
Theory Comput Syst (2012) 50:721–738
DOI 10.1007/s00224-011-9378-8

Linear-Time Algorithm for the Paired-Domination
Problem in Convex Bipartite Graphs

Ruo-Wei Hung

Published online: 3 December 2011
© Springer Science+Business Media, LLC 2011

Abstract A bipartite graph G = (U,W,E) with vertex set V = U ∪ W is convex if
there exists an ordering of the vertices of W such that for each u ∈ U , the neigh-
bors of u are consecutive in W . A compact representation of a convex bipartite
graph for specifying such an ordering can be computed in O(|V | + |E|) time. The
paired-domination problem on bipartite graphs has been shown to be NP-complete.
The complexity of the paired-domination problem on convex bipartite graphs has re-
mained unknown. In this paper, we present an O(|V |) time algorithm to solve the
paired-domination problem on convex bipartite graphs given a compact representa-
tion. As a byproduct, we show that our algorithm can be directly applied to solve the
total domination problem on convex bipartite graphs in the same time bound.

Keywords Graph algorithms · Linear-time algorithms · Paired-domination · Total
domination · Convex bipartite graphs

1 Introduction

All graphs considered in this paper are finite and undirected, without loops or multiple
edges. For any two sets X and Y , let X−Y denote the set of elements of X that are not
in Y . Let G = (V ,E) be a graph with vertex set V and edge set E. Throughout this
paper, let n and m denote the numbers of vertices and edges of graph G, respectively.
Let v be a vertex of V and let D be a subset of V . The open neighborhood N(v)

A preliminary version of this paper has appeared in: Proceedings of the International
MultiConference of Engineers and Computer Scientists 2010 (IMECS’2010), Hong Kong, vol. I,
pp. 365–369 (2010) [24].

R.-W. Hung (�)
Department of Computer Science and Information Engineering, Chaoyang University of Technology,
Wufeng, Taichung 41349, Taiwan, ROC
e-mail: rwhung@cyut.edu.tw

mailto:rwhung@cyut.edu.tw

722 Theory Comput Syst (2012) 50:721–738

of the vertex v consists of the set of vertices adjacent to v, that is, N(v) = {w ∈ V |
(v,w) ∈ E}, and the closed neighborhood of v is N [v] = N(v) ∪ {v}. The open
neighborhood N(D) is defined to be ∪v∈DN(v), and the closed neighborhood of D

is N [D] = N(D)∪D. The set D dominates vertex v if either v ∈ D or N(v)∩D �= ∅.
If D dominates all vertices in a subset S of V , then we say that D dominates S. The
set D is called a dominating set of G if and only if D dominates V , that is, every
vertex in V − D is adjacent to a vertex in D. The domination number γ (G) equals
the minimum cardinality of a dominating set of G. A dominating set D is called total
if N(v) ∩ D �= ∅ for all v ∈ D, that is, the subgraph of G induced by D contains no
isolated vertex. The minimum cardinality of a total dominating set of G is called the
total domination number γt (G). A minimum dominating set of G is a dominating set
with cardinality γ (G). A minimum total dominating set of G is a total dominating
set with cardinality γt (G). The domination problem is to find a minimum dominating
set of G. The total domination problem is defined analogously. These two problems
are known to be NP-complete for general graphs.

Variations of the domination problem seek to find a minimum dominating set with
some additional properties, e.g., to be independent or to induce a acyclic graph. These
problems arise in a number of distributed network applications, where the problem is
to locate the smallest number of centers in networks such that every vertex is nearby
at least one center. Domination and its variations in graphs have been thoroughly
studied, and the literature on this subject has been surveyed and detailed in two books
[21, 22]. In this paper, we will study a variant of the domination problem, namely the
paired-domination problem.

A set S ⊆ V is a paired-dominating set of G if S dominates V and the subgraph
G[S] induced by S contains a perfect matching. That is, a paired-dominating set S

with matching M is a dominating set S = {v1, v2, . . . , v2k−1, v2k} with independent
edge set M = {e1, e2, . . . , ek} where each edge ei is incident to two vertices of S, that
is, M is a perfect matching in G[S]. Two vertices joined by an edge of M are said
to be paired. A vertex v is called a paired-vertex of a matching if there is an edge
in it incident to v. Every graph without isolated vertices has a paired-dominating set,
since the paired-vertices of any maximal matching form such a set [20]. The paired-
domination number γp(G) of a graph G equals the minimum cardinality of a paired-
dominating set of G. A minimum paired-dominating set of G is a paired-dominating
set with cardinality γp(G). The paired-domination problem is to find a minimum
paired-dominating set of G. For example, for the three-dimensional hypercube graph
Q3 shown in Fig. 1, S = {v1, v5, v4, v8} is a paired-dominating set of Q3 since S is
a dominating set and the subgraph induced by S contains a perfect matching M =
{(v1, v5), (v4, v8)} where v1 and v5 (v4 and v8) form a pair, and γp(Q3) = 4.

Paired-domination was introduced by Haynes and Slater [20] with the following
application in mind. If, in a graph G, we consider each vertex as the possible loca-
tion for a guard capable of protecting every vertex adjacent to it, then “domination”
requires every vertex to be protected. In paired-domination, each guard is assigned
another adjacent guard, and they are designed to provide a backup for each other.
The problem of determining the paired-domination number γp(G) of an arbitrary
graph G has been known to be NP-complete [20]. The paired-domination problem is
still NP-complete in some special classes of graphs such as bipartite graphs, chordal

Theory Comput Syst (2012) 50:721–738 723

Fig. 1 The three-dimensional
hypercube graph Q3

graphs, and split graphs [12]. However, the problem admits polynomial-time algo-
rithms when the input is restricted to some special classes of graphs, including trees
[33], circular-arc graphs [13], permutation graphs [14, 27], strongly chordal graphs
[11], block graphs and interval graphs [12].

Let G = (U,W,E) represent an undirected, bipartite graph with vertex set U ∪W ,
where U and W is a partition of the vertices and E is the edge set in which each edge
(u,w) is such that u ∈ U and w ∈ W . The bipartite graph G is called convex if the
vertices in W can be ordered in a way that for each u ∈ U , the neighbors of u are con-
secutive in W . This ordering can be obtained in a preprocessing step by an O(n+m)

time algorithm [4]. A compact representation for specifying such an ordering can
be computed in O(n + m) time [34, 36]. Convex bipartite graphs form a subclass
of bipartite graphs and are a superclass of bipartite permutation graphs and biconvex
graphs [7]. They were introduced by Glover [19], motivated by some industrial appli-
cations. Since then several problems have been studied in this kind of graphs. In the
following, we give a brief survey on convex bipartite graphs. Asdre and Nikolopoulos
proved that the harmonious coloring problem, the pair-complete coloring problem,
and the k-path partition problem on convex bipartite graphs are NP-complete [2].
However, several problems on them have been shown to be polynomial time solv-
able. The problem of finding a maximum independent set in convex bipartite graphs
given a compact representation can be solved in O(n) time [29, 34]. The Hamiltonian
cycle problem on them is O(n2) time solvable [30]. Liang and Chang solved the feed-
back vertex set problem on weighted convex bipartite graphs in O(n2m) time [28].
Yang showed that the link-orientation problem on weighted convex bipartite graphs
can be solved in polynomial time [37]. Yu et al. solved the k-chain subgraph cover
problem on convex bipartite graphs in O(m2) time [39]. Brandstädt et al. improved
the result in [39] to obtain an O(n2) time algorithm for the k-chain subgraph cover
problem [8]. Katriel considered the problem of finding a U -perfect matching of max-
imum weight in a weighted convex bipartite graph, and solved it in O(m + n logn)

time [25]. Brodal et al. considered the problem of maintaining a maximum matching
in a convex bipartite graph under a set of update operations which includes insertion
and deletions of vertices and edges [6]. They developed a data structure to imple-
ment a set of update operations in O(log2 n) amortized time per operation. Park et al.
designed a boolean circuit to find a maximum matching of a convex bipartite graph
[32]. Recently, Nussbaum et al. computed a maximum edge biclique of a convex
bipartite graph in O(n log3 n log logn) time [31]. The maximum matching problem
is the most frequently studied problem in the literature for convex bipartite graphs.

724 Theory Comput Syst (2012) 50:721–738

Matchings in convex bipartite graphs correspond to the problem of scheduling unit
length tasks on a single disjunctive resource, given a release time and a deadline
for every task [25]. Glover first considered the maximum matching problem in 1967
and provided an O(m) time algorithm for determining the maximum matching of a
convex bipartite graph [19]. This algorithm progresses iteratively through each ver-
tex of W in nondecreasing order and, of all the unmatched vertices of U incident to
the vertex consideration, matches it the one which is selected by a greedy strategy.
Subsequently, Gallo used a special data structure based on a binary heap to design
an O(n logn) time algorithm for finding a maximum matching [18]. Now, finding a
maximum matching of a convex bipartite graph can be done in O(n) time [36]. For
parallel algorithms on convex bipartite graphs, we refer readers to [5, 9, 17].

The paired-domination problem on bipartite graphs has been shown to be NP-
complete [12]. The complexity of the paired-domination problem in convex bipartite
graphs is still unknown. In this paper, we present the first O(n) time algorithm to
solve the paired-domination problem on convex bipartite graphs given a compact
representation. Further, we show that our algorithm can be applied to solve the to-
tal domination problem on convex bipartite graphs in the same time bound. The
paired-domination problem in convex bipartite graphs has the following application.
Consider a system represented by a convex bipartite graph. The problem of placing
monitoring devices in the system such that every site in it (including the monitor-
ing devices themselves) is adjacent to a monitor and every monitor is paired with a
backup monitor, can be modelled by paired-domination in convex bipartite graphs.

Previous related works are summarized below. Damaschke et al. solved the dom-
ination problem for convex bipartite graphs in O(n3) time [16]. To the best of our
knowledge, the best algorithms for the domination and independent domination prob-
lems on convex bipartite graphs run in O(n2) time [3]. Yen solved the bottleneck in-
dependent domination problem on convex bipartite graphs in O(m) time [38]. Srini-
vasan et al. solved the edge domination problem on bipartite permutation graphs in
O(n2 + mn1.5) time [35]. To the best of our knowledge, the complexity status of
the edge domination problem on convex bipartite graphs is still unknown. Recently,
Korpelainen proved that the efficient edge domination problem on convex bipartite
graphs is polynomial solvable [26].

The rest of this paper is organized as follows. In Sect. 2, we review some properties
of convex bipartite graphs and define some basic notations used in this paper. Sec-
tion 3 introduces a clustering procedure used in our algorithm. In Sect. 4, we present
an O(n) time algorithm for solving the paired-domination problem given a compact
representation of a convex bipartite graph. Section 5 shows that our algorithm can
be directly applied to solve the total domination problem on convex bipartite graphs
given a compact representation in O(n) time. Finally, some concluding remarks and
future work are given in Sect. 6.

2 Preliminaries

Let G = (U,W,E) be a bipartite graph, where U and W define the bipartition of
the vertices, and E is the edge set in the form (u,w) such that u ∈ U and w ∈ W .

Theory Comput Syst (2012) 50:721–738 725

Fig. 2 (a) A convex bipartite graph and a paired-dominating set on it (filled circles together with bold
edges), and (b) a compact representation of (a)

The graph G is called convex if the vertices in W can be ordered in such a way
that for each u ∈ U , the neighbors of u are consecutive in W . For convenience, we
consider that U = {1,2, . . . , |U |} and W = {1,2, . . . , |W |}, and that the vertices in W

are given according to the ordering mentioned above. This ordering can be obtained
in a preprocessing step by an O(n + m) time algorithm [4]. We say that a vertex
w′ ∈ W is smaller (larger) than a vertex w′′ ∈ W if the integer representing w′ is
smaller (larger) than the integer representing w′′. That is, we will represent vertices of
W by integers from 1 to |W |. A convex bipartite graph has a compact representation
by a set of |U | triples of the form (i,begin(i), end(i)), where i is a vertex in U ,
begin(i) and end(i) are the smallest and largest vertices, respectively, in the interval
of vertices (i.e., a sequence of consecutively numbered vertices) of W connected to
i. For example, Fig. 2(a) shows a convex bipartite graph and Fig. 2(b) depicts its
compact representation.

Theorem 1 [4, 34, 36] Given a convex bipartite graph, its compact representation
can be computed in O(n + m) time.

Throughout the remainder of the paper, we assume that the input of the algorithm
is a compact representation of a convex bipartite graph. A paired-dominating set of
a convex bipartite graph G = (U,W,E) contains a perfect matching M such that for
(u,w) ∈ M , u ∈ U and w ∈ W . For instance, Fig. 2(a) shows a paired-dominating
set of a convex bipartite graph, where filled circles indicate the vertices in the paired-
dominating set and bold edges form the perfect matching.

Hereafter, let G = (U,W,E) be a convex bipartite graph with a compact repre-
sentation. We denote by [i, j] the set of consecutive integers {i, i + 1, . . . , j}. The
vertices of U (resp. W) are represented by integers in [1, |U |] (resp. [1, |W |]). Thus,
U = [1, |U |] and W = [1, |W |]. We call [i, j] an (integer) interval starting from i and
ending at j . Further, we call i and j the left endpoint and right endpoint of interval
I = [i, j], denoted by l(I) and r(I), respectively. For p < i � � � j , we say that �

dominates interval [i, j], interval [i, j] covers �, and interval [i, j] is to the right of p.
Note that p and � may be the integers representing vertices. Two intervals are called
disjoint if the intersection of them is empty. In addition, we also let U denote an array
representing G in a compact representation. Each element of the array U [1..|U |] has
the fields begin and end. The triple (i,begin(i), end(i)) of the compact representation
of G is represented here by (i,U [i].begin,U [i].end). We may assume that the input

726 Theory Comput Syst (2012) 50:721–738

Fig. 3 (a) Sorted clusters of U , and (b) interval representation I (U) of neighbors of vertices in U for the
convex bipartite graph shown in Fig. 2(a)

convex bipartite graph has no isolated vertices since isolated vertices can be easily
determined. By the definition of convex bipartite graphs, the neighbors of a vertex
u in U can be represented as an interval Iu = [u.begin, u.end], called the neighbor
interval of u. Then, the neighbors of vertices of U can be represented by a set I (U)

of intervals. We call I (U) the interval representation of neighbors of vertices in U .
For example, Fig. 3(b) shows the interval representation I (U) for the convex bipartite
graph shown in Fig. 2(a).

3 The Clustering Process

We first observe one property of a convex bipartite graph G = (U,W,E). For two
vertices x, y in U , either x.begin = y.begin or not. If x.begin = y.begin, then the
smallest neighbors of x and y are the same vertex in W . Thus, we define clusters of
U as follows.

Definition 1 Two vertices x and y of U are said to be in the same cluster if x.begin =
y.begin, i.e., their smallest neighbors are the same vertex of W .

To obtain an O(n) time algorithm, we will sort the clusters of U in increasing
manner according to their smallest neighbors. We then define the sorted clusters of
U as follows.

Definition 2 The sequential clusters C1,C2, . . . ,Ck of U are called sorted clusters if
a.begin < b.begin for a ∈ Ci , b ∈ Cj , and i < j . Cluster Ci is said to be smaller than
cluster Ci+1 for 1 � i � k − 1. Moreover, for two vertices ui and uj in two distinct
clusters, we say that ui < uj if ui.begin < uj .begin.

For example, Fig. 3(a) shows the sorted clusters for the convex bipartite graph
shown in Fig. 2(a).

Theory Comput Syst (2012) 50:721–738 727

In the following, we will partition U into k disjoint sorted clusters C1,C2, . . . ,Ck .
We call it the clustering process. It is easy to see that the clustering process runs in
O(n logn) time if it is implemented by a general purpose sorting algorithm. Since it is
too time-consuming, we do not use a general purpose sorting algorithm to implement
the clustering process. Given an array U [1..|U |] representing G in a compact repre-
sentation, each element of U forms a triple (i,U [i].begin,U [i].end) and U [i].begin
is an integer in the range from 1 to |W |. Thus, we can use the Counting Sort algorithm
in [15] to implement the clustering process in O(|U | + |W |) time.

For readers’ convenience, we introduce how to apply Counting Sort algorithm to
compute the sorted clusters as follows. We require three other arrays: The clustered
array Uc holds the sorted clusters, where each element of Uc consists of a triple
(u,u.begin, u.end) for u ∈ U , and two auxiliary arrays, namely beginCounts[1..ω]
and startingLoc[1..ω], provide temporary working storage, where ω is the largest in-
teger in

⋃
1�i�|U | U [i].begin and is bounded by |W |. The clustering procedure is

sketched as follows. It first determines the number of elements in each begin field of
the array U and stores them in the auxiliary array beginCounts. For each integer �,
1 � � � ω, the item beginCounts[�] stores the number of elements whose U [i].begin
equals �. Then, it uses the information in array beginCounts to determine the start-
ing location of each cluster in Uc and stores them in array startingLoc. Initially, the
item startingLoc[�] stores the starting location of cluster Ci in the clustered array
Uc, where the begin field of each element in Ci equals �, i.e., U [j].begin = � for
j ∈ Ci . Let �′ be the largest integer in [1, �− 1] such that beginCounts[�′] �= 0. Then,
the starting location, startingLoc[�], is beginCounts[�′] + startingLoc[�′]. By using
these two auxiliary arrays, the procedure can move the elements in the original ar-
ray U one by one into their correct location in the clustered array Uc . During the
moving process, the contents of array startingLoc will be modified. Suppose that it is
about to move element i of U with triple (i,U [i].begin,U [i].end). It first finds the
location startingLoc[U [i].begin] of triple (i,U [i].begin,U [i].end) from auxiliary ar-
ray startingLoc. Then, it moves this triple to the startingLoc[U [i].begin]th location
of Uc. Finally, it lets startingLoc[U [i].begin] = startingLoc[U [i].begin] + 1. After
completing the above moving process, it outputs Uc as the clustered array for storing
the sorting clusters.

For example, given the compact representation U of a convex bipartite graph
shown in Fig. 2(b), Fig. 4(a) shows the initial auxiliary arrays, beginCounts and start-
ingLoc, Fig. 4(b) reveals the contents of the final auxiliary arrays after moving all
elements of U into Uc , and Fig. 4(c) shows the clustered array Uc . Figure 4(c) also
depicts the sorted clusters of the graph. Since every element of U is processed once
and the length ω of each auxiliary array is at most |W |, the above clustering process
runs in O(|U | + |W |) time. Thus, we have the following lemma.

Lemma 1 The sorted clusters of a convex bipartite graph G = (U,W,E) can be
computed in O(|U | + |W |) time.

From now on, it is assumed that the clustering process has been done, i.e., sorted
clusters of U and clustered array Uc are given. The number of clusters gives us an
upper bound of γp(G) as follows.

728 Theory Comput Syst (2012) 50:721–738

Fig. 4 (a) The initial auxiliary arrays, beginCounts and startingLoc, (b) the final auxiliary arrays after
moving every element of U into Uc , and (c) the clustered array Uc , where the input compact representation
U is shown in Fig. 2

Fig. 5 (a) Imin(U), and (b) Imax(U) for the convex bipartite graph shown in Fig. 3

Lemma 2 Let G = (U,W,E) be a convex bipartite graph without isolated vertices,
and let U be partitioned into k sorted clusters C1,C2, · · · ,Ck . Then, 2k � γp(G).

Proof Let ui be a vertex in Ci , 1 � i � k, such that u′.end � ui.end for all u′ ∈ Ci ,
and let wi ∈ W such that wi = ui.begin. By pairing ui with wi for 1 � i � k, we
obtain a paired-dominating set of size 2k. Thus, 2k � γp(G). �

Let Ci be a cluster of U . Define min(Ci) and max(Ci) to be two vertices in Ci

such that min(Ci).end � u′.end � max(Ci).end for all u′ ∈ Ci . Further, Imin(Ci) =
[min(Ci).begin,min(Ci).end] and Imax(Ci) = [max(Ci).begin,max(Ci).end]. We
can see that for u′ ∈ Ci , Imin(Ci) ⊆ Iu′ ⊆ Imax(Ci). In addition, every vertex of Ci

is adjacent to all vertices of Imin(Ci) in W . The vertex of Imin(Ci) in W is called a
common neighbor of vertices of Ci . For example, let C1 be a cluster of U shown
in Fig. 3. Then, min(C1) = 1, Imin(C1) = [1,3],max(C1) = 3, and Imax(C1) = [1,4].
Let C1,C2, . . . ,Ck be the disjoint clusters of U . We define Imin(U) = {Imin(Ci)|1 �
i � k} and Imax(U) = {Imax(Ci)|1 � i � k}. For example, Fig. 5 shows Imin(U) and

Theory Comput Syst (2012) 50:721–738 729

Fig. 6 (a) The representing sorted array Amin of Imin(U), and (b) the representing sorted array Amax of
Imax(U), where they are constructed from Fig. 4(c), and Imin(U) and Imax(U) are shown in Fig. 5

Imax(U) for the convex bipartite graph shown in Fig. 3. By visiting every vertex of
a cluster Ci once, Imin(Ci) and Imax(Ci) can be easily found. In addition, by visiting
every element of clustered array Uc once, we can easily construct the representing
sorted arrays Amin and Amax of Imin(U) and Imax(U), respectively, in O(|U |) time.
For instance, Fig. 6 shows the representing sorted arrays of Imin(U) and Imax(U)

shown in Fig. 5. Thus, we have the following lemma.

Lemma 3 Let G = (U,W,E) be a convex bipartite graph without isolated vertices,
and let U be partitioned into k sorted clusters C1,C2, . . . ,Ck . Then, Imin(U) and
Imax(U) together with their representing sorted arrays can be constructed in O(|U |)
time.

4 The Paired-Domination Problem in Convex Bipartite Graphs

In this section, we will present an O(n) time algorithm to solve the paired-domination
problem on a convex bipartite graph G = (U,W,E) given a compact representation.
Let Ŵ and Û be subsets of W and U , respectively. Recall that the set Ŵ (resp. Û)
dominates U (resp. W) if every vertex of U (resp. W) is adjacent to at least one vertex
of Ŵ (resp. Û). Let C1,C2, . . . ,Ck be the disjoint sorted clusters of U . By Lemma 2,
2k � γp(G). In the following, we will obtain a lower bound of γp(G). Our basic idea
is described as follows. We first find a minimum cardinality subset W̃ of W and a
minimum cardinality subset Ũ of U such that U and W are dominated by W̃ and Ũ ,
respectively. By the definition of a convex bipartite graph, it is not hard to verify the
following lemma.

Lemma 4 Let W̃ and Ũ be the minimum cardinality subsets of W and U , re-
spectively, such that W̃ dominates U and Ũ dominates W . Then, γp(G) � 2 ×
max{|W̃ |, |Ũ |}.

After computing such two sets W̃ and Ũ , we construct a paired-dominating set
of G with cardinality not less than 2 · max{|W̃ |, |Ũ |}. By Lemma 4, the constructed
paired-dominating set is a minimum paired-dominating set of G if its size equals
2 · max{|W̃ |, |Ũ |}. We then show that the constructed paired-dominating set is a min-
imum paired-dominating set of G if its size is larger than 2 · max{|W̃ |, |Ũ |}. In the
following, we show how to construct two such sets W̃ and Ũ .

730 Theory Comput Syst (2012) 50:721–738

We first construct a minimum cardinality subset W̃ of W such that W̃ domi-
nates U . Observe that every vertex not in Imin(U) is not in W̃ . We give the following
lemma to verify this observation.

Lemma 5 Let W̃ be a minimum cardinality subset of W such that W̃ dominates U .
Then, W̃ ⊆ Imin(U).

Proof Assume by contradiction that W̃ − Imin(U) �= ∅. Let w ∈ W̃ − Imin(U) such
that w is adjacent to one vertex of cluster Ci in U . Then, w ∈ Imax(Ci) − Imin(Ci), i.e.,
min(Ci).end < w � max(Ci).end . Consider that Imin(Ci) ∩ W̃ = ∅. Then, min(Ci) ∈
U is not adjacent to any vertex of W̃ , and, hence, W̃ does not dominate U , a con-
tradiction. On the other hand, consider that Imin(Ci) ∩ W̃ �= ∅. Then, every vertex of
Ci is adjacent to one vertex of Imin(Ci) ∩ W̃ . Thus, W̃ − {w} also dominates U . It
contradicts that W̃ is a minimum cardinality subset of W dominating U . In any case,
a contradiction occurs. Thus, W̃ − Imin(U) = ∅, i.e., W̃ ⊆ Imin(U). �

By the above lemma, we can only consider the vertices in Imin(Ci), 1 � i � k,
for computing W̃ . Then, we are given by Imin(U). Note that the vertices of W and
U are represented by integers. In the following, we will use integers and vertices
interchangeably. Then, the problem of finding a minimum cardinality subset of W

dominating U is equivalent to seek a minimum set of integers such that they together
dominate intervals of Imin(U). We introduce Procedure GD-W to compute such a set
W̃ of integers of W . This procedure is inspired by the greedy algorithms on interval
graphs [1, 10, 23], but the basic approach is different from theirs. Given a set Imin(U)

of intervals, Procedure GD-W uses a greedy principle to obtain a subset W̃ of W as
follows. Initially, let W̃ = ∅, Imin = Imin(U), and let s(Imin) denote the interval in
Imin with the smallest right endpoint. Let w be the right endpoint of s(Imin) and let
Iw be the set of intervals dominated by w in Imin. Let W̃ = W̃ ∪ {w} and let Imin =
Imin − Iw . Repeat the above process until Imin = ∅. Then it outputs W̃ . For example,
given a set Imin(U) of intervals shown in Fig. 5(a), Procedure GD-W outputs W̃ =
{3,8}.

Before we show how to verify the optimality of Procedure GD-W, let us observe
the behavior of Procedure GD-W and the integers obtained by it from Imin. It is
easy to see that every interval in Imin − {s(Imin)} is either dominated by w which
is the right endpoint of s(Imin), or to the right of w. We see that Procedure GD-
W maintains the following invariant while growing set W̃ = {w1,w2, . . . ,wp} with
w1 < w2 < · · · < wp to be computed:

Every interval x ∈ Imin dominated by none of W̃ is to the right of wp , and the
intervals with right endpoints wi , 1 � i � p, are disjoint.

Initially, W̃ = {w1}, w1 is the right endpoint of interval s(Imin(U)), and the invariant
holds trivially. Assume now W̃ = {w1,w2, . . . ,wh}, where w1 < w2 < · · · < wh and
h � 1, and the invariant holds. In this time, every interval of Imin is dominated by
none of W̃ . Let w be the right endpoint of s(Imin) and let Iw be the set of intervals
dominated by w in Imin. By the variant, s(Imin) is to the right of wh. In addition,

Theory Comput Syst (2012) 50:721–738 731

every interval x ∈ Imin − Iw dominated by none of W̃ ∪ {w} is to the right of w. By
induction then, the invariant maintained by Procedure GD-W holds true.

Since every interval needs to be dominated by at least one integer, the following
proposition can be easily verified by the pigeonhole principle.

Proposition 1 Let I be a set of disjoint intervals, and let D be a set of integers such
that every interval of I is dominated by at least one integer of D. Then, |D| � |I |.

Let W̃ be the output by Procedure GD-W. By the invariant maintained by Pro-
cedure GD-W, every interval of Imin(U) is dominated by at least one integer of W̃ ,
and intervals with right endpoints in W̃ are disjoint. By Proposition 1, the minimum
number of integers that dominate intervals of Imin(U) is at least |W̃ |. Thus, W̃ is a
minimum cardinality subset of W such that W̃ dominates U .

We have proved the correctness of Procedure GD-W. Now, we show how to im-
plement it in O(|U | + |W |) time. By Lemma 3, the representing sorted array Amin
of Imin(U) can be constructed in O(|U |) time. We will use an array L together with
linked pointers to store the endpoints of intervals of Imin(U), where |L| = |W | and the
index of L corresponds to the integer (vertex) of W . In addition, we need a stack S to
perform operations of this procedure. Initially, let L and S be empty. We first visits the
elements of Amin one by one. Suppose that it is about to process element Amin[i] with
a triple (u,u.begin, u.end), where u ∈ U . Then, we insert the left endpoint l(Iu) of
the neighbor interval Iu of u into L[u.begin], insert the right endpoint r(Iu) of Iu into
L[u.end], and link l(Iu) to r(Iu). If L[u.begin] (resp. L[u.end]) is not empty, then we
append l(Iu) (resp. r(Iu)) to the tail of L[u.begin] (resp. L[u.end]). After completing
the above process, we construct an array L with linked points to maintain the sorted
endpoints of intervals of Imin(U). For example, Fig. 7(a) shows the linked array L

for Imin(U) shown in Fig. 5(a). It is easy to see that the above process runs in O(|U |)
time. We then progress iteratively through each element of the constructed linked ar-
ray L in nondecreasing order. When a left endpoint l(Ii) is visited, it is pushed into
stack S. When a right endpoint r(Ii) is visited, s(Imin) is found, where L[w] stores
r(Ii) which is the right endpoint of s(Imin). In this time, let W̃ = W̃ ∪ {w}. And, it
repeats popping l(Ii) from stack S and removing its linked right endpoint r(Ii) from
L until S is empty, and it removes r(Ij) from L for all l(Ij) stored in L[w]. For in-
stance, Fig. 7(b) depicts the remnants of linked array L for Fig. 7(a) after finding the
first vertex 3 of W̃ . After processing each element of L once, W̃ is computed. Since
|L| = |W | and the number of endpoints of intervals of Imin(U) is 2|U |, the above
implementation of Procedure GD-W can be done in O(|U | + |W |) time. Thus, we
have the following lemma.

Lemma 6 Procedure GD-W computes a minimum cardinality subset W̃ of W that
dominates U , and it runs in O(|U | + |W |) time.

By similar strategy in computing W̃ , we can find a minimum cardinality subset Ũ

of U such that Ũ dominates W . Notice that the vertices of U and W are always repre-
sented by integers, and that an interval covers an integer p if p is in the interval. Ob-
serve that if there exists a vertex j in Ũ such that its neighbor interval Ij �∈ Imax(U),

732 Theory Comput Syst (2012) 50:721–738

Fig. 7 (a) The linked array L maintaining sorted endpoints of Imin(U) shown in Fig. 5(a), and (b) the
remnants of linked array L after computing the first vertex 3 of W̃

then j can be replaced by one vertex i such that Ii ∈ Imax(U) and Ij ⊆ Ii . Thus, we
can only consider the vertices whose neighbor intervals are in Imax(Ci), 1 � i � k.
Then, we are given by Imax(U). The problem of finding a minimum cardinality sub-
set of U dominating W is then equivalent to compute a minimum set of intervals
in Imax(U) such that they together cover all integers of W . Before showing how to
compute such a set of intervals in Imax(U), we observe one property below. Let Ŵ be
a subset of W such that every interval of Imax(U) covers at most one integer of Ŵ .
Since every integer needs to be covered by at least one interval, the number of in-
tervals covering all integers of Ŵ is at least |Ŵ |. For example, given a set Imax(U)

of intervals shown in Fig. 5(b), let Ŵ = {1,5,9}. Then, no interval of Imax(U) cov-
ers more than one integer of Ŵ . By the pigeonhole principle, the minimum number
of intervals covering all integers of Ŵ is at least three. Thus we have the following
proposition.

Proposition 2 Let Ŵ be a subset of W such that no two integers of Ŵ are covered by
one interval of Imax(U). Then, the minimum number of intervals of Imax(U) covering
all integers of W is at least |Ŵ |.

By the above proposition, we can find a subset Ũ of U and a subset Ŵ of W

such that Ũ dominates W , no interval of Imax(U) covers more than one integer of Ŵ ,
and |Ũ | = |Ŵ |. Then, Ũ is the required set. We now introduce Procedure GD-U to
construct such a minimum cardinality subset Ũ of U that dominates W . Given a set
Imax(U) of intervals, Procedure GD-U uses a greedy principle to obtain a subset Ũ

of U as follows. Initially, let Ũ = ∅, Ŵ = ∅, and let Imax = Imax(U). Let w be the
smallest integer of intervals in Imax, let Iw be the set of intervals in Imax covering w,
and let s(Imax) denote the interval in Iw with the largest right endpoint z. Let u be
a vertex of U such that its neighbor interval Iu is the interval with right endpoint z.
Let Ũ = Ũ ∪ {u} and let Ŵ = Ŵ ∪ {w}. Remove from Imax all integers which are

Theory Comput Syst (2012) 50:721–738 733

not larger than z. Repeat the above process until Imax = ∅. Then it outputs Ũ . For ex-
ample, given a set Imax(U) of intervals shown in Fig. 5(b), Procedure GD-U outputs
Ũ = {3,6,8}. Note that Ŵ = {1,5,9} is used to verify the optimality of Procedure
GD-U.

We can see that Procedure GD-U maintains the following invariant while growing
sets Ũ = {u1, u2, . . . , up} and Ŵ = {w1,w2, . . . ,wp} with u1 < u2 < · · · < up and
w1 < w2 < · · · < wp to be computed:

Every integer of W covered by none of neighbor intervals of Ũ is larger than zp ,
where zp is the right endpoint of neighbor interval of up , and no interval of Imax

covers more than one integer of Ŵ .

The above invariant can be easily verified from the greedy principle of Procedure
GD-U by induction. Let Ũ be the output by Procedure GD-U. By the invariant main-
tained by Procedure GD-U, Ũ dominates W and no interval of Imax covers more than
one integer of Ŵ . Note that |Ũ | = |Ŵ |. By Proposition 2, the minimum number of
intervals of Imax(U) covering all integers of W is at least |Ŵ |. This proves the op-
timality of Procedure GD-U. By similar arguments in analyzing the complexity of
Procedure GD-W, it is not hard to verify that Procedure GD-U can be implemented
in O(|U | + |W |) time. Thus, we have the following lemma.

Lemma 7 Procedure GD-U computes a minimum cardinality subset Ũ of U that
dominates W , and it runs in O(|U | + |W |) time.

Based upon Lemmas 1, 3, 4, 6, and 7, our algorithm for the paired-domination
problem is given by a compact representation of a convex bipartite graph G =
(U,V,E) and is sketched as follows.

Stage 1 Partition U into k disjoint sorted clusters C1,C2, . . . ,Ck ;
Stage 2 Compute the interval representation I (U) of U , and construct Imin(U) and
Imax(U) from I (U);

Stage 3 Call Procedure GD-W given Imin(U) to compute a minimum cardinality
subset W̃ of W such that W̃ dominates U , and call Procedure GD-U given Imax(U)

to compute a minimum cardinality subset Ũ of U such that Ũ dominates W ;
Stage 4 Construct a minimum paired-dominating set Dmpd of G with size not less

than 2 · max{|W̃ |, |Ũ |}, and output Dmpd.

In Stage 4, we need to construct a minimum paired-dominating set Dmpd of G with
cardinality not less than 2 ·max{|W̃ |, |Ũ |}. This construction is shown as follows. Let
Ũ = {u1, u2, · · · , u|Ũ |} such that ui < ui+1 for 1 � i � |Ũ | − 1. Note that ui < ui+1

indicates that ui.begin < ui+1.begin, i.e., the cluster containing ui is smaller than
the cluster containing ui+1 in the sorted clusters. For convenience, we denote by
Ci the cluster containing ui for 1 � i � |Ũ |. Let W̃ = {w1,w2, . . . ,w|W̃ |} such that

wi < wi+1 for 1 � i � |W̃ | − 1. We first consider that |Ũ | = max{|W̃ |, |Ũ |}. Ini-
tially, let Dmpd = ∅. We then traverse the vertices of Ũ in a nondecreasing order,
i.e., ui is visited before ui+1 for 1 � i � |Ũ | − 1. Suppose that it is about to pro-
cess ui . Let wh be the smallest unpaired vertex of W̃ ∩ N(ui), i.e., wh � wj for

734 Theory Comput Syst (2012) 50:721–738

wj ∈ (W̃ ∩ N(ui)) − Dmpd. If such a vertex wh does not exist, then let wh = ui.end.
By the construction of Procedure GD-U, wh does exist. By pairing ui with wh, we
obtain a new set Dmpd = Dmpd ∪ {ui,wh}. After processing each vertex of Ũ , let
Ŵ = W̃ − Dmpd. If Ŵ = ∅, then Dmpd is a paired-dominating set of G with cardi-
nality 2 · max{|W̃ |, |Ũ |}, and, hence, Dmpd is a minimum paired-dominating set of
G by Lemma 4. Suppose that Ŵ �= ∅. Let ŵ be the smallest vertex of Ŵ and let
û be the vertex in cluster Ĉ such that û.end = ŵ. Then, Dmpd does not dominate
Ĉ and hence it is not a dominating set of G. In this time, we pair û with ŵ, i.e., let
Dmpd = Dmpd ∪{û, ŵ}, and let Ŵ = Ŵ −{ŵ}. Repeat the above process until Ŵ = ∅.
Then, Dmpd is the constructed paired-dominating set of G.

The optimality of the above process under that Ŵ �= ∅ is shown as follows. Let
Dmpd be the constructed set before processing the vertices of Ŵ , i.e., |Dmpd| = 2 · |Ũ |,
and let Ŵ = W̃ − Dmpd �= ∅. We will prove the optimality of the above process by
induction on |Ŵ |. Let Ŵ = {ŵ1, ŵ2, . . . , ŵ|Ŵ |} such that ŵj < ŵj+1 for 1 � j �
|Ŵ | − 1, and let ûi be the vertex in cluster Ĉi such that ûi .end = ŵi for 1 � i �
|Ŵ |. Let Ûi be the set of clusters that are less than cluster Ĉi , and let Ŵi = N(Ûi).
Let Gi = (Ûi , Ŵi ,Ei) be a subgraph of G induced by Ûi ∪ Ŵi , and let Ĝi = (Ûi ∪
Ĉi , Ŵi , Êi) be a subgraph of G induced by Ûi ∪ Ĉi ∪ Ŵi , where 1 � i � |Ŵ |. Then,
Gi and Ĝi are convex bipartite graphs, ûi �∈ Gi , ûi ∈ Ĝi , ŵi ∈ Gi , and ŵi ∈ Ĝi .
Let Dmpd|G′ = Dmpd ∩ G′, where G′ is either Gi or Ĝi . Then, Dmpd|Gi

= Dmpd|Ĝi
.

Let Dp = {û1, ŵ1, . . . , ûi−1, ŵi−1} if i > 1; otherwise, let Dp = ∅. We will prove the
following invariant:

Dmpd|Gi
∪ Dp is a minimum paired-dominating set of Gi , there exists no minimum

paired-dominating set of Gi such that it contains ŵi , and Dmpd|Gi
∪ Dp ∪ {ûi , ŵi} is

a minimum paired-dominating set of Ĝi .

Initially, consider the smallest vertex ŵ1 of Ŵ . Let Ũ1 and W̃1 be the outputs of
Procedure GD-U and Procedure GD-W given G1, respectively. By the construction
of Dmpd, |Ũ1| = |W̃1| � 1 and ŵ1 is dominated by Ũ1. Then, Dmpd|G1 = Ũ1 ∪ W̃1
is a minimum paired-dominating set of G1 by Lemma 4. If there exists a set of
paired vertices of G1 with size |Ũ1| + |W̃1| such that it contains ŵ1, then it does
not dominate at least one cluster of Û1 since the clusters of Û1 must be domi-
nated by a subset of Ŵ1 whose cardinality is at least |W̃1|, and, hence, it is not a
dominating set. Thus, there exists no minimum paired-dominating set of G1 such
that it contains ŵ1. On the other hand, let Ũ ′

1 and W̃ ′
1 be the outputs of Pro-

cedure GD-U and Procedure GD-W given Ĝ1, respectively. Then, Ũ ′
1 = Ũ1 and

W̃ ′
1 = W̃1 ∪ {ŵ1}. Since |Ũ1| = |W̃1|, |W̃ ′

1| = |Ũ1| + 1. By Lemma 4, γp(Ĝ1) �
2 ·max{|W̃ ′

1|, |Ũ ′
1|} = 2 · |W̃ ′

1| = 2 ·(|Ũ ′
1|+1). Thus, Dmpd|G1 ∪{û1, ŵ1} is a minimum

paired-dominating set of Ĝ1. Assume now the invariant holds true when i = h � 1.
Let Dp = {û1, ŵ1, . . . , ûh−1, ŵh−1, ûh, ŵh}. Consider that Gh+1 and Ĝh+1. Let Ũh+1

and W̃h+1 be the outputs of Procedure GD-U and Procedure GD-W given Gh+1, re-
spectively. By the construction of Dmpd, |Ũh+1 − Ĝh| = |W̃h+1 − Ĝh| � 1 and ŵh+1

is dominated by Ũh+1 since Ũ dominates w̃h+1 but Ũ − Ũh+1 does not dominate
w̃h+1. By the induction hypothesis, Dmpd|Gh

∪ Dp is a minimum paired-dominating

Theory Comput Syst (2012) 50:721–738 735

set of Ĝh. Thus, Dmpd|Gh+1 ∪ Dp is a minimum paired-dominating set of Gh+1. If
there exists a set of paired vertices of Gh+1 with size |Dmpd|Gh+1 ∪ Dp| such that
it contains ŵh+1, then it does not dominate at least one cluster of Ûh+1 which
is less than cluster Ĉh+1, and, hence it is not a dominating set. Thus, there ex-
ists no minimum paired-dominating set of Gh+1 such that it contains ŵh+1. Since
Dmpd|Gh+1 ∪ Dp is a minimum paired-dominating set of Gh+1, there exists no mini-
mum paired-dominating set of Gh+1 such that it contains ŵh+1, and Dmpd|Gh+1 ∪ Dp

is not a dominating set of Ĝh+1, we get that Dmpd|Gh+1 ∪Dp ∪{ûh+1, ŵh+1} is a min-
imum paired-dominating set of Ĝh+1. Thus, the invariant holds true when i = h + 1.
By induction then, the invariant holds true. This proves the optimality of our con-
struction.

Next, we consider that |W̃ | = max{|W̃ |, |Ũ |}. By the similar construction for the
case of |Ũ | = max{|W̃ |, |Ũ |}, we can construct a minimum paired-dominating set
of G as follows. Initially, let Dmpd = ∅. We first traverse the vertices of W̃ in an
increasing manner, i.e., wi is visited before wi+1 for 1 � i � |W̃ |− 1. Suppose that it
is about to process wi . Let uh be the smallest vertex of N(wi) such that it is in Ũ but
is not in Dmpd. If such a vertex uh does not exist, then let uh be the vertex of cluster
Ch such that wi = uh.end and Ch ∩ Ũ = ∅. By the construction of Procedure GD-W,
uh does exist. By pairing wi with uh, we obtain a new set Dmpd = Dmpd ∪ {wi,uh}.
After processing each vertex of W̃ , let Û = Ũ − Dmpd. If Û = ∅, then Dmpd is a
paired-dominating set of G with cardinality 2 · |W̃ |, and, hence, Dmpd is a minimum
paired-dominating set of G by Lemma 4. Suppose that Û �= ∅. Let û be the smallest
vertex of Û and let ŵ be the vertex in W such that ŵ = û.end. Then, Dmpd does not
dominate ŵ and hence it is not a dominating set of G. In this time, we pair ŵ with û,
i.e., let Dmpd = Dmpd ∪ {ŵ, û}, and let Û = Û − {û}. Repeat the above process until
Û = ∅. Then, Dmpd is the constructed paired-dominating set of G. The optimality
of the above process can be verified by similar arguments in proving the case of
|Ũ | = max{|W̃ |, |Ũ |}.

For instance, given Imin(U) and Imax(U) shown in Fig. 5, Procedure GD-W
outputs W̃ = {3,8} and Procedure GD-U outputs Ũ = {3,6,8}. Then, |Ũ | =
max{|W̃ |, |Ũ |} = 3. By the above construction, we obtain a set of pairs (3,3),

(6,8), (8,12), where pair (u,w) satisfies that u ∈ U and w ∈ W , bold lines in
Fig. 5 depicts such three pairs, and a minimum paired-dominating set Dmpd of
size 6. Let k be the number of disjoint clusters of U . By Lemmas 2 and 4,
2k � γp(G) � 2 · max{|W̃ |, |Ũ |}. Then, |U | � k � max{|W̃ |, |Ũ |}. Thus, the above
process for constructing a minimum paired-dominating set of G runs in O(|U |) time,
and, hence, Stage 4 can be done in O(|U |) time.

By Lemma 1, Stage 1 can be done in O(|U | + |W |) time. By Lemma 3, Stage 2
runs in O(|U |) time. By Lemmas 6 and 7, Stage 3 can be done in O(|U | + |W |)
time. Thus, the algorithm runs in O(|U | + |W |) time and we conclude the following
theorem.

Theorem 2 The paired-domination problem on an n-vertex convex bipartite graph
given a compact representation can be solved in O(n) time.

736 Theory Comput Syst (2012) 50:721–738

5 The Total Domination Problem in Convex Bipartite Graphs

In this section, we will extend our algorithm to solve the total domination problem
on convex bipartite graphs. Let G = (U,W,E) be a convex bipartite graph. Let Ũ

and W̃ be the outputs of Procedure GD-U and Procedure GD-W given Imax(U) and
Imin(U) of G, respectively, and let Dmtd = Ũ ∪ W̃ . We will show that Dmtd is a
minimum total dominating set of G, i.e., γt (G) = |Ũ | + |W̃ |. Note that Ũ and W̃ are
minimum cardinality subsets of U and W , respectively, such that Ũ dominates W

and W̃ dominates U , and that C1,C2, . . . ,Ck are sorted clusters of U .
We first partition U into three disjoint subsets Umin, Umax, and U such that

Umin = ⋃
1�i�k min(Ci), Umax = ⋃

1�i�k max(Ci), and U = U − (Umin ∪ Umax).
Then, N(min(Ci)) ⊆ N(u) ⊆ N(max(Ci)) for u ∈ Ci . We first claim that there ex-
ists a minimum total dominating set Dtd of G such that (Dtd ∩ U) ⊆ Umax. We will
prove the above claim as follows. Assume that Dmin is a minimum total dominating
set of G. Let DUmin = Dmin ∩ Umin, DUmax = Dmin ∩ Umax, DU = Dmin ∩ U , and
let DW = Dmin ∩ W . Consider that DUmin �= ∅. Let umin ∈ DUmin and umax ∈ Umax
such that umin and umax are in the same cluster. Then, N(umin) ⊆ N(umax). Since
Dmin is a total dominating set of G, umin is adjacent to at least one vertex of DW .
Thus, DW dominates umin. If umax ∈ Dmin, then Dmin − {umin} is still a total dom-
inating set of G since N(umin) ⊆ N(umax) and DW dominates umin, and, hence, it
contradicts that Dmin is a minimum total dominating set of G. Thus, umax �∈ Dmin.
Let Dtd = Dmin − {umin} ∪ {umax}. Then, Dtd is a total dominating set of G with
size |Dmin|. Thus, there exists a minimum total dominating set Dtd of G such that
Dtd ∩ Umin = ∅. By the same arguments, we can show that there exists a minimum
total dominating set Dtd of G such that Dtd ∩ U = ∅. It follows from the above argu-
ments that the claim holds true.

By the above claim, there exists a minimum total dominating set Dtd of G such
that (Dtd ∩ U) ⊆ Umax. Then, |Dtd| = |Dtd ∩ W | + |Dtd ∩ Umax|. Since Dtd is a total
dominating set of G, every vertex of Dtd ∩ W (resp. Dtd ∩ Umax) is adjacent to at
least one vertex of Dtd ∩ Umax (resp. Dtd ∩ W). Thus, Dtd ∩ Umax dominates W and
Dtd ∩ W dominates U . By the constructions of Ũ and W̃ , |Dtd ∩ Umax| � |Ũ | and
|Dtd ∩ W | � |W̃ |. Thus, |Dtd| � |Ũ | + |W̃ | = |Dmtd|. That is, Dmtd = Ũ ∪ W̃ is a
minimum total dominating set of G. Therefore, we conclude the following theorem.

Theorem 3 The total domination problem on an n-vertex convex bipartite graph
given a compact representation can be solved in O(n) time.

6 Concluding Remarks

The paired-domination problem on bipartite graphs has been shown to be NP-
complete. The complexity of the paired-domination problem on convex bipartite
graphs was unknown prior to our work. In this paper, we give an innovative approach
to solve the paired-domination problem on convex bipartite graphs given a compact
representation in O(n) time. We also show that the proposed approach can be directly
applied to solve the total domination problem on convex bipartite graphs in the same

Theory Comput Syst (2012) 50:721–738 737

time bound. To the best of our knowledge, the best algorithms for the domination and
independent domination problems on convex bipartite graphs run in O(n2) time. It is
interesting to see if the proposed procedures can be used to solve the domination and
independent domination problems on convex bipartite graphs given a compact rep-
resentation in O(n) time. We would like to post it as an open problem to interested
readers.

Acknowledgements The author gratefully acknowledges the helpful comments and suggestions of the
reviewers, which have improved the presentation. We also deeply appreciate the anonymous reviewers for
giving the comment that the proposed approach can be applied to the total domination problem in convex
bipartite graphs.

References

1. Arikati, S.R., Pandu Rangan, C.: Linear algorithm for optimal path cover problem on interval graphs.
Inf. Process. Lett. 35, 149–153 (1990)

2. Asdre, K., Nikolopoulos, S.D.: NP-completeness results for some problems on subclasses of bipartite
and chordal graphs. Theor. Comput. Sci. 381, 248–259 (2007)

3. Bang-Jensen, J., Huang, J., MacGillivray, G., Yeo, A.: Domination in convex bipartite and convex-
round graphs. Tech. Rep. PP-1999-08, University of Southern Denmark (1999)

4. Booth, K., Lueker, G.: Testing for the consecutive ones property, interval graphs, and graph planarity
using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976)

5. Bose, P., Chan, A., Dehne, F., Latzel, M.: Coarse grained parallel maximum matching in convex
bipartite graphs. In: 13th International Parallel Processing Symposium (IPPS’99), pp. 125–129 (1999)

6. Brodal, G.S., Georgiadis, L., Hansen, K.A., Katriel, I.: Dynamic matchings in convex bipartite graphs.
Lect. Notes Comput. Sci. 4708, 406–417 (2007)

7. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for Industrial and Applied
Mathematics, Philadelphia (1999)

8. Brandstädt, A., Eschen, E.M., Sritharan, R.: The induced matching and chain subgraph cover prob-
lems for convex bipartite graphs. Theor. Comput. Sci. 381, 260–265 (2007)

9. Chan, A., Dehne, F., Bose, P., Latzel, M.: Coarse grained parallel algorithms for graph matching.
Parallel Comput. 34, 47–62 (2008)

10. Chang, M.S., Peng, S.L., Liaw, J.L.: Deferred-query: an efficient approach for some problems on
interval graphs. Networks 34, 1–10 (1999)

11. Chen, L., Lu, C., Zeng, Z.: A linear-time algorithm for paired-domination problem in strongly chordal
graphs. Inf. Process. Lett. 110, 20–23 (2009)

12. Chen, L., Lu, C., Zeng, Z.: Labelling algorithms for paired-domination problems in block and interval
graphs. J. Comb. Optim. 19, 457–470 (2010)

13. Cheng, T.C.E., Kang, L., Ng, C.T.: Paired domination on interval and circular-arc graphs. Discrete
Appl. Math. 155, 2077–2086 (2007)

14. Cheng, T.C.E., Kang, L., Shan, E.: A polynomial-time algorithm for the paired-domination problem
on permutation graphs. Discrete Appl. Math. 157, 262–271 (2009)

15. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT
Press, Cambridge (2009)

16. Damaschke, P., Müller, H., Kratsch, D.: Domination in convex and chordal bipartite graphs. Inf. Pro-
cess. Lett. 36, 231–236 (1990)

17. Dekel, E., Sahni, S.: A parallel matching for convex bipartite graphs and applications to scheduling.
J. Parallel Distrib. Comput. 1, 185–205 (1984)

18. Gallo, G.: An O(n logn) algorithm for the convex bipartite matching problem. Oper. Res. Lett. 3,
31–34 (1984)

19. Glover, F.: Maximum matching in a convex bipartite graph. Nav. Res. Logist. Q. 14, 313–316 (1967)
20. Haynes, T.W., Slater, P.J.: Paired-domination in graphs. Networks 32, 199–206 (1998)
21. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Dekker,

New York (1998)

738 Theory Comput Syst (2012) 50:721–738

22. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs: Advanced Topics. Dekker,
New York (1998)

23. Hung, R.W., Chang, M.S.: Linear-time certifying algorithms for the path cover and Hamiltonian cycle
problems on interval graphs. Appl. Math. Lett. 24, 648–652 (2011)

24. Hung, R.W., Laio, C.H., Wang, C.K.: Efficient algorithm for the paired-domination problem in convex
bipartite graphs. In: Proceedings of the International MultiConference of Engineers and Computer
Scientists 2010 (IMECS’2010), vol. I, pp. 365–369 (2010)

25. Katriel, I.: Matchings in node-weighted convex bipartite graphs. INFORMS J. Comput. 20, 205–211
(2008)

26. Korpelainen, N.: A polynomial-time algorithm for the dominating induced matching problem in the
class of convex graphs. Electron. Notes Discrete Math. 32, 133–140 (2009)

27. Lappas, E., Nikolopoulos, S.D., Palios, L.: An O(n)-time algorithm for the paired-domination prob-
lem on permutation graphs. Lect. Notes Comput. Sci. 5874, 368–379 (2009)

28. Liang, Y.D., Chang, M.S.: Minimum feedback vertex sets in cocomparability graphs and convex bi-
partite graphs. Acta Inform. 34, 337–346 (1997)

29. Lipski, W., Preparata, F.: Efficient algorithms for finding maximum matchings in convex bipartite
graphs and related problems. Acta Inform. 15, 329–346 (1981)

30. Müller, H.: Hamiltonian circuits in chordal bipartite graphs. Discrete Math. 156, 291–298 (1996)
31. Nussbaum, D., Pu, S., Sack, J.R., Uno, T., Zarrabi-Zadeh, H.: Finding maximum edge bicliques in

convex bipartite graphs. Lect. Notes Comput. Sci. 6196, 140–149 (2010)
32. Park, E., Park, K.: An improved Boolean circuit for maximum matching in a convex bipartite graph.

Fundam. Inform. 84, 81–107 (2008)
33. Qiao, H., Kang, L., Cardei, M., Du, D.Z.: Paired-domination of trees. J. Glob. Optim. 25, 43–54

(2003)
34. Soares, J., Stefanes, M.A.: Algorithms for maximum independent set in convex bipartite graphs. Al-

gorithmica 53, 35–49 (2009)
35. Srinivasan, A., Madhukar, K., Nagavamsi, P., Pandu Rangan, C., Chang, M.S.: Edge domination on

bipartite permutation graphs and cotriangulated graphs. Inf. Process. Lett. 56, 165–171 (1995)
36. Steiner, G., Yeoman, J.: A linear time algorithm for maximum matchings in convex, bipartite graphs.

Comput. Math. Appl. 31(12), 91–96 (1996)
37. Yang, S.J.: Efficient algorithms to solve the link-orientation problem for multi-square, convex-

bipartite, and convex-split networks. Inf. Sci. 171, 475–493 (2005)
38. Yen, W.C.K.: The bottleneck independent domination on the classes of bipartite graphs and block

graphs. Inf. Sci. 157, 199–215 (2003)
39. Yu, C.W., Chen, G.H., Ma, T.H.: On the complexity of the k-chain subgraph cover problem. Theor.

Comput. Sci. 205, 85–98 (1998)

	Linear-Time Algorithm for the Paired-Domination Problem in Convex Bipartite Graphs
	Abstract
	Introduction
	Preliminaries
	The Clustering Process
	The Paired-Domination Problem in Convex Bipartite Graphs
	The Total Domination Problem in Convex Bipartite Graphs
	Concluding Remarks
	Acknowledgements
	References

