
Theory Comput Syst (2012) 51:297–312
DOI 10.1007/s00224-011-9368-x

The Complexity of Explicit Constructions

Rahul Santhanam

Published online: 18 November 2011
© Springer Science+Business Media, LLC 2011

Abstract The existence of extremal combinatorial objects, such as Ramsey graphs
and expanders, is often shown using the probabilistic method. It is folklore that
pseudo-random generators can be used to obtain explicit constructions of these ob-
jects, if the test that the object is extremal can be implemented in polynomial time. In
this paper, we pose several questions geared towards initiating a structural approach to
the relationship between extremal combinatorics and computational complexity. One
motivation for such an approach is to understand better why circuit lower bounds are
hard. Another is to formalize connections between the two areas, so that progress in
one leads automatically to progress in the other.

Keywords Complexity theory · Combinatorial properties · Explicit constructions ·
Pseudorandomness

1 Introduction

The field of extremal combinatorics deals with objects that are as large or small
as possible given certain specified constraints. These objects might be graphs (e.g.,
Ramsey graphs, expanders, extractors), sets or families of sets (e.g., error-correcting
codes, designs), matrices (e.g., rigid matrices), or sequences (e.g., universal traversal
sequences). The study of such extremal objects is motivated by the fact that they are
extremely useful in algorithmic contexts, e.g., expanders and extractors are useful in
designing efficient data structures and small sorting networks, error-correcting codes
are critical to transmission of information in the presence of noise, and universal
traversal sequences are useful in derandomizing certain randomized space-bounded
algorithms.

R. Santhanam (�)
University of Edinburgh, Edinburgh, UK
e-mail: rsanthan@inf.ed.ac.uk

mailto:rsanthan@inf.ed.ac.uk

298 Theory Comput Syst (2012) 51:297–312

In most cases, good bounds on the sizes of extremal objects can be obtained by
using the probabilistic method initiated by Paul Erdos—to prove that there is an ob-
ject of size S satisfying certain specified constraints, prove that a random object of
this size satisfies the constraints with positive probability. The probabilistic method
has been spectacularly successful in obtaining good bounds for various extremal ob-
jects [2].

However, the algorithmic applications of extremal objects often require “explicit”
constructions of these objects. The standard meaning of “explicit” is that the object
should be produced by a deterministic procedure running in polynomial time in the
size of the object. The probabilistic method is inherently non-constructive, and so
does not yield explicit constructions in this sense.

Note that there is a naive procedure for deterministically producing an extremal
object of size S once we are guaranteed existence. Namely, enumerate all objects of
size S, check for each one whether it satisfies the desired constraints, and output the
first one which does. However, this procedure takes time exponential in S, even if the
check whether the constraints hold can be done in polynomial time.

The question of explicit constructions has been studied intensively for various
combinatorial objects. For objects such as expanders, extractors and codes, explicit
constructions are known with near-optimal parameters. For other objects such as
Ramsey graphs, rigid matrices and universal traversal sequences, explicit construc-
tions are still unknown despite years of effort. In any case, for a long time the question
of explicit constructions was typically studied in isolation for each different combi-
natorial object. Recently, complexity theory and specifically the theory of pseudo-
randomness have motivated progress towards a unified theory. In this paper, we raise
several questions and initiate directions that promise progress in both the theory of
explicit constructions and in complexity theory.

1.1 The Role of Complexity Theory

The major open problems in complexity theory are about separating complexity
classes. Is there a Boolean function in NP which is not in P? Is there a Boolean
function in EXP which does not have polynomial-size circuits? A priori, it is not
clear what complexity lower bounds have to do with explicit constructions. How-
ever, it is a simple observation that virtually all complexity lower bounds we wish to
prove hold for a random Boolean function—i.e., the probabilistic method applies to
these questions. This is a highly “non-explicit” construction; making it explicit corre-
sponds to upper bounding the complexity of a Boolean function for which the lower
bound holds, and hence to separating complexity classes. For example, the question
of proving that EXP does not have polynomial-size circuits is precisely the question
of finding a polynomial-time procedure for outputting the truth table of a function
which does not have polynomial-size circuits (here we mean polynomial-time in the
size of the truth table, and hence exponential time in the number of input bits). This
is an explicit construction question.

The question of constructing hard Boolean functions is not just one explicit con-
struction question among many—it has relevance to all the others. This connection
is through the beautiful theory of pseudo-random generators, initiated by Blum, Mi-
cali [5] and Yao [23] from cryptographic motivations, and extended by Nisan and

Theory Comput Syst (2012) 51:297–312 299

Wigderson [16] to a complexity-theoretic setting. Given a class C of statistical tests,
a pseudo-random generator with seed s(n) against C is a function G from s(n) bits
to n bits such that that no test from C can distinguish the uniform distribution on n

bits from the uniform distribution on the range of G. If s(n) is much smaller than
n (e.g. s(n) = O(log(n))), this means that the uniform distribution on the range of
G “looks” random to C, even though it is in fact very far from random. Thanks to
work of Nisan-Wigderson, Impagliazzo-Wigderson [9] and many others, it’s known
that the existence of pseudo-random generators with seed length O(log(n)) against C

which can be computed “efficiently” (i.e., in time polynomial in n) is equivalent to the
existence of functions in linear exponential time which do not have sub-exponential
size circuits with oracle access to some test in C.

Now, for a given explicit construction question where existence has been shown
using the probabilistic method, let C be any class of tests which includes the test
A for whether an object is extremal. A random object passes the test A with prob-
ability close to 1—this is what the probabilistic method gives us. Now, if G is a
pseudo-random generator with logarithmic seed length against C, then by pseudo-
randomness of G, a random element in the range of G satisfies A with probability
close to 1; hence at least one element in the range satisfies A. Thus, the explicit
construction of a function in linear exponential time with no sub-exponential size
C-oracle circuits implies an explicit construction of a polynomial-size set which con-
tains an extremal object for any notion of “extremal” which can be tested within C!
In the case that the extremality test is in P, we can identify efficiently an object in
the set which is indeed extremal. Thus appropriate circuit lower bounds give explicit
constructions for any object whose extremality can be tested in P!

These are folklore observations which have certainly played a role in the devel-
opment of the field of complexity-theoretic pseudo-randomness. Specifically, as sur-
veyed by Trevisan [19] and Vadhan [20], conditional constructions of pseudo-random
generators from Boolean function hardness are closely tied to explicit constructions
of objects such as expanders, extractors and error-correcting codes. However, there
are still many avenues to be explored, and the observations in the previous paragraph
leave many questions unanswered. Are there plausible complexity-theoretic hypothe-
sis under which explicit constructions follow even when the test for extremality is not
in polynomial time? What is the evidence for and against the extremality test being
in polynomial time for questions such as whether a graph is Ramsey, and how does
this connect with one-way functions in cryptography and the “natural proofs” frame-
work of Razborov and Rudich [17]? Can we define new classes of tests containing
natural explicit construction questions for which generic explicit constructions can be
shown unconditionally? Is there a reasonable theory of reductions between explicit
construction questions, as there is for decision problems, and if so, are there natural
“hard” or “complete” questions?

We attempt to formulate these questions in a precise way, and to explore their
implications. Underlying our investigation is a fundamental belief—that the connec-
tion between complexity lower bounds and explicit constructions, while mysterious,
is far from accidental, and that understanding this connection more deeply is key to
progress in both areas.

300 Theory Comput Syst (2012) 51:297–312

2 Preliminaries

2.1 Complexity-Theoretic Notions

For basic complexity notions, such as definitions of standard complexity classes, we
refer the reader to the textbook by Arora and Barak [3]. Given a function s : N → N,
SIZE(s) is the class of Boolean functions computable by circuits of size O(s(n)).
Given a complexity class C, i.o.C is the class of languages L′ for which there is
L ∈ C such that for infinitely many n, L′ ∩ {0,1}n = L ∩ {0,1}n.

We require a standard notion of Kolmogorov time-bounded complexity—for more
information on Kolmogorov complexity, see the excellent book by Li and Vitanyi
[14]. Fix a universal Turing machine U which incurs at most a polynomial overhead
in simulating any program p. We think of U as having two inputs—the program
p and an auxiliary input x, as well as an output tape. For the purpose of defining
time-bounded Kolmogorov complexity RKt , we will take the auxiliary input to be
the empty string. Given a string x, RKt(x) is the minimum over all programs p such
that U(p) = x of |p|+ log(tp), where tp is the time taken for the computation of p on
the empty string to terminate. Just as with other notions of Kolmogorov complexity,
for any string x, RKt(x) ≤ |x| + O(1), and by a counting argument, for any positive
integer n, there is at least one string x of length n such that RKt(x) ≥ n.

2.2 Combinatorial Properties and Explicit Constructions

Definition 1 A property is a set S ⊆ {0,1}∗. For a set J ⊆ N, S is dense on J if
|S ∩ {0,1}n| ≥ (1 − o(1))2n for all n ∈ J . S is said to be dense if S is dense on N.

Note that from a formal mathematical point of view, a property is exactly the same
as a language over the binary strings. But we use a different name to emphasize that
the interpretation is different—we’re not interested in classifying instances efficiently
but rather in generating instances satisfying the property.

Definition 2 Let C be a class of functions from {0,1}∗ to {0,1}∗. A property S has
C-explicit constructions if there is a function f ∈ C such that f (1n) ∈ S ∩ {0,1}n
whenever S ∩ {0,1}n is non-empty. S is said to have C-explicit i.o. constructions
if there is f ∈ C such that f (1n) ∈ S ∩ {0,1}n for infinitely many n for which S

contains a string of length n.

Throughout this paper, by explicit constructions, we mean C-explicit construc-
tions where C is the class of polynomial-time computable functions.

Definition 3 Let C be a class of functions from Boolean strings to sets of Boolean
strings, and let q : N → N be a function. S has a C-explicit list-construction of size
q(n) if there is a function f ∈ C such that f (1n) ∩ S ∩ {0,1}n
= ∅ whenever S ∩
{0,1}n is non-empty, and the cardinality of the set f (1n) is bounded from above by
q(n) for any n.

Theory Comput Syst (2012) 51:297–312 301

Again, when we drop the prefix for “explicit”, we take C to be the class of
polynomial-time computable functions.

Next, we define some natural properties for which it’s an interesting open problem
to find explicit constructions. We will assume some natural encoding of graphs as
binary strings, say using the adjacency matrix. For technical reasons, we will pad
these encodings so that a binary string whose length is not a square represents the
graph represented by the largest initial prefix which is a square.

Definition 4 Given functions k : N → N and l : N → N, Ramsey(k, l) is the set of
graphs G = (V ,E) such that G does not have a clique of size k(|V |) or an indepen-
dent set of size l(|V |).

Our default setting for k and l is k(n) = l(n) = 2 log(n), and for this k and l, we
will simply call the property the Ramsey property. It was famously shown by Paul
Erdos that Ramsey is dense. Density of the Ramsey property implies that a random
graph is very likely to be Ramsey—this gives an algorithm for generating Ramsey
graphs which runs in probabilistic polynomial time and succeeds with high probabil-
ity. It’s a longstanding open problem to obtain explicit constructions of the Ramsey
property. For a long time, the best known explicit construction was due to Frankl and

Wilson [7], and worked for Ramsey(k, l) where k(n) = l(n) = O(2
√

log(n) log(log(n)));
recently this was improved by Barak, Rao, Shaltiel and Wigderson [4], who found
explicit constructions of Ramsey(k, l) for k(n) = l(n) = 2(log(n))ε , where ε > 0 is any
constant. Note that this is still very far from explicit constructions of Ramsey.

There are other natural graph properties such as the Extractor and Expander prop-
erties which are interesting from the point of view of explicit constructions—we will
define these properties if and when needed.

Next, we describe the Rigidity property, which is a property of matrices with ap-
plications to circuit lower bounds. We assume a standard encoding of square matrices
as binary strings. We will assume this representation is padded just as in the case of
graphs. We describe the rigidity property only for the 2-element field; an analogous
definition can be made for any field.

Definition 5 Given constants 1 > ε, δ > 0, Rigid(ε, δ) is the set of matrices M of
dimension n over the field F2 such that the rank of M cannot be reduced below εn

without changing at least n1+δ entries of M .

Valiant [21] proved that the Rigidity property is dense for any 0 < ε, δ < 1; he also
showed that explicit constructions of rigid matrices would yield an explicit lower
bound against linear-size, logarithmic-depth circuits whose gates are binary linear
operations over the field. Despite many efforts, we’re not close to obtaining explicit
constructions of the Rigidity property—the history of the problem is surveyed by
Lokam [15].

The Primality property needs no introduction. We assume the natural encoding of
natural numbers as strings.

Definition 6 Primes is the set of prime numbers.

302 Theory Comput Syst (2012) 51:297–312

Primes is not dense but by the prime number theorem, |Primes ∩ {0,1}n| =
�(2n/n). The celebrated result of Agrawal, Kayal and Saxena [1] shows that
Primes ∈ P. No explicit constructions of the Primes property are known. This ques-
tion was recently the focus of a Polymath project initiated by the mathematician Ter-
ence Tao.

The question of whether there are languages in E without small circuits is a major
open question. This can be formulated as an explicit construction question about the
property MIN − CKT studied by Kabanets and Cai [11].

Definition 7 MIN − CKT is the property defined as follows: When the input length
|x| = n is of the form 2m, for some integer m, then x ∈ MIN − CKT if it is the truth
table of a function on m bits which does not have Boolean circuits of size

√
n. When

2m < n < 2m+1, x ∈ MIN − CKT if the first 2m bits of x constitute the truth table of
a function without Boolean circuits of size 2m/2.

It’s not hard to see that MIN − CKT is dense, using a counting argument a la
Shannon. Also MIN − CKT ∈ coNP. Explicit constructions for MIN − CKT would
imply BPP = P using an argument via pseudo-random generators described in the
next subsection.

Explicit construction problems sometimes have additional parameters than just the
size of the object to be generated. For example, one could parameterize the Ramsey
property by two graphs H1 and H2 such that a graph G satisfies the property if any bi-
colouring of G has either an induced copy of H1 or an induced copy of H2. Similarly,
one could parameterize the Primes property by an integer m and have an integer n sat-
isfy the property if it is prime and lies between m and 2m. To model such situations,
we define the notion of a parameterized property and consider explicit constructions
thereof.

Definition 8 A parameterized property is simply a relation R ⊆ {0,1}∗ × {0,1}∗. R

has explicit constructions if there is an algorithm which, given x and 1m, where x is
a binary string and m an integer, generates in polynomial time a string y such that
|y| = m and R(x, y) holds, if such a string y exists. R has explicit constructions under
the density promise if the algorithm is only required to generate a string satisfying
the relation when the fraction of strings y of length m satisfying R(x, y) is 1 − o(1).

To observe that explicit constructions of parameterized properties generalize ex-
plicit constructions of properties, for each property S associate a parameterized prop-
erty R consisting of all pairs (1n, y) where n is an integer, y ∈ S and |y| = n. This
correspondence also implies that explicit constructions of parameterized properties
under the density promise generalize explicit constructions of dense properties.

2.3 Pseudorandom Generators

Our discussion of explicit constructions of dense properties requires some knowledge
of pseudo-random generator. A pseudo-random generator is an efficiently computable
function mapping short random strings to longer “pseudo-random strings” which fool

Theory Comput Syst (2012) 51:297–312 303

statistical tests, in the sense that the statistical test cannot distinguish pseudo-random
strings from purely random strings. A statistical test is modelled here as a Boolean
function. The strength of the generator corresponds to the power of statistical tests it
can fool.

Definition 9 Let T : {0,1}∗ → {0,1} be a statistical test, and let Tn = T ∩ {0,1}n
for any n. Given a function s : N → N and an error function δ : N → [0,1], a PRG G

fooling T with seed length s(n) and error δ is a sequences of functions {Gn} such that
Gn maps s(n) bits to n bits, is computable in time 2O(s(n)), and |Prx∈{0,1}n T (x) −
Pry∈{0,1}s(n) T (Gn(y))| ≤ δ(n). For a class C of statistical tests, G fools C if it fools
T for each T ∈ C.

There is a fundamental connection between complexity lower bounds and pseudo-
random generators, first made by Nisan and Wigerson [16] and built upon by several
others [9, 12]. We state one version of the connection, which is useful for us.

Theorem 10 [9, 12, 16] Let S be any property. If there is an ε > 0 such that E does
not have S-oracle Boolean circuits of size 2εn infinitely often, then there is a PRG G

with seed length O(log(n)) and error 1/poly(n) fooling S.

Corollary 11 [9, 16] If there is an ε > 0 such that E does not have Boolean circuits
of size 2εn infinitely often, then BPP = P.

3 The Relevance of Complexity Theory to Explicit Constructions

It has been observed by many researchers [19] that the theory of pseudo-random
generators can be used to provide explicit constructions of properties that are easy to
test, under standard complexity lower bound assumptions.

Proposition 12 Let S be any dense property. If S ∈ P, then S has explicit construc-
tions under the assumption there is an ε > 0 such that E
⊆ i.o.SIZE(2εn).

Proof Let M be a polynomial-time Turing machine deciding S. Using Theorem 10,
under the assumption that E
⊆ i.o.SIZE(2εn), there is a polynomial-time Turing ma-
chine M ′ which given n in unary, outputs a polynomial-sized set of strings of length
n such that most strings in the set belong to S.

We define explicit constructions as follows: run M ′ on 1n to obtain a polynomial-
sized set of strings, then run M on each of these strings in succession until a string y

is found for which M accepts on y. Halt and output y.
This procedure runs in polynomial time since M ′ and M run in polynomial time. �

Indeed, for the conclusion of Proposition 12 to hold, it is sufficient for the property
to be testable in BPP, since the hardness assumption made also implies BPP = P [9].
This observation was made to me by Lance Fortnow.

Proposition 12 cannot be used directly to show that Primes has explicit construc-
tions if E does not have sub-exponential size circuits infinitely often. But by using a

304 Theory Comput Syst (2012) 51:297–312

δ-PRG, where δ = 1/n2 together with the fact that a fraction �(1/n) of numbers of
length n are prime for any n, the same proof goes through to show explicit construc-
tions for the primes.

Corollary 13 If there is an ε > 0 such that E
⊆ i.o.SIZE(2εn), then Primes has ex-
plicit constructions.

The polynomial-time procedure witnessing the (conditional) explicit constructions
of Proposition 12 has time complexity greater than the complexity of verifying the
property. It turns out that this is not merely an artifact of the proof technique—there
are dense easy properties for which explicit constructions require arbitrarily high
polynomial-time complexity.

Theorem 14 For any k, there is a dense property Sk ∈ P such that there are no
explicit constructions for Sk in time O(nk).

Proof Define Sk to be the set of strings such that RKt(x) ≥ (k + 2) log(|x|). Sk is
clearly dense. Sk ∈ P because in polynomial time, we can enumerate all strings with
RKt -complexity at most (k + 2) log(n), and check whether the input string is in this
list.

The proof that there are no explicit constructions for Sk within time O(nk) is
by contradiction. Assume that there is a Turing machine M running in time O(nk)

which yields explicit constructions of Sk . The string output by M on input 1n can be
described by log(n) + O(1) bits (the description of M together with the binary rep-
resentation of n) and can be recovered from this description in time O(nkpolylog(n))

(by assumption on running time of M). Thus, the RKt complexity of this string is
(k + 1) log(n) + o(log(n)), which means that it cannot be in Sk for n sufficiently
large. �

How about if a property is not easy, but is dense? The proof idea of Proposition 12
can be used to show that even if the property is not known to be easy to test, under
a strong enough hardness assumption, we can get explicit list-constructions of size
poly(n).

Proposition 15 Let S be a dense property. If E does not have S-oracle circuits of size
2εn infinitely often for some ε > 0, there are explicit list-constructions of size poly(n)

for S.

Proof Using Theorem 10, under the assumption that E does not have S-oracle circuits
of size 2εn infinitely often for some ε > 0, there is a PRG G against S mapping seeds
of length O(log(n)) to strings of length n. The range of this PRG is computable in
polynomial time and is a list of strings such that at least one belongs to S, using the
pseudo-randomness property and the fact that S is dense. �

Since most combinatorial properties of interest are in NP or coNP, lower bounds
for E against circuits with SAT -oracle gates generally suffice to apply Proposition 15.

Theory Comput Syst (2012) 51:297–312 305

But then a natural question arises: is there a fundamental reason why the conclusion
weakens to explicit list-constructions rather than explicit constructions? This question
was studied by Fortnow and Santhanam, who gave complexity-theoretic evidence that
the weakening cannot be avoided.

In order to give such complexity-theoretic evidence, they consider parameterized
properties. Note that the results of Propositions 12 and 15 apply also to explicit con-
structions of parameterized properties under the density promise. The result below,
proved jointly with Lance Fortnow, states that it’s unlikely we can find a common
generalization of the two results giving explicit constructions of properties that are
hard to test, under reasonable complexity-theoretic hypotheses.

Theorem 16 If NP
= P, then there is a parameterized property S ∈ NP and a pa-
rameterized property S′ ∈ coNP such that S and S′ do not have explicit constructions
under the density promise.

Proof Sketch We will first sketch how to use explicit constructions for parameterized
properties in NP or coNP to decide satisfiability of formulae with either zero or one
satisfying assignments. We will then use the classical result of Valiant and Vazirani
[22] to strengthen this and get NP = P from the explicit construction assumption.

The basic idea is that explicit constructions can be used to prune the space of can-
didate solutions. Let φ be a formula which has either one or zero satisfying assign-
ments. We show how to prune the space of candidate solutions by a factor 1−1/n; by
applying this idea iteratively n2 times, we get a polynomial-size space which can be
searched exhaustively. Consider log(n)-size prefixes of possible assignments. Define
a prefix to be in the property if it is not the prefix of a satisfying assignment. Suppose
there is a satisfying assignment and an explicit construction for this property. Then,
we can get a string y of length log(n) in polynomial time which is not a prefix of the
assignment—this allows us to prune the space of solutions by the stated factor. To
apply the idea iteratively, we parameterize by y and re-encode the remaining strings
as binary strings of the appropriate length. To define a property in NP, just check that
there exists a satisfying assignment without the input prefix. To define it in coNP,
check that no satisfying assignment has the input prefix. Since we assumed that there
are either zero or one satisfying assignments, either of these properties work in the
argument above.

To remove the assumption that there are zero or one satisfying assignments, we
use the Valiant-Vazirani result to probabilistically reduce the satisfiability question
to the unique satisfiability question. Thus, under the assumption about explicit con-
structions, we get NP ⊆ BPP and hence NP = RP. But note that the assumption also
clearly implies RP = P. Given any language L ∈ RP, we can define a corresponding
parameterized property where the parameter is the input and the property consists
of those random strings which cause the input to accept. Using explicit constructions
for parameterized properties under the density promise, we can find an accepting ran-
dom string in polynomial time for inputs in L, and hence decide if an input is in L or
not. �

To re-iterate, most properties, as well as parameterized properties, of interest are
either in NP or in coNP.

306 Theory Comput Syst (2012) 51:297–312

Theorem 16 indicates that the complexity of testing a property is a key considera-
tion when determining whether the property is likely to have explicit constructions or
not. While, by a generalization of Proposition 12, parameterized properties that are
easy to test have explicit constructions under the density promise if a widely-believed
complexity hypothesis holds, Theorem 16 shows that if a different widely-believed
complexity hypothesis holds, parameterized properties that are hard to test do not in
general have explicit constructions under the density promise.

Our focus on dense properties is because the use of the probabilistic method to
prove that a property is non-trivial also typically establishes that the property is dense.
But how about properties that are not dense, but are nevertheless easy to test—could
one expect explicit constructions in general for such properties?

It’s not to hard to show that a similar argument as the one in Theorem 16 holds in
this case as well.

Theorem 17 There is a parameterized property S ∈ P such that if S has explicit
constructions, then NP = P.

Proof We simply use a parameterized property S that encodes satisfiability. S con-
sists of all pairs 〈φ,w〉 where w is a satisfying assignment to the formula φ. If this
property has explicit constructions, we can solve SAT in polynomial time as follows:
Given an input formula φ, compute the number of variables m in φ and then run the
explicit construction procedure for S on φ and 1m. If the procedure returns a string
w of length m, check that w is a satisfying assignment to φ, outputting YES if it
is and NO if it is not. By the definition of explicit constructions for parameterized
properties, if φ is indeed satisfiable, w will be a satisfying assignment to φ, hence
this algorithm for SAT is correct. Since the explicit construction procedure runs in
polynomial time, so does this algorithm. Clearly the parameterized property S is in
P, as verifying whether an assignment satisfies a formula can be done in polynomial
time. �

In fact, Theorem 17 can be strengthened to state that there is a property in AC0 for
which explicit constructions would imply a collapse of NEXP to EXP. This is because
verification of whether an assignment satisfies a 3-CNF formula can be done in AC0.

Theorems 16 and 17 have relevance to the natural proofs framework of Razborov
and Rudich. The natural proofs framework focuses on studying properties of func-
tions (represented as their truth tables) which imply circuit lower bounds. The main
result of Razborov and Rudich [17] states that under a standard assumption about
the existence of one-way functions, there cannot be lower bound properties which
are both dense and easy. However, to establish a lower bound, it’s not sufficient
to define an appropriate lower bound property—one must also exhibit an explicit
function satisfying the property. The results here mean that in general this is hard
to do for (parameterized) properties which are not both dense and easy, i.e., proper-
ties which could conceivably be lower bound properties under the assumption that
one-way functions exist.

The proofs of Theorem 16 and 17 apply to artificially defined properties rather
than to natural combinatorial properties. Therefore we ask:

Theory Comput Syst (2012) 51:297–312 307

Question 18 Is there a “natural” combinatorial parameterized property in NP or
coNP such that explicit constructions for that property would refute a strongly-
believed complexity conjecture?

Given the preceding observations, it’s clearly of interest to study the complexity
of testing various natural properties. Consider the Ramsey property, for instance: it is
known to be in coNP, but whether it is in P is unknown. Perhaps this is because of
limitations in our algorithmic knowhow? After all, the Primes property was known
for a long time to be in NP ∩ coNP but only recently was it shown to be in P.

We can give some evidence that the Ramsey property is unlikely to be easy. This
is based on a minor variant of a hardness assumption first suggested independently
by Jerrum [10] and Kucera [13], which has since been used in a variety of contexts.

Definition 19 (Planted Clique Assumption) There is no polynomial-time algorithm
which distinguishes the two distributions D0 and D1 on n-vertex graphs defined as
follows. D0 is the distribution induced by picking an Erdos-Renyi random graph
on n vertices with edge probability 1/2. D1 is the distribution induced by picking
an Erdos-Renyi random graph on n vertices with edge probability 1/2 in which a
random clique of size 3 log(n) has been planted.

Theorem 20 Under the Planted Clique Assumption, Ramsey /∈ P.

Proof The proof follows from the observation that an Erdos-Renyi random graph
with edge probability 1/2 satisfies the Ramsey property with probability close to 1,
while a random graph with a planted clique of size 3 log(n) is not Ramsey. �

It would be very interesting to provide stronger evidence that a natural combina-
torial property is not easily verifiable.

Question 21 Is there a natural combinatorial property S such that if one-way func-
tions exist, then S /∈ P?

The Ramsey property is testable in quasi-polynomial time just by making an ex-
haustive search for cliques and independent sets of size 2 log(n). However, this does
not seem to be the case for other properties such as the Rigidity property. Could
one actually prove that this property is hard for the smallest complexity class known
to contain it—coNP in this case? Such a hardness result might hold, but an idea of
Kabanets and Cai [11] can be used to give evidence that this would require new tech-
niques, since it would imply explicit constructions.

Theorem 22 Let S be any property which is NP-complete or coNP-complete under
polynomial-time honest m-reductions. Then S has explicit i.o.constructions.

Proof We establish the result for the case that S is NP-complete; the case that S is
coNP-complete is similar. Let f be a polynomial-time honest m-reduction from SAT
to S. Let {φn}, |φn| = n be a polynomial-time constructible sequence of satisfiable

308 Theory Comput Syst (2012) 51:297–312

formula—such a sequence is easily defined. Now consider the sequence {f (φn)}.
Since f is an honest m-reduction from SAT to S, we have that for infinitely many m,
there is a φi such that f (φi) ∈ S ∩ {0,1}m. Furthermore for infinitely many m, the
first such string f (φi) can be found in polynomial time, simply by enumerating the
first polynomially (in m) many i’s and verifying if the length of f (φi) is m for each
such i. Thus S has explicit i.o.constructions. �

Note that virtually all known examples of NP-completeness or coNP-completeness
proofs are via polynomial-time honest m-reductions. The proof idea of Theorem 22
illustrates how hardness results can be used positively (to explicitly construct a mem-
ber of a set) as well as negatively (to show that a set is hard).

Thus, before aiming to show that a property is hard for a complexity class, we
should be able to produce explicit constructions for the property. But is producing
explicit constructions the main obstacle, in some sense, to showing hardness results
for certain natural properties? In the case of the superconcentrator property, Blum,
Karp, Vornberger, Papadimitriou and Yannakakis [6] showed that it was coNP-hard
by using known explicit constructions of super-concentrators in their reduction.

Question 23 Are there natural properties (apart from the Super-concentrator prop-
erty) for which explicit constructions would imply hardness for some complexity
class?

Given that there’s evidence of hardness for some natural properties, we could try
to find ways around the “complexity barrier” to explicit constructions expressed by
Theorems 16 and 17. One possible route is through the notion of combinability. If
given a list of objects such that at least one of them satisfies a given property, we
could produce a different object that is guaranteed to satisfy the property, then The-
orem 15 would be useful in actually getting explicit constructions (under a hardness
hypothesis).

Definition 24 A property S is combinable if there is an ε > 0 and a polynomial-time
algorithm A which when given y1 . . . yk , |yi | = n for each 1 ≤ i ≤ k, and k = poly(n),
produces in polynomial time a string y ∈ S such that |y| ≥ nε .

Combiners have been studied in the cryptographic context [8]. In the combinato-
rial context, a weak version of combinability is shown for the Rigidity property for
large fields by Klivans and van Melkebeek [12].

Corollary 25 If S is combinable and there is a δ > 0 such that E does not have
S-oracle circuits of size 2δn infinitely often, then S has explicit i.o.constructions.

Question 26 Is the Ramsey property combinable?

Another way to get around the complexity barrier is by making a different but still
plausible complexity assumption under which explicit constructions for most “nat-
ural” combinatorial properties could be shown to exist, without worrying about the

Theory Comput Syst (2012) 51:297–312 309

somewhat artificial counterexamples of Theorems 16 and 17. We present a candidate
assumption.

Definition 27 (Condition H) Fix a universal log-space Turing machine U . There is a
polynomial-time algorithm which on input 1n outputs a string xn such that U(p) = xn

implies |p| ≥ n − �(log(n)).

Condition H is robust in the sense that it does not depend on the choice of the
universal machine U .

Theorem 28 Under Condition H, Ramsey(k, l) has explicit constructions when
k, l = ω(log(n)).

Proof We provide a sketch. The key idea is that non-Ramsey graphs can be com-
pressed so that the graph can be recovered from its compressed version by a
logarithmic-space computation. The compressed version saves on bits by explicitly
listing vertices in a large clique or independent set rather than listing edges. This gives
savings when there is guaranteed to be a clique or independent set of size ω(log(n)).
Condition H gives a polynomial-time algorithm to list strings which cannot be com-
pressed in this manner, hence any such string is a representation of a Ramsey graph. �

Question 29 How does Condition H relate to traditional complexity assumptions?

Question 30 Which other natural properties have explicit constructions under Con-
dition H?

The strongest argument for the relevance of complexity theory to explicit construc-
tions would be to give previously unknown unconditional explicit constructions for
some natural combinatorial property which follow from complexity-theoretic consid-
erations. Suppose we wish to use the theory of pseudo-randomness to give explicit
constructions for some property S. Even if S is testable in polynomial time, in general
we would need circuit lower bound assumptions to achieve this, as in Theorem 12.
There are a few ways one could imagine getting around this. First, by examining the
proof that a random object satisfies a given property, i.e., perhaps one could design
a randomized algorithm for generation which uses only O(log(n)) random bits and
can therefore be unconditionally derandomized as long as the property is efficiently
testable. Second, if S is very easily testable, say in a complexity class C for which
circuit lower bounds are already known, then by applying the idea in the proof of
Theorem 12, we could hope to get unconditional explicit constructions. Third, we
could try to exploit the fact that we only need generators fooling a specific test, i.e.,
S, rather than a class of tests. Namely, we could try and tailor the PRG we use to the
specific property for which we seek explicit constructions.

As far as the author is aware, there are no interesting instantiations of the third
approach yet. We apply the first and second approaches to the problem of explicit
constructions of Ramsey graphs. The first approach has been used before in the con-
text of various combinatorial properties [2, 18] while the second approach has been

310 Theory Comput Syst (2012) 51:297–312

heavily used within complexity theory for unconditional derandomization in various
contexts.

Theorem 31 Ramsey has DTIME(nO(log(n))2
)-explicit constructions.

Proof We start with the observation that a graph chosen from a 3(log(n))2-wise in-
dependent sample space on n2 bits has a high probability of being Ramsey. This is
because Erdos’ application of the probabilistic method for this case only requires
O(log(n))2-wise independence. Using known constructions of k-wise independent
sample spaces for this value of k [2], we can generate in time O(f (n)) where
f (n) = nO(log(n))2

f (n) candidate graphs, and check for each one in time nO(log(n))

whether it is Ramsey or not using exhaustive search. Most such graphs are Ram-
sey, hence sooner or later we will find a Ramsey graph using this method. The time
required is O(f (n)). �

To apply the second approach, notice that Ramsey has constant-depth circuits of
size nO(log(n)). Now, using the unconditional pseudo-random generator of Nisan for
constant-depth circuits and applying the proof idea of Theorem 31, we get quasipoly-
nomial time-explicit constructions. However, the exponent in the quasi-polynomial
time bound is worse than that in Theorem 31.

Question 32 Are there unconditional explicit poly(n)-list constructions of Ramsey
graphs?

Next, we address the question of reductions between explicit construction prob-
lems. The theory of algorithms has achieved its current richness mostly because of
the wealth of reductions that are known between problems with regard to algorithmic
solvability. We first formulate a natural notion of reduction between properties.

Definition 33 Let S and T be properties. The explicit construction problem for T

poly-time reduces to the explicit construction problem for S if there is a polynomial-
time oracle Turing machine M with the following properties. On input 1n, M only
makes oracle queries of the form 1m for some integer m. On such an oracle query,
the oracle returns a string in S ∩ {0,1}m if such a string exists, and an arbitrary string
otherwise. At the end of its computation, M outputs a string in T ∩ {0,1}n, if such a
string exists.

Proposition 12 can be re-interpreted as a one-query polynomial-time reduction
of the explicit construction problem for S to the explicit construction problem for
MIN −CKT for any S ∈ P. However, MIN −CKT is not known to be in P and indeed
the natural proofs framework of Razborov and Rudich [17] indicates it is unlikely
that MIN − CKT ∈ P, as this would break any one-way function. It’s natural to ask
the following question.

Question 34 Is there an explicit construction problem for a property S ∈ P such that
every explicit construction problem for a property T ∈ P poly-time reduces to it? Is
there such an explicit construction problem for a natural combinatorial property?

Theory Comput Syst (2012) 51:297–312 311

The notion of reduction in Definition 33 can easily be extended to parameterized
properties and a similar question about completeness could be asked in this setting.
The surveys of Trevisan [19] and Vadhan [20] detail many connections between var-
ious combinatorial objects such as expanders, extractors and error-correcting codes.
It would be interesting to formulate some of these connections in terms of the notion
of reduction between explicit construction problems.

Acknowledgements I am grateful to Lance Fortnow and Srikanth Srinivasan for several productive
discussions. Lance kindly allowed me to include Theorem 16 in this paper. Thanks also to Tony Tan for
pointing me to the paper by Spencer [18].

References

1. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Report, Department of Computer Science and
Engineering, Indian Institute of Technology, Kanpur (2002)

2. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, New York (1992), with an appendix on
open problems by Paul Erdös

3. Arora, S., Barak, B.: Complexity Theory: A Modern Approach. Cambridge University Press, Cam-
bridge (2009)

4. Barak, B., Rao, A., Shaltiel, R., Wigderson, A.: 2-source dispersers for sub-polynomial entropy and
Ramsey graphs beating the Frankl-Wilson construction. In: Proceedings of 38th Symposium on The-
ory of Computing, pp. 671–680 (2006)

5. Blum, M., Micali, S.: How to generate cryptographically strong sequence of pseudo-random bits.
SIAM J. Comput. 13, 850–864 (1984)

6. Blum, M., Karp, R., Vornberger, O., Papadimitriou, C., Yannakakis, M.: The complexity of testing
whether a graph is a superconcentrator. Inf. Process. Lett. 13(4–5), 164–167 (1981)

7. Frankl, P., Wilson, R.: Intersection theorems with geometric consequences. Combinatorica 1, 357–368
(1981)

8. Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: Robust combiners for oblivious transfer and
other cryptographic primitives. In: Proceedings of 24th International Conference on the Theory and
Application of Cryptographic Techniques (CRYPTO ’95), pp. 96–113 (2005)

9. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: Derandomizing the XOR
lemma. In: Proceedings of the 29th Annual ACM Symposium on the Theory of Computing, pp. 220–
229 (1997)

10. Jerrum, M.: Large cliques elude the metropolis process. Random Struct. Algorithms 3(4), 347–359
(1992)

11. Kabanets, V., Cai, J.-Y.: Circuit minimization problem. In: Proceedings of the Thirty Second Annual
ACM Symposium on Theory of Computing, Portland, Oregon, May 21–23, 2000, pp. 73–79. ACM
Press, New York (2000)

12. Klivans, A., van Melkebeek, D.: Graph nonisomorphism has subexponential size proofs unless the
polynomial hierarchy collapses. SIAM J. Comput. 31(5), 1501–1526 (2002)

13. Kucera, L.: Expected complexity of graph partitioning problems. Discrete Appl. Math. 57(2–3), 193–
212 (1995)

14. Li, M., Vitanyi, P.: Introduction to Kolmogorov Complexity and Its Applications. Springer, Berlin
(1993)

15. Lokam, S.: Complexity lower bounds using linear algebra. Found. Trends Theor. Comput. Sci. 4(1–2),
1–155 (2009)

16. Nisan, N., Wigderson, A.: Hardness vs randomness. J. Comput. Syst. Sci. 49(2), 149–167 (1994)
17. Razborov, A., Rudich, S.: Natural proofs. J. Comput. Syst. Sci. 55(1), 24–35 (1997)
18. Spencer, J.: From Erdos to algorithms. Discrete Math. 136(1–3), 295–307 (1994)
19. Trevisan, L.: Pseudorandomness and combinatorial constructions. Electron. Colloq. Comput. Com-

plex. 13(13) (2006)
20. Vadhan, S.: The unified theory of pseudorandomness. ACM SIGAST News 38, 39–54 (2007)

312 Theory Comput Syst (2012) 51:297–312

21. Valiant, L.G.: Graph-theoretic arguments in low-level complexity. In: Gruska, J. (ed.) Proceedings
of the 6th Symposium on Mathematical Foundations of Computer Science, Tatranská Lomnica,
Czechoslovakia, September 1977. LNCS, vol. 53, pp. 162–176. Springer, Berlin (1977)

22. Valiant, L., Vazirani, V.: NP is as easy as detecting unique solutions. In: Proceedings of the Seven-
teenth Annual ACM Symposium on Theory of Computing, pp. 458–463 (1985)

23. Yao, A.: Theory and application of trapdoor functions. In: Proceedings of the 23rd Annual IEEE
Symposium on Foundations of Computer Science, pp. 80–91 (1982)

	The Complexity of Explicit Constructions
	Abstract
	Introduction
	The Role of Complexity Theory

	Preliminaries
	Complexity-Theoretic Notions
	Combinatorial Properties and Explicit Constructions
	Pseudorandom Generators

	The Relevance of Complexity Theory to Explicit Constructions
	Acknowledgements
	References

