk(0) = 0k , and due to the sanity check using CHECKR, we do
not even need to keep track which part of the tape X has already seen.

Thus, if w ∈ domX(X ), there is exactly one ŵ ∈ (Γ \ {�,$})∗ with ŵ ∈ domT(M)

and bk(�ŵ$) = w. Likewise, for every ŵ ∈ domT(M) (which, by definition, implies
that ŵ does not contain any � or $), bk(�ŵ$) 0ω ∈ domX(X ). Thus, domT(M) = ∅ if
and only if domX(X ) = ∅, and likewise, domT(M) is finite if and only if domX(X )

is finite.
As the whole construction process can be realized effectively, any algorithm that

(semi-)decides any of these two problems for extended Turing machines could be
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converted into an algorithm that (semi-)decides the corresponding problem for gen-
eral Turing machines.

Due to the fact that emptiness of the domain for general Turing machines is not
semi-decidable, and as finiteness is neither semi-decidable nor co-semi-decidable, the
claim follows. �

Those who are interested in these problems’ exact position in the arithmetical hier-
archy (cf. Odifreddi [28]) can use Propositions X.9.5 and X.9.6 from Odifreddi [29]
and the canonical reasoning on the order of quantifiers for the respective levels to ob-
serve that—for general and for extended Turing machines—emptiness of the domain
is Π0

1 -complete, while finiteness of the domain is Σ0
2 -complete (hence, its comple-

ment is Π0
2 -complete).

In order to simplify some technical aspects of our further proofs below, we adopt
the following convention on extended Turing machines:

Convention 12 Every extended Turing machine

1. has the state set Q = {q1, . . . , qν} for some ν ≥ 1, where q1 is the initial state,
2. has δ(0, q1) = (0,L, q2),
3. has δ(a, q) = HALT for at least one pair (a, q) ∈ Γ × Q.

Obviously, every extended Turing machine can be straightforwardly (and effec-
tively) adapted to satisfy these criteria.

As every tape word contains only finitely many occurrences of 1, we can interpret
tape sides as natural numbers in the following (canonical) way: For sequences t =
(ti)

∞
i=0 over Γ , define e(t) := ∑∞

i=0 2i e(ti), where e(0) := 0 and e(1) := 1. Most of
the time, we will not distinguish between single letters and their values under e, and
simply write a instead of e(a) for all a ∈ Γ . It is easily seen that e is a bijection
between N and Γ ∗0ω, the set of all tape words over Γ . Intuitively, every tape word
is read as a binary number, starting with the cell closest to the head as the least
significant bit, extending toward infinity.

Expressing the three parts of the tape (left and right tape word and head symbol)
as natural numbers allows us to compute the tape parts of successor configurations
using elementary integer operations. The following straightforward observation shall
be a very important tool in the proof of Theorem 14:

Observation 1 Assume that an extended Turing machine X = (Q,q1, δ) is in some
configuration C = (tL, tR, a, qi), and δ(a, qi) = (b,M,qj ) for some b ∈ Γ , some
M ∈ {L,R} and some qj ∈ Q. For the (uniquely defined) successor configuration
C′ = (t ′L, t ′R,a′, qj ) with C �X C′, the following holds:

If M = L: e
(

t ′L
) = e(tL)div 2, e

(

t ′R
) = 2 e(tR) + b, a′ = e(tL)mod 2,

if M = R: e
(

t ′L
) = 2 e(tL) + b, e

(

t ′R
) = e(tR)div 2, a′ = e(tR)mod 2.

These equations are fairly obvious—when moving the head in direction M , X
turns the tape cell that contained the least significant bit of e(tM) into the new head
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symbol, while the other tape side gains the tape cell containing the new letter b that
was written over the head symbol as new least significant bit.

Using the encoding e, we define an encoding enc of configurations of X by

enc(tL, tR, a, qi) := 00e(tL)#00e(tR)#00e(a)#0i

for every configuration (tL, tR, a, qi) of X . We extend enc to an encoding of finite
sequences C = (Ci)

n
i=1 (where every Ci is a configuration of X ) by

enc(C) := ## enc(C1)## enc(C2)## · · ·## enc(Cn)##.

A valid computation of X is a sequence C = (Ci)
n
i=1 of configurations of X where

C1 is an initial configuration (i.e. some configuration (0ω,w,0, q1) with w ∈ Γ ∗0ω),
Cn is a halting configuration, and for every i < n, Ci �X Ci+1. Thus, let

VALC(X ) = {

enc(C) | C is a valid computation of X
}

,

INVALC(X ) = {0,#}∗ \ VALC(X ).

The main part of the proof of Theorem 10 is Theorem 14 (still further down), which
states that, given an extended Turing machine X , one can effectively construct an ex-
pression from RegEx(1) that generates INVALC(X ). Note that in enc(C), ## serves
as a boundary between the encodings of individual configurations, which will be of
use in the proof of Theorem 14. Building on Convention 12, we observe the following
fact on the regularity of VALC(X ) for a given extended Turing machine X :

Lemma 13 For every extended Turing machine X , VALC(X ) is regular if and only
if domX(X ) is finite.

Proof The if direction follows immediately: As X is deterministic and accepts by
halting, every word in VALC(X ) corresponds to exactly one word from domX(X )

(and the computation of X on that word). Thus, if domX(X ) is finite, VALC(X ) is
also finite, and thus, regular.

For the only if direction, let X = (Q,q1, δ), and assume that domX(X ) is infinite,
while VALC(X ) is regular. The main idea of the proof is to show that this assumption
implies the regularity of the language

LX := {

0e(tR)#0e(tR) | tR ∈ domX(X )
}

.

Due to LX being an infinite subset of {0n#0n | n ≥ 0}, we can then obtain a contradic-
tion using the Pumping Lemma. In order to achieve this result, we use our convention
that M does not halt on the very first configuration (cf. Convention 12).

As X is deterministic, every word w ∈ VALC(X ) corresponds to exactly one tape
word tR ∈ domX(X ) and its accepting computation. This means that w has a pre-
fix that encodes the initial configuration (tL, tR, a, q1) with tL = 0ω and a = 0, and
its successor configuration (t ′L, t ′R,a′, qj ). Recall that, by Convention 12, δ(0, q1) =
(0,L, q2). Using the first equation in Observation 1, we conclude e(t ′L) = 0, e(t ′R) =
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Fig. 2 The GSM M that is used in the proof of Lemma 13. Every transition shows the string that is read to
the left of the | symbol, and the emitted string to the right. First, M erases ##0#0 and keeps the following
continuous block of 0s and the # after it. It then erases 0#0##0#0 and halves the number of 0s in the next
continuous block of 0s (using the loop between q4 and q5). After that block (as recognizable by #), all
following letters are erased. Note that M relies on the fact that it is only used on words w = wpw′ , where
wp of the form that is described in (1). For all such words, w′ is completely erased in the loop in q6

2 e(tR), and a′ = 0. This means that there are wp,w′ ∈ {0,#}∗ such that w = wpw′,
and

wp = ##0
︸︷︷︸

e(tL)

#0 0e(tR)
︸ ︷︷ ︸

e(tR)

#0
︸︷︷︸

a

# 0
︸︷︷︸

q1

##0
︸︷︷︸

e(t ′L)

#0 0e(t ′R)
︸ ︷︷ ︸

e(t ′R)

#0
︸︷︷︸

a′
# 02

︸︷︷︸

q2

##. (1)

We now define a GSM (generalized sequential machine, cf. Hopcroft and Ull-
man [22]) M to transform VALC(X ) into the language LX . Basically, generalized
sequential machines can be understood as an extension to nondeterministic finite au-
tomata. In addition to the usual behavior of an NFA, a GSM supplements every tran-
sition with an output; i.e., whenever a GSM reads a symbol, it also emits a string (as
specified by its transition relation). Thus, every path through a GSM also yields the
concatenation of the emitted strings as an output. Applying a GSM M to a word w

yields the language M(w) that consists of every string emitted by M along an accept-
ing path for w. Likewise, for every language L, M(L) := ⋃

w∈L M(w). As M maps
L to M(L), this process is called a GSM mapping. As regular languages are closed
under GSM mappings, the regularity of LX then follows from the assumed regularity
of VALC(X ).

The GSM M is defined by the transition diagram in Fig. 2. Compared to Hopcroft
and Ullman [22], this definition of M uses a slightly streamlined notation by allowing
M to read multiple letters in the transition between q1 and q2 and between q3 and q4.
By introducing additional states, one can easily convert M into a GSM that reads one
letter after the other.

It is easily seen that M(VALC(X )) = LX . By our initial assumption, VALC(X )

is regular, and as the class of regular languages is closed under GSM mappings, LX
must be regular as well. Also by our initial assumption, domX(X ) is infinite, which
means that LX is an infinite subset of {0n#0n | n ≥ 0}. Using the Pumping Lemma
(cf. Hopcroft and Ullman [22]), we can obtain the intended contradiction, as pumping
any sufficiently large word from LX would lead to a word that is not a subset of
0∗#0∗, or to a word 0m#0n with m = n. �

We are now ready to state the central part of our proof of Theorem 10:
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Theorem 14 For every extended Turing machine X , one can effectively construct an
extended regular expression αX ∈ RegEx(1) such that L(αX ) = INVALC(X ).

Proof Let X = (Q,q1, δ) be an extended Turing machine. Let ν ≥ 2 denote the num-
ber of states of X ; by Convention 12, Q = {q1, . . . , qν} for some ν ≥ 2. Intuitively,
each element w of INVALC(X ) contains at least one error that prevents w from being
an encoding of a valid computation of X . We distinguish two kinds of errors:

1. structural errors, where a word is not an encoding of any sequence (Ci)
n
i=1 over

configurations of X for some n, or the word is such an encoding, but C1 is not an
initial, or Cn is not a halting configuration, and

2. behavioral errors, where a word is an encoding of some sequence of configura-
tions (Ci)

n
i=0 of X , but there is an i < n such that Ci �X Ci+1 does not hold.

The extended regular expression αX is defined by

αX := αstruc | αbeha,

where the subexpressions αstruc and αbeha describe all structural and all behavioral
errors, respectively. Both expressions shall be defined later. Note that the variable
reference mechanism shall be used only for some extended regular expressions in
αbeha ; most of the encoding of INVALC(X ) can be achieved with proper regular ex-
pressions. In order to define αstruc, we take a short detour and consider the language

SX := (

##0+#0+#0{λ,0}#{

0i | 1 ≤ i ≤ ν
})+

##

∩ ##0#0+#0#0##{0,#}∗
∩ {0,#}∗#{

00a#0i## | a ∈ Γ, δ(a, qi) = HALT
}

.

Note that SX is exactly the set of all enc(C), where C = (Ci)
n
i=1 (with n ≥ 2) is

a sequence of configurations of X ; with C1 being an initial configuration (where
neither the left tape side nor the head cell contain any 1), and Cn being a halting
configuration (n ≥ 2 follows from our Convention 12 that X cannot halt in the first
step). In other words, all that distinguishes SX from VALC(X ) is that for SX , we do
not require that Ci �X Ci+1 holds for all i < ν. Thus, VALC(X ) ⊆ SX .

Furthermore, SX is a regular language, as it is obtained by an intersection of three
regular languages. Thus, {0,#}∗ \SX is also a regular language, and we define αstruc

to be any proper regular expression with L(αstruc) = {0,#}∗ \ SX . It is easy to see
that such an αstruc can be constructed effectively solely from X , for example by con-
structing a deterministic finite automaton A for SX , complementing A (by turning
accepting into non-accepting states, and vice versa), and converting the resulting non-
deterministic automaton into a proper regular expression. The DFA A depends only
on ν and the halting instructions occurring in δ and can be constructed effectively, as
can all the conversions that lead to αstruc (again, cf. Hopcroft and Ullman [22]). The
exact shape of αstruc is of no significance to this proof, as we require only that the
expression is a proper regular expression, and can be obtained effectively.

As mentioned above, VALC(X ) ⊆ S, and thus, INVALC(X ) ⊇ L(αstruc). Fur-
thermore, all elements of INVALC(X ) \ L(αstruc) are elements of SX and encode a
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sequence (Ci)
n
i=1 (n ≥ 2) of configurations of X such that Ci �X Ci+1 does not hold

for at least one i, 1 ≤ i < n.
Thus, INVALC(X ) \L(αstruc) contains exactly those words from SX that encode

a sequence of configurations with at least one behavioral error. Therefore, when defin-
ing αbeha to describe all these remaining errors, we can safely assume that the word
in question is an element of SX , as otherwise, it is already contained in L(αstruc).
This allows us to reason about the yet to be defined elements of INVALC(X ) purely
in terms of the execution of X , as the encoding is already provided by the structure
of SX , and to understand all errors that are yet to be defined as incorrect transitions
between configurations.

We distinguish three kinds of behavioral errors in the transition between a config-
uration C = (tL, tR, a, qi) and a configuration C′ = (t ′L, t ′R,a′, qj ), where C �X C′
does not hold:

1. state errors, where qj has a wrong value,
2. head errors, where a′ is wrong, and
3. tape side errors, where t ′L or t ′R contains an error (characterized by e(t ′L) or e(t ′R)

being different from the value that is expected according to Observation 1).

Each of these types of errors shall be handled by an expression αstate, αhead or αtape

(respectively, of course), and we define

αbeha := (αstate | αhead | αtape).

Basically, each of these expressions lists all combinations of a ∈ Γ and qi ∈ Q, and
describes the corresponding errors of the respective kind. The error that X continues
its computation after encountering a HALT-instruction is considered a state error and
handled in αstate (thus, we do not need to consider HALT-instructions in αhead and
αtape). We can already note that αhead and αstate are proper regular expressions, as
variables and the % metacharacter occur only in αtape (recall that, as αX ∈ RegEx(1),
we are only allowed to use % once in the whole expression).

State errors: We begin with the definition of αstate . For every a ∈ Γ and every i

with qi ∈ Q, we define a proper regular expression αstate
a,i , and let

αstate := (

αstate
0,1 | αstate

1,1 | αstate
0,2 | αstate

1,2 | · · · | αstate
0,ν | αstate

1,ν

)

,

where each αstate
a,i lists all ‘forbidden’ follower states for qi on a. More formally, if

δ(a, qi) = HALT, let

αstate
a,i := (0 | #)∗#00a#0i##0(0 | #)∗.

For all words in SX , this expression describes all cases where X reads a in state qi ,
and continues instead of halting. First, as mentioned above, we only need to consider
words from SX , as all other words are already matched by αstruc. Due to the defini-
tion of enc, every ## in words from SX marks the boundary between two encoded
configurations, and every string #0i immediately to the left of such a ## encodes
a state qi . Likewise, when continuing to the left, #00a encodes the head letter a.
Thus, whenever a word from SX contains a string #00a#0i##, there is a configu-
ration where X is in state qi and reads a. As δ(a, qi) = HALT, there may not be a
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succeeding configuration, and this definition of αstate
a,i describes all cases where X

continues after reading a in qi . Note that we do not need to deal with cases where
## is followed by yet another #, as such words are not contained in SX and, thus,
contained in L(αstruc).

For those cases where δ(a, qi) = (b,M,qj ) for some M ∈ {L,R}, some b ∈ Γ ,
and some qj ∈ Q, we define

αstate
a,i := (0 | #)∗#00a#0i##0+#0+#0+#αnot

j ##(0 | #)∗,

where αnot
j is any proper regular expression with

L
(

αnot
j

) = {

0k | 1 ≤ k ≤ ν and k = j
}

.

Again, we use #00a#0i## to identify an encoding of a configuration with head letter
a in state qi . To the right of ##, the subexpression 0+#0+#0+# is used to skip over
the encodings of t ′L, t ′R and a′, as we only deal with state errors (for now). By defi-
nition, the invalid successor states are exactly all states from Q \ {qj }, and these are
described by αnot

j . Thus, if a word from SX contains any state error when reading a

in qi , the whole word belongs to αstate
a,i , and αstate

a,i only matches such words.
Finally, if δ(a, qi) = (CHECKR, qj ) for some qj ∈ Q, we define

αstate
a,i := (

(0 | #)∗#0#00a#0i##0+#0+#0+#αnot
j ##(0 | #)∗

)

| ((0 | #)∗#00+#00a#0i##0+#0+#0+#αnot
i ##(0 | #)∗

)

,

where αnot
j is defined as in the preceding paragraph. This expression is slightly more

complicated, as it needs to distinguish two cases. Recall that the CHECKR-instruction
is to be interpreted as follows: If tR = 0ω, X is supposed to change into state qj ; and
if tR = 0ω, X is supposed to remain in qi , which will lead to an infinite loop. The first
line of the definition handles all cases where tR = 0ω, while the second handles those
where tR = 0ω. Again, both cases use #00a#0i## to identify configurations where
X is in state qi reading a.

In the first case, the string #0#00a#0i## contains the additional information that
e(tR) = 0, and thus, tR = 0ω. The correct successor state would be qj , and the ex-
pression skips over the encodings of t ′L, t ′R and a′ (using 0+#0+#0+#αnot

j #) and then
matches all states but qj .

Likewise, in the second case, #00+#00a#0i## matches all cases where (when
reading a in qi ) e(tR) > 0, which is equivalent to tR = 0ω. Again, the expression
skips over the encodings of t ′L, t ′R and a′ and uses αnot

i to identify all states that are
not the correct successor state qi .

Head errors: As αstate handles all cases where a halting configuration is followed
by any other configuration, we can restrict our definition of the various head errors to
cases where a non-halting instruction should be executed. We define

αhead := (

αhead
0,1 | αhead

1,1 | αhead
0,2 | αhead

1,2 | · · · | αhead
0,ν | αhead

1,ν

)

,

omitting those αhead
a,i with δ(a, qi) = HALT. For all a ∈ Γ , qi ∈ Q with δ(a, qi) =

HALT, we define αhead
a,i as follows.
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If δ(a, qi) = (b,L,qj ) (for some qj ∈ Q), let

αhead
a,i := (

(0 | #)∗#0(00)∗#0+#00a#0i##0+#0+#00#(0 | #)∗
)

| ((0 | #)∗#00(00)∗#0+#00a#0i##0+#0+#0#(0 | #)∗
)

.

According to the first equation in Observation 1, after a left movement of the head,
a′ = e(tL)mod 2 must hold. The two lines in the αhead

a,i distinguish the two possible
cases for e(tL)mod 2. In both cases, we once again identify a and qi in the encoding
using #00a#0i#. In the first line, the expression ignores e(tR) (using the 0+ to the left
of #00a#), and describes all cases where e(tL) is even (by the (00)∗ part of #0(00)∗).
To the right of ##, the expression skips t ′L and t ′R and finds a′ = 1, thus exactly those
cases where e(tL) is even, but a′ = 1. Likewise, the second line handles the cases
where e(tL) is odd, but a′ = 0. As a′ ∈ {0,1} is ensured by SX , these expressions
describe exactly the head errors after L-movements.

Likewise, if δ(a, qi) = (b,R,qj ) (for some qj ∈ Q), let

αhead
a,i := (

(0 | #)∗#0(00)∗#00a#0i##0+#0+#00#(0 | #)∗
)

| ((0 | #)∗#00(00)∗#00a#0i##0+#0+#0#(0 | #)∗
)

.

This expression uses the second equation in Observation 1, a′ = e(tR)mod 2, and
works like the expression for L-moves, the only difference being that it does not skip
over the encoding of tR .

Finally, if δ(a, qi) = CHECKR(qj ) for some qj ∈ Q, we define

αhead
a,i := (0 | #)∗#00a#0i##0+#0+#001−a#(0 | #)∗.

As CHECKR-instructions do not change the tape or the head symbol, we just need
to describe the case where a′ = a. The expression identifies an encoding of a config-
uration with head symbol a in state qi (again using ## as a navigation tool), skips
over t ′L and t ′R , and finds a head symbol a′ = 1 if a = 0, or a′ = 0 if a = 1. As a is
fixed within every αhead

a,i , we can use the shorthand notation 01−a without any formal
problems (as it is just another notation for 0 or λ, depending on a).

Tape side errors: As mentioned above, αtape shall be the only expression in this
proof that uses variables and variable bindings. In fact, as we operate in RegEx(1),
we are only allowed to use a single variable (which shall be called x), and bind it
only once in all of αtape.

In order to increase the readability, we shall define αtape using numerous subex-
pressions. As most of these expressions contain the binding operator %, simply con-
necting them with | (as we did with the proper regular expressions in the previous
cases) would force us out of RegEx(1). The main idea of this part of the proof is
that, in all these expressions, the binding occurs only in a prefix that they all have in
common. This allows us ‘factor out’ the variable binding, and to capture all tape side
errors without leaving RegEx(1). Therefore, we do not need to be worried about the
fact that most of the following definitions contain %x; as we shall see, the resulting
expression αtape contains only a single %x.
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In this section, we do not follow our usual order, as we discuss tape side errors for
L- and R-instructions after the tape side errors for CHECKR-instructions. If δ(a, qi)

is a CHECKR-instruction, we define

α
a,i
L,> := (0 | #)∗#0

(

0∗)%x#0+#00a#0i##0x0+#(0 | #)∗,

α
a,i
L,< := (0 | #)∗#0

(

0∗)%x0+#0+#00a#0i##0x#(0 | #)∗,

α
a,i
R,> := (0 | #)∗#0

(

0∗)%x#00a#0i##0+#0x0+#(0 | #)∗,

α
a,i
R,< := (0 | #)∗#0

(

0∗)%x0+#00a#0i##0+#0x#(0 | #)∗.

Intuitively, for M ∈ {L,R}, α
a,i
M,> is used to describe all successor configurations

(after reading a in qi ), where e(t ′M) > e(tM). Likewise, α
a,i
M,< handles all those cases

where e(t ′M) < e(tM). We discuss the correctness of these expressions using α
a,i
L,> as

an example, the three other expressions behave analogously. If α
a,i
L,> matches a word

from SX , x is bound to some word 0n with n ≥ 0 (due to (0∗)%x). As this 0n belongs
to the fourth block of 0s when counting from ## to the left, 0(0)n corresponds to
00e(tL) for a configuration (tL, tR, a, qi). Analogously, the subexpression ##0x0+#
matches the block that encodes e(t ′L). As ##00n0+# is expanded to some ##00n0m

(with m ≥ 1), we know that e(t ′L) = 0m0n > e(tL). Likewise, for every e(t ′L) > e(tL),

we can find an appropriate m ≥ 1 and expand 0+ to 0m. Thus, α
a,i
L,> matches exactly

those cases in which X reads a in qi , and the resulting e(t ′L) is larger than it should
be (i.e., larger than e(tL), as CHECKR-instructions do not change the tape).

The three other expressions behave analogously; but note that for α
a,i
R,> and α

a,i
R,<,

the subexpression 0(0∗)%x matches the coding of e(tR) instead of e(tL), as can be
seen by the location of ##.

Handling tape side errors for configurations that lead to a left or right movement of
the head follows the same basic principle, but is a little more complicated, as we have
to deal with changes to the tape. First, recall that the equations given in Observation 1
allow us to compute e(t ′L) and e(t ′R) from e(tL), e(tR) and δ(a, qi).

If δ(a, qi) ∈ (b,L,qj ) for some qj ∈ Q, we define

α
a,i
L,> := (0 | #)∗#0

(

0∗)%xx(0 | λ)#0+#00a#0i##0x0+#(0 | #)∗,

α
a,i
L,< := (0 | #)∗#0

(

0∗)%xx000∗#0+#00a#0i##0x#(0 | #)∗,

α
a,i
R,> := (0 | #)∗#0

(

0∗)%x#00a#0i##0+#0xx0b0+#(0 | #)∗,

α
a,i
R,< := (0 | #)∗#0

(

0∗)%x0+#00a#0i##0+#0xx0b#(0 | #)∗,

α
a,i
mod := (0 | #)∗#00a#0i##0+#0(00)∗01−b#(0 | #)∗.

These expressions fulfill the same purpose as their equally named counterparts we
defined to handle tape side errors for configurations in which a CHECKR-instruction
is executed, i.e., they describe the cases where e(t ′L) or e(t ′R) contains too much or too
little. For technical reasons that shall be explained a little later, we also use a proper
regular expression α

a,i
mod to describe the errors where e(tR) has the wrong parity.
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We begin with the expressions that handle errors on the left tape side. Ac-
cording to the first equation in Observation 1, the correct t ′L is characterized by
e(t ′L) = e(tL)div 2.

First, we consider α
a,i
L,>. As before, a and qi are matched in #00a#0i##. To the

left of that block, the expression skips the encoding of e(tR), and matches 00e(tL) with
the expression 0(0∗)%xx(0 | λ). Note that x is bound to 0e(tL)div 2, and 0e(tL)mod 2

matches 0 or λ in (0 | λ). To the right of ##, 0x0+ matches the encoding of 00e(t ′L).
It is easily seen that this describes exactly those cases where e(t ′L) > (e(tL)div 2), as
the 0+ is used to match all possible values of e(t ′L) − (e(tL)div 2).

Next, consider α
a,i
L,<. Note that if e(t ′L) = (e(tL)div 2), either e(tL) = 2 e(t ′L) or

e(tL) = 2 e(t ′L) + 1 holds. Thus, e(t ′L) is too small if and only if e(tL) > 2 e(t ′L) + 1,
which holds if and only if e(tL) = 2 e(t ′L) + 2 + m for some m ≥ 0. We can eas-

ily see that (for words from SX ), α
a,i
L,< matches exactly those encodings of succes-

sive configurations (tL, tR, a, qi) and (t ′L, tR, a′, qj ), where e(tL) = 2n + 2 + m and
e(t ′L) = n for some m,n ≥ 0, as x binds to 0n, and 0(0∗)%xx000∗ corresponds to
00n0n000m = 00e(tL). Thus, this expression handles exactly those cases where e(t ′L)

is too small.
Hence, α

a,i
L,> and α

a,i
L,< handle all errors on the left tape side (for given a, qi with

δ(a, qi) = (b,L,qj )). As we still need to handle errors on the right tape side, recall
that (according to the first equation in Observation 1), the correct right tape word t ′R
is characterized by e(t ′R) = 2 e(tR) + b.

It is easy to see that α
a,i
R,> handles exactly those words (from SX , with X reading a

in qi ) where e(t ′R) is too large. First, x is bound to 0e(tR). For t ′R , we have 0 xx0b0+,
and thus, e(t ′R) = 2 e(tR) + b + n, with n ≥ 1, where 0+ expresses the difference
between e(t ′R) and its intended value.

The final case, where t ′R is too small, is more complicated. We handle this case
with two expressions. First, note that e(t ′R)mod 2 = b must hold. The expression

α
a,i
mod describes those cases where this condition is not satisfied; i.e., X reads a in qi ,

but e(t ′R)mod 2 = b. Therefore, we can restrict our definition of α
a,i
R,< to those cases

where e(t ′R) and b have the same parity. In these cases, e(t ′R) = 2n+b for some n ≥ 0,
but e(tR) > n, which holds if and only if there is an m ≥ 0 with e(tR) = n + m + 1.
The words from SX that match α

a,i
R,< (but not α

a,i
mod ) are exactly those that satisfy

this condition: The variable x is bound to 0n, while 0+ corresponds to m + 1. Thus,
α

a,i
mod | α

a,i
R,< handles the cases where e(t ′R) is too small (but not exactly those cases,

even when restricted to SX , as α
a,i
mod also matches encodings of computations where

e(t ′R) is too large and of the wrong parity).
As we have seen, these five expressions describe all tape side errors occurring

during left movements of the head. Analogously, if δ(a, qi) ∈ (b,R,qj ) for some
qj ∈ Q, we define

α
a,i
R,> := (0 | #)∗#0

(

0∗)%xx(0 | λ)#00a#0i##0+#0x0+#(0 | #)∗,

α
a,i
R,< := (0 | #)∗#0

(

0∗)%xx000∗#00a#0i##0+#0x#(0 | #)∗,

α
a,i
L,> := (0 | #)∗#0

(

0∗)%x#0+#00a#0i##0xx0b0+#(0 | #)∗,
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α
a,i
L,< := (0 | #)∗#0

(

0∗)%x0+#0+#00a#0i##0xx0b#(0 | #)∗,

α
a,i
mod := (0 | #)∗#00a#0i##0(00)∗01−b#(0 | #)∗.

As already suggested by the similarities (of the equations in Observation 1, and of the
definitions of the five expressions), tape side errors for R-movements can be handled
analogously to tape side errors for L-movements. Thus, it can be easily verified that
these expressions describe exactly the tape side errors for all transitions where X
reads a in state qi (again assuming that we only consider words from SX ).

We can now combine all these expressions to define αtape. First, note that when-
ever it is defined, α

a,i
mod is a proper regular expression. We define

αmod := α
0,1
mod | α1,1

mod | α0,2
mod | α1,2

mod | · · · | α0,ν
mod | α1,ν

mod,

omitting those α
a,i
mod that are undefined (i.e., δ(a, qi) is a HALT- or a CHECKR-

instruction).
Next, note that all other expressions for tape side errors use exactly one variable

binding, and start with the common prefix (0 | #)∗#0(0∗)%x. For every α
a,i
M,c (with

M ∈ {L,R} and c ∈ {>,<}), let α̂
a,i
M,c be the (uniquely defined) extended regular

expression that satisfies

α
a,i
M,c = (0 | #)∗#0(0∗)%x α̂

a,i
M,c.

In other words, α̂
a,i
M,c is obtained from α

a,i
M,c by factoring out the prefix that contains

the variable binding. We then combine all this expressions into a single expression
αvar ∈ RegEx(1) by

αvar = (0 | #)∗#0
(

0∗)%x
(

α̂
0,1
L,> | α̂0,1

L,< | α̂0,1
R,> | α̂0,1

R,< | α̂1,1
L,> | α̂1,1

L,< | α̂1,1
R,> | α̂1,1

R,< |
. . .

|α̂0,ν
L,> | α̂0,ν

L,< | α̂0,ν
R,> | α̂0,ν

R,< | α̂1,ν
L,> | α̂1,ν

L,< | α̂1,ν
R,> | α̂1,ν

R,<

)

,

omitting all subexpressions that refer to (a, qi) where δ(a, qi) = HALT. Finally, we
set

αtape := αmod | αvar .

As discussed before, it is easy to see that L(αtape) is the union of all the languages that
are generated by the various regular expressions we defined to handle tape side errors,
and thus, L(αtape) contains exactly those words from SX that encode a tape side error
at some point of the encoded computation. Therefore, for every word w ∈ {0,#}∗,
w ∈ L(αX ) if and only if

w ∈ L(αstruc) ∪ L(αstate) ∪ L(αhead) ∪ L(αtape),

and this holds if and only if w contains a structural or behavioral error. Hence,
we observe that w ∈ L(αX ) if and only w ∈ INVALC(X ), and thereby, L(αX ) =
INVALC(X ).
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Finally, as this proof defines αX constructively, using only ν and δ, it also de-
scribes an effective procedure to compute αX from X . This concludes the proof of
Theorem 14. �

Theorem 10 follows almost immediately from Theorem 14, and Lemmas 11
and 13:

Proof of Theorem 10 We prove each of the claims by reduction from one of three
problems for extended Turing machines that are listed in Lemma 11 (these being
emptiness, finiteness, and the complement of finiteness). Each reduction uses the
same construction: Given an extended Turing machine X , we construct an extended
regular expression αX ∈ RegEx(1) with INVALC(X ) = L(αX ) (this is possible ac-
cording to Theorem 14).

Then domX(X ) = ∅ if and only if VALC(X ) = ∅, which holds if and only if
INVALC(X ) = {0,#}∗, which holds if and only if L(αX ) = {0,#}∗, which holds
if and only if L(α) ⊇ {0,#}∗. Thus, any algorithm that decides universality for
RegEx(1) could be used to decide the emptiness of the domain for extended Tur-
ing machines, which is undecidable according to Lemma 11.

Furthermore, domX(X ) is finite if and only if VALC(X ) is finite, which holds if
and only if VALC(X ) is regular (according to Lemma 13), which holds if and only
if INVALC(X ) is regular (as the class of regular languages is closed under comple-
mentation), which holds if and only if L(αX ) is regular. Hence, semi-decidability
of regularity for RegEx(1) would lead to semi-decidability of finiteness of domX, a
problem that is not semi-decidable (according to Lemma 11).

Likewise, as domX(X ) is finite if and only if L(αX ) is regular, domX(X ) is infinite
if and only if L(αX ) is not regular. Therefore, semi-decidability of non-regularity for
RegEx(1) contradicts the fact that the complement of finiteness of domX is not semi-
decidable (see Lemma 11).

As INVALC(X ) is cofinite if and only if INVALC(X ) is regular, the results for
regularity and non-regularity also show that neither cofiniteness nor non-cofiniteness
is semi-decidable for RegEx(1). �

Those who are interested in the exact position of these problems in the arithmetical
hierarchy (cf. Odifreddi [28]) can conclude that universality is Π0

1 -complete, while
regularity and co-finiteness are Σ0

2 -complete. For each of these problems, hardness
for the respective class follows from the respective completeness of each of the prob-
lems on extended Turing machines used in the proof of Theorem 10 (see the remark
after the proof of Lemma 11). Membership in the respective level of the hierarchy
is easily proved using the appropriate representation for that class; e.g., universality
of some L(α) can be expressed as ∀w ∈ Σ∗ : w ∈ L(α). As the membership prob-
lem for extended regular expressions is decidable, this proves that universality is in
Π0

1 . Likewise, non-regularity can be expressed as ∀β ∈ RegEx(0) : ∃w ∈ Σ∗ : [w ∈
L(α) ⇔ w /∈ L(β)], which shows that non-regularity is in Π0

2 . Actually, under a strict
interpretation of the definition given by Odifreddi [28], we would need to quantify
over natural numbers; but as there are computable bijections between N and Σ∗, as
well as between N and RegEx(0), we can omit this technical detail.
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4 Consequences of Theorem 10

In Sect. 3, we introduced and proved Theorem 10, which states that for RegEx(1),
universality is not semi-decidable; and regularity and cofiniteness are neither semi-
decidable, nor co-semi-decidable.

Of course, all these undecidability results also hold for every RegEx(k) with k ≥
2, and for the whole class RegEx of extended regular expressions (as RegEx(1) is
contained in all these classes).

Theorem 10 also demonstrates that inclusion and equivalence are undecidable for
RegEx(1) (and, hence, all of RegEx). We also see, as an immediate consequence to
Theorem 10, that there is no algorithm that minimizes the number of variables in an
extended regular expression, as such an algorithm could be used to decide regularity.

Note that in the proof of Theorem 10, the single variable x is bound only to words
that match the expression 0∗. This shows that the “negative” properties of extended
regular expressions we derive from Theorem 10 hold even if we restrict RegEx(1)

by requiring that the variable can only be bound to a very restricted proper regular
expression. Furthermore, the proof also applies to the extension of proper regular
expressions through numerical parameters that is proposed by Della Penna et al. [14].
We discuss an adaption to another model in Sect. 4.2.

In addition to this, the construction from Theorem 14 (which we used to prove
Theorem 10, and consequently, all other results in the present paper) can be refined
to also include bounds on the number of occurrences of the single variable—see
Sect. 4.1.

From the undecidability of universality, we can immediately conclude that
RegEx(1) cannot be minimized effectively:

Corollary 15 Let c be a complexity measure for RegEx(1). Then there is no recursive
function mc that, given an expression α ∈ RegEx(1), returns an expression mc(α) ∈
RegEx(1) with 1. L(mc(α)) = L(α), and 2. c(β) ≥ c(mc(α)) for every β ∈ RegEx(1)

with L(β) = L(α).

Proof Let c be a complexity measure for RegEx(1) and assume there is such a func-
tion mc . Let Σ be any finite alphabet with |Σ | ≥ 2, and let

Uc := {

mc(α) | L(α) = Σ∗}.

By definition of c, Uc is a finite set, and therefore recursive. As L(α) = Σ∗ if and
only if mc(α) ∈ Uc, mc and the characteristic function of Uc can be used to decide
universality for RegEx(1), a problem that is not decidable (cf. Theorem 10). This is
a contradiction. �

Following the classic proof method of Hartmanis [19] (cf. Kutrib [24]), we can
use the fact that non-regularity is not semi-decidable to obtain a result on the relative
succinctness of extended and proper regular expressions:

Corollary 16 There are non-recursive tradeoffs between RegEx(1) and RegEx(0).
This holds even if we consider only the tradeoffs between CoFRegEx(1) and
CoFRegEx(0), using a complexity measure for RegEx(1).
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Proof The result for RegEx(1) and RegEx(0) follows immediately from Theorem 10
and Theorem 4 in Hartmanis [19]: As non-regularity is not semi-decidable for
RegEx(1), the tradeoff between RegEx(1) and RegEx(0) is non-recursive (see also
Kutrib [24] for more detailed explanations than in Hartmanis [19]).

Applied to RegEx(1) and RegEx(0), Hartmanis’ proof scheme gives the following
proof: As non-regularity is not semi-decidable for RegEx(1), the set

Δ := {

α ∈ RegEx(1) | L(α) is not regular
}

is not partially recursive. Now assume that, for a given complexity measure c, the
tradeoff from RegEx(1) to RegEx(0) is recursively bounded by some recursive func-
tion fc. We can then use fc to construct a semi-decision procedure for Δ as follows:
Given some α ∈ RegEx(1), we compute n := fc(c(α)), and let

Fn := {

β ∈ RegEx(0) | c(β) ≤ n
}

.

As c is a complexity measure, Fn is finite, and we can effectively list all its elements
(as we can effectively list all β ∈ RegEx(1) with c(β) ≤ n, and we can decide whether
β ∈ RegEx(0) by searching β for occurrences of variables or the metacharacter %).
For each β ∈ Fn, we then semi-decide L(β) = L(α) by checking w ∈ L(α) and w ∈
L(β) for all w ∈ Σ∗ successively.

If L(α) is not regular, then for every β ∈ Fn, we find some wβ in finite time that
proves L(β) = L(α) (as wβ is not contained in one of the two languages, but in
the other), and we can proceed to the next expression in Fn. If L(α) is regular, and
fc is a bound on the tradeoff from RegEx(1) to RegEx(0), there is a β ∈ Fn with
L(β) = L(α), and the procedure will never terminate. If no such β can be found,
we know that α ∈ Δ, and the procedure can return 1. Thus, we can construct a semi-
decision procedure for Δ, which contradicts the established fact that Δ is not partially
recursive.

Likewise, we can obtain the same result if we restrict the claim to expressions from
CoFRegEx(1) and CoFRegEx(0). According to Theorem 10, non-cofiniteness for
RegEx(1) is not semi-decidable. Thus, given a complexity measure c for RegEx(1),
a bound fc on the tradeoff from CoFRegEx(1) to CoFRegEx(0) could be used to give
a semi-decision algorithm for the set

ΔC := {

α ∈ RegEx(1) | L(α) is not cofinite
}

.

First, note that the use of a complexity measure for RegEx(1) instead of CoFRegEx(1)

is intentional and serves to avoid complications with the fact that cofiniteness is
not decidable for RegEx(1) (recall Theorem 10). We can construct a semi-decision
procedure for ΔC from fc using almost the same reasoning as above: Given an
α ∈ RegEx(1), we define n := f (c(α)), and let

FC,n := {

β ∈ RegEx(0) | c(β) ≤ n,L(β) is cofinite
}

.

Enumerating all elements of FC,n is slightly more difficult than enumerating all ele-
ments of Fn (see above), as we also need to decide whether L(β) is cofinite for ev-
ery β ∈ Fn. Luckily, this is not a problem, as cofiniteness is decidable for RegEx(0)
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(e.g., given a β ∈ RegEx(0), one could convert β into an equivalent DFA, compute its
complement, and check the resulting DFA for loops that contain a final state and are
reachable from the initial state). From here on, the proof continues as above, mutatis
mutandis. �

Thus, no matter which complexity measure and which computable upper bound
we assume for the tradeoff, there is always a regular language L that can be described
by an extended regular expression from RegEx(1) so much more succinctly that every
proper regular expression for L has to break that bound. Obviously, this has also im-
plications for the complexity of matching regular expressions: Although membership
is “easier” for proper regular expressions than for extended regular expressions, there
are regular languages that can be expressed far more efficiently through extended
regular expressions than through proper regular expressions.

Recall Example 1, where we consider extended regular expressions that de-
scribe finite languages. In this restricted case, there exists an effective conversion
procedure—hence, the tradeoffs are recursive:

Lemma 17 For every k ≥ 1, the tradeoff between FRegEx(k) and FRegEx(0) is
recursive (even when considering complexity measures for RegEx(k) instead of
FRegEx(k)).

Proof Let k ≥ 1, and let c be a complexity measure for RegEx(k). By defini-
tion, no α ∈ FRegEx(k) contains a Kleene star (or Kleene plus). Thus, given an
α ∈ FRegEx(k), we can effectively compute the finitely many words in L(α) by
exhausting all possible combinations of choices for each alternation symbol in α,
and computing the corresponding word for each combination, handling all bindings
accordingly.

For example, the expression α := (a | b)(a | b)%x(a | b)%y x y contains three
alternation symbols, totaling 23 = 8 possible combinations of choices, each corre-
sponding to one of the words in L(α). More generally, if α ∈ FRegEx(k) contains
n alternation symbols, L(α) contains at most 2n words w1, . . . ,wi (i ≤ 2n), and we
can compute an α̂ ∈ FRegEx(0) with L(α̂) = L(α) simply by computing these words
w1, . . . ,wi and defining α̂ := w1 | · · · | wi .

Fixing an effective procedure that computes α̂, we can straightforwardly define
the recursive bound fc : N → N as follows: For n ≥ 0, we define

Fn := {

α̂ ∈ FRegEx(0) | α ∈ FRegEx(k), c(α) = n
}

.

By definition of complexity measures, every Fn is finite, and given any n, we can
effectively list all expressions from Fn (again, as c is a complexity measure, and
membership in FRegEx(k) is straightforwardly decidable for RegEx(k)). For any
n ≥ 0, we define

fc(n) := max
{

c(α̂) | α̂ ∈ Fn

}

.

As every Fn can be listed effectively, every Fn is finite, and as c(α̂) can be computed
effectively, fn is a recursive function. Furthermore, fc is a bound on the tradeoff from
FRegEx(k + 1) to FRegEx(k) by definition. �
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Although the class of RegEx-languages is not closed under complementation
(Lemma 2 in Câmpeanu et al. [9]), there are languages L such that both L and its
complement Σ∗ \ L are RegEx-languages (e.g., all regular languages). Combining
Lemma 17 and Corollary 16, we can straightforwardly conclude that there are cases
where it is far more efficient to describe the complement of a RegEx(1)-language, as
opposed to the language itself:

Corollary 18 Let Σ be a finite alphabet. Let c be a complexity measure for
RegEx(1). For any recursive function fc : N → N, there exists an α ∈ RegEx(1)

such that Σ∗ \ L(α) is a RegEx(1)-language, and for every β ∈ RegEx(1) with
L(β) = Σ∗ \ L(α), c(β) ≥ fc(c(α)).

Proof Assume to the contrary that, for some complexity measure c for RegEx(1),
there is a recursive function f1 : N → N such that for every α ∈ RegEx(1), if
Σ∗ \ L(α) is a RegEx(1)-language, there is a β ∈ RegEx(1) with L(β) = Σ∗ \ L(α)

and c(β) ≤ f1(c(α)) (in other words, f1 is a recursive bound on the blowup of com-
plementation for RegEx(1)).

We can now use f1 and Lemma 17 to obtain a recursive bound on the tradeoff
between CoFRegEx(1) and CoFRegEx(0), which contradicts Corollary 16.

First, note that according to Lemma 17, there is a recursive bound f2 : N → N on
the tradeoff between FRegEx(1) and FRegEx(0).

Furthermore, we can easily prove that there is a recursive bound f3 : N → N on the
blowup that occurs in the complementation for FRegEx(1), as f3 might be computed
as follows: For every input n, there are finitely many α ∈ RegEx(0) with c(α) = n.
Finiteness for RegEx(0) is obviously decidable; thus, we can effectively construct the
finite set

Fn := {

α ∈ FRegEx(0) | c(α) = n
}

.

For every α ∈ Fn, we (effectively) construct an α ∈ RegEx(0) with L(α) = Σ∗ \
L(α), for example, by converting α into a DFA, complementing it, and converting
the resulting DFA into a proper regular expression, all using the standard techniques
as described in Hopcroft and Ullman [22]. We then check all β ∈ RegEx(0), ordered
by growing size of c(β), until we find the smallest β (w.r.t. c) with L(β) = Σ∗ \L(α),
and refer to this β as α̃ (again, this is possible due to the decidability of equivalence
for RegEx(0), cf. Hopcroft and Ullman [22]), and define

Cn := {α̃n | αn ∈ Fn}.

Finally, we define f3(n) to be the maximum of all c(β̃) with β ∈ Cn. By definition,
f3 is recursive, and serves as an upper bound for the blowup that occurs when com-
plementing expressions from FRegEx(0).

Now, consider the function f : N → N that is defined by f (n) := f3(f2(f1(n)))

for every n ∈ N. We shall see that our assumption implies that f is a recursive bound
on the tradeoff between CoFRegEx(1) and CoFRegEx(0), which contradicts Corol-
lary 16. An illustration of this argument can be found in Fig. 3.
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Fig. 3 An illustration of the
functions that are used in the
proof of Corollary 18

First, observe that f is a recursive function, as f1, f2, and f3 are recursive func-
tions. Due to Corollary 16, there is an αf c ∈ CoFRegEx(1) such that L(αf c) is regu-
lar, but for every β ∈ RegEx(0) (and hence, β ∈ CoFRegEx(0)) with L(αf c) = L(β),
c(β) > f (c(αf c)).

By our assumption, there is an αf c ∈ RegEx(1) with L(αf c) = Σ∗ \ L(αf c) and
c(αf c) ≤ f1(c(αf c)). As αf c ∈ CoFRegEx(1), L(αf c) is cofinite, hence, L(αf c) is
finite, and αf c ∈ FRegEx(1).

According to Lemma 17, there is a βf c ∈ FRegEx(0) with L(βf c) = L(αf c) =
Σ∗ \ L(αf c), and c(βf c) ≤ f2(c(αf c)).

Finally, as explained above, there is a βf c ∈ CoFRegEx(0) with L(βf c) = Σ∗ \
(βf c) = L(αf c) and

c(βf c) ≤ f3
(

c(βf c)
)

≤ f3
(

f2
(

c(αf c)
))

≤ f3
(

f2
(

f1
(

c(αf c)
)))

= f
(

c(αf c)
)

.

This contradicts our choice of αf c and concludes the proof. �

With some additional technical effort, we can extend the previous results on un-
decidability of RegEx(l)-ity and on tradeoffs between RegEx(k) and RegEx(0) to
arbitrary levels of the hierarchy of RegEx(k)-languages:

Lemma 19 Let k ≥ 1. For RegEx(k + 1), RegEx(k)-ity is neither semi-decidable,
nor co-semi-decidable.

Proof We adapt the construction from the proof of Theorem 14 to the larger alpha-
bet Σk := {0,#,$,a1,b1, . . . ,ak,bk}, where 0, #, $, all ai , and all bi are pairwise
distinct letters. For every i with 1 ≤ i ≤ k, let Σi := {ai ,bi}. Given an extended
Turing machine X , we construct the extended regular expression αX ∈ RegEx(1) as
in the proof of Theorem 14. For every i with 1 ≤ i ≤ k, we define an expression
αi ∈ RegEx(1) by

αi := (

(ai | bi )
∗)%xixi,

where every xi is distinct from the variable x in αX , and from all xj with j = i.
Finally, we define αX ,k ∈ RegEx(k + 1) by

αX ,k := αX $α1$ · · ·$αk
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= αX $
(

(a1 | b1)
+)

%x1x1$ · · ·$
(

(ak | bk)
+)

%xkxk.

Thus, αk,X ∈ RegEx(k + 1). It suffices to show that L(αk,X ) is a RegEx(k)-language
if and only if L(αX ) is regular, as neither regularity nor non-regularity is semi-
decidable for RegEx(1), cf. Theorem 10.

The if direction is obvious: If L(αX ) is regular, we can (non-effectively) replace
that part of αX ,k with an appropriate proper regular expression, and obtain an expres-
sion from RegEx(k) for L(αX ,k).

For the only if direction, first note that, for every i, L(αi) = {ww | w ∈ {ai, bi}+},
a language that is well known to be not regular (as can be easily verified with
the Pumping Lemma, cf. Hopcroft and Ullman [22]). Likewise, note that Lk :=
L(α1$ · · ·$αk) is not a RegEx(k − 1) language, as can be seen by the following line
of reasoning: Assume there is an α ∈ RegEx(k − 1) with L(α) = Lk . By definition,
α contains at most k − 1 different variables. Note that, whenever α is matched to a
w ∈ Lk , every variable x in α that is bound and also referenced when matching w

contains only terminals from a single set Σi ∪{$}, as Lk ⊂ {a1,b1}+$ · · ·${ak,bk}+,
and repeating any string that contains some aj or bj with j = i would break this
structure. As every L(αi) needs to use at least one variable, and no variable that is
matched to a letter other than $ can cross the boundaries between the different L(αi),
there can be no α ∈ RegEx(k − 1) with L(α) = Lk .

If L(αX ) is not regular, this reasoning extends to L(αk,X ) and RegEx(k), as we
need at least one variable to generate L(αX ), and k variables for Lk , for a total of
k + 1 variables.

Thus, L(αX ,k) is a RegEx(k)-language if and only if αX is regular. As seen in the
proof of Theorem 10, this proves that for RegEx(k), RegEx(k)-ity is neither semi-
decidable, nor co-semi-decidable. �

Non-recursive tradeoffs between RegEx(k + 1) and RegEx(k) for every k ≥ 1
follow immediately, using Hartmanis’ proof technique as in the proof of Corollary 16.

Although the proof of Lemma 19 uses an unbounded terminal alphabet Σk :=
{0,#,$,a1,b1, . . . ,ak,bk}, the construction can be adapted to an alphabet Σ of
constant size in the following way. First, let Σ := {0,#,$,a,b,c}, and define a mor-
phism hk : Σ∗

k → Σ∗ by h(ai ) := caic and h(bi ) := cbic for all 1 ≤ i ≤ k, and
h(a) = a for all a ∈ {0,#,$}. Instead of the languages L(αX ,k), we then consider the
languages hk(L(αX ,k)). The reasoning then proceeds as in the original proof, with
the sole exception that, instead of arguing that the variables must contain character-
istic letters ai and bi , they now contain characteristic segments caic and cbic.

Using the same approach, the proof can be adapted to binary terminal alphabets.

4.1 A Technical Note on Bounded Occurrences of Variables

Although the extended regular expressions αX that follow from the construction in
the proof of Theorem 14 use only one variable x, there is no bound on the number of
occurrences of x in αX . In fact, the number of occurrences grows with the number
of fields in the transition table δ of X , and limiting that number would not allow to
simulate infinitely many extended Turing machines, which is required to obtain the
results in the present paper.



Theory Comput Syst (2013) 53:159–193 189

Nonetheless, similar to the proofs for the undecidability of inclusion for pattern
languages in Bremer and Freydenberger [6], these limitations can be overcome by
using a single universal Turing machine: First, let ψ : N × N → N be a universal par-
tially recursive function, i.e., for every partially recursive function φ : N → N, there
is an m ≥ 0 such that ψ(m,n) = φ(n) for every n ≥ 0. Note that it is an elementary
fact of recursion theory that such a function (which is often called a numbering) exists
and can be defined constructively (cf. Cutland [13], Odifreddi [28]). For every m ≥ 0,
we define the function ψm : N → N by ψm(n) := ψ(m,n) for all n ≥ 0. Furthermore,
we define the function

dom(ψm) := {

n ∈ N | ψm(n) is defined
}

,

from which we derive the index sets

Eψ := {

m | dom(ψm) is empty
}

, and

Fψ := {

m | dom(ψm) is finite
}

.

As in Lemma 11, one can use Rice’s Theorem and its extension (again, cf. [13, 28]) to
show that Eψ is not semi-decidable, and Fψ is neither semi-decidable, nor co-semi-
decidable.

Moreover, there is a Turing machine U over some tape alphabet Γ̂ ⊆ {0,�,$,a,b}
such that

domT(U ) = {

am0bn | ψ(m,n) is defined
}

.

Again, this machine can be defined constructively (e.g. from the constructive defini-
tion of ψ ). Using the same construction as in the proof of Lemma 11, we can build
an extended Turing machine Û = (Q,q1, δ) that simulates U , using an appropriate
injective function bk : Γ̂ → Γ k with bk(0) = 0k , for some appropriate k ≥ 3. Instead
of constructing a single extended regular expression αÛ , we construct an expression
αÛ ,m

for every natural number m, using a slight modification of the proof of The-
orem 14. Instead of allowing arbitrary contents for the right tape word in the initial
configuration (as can be seen in the second line of the definition of the language SX ),
we define

SÛ ,m
:= (

##0+#0+#0{λ,0}#{

0i | 1 ≤ i ≤ ν
})+

##

∩ ##0#0e(bk(�am0))
(

02(2+m)k )+
#0#0##{0,#}∗

∩ {0,#}∗#{

00a#0i## | a ∈ Γ̂ , δ(a, qi) = HALT
}

.

The only difference to the definition of SX is the second line. Evidently, the new defi-
nition allows exactly those initial right tape sides tR for which e(tR) = e(bk(�am0))+
i(2(2+m)k) for some i ≥ 0. As |bk(�am0)| = (2 + m)k, these are exactly those tR that
have bk(�am0) as a prefix.

The construction of αÛ ,m
then uses SÛ ,m

to construct αstruc, and proceeds as in
the original proof. Thus, {0,#}∗ \ L(αÛ ,m

) is exactly that set that corresponds to the
valid computations of U on some input that starts with am0. Furthermore, the number
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of occurrences of x in every αÛ ,m
depends only on δ, not on m, which means that we

can bound that number.
Hence, given an m ∈ N, we can effectively construct an expression αÛ ,m

such that
the language L(αÛ ,m

) is

– universal iff dom(ψm) is empty iff m ∈ Eψ ,
– regular iff dom(ψm) is finite iff m ∈ Fψ ,
– cofinite iff dom(ψm) is finite iff m ∈ Fψ ,

which holds following the same reasoning as for L(αX ). Hence, a procedure that
decides one of these problems for RegEx(1) with a bounded number of variable oc-
currences to some degree can be effectively transformed into procedure that decides
one of the index sets Eψ and Fψ to the same degree.

As mentioned above, Eψ and Fψ are not semi-decidable, and Fψ is also not co-
semi-decidable. Hence, we arrive at the same conclusions as in Theorem 10 and
Corollaries 16 and 18 for RegEx(1) with a bounded number of occurrences of the
single variable.

4.2 A Note on H-Systems

As mentioned multiple times above, Theorem 14—and hence, Theorem 10 and the
resulting consequences—can be easily adapted to various other models that use sim-
ilar repetition mechanisms. One of these models are the so-called H-expressions by
Bordihn et al. [5]. These H-expressions are based on H-systems, which were intro-
duced by Albert and Wegner [4].

In fact, instead of H-expressions, the construction can be implemented using these
(less expressive) H-systems. An H-system is a 4-tuple H = (X,Σ,L1, φ), where
X and Σ are finite alphabets (the meta alphabet and the terminal alphabet, respec-
tively), L1 ⊆ X∗ is called the meta language, and φ : X → P (Σ∗) is a function that
assigns to each x ∈ X a language φ(x) = Lx ⊆ Σ∗. The language of H is defined as

L(H) := {

h(w) | w ∈ L1, h is a homomorphism with h(x) ∈ φ(x) for all x ∈ X
}

.

Less formally, every letter x from the meta alphabet is replaced uniformly with a
word from φ(x).

Furthermore, if L1 and L2 are classes of languages, H(L1, L2) denotes the class
of H-system languages of L1 and L2, i.e., the class of all languages that are generated
by H-systems that use a language L1 ∈ L1 as metalanguage, and have φ(x) ∈ L2 for
every x in their meta alphabet X.

It is easy to see that, for every extended Turing machine X , the expressions αX that
are constructed in the proof of Theorem 14 can be easily converted into an H-system
H = (XH ,ΣH ,L1, φ) with L(H) = INVALC(X ) and L(H) ∈ H(REG,REG) by
proceeding as follows.

First, we select XH := {0,#, x} and ΣH := {0,#}. We then replace the single
occurrence of (0∗)%x in αX with x, and obtain a proper regular expression α̂X over
the alphabet ΣH . This allows us to choose L1 := L(α̂X ), while L1 ∈ REG holds.
Next, we define φ(0) = {0}, φ(#) = {#}, and φ(x) := {0}∗. Hence, L(H) = L(αX ) =
INVALC(X ) follows immediately.
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Thus, we can adapt these proofs to the class H(REG,REG) of H-system lan-
guages, and conclude the same levels of undecidability of the respective decision
problems for H(REG,REG). As H(REG,REG) is a subclass of the class of H-
expression languages, this also proves that equivalence for H-expression languages is
undecidable, a problem that was explicitly mentioned as open by Bordihn et al. [5].

5 Conclusions

The present paper shows that extending regular expressions with only a single vari-
able already leads to an immense increase in succinctness and expressive power. The
good part of this news is that in certain applications, using the right extended regular
expression instead of a proper regular expression can lead to far more efficient run-
ning times, even with the same matching engine. The bad part of this news is that
this additional power can only be harnessed in full if one is able to solve undecidable
problems, which greatly diminishes the usefulness of extended regular expressions
as more efficient alternative to proper regular expressions.

Due to underlying undecidable problems, some questions of designing optimal
extended regular expressions are of comparable difficulty to designing optimal pro-
grams. For applied computer scientists, it could be worthwhile to develop heuristics
and good practices to identify cases where the non-conventional use of extended reg-
ular expressions might offer unexpected speed advantages. As regular expressions are
often precompiled, this heuristics might be employed as compiler-level optimization
features, comparable to the compilation of programming languages.

For theoretical computer scientists, the results in the present paper highlight the
need for appropriate restrictions other than the number of variables; restrictions that
lead to large and natural subclasses with decidable decision problems. One possible
approach that does not extend the expressive power of proper regular expressions
beyond regular languages would be a restriction of the length of the words on which
variables can be bound. As the results in the present paper show, any extension of
proper regular expressions that includes some kind of repetition operator needs to be
approached with utmost care.

On the other hand, the author wishes to point out that the enormous relative suc-
cinctness of extended regular expressions should be considered an advantage, es-
pecially as the existence of an effective minimization procedure for proper regular
expressions is probably of little practical use, considering the fact that there is no effi-
cient minimization procedure (unless P = PSPACE). In particular, the author is con-
vinced that the results on descriptional complexity emphasize the potential usefulness
of large and natural subclasses of RegEx for which the membership problem can be
decided efficiently, as opposed to the NP-completeness of the general problem. One
possible example of such restrictions can be found in Reidenbach and Schmid [30].
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