
Theory Comput Syst (2012) 50:675–693
DOI 10.1007/s00224-011-9367-y

Parameterizing by the Number of Numbers

Michael R. Fellows · Serge Gaspers ·
Frances A. Rosamond

Published online: 29 October 2011
© Springer Science+Business Media, LLC 2011

Abstract The usefulness of parameterized algorithmics has often depended on what
Niedermeier has called “the art of problem parameterization”. In this paper we intro-
duce and explore a novel but general form of parameterization: the number of num-
bers. Several classic numerical problems, such as SUBSET SUM, PARTITION, 3-PAR-
TITION, NUMERICAL 3-DIMENSIONAL MATCHING, and NUMERICAL MATCHING

WITH TARGET SUMS, have multisets of integers as input. We initiate the study of
parameterizing these problems by the number of distinct integers in the input. We
rely on an FPT result for INTEGER LINEAR PROGRAMMING FEASIBILITY to show
that all the above-mentioned problems are fixed-parameter tractable when parame-
terized in this way. In various applied settings, problem inputs often consist in part
of multisets of integers or multisets of weighted objects (such as edges in a graph,
or jobs to be scheduled). Such number-of-numbers parameterized problems often re-
duce to subproblems about transition systems of various kinds, parameterized by the
size of the system description. We consider several core problems of this kind rel-
evant to number-of-numbers parameterization. Our main hardness result considers
the problem: given a non-deterministic Mealy machine M (a finite state automaton

A preliminary version of this paper appeared in the proceedings of IPEC 2010 [7].
M.R.F. and F.A.R. acknowledge support from the Australian Research Council. S.G. acknowledges
partial support from the European Research Council (COMPLEX REASON, 239962), from Conicyt
Chile (Basal-CMM), and from the Australian Research Council.

M.R. Fellows · F.A. Rosamond
School of Engineering and IT, Charles Darwin University, Darwin, NT 0909, Australia

M.R. Fellows
e-mail: michael.fellows@cdu.edu.au

F.A. Rosamond
e-mail: frances.rosamond@cdu.edu.au

S. Gaspers (�)
Institute of Information Systems, Vienna University of Technology, Vienna, Austria
e-mail: gaspers@kr.tuwien.ac.at

mailto:michael.fellows@cdu.edu.au
mailto:frances.rosamond@cdu.edu.au
mailto:gaspers@kr.tuwien.ac.at

676 Theory Comput Syst (2012) 50:675–693

outputting a letter on each transition), an input word x, and a census requirement c

for the output word specifying how many times each letter of the output alphabet
should be written, decide whether there exists a computation of M reading x that
outputs a word y that meets the requirement c. We show that this problem is hard for
W [1]. If the question is whether there exists an input word x such that a computa-
tion of M on x outputs a word that meets c, the problem becomes fixed-parameter
tractable.

Keywords Parameterized complexity · Problem parameterization · Variety of a
multiset · Numerical problems

1 Introduction

Parameterized complexity and algorithmics has been developing for more than
twenty years. Some important progress of the field has depended on what Nieder-
meier has called “the art of problem parameterization” (see Chap. 5 of his mono-
graph [23]). For example, it was Cristina Bazgan who first suggested that the pa-
rameter might be k = 1/ε in the study of the complexity of approximation, leading
eventually to the study of EPTASs [3].

Here we explore, for the first time (to our knowledge), a parameterization that
seems widely relevant: the number of numbers. Many problems take as input infor-
mation that consists (in part) of multisets of integers or multisets of weighted objects,
such as weighted edges in a weighted graph, the time-requirements of jobs to be
scheduled, or the sequence of molecular weights of a spectrographic dataset. Our in-
vestigations are of importance for problem input distributions where the number of
distinct numerical values is small compared to the overall input size, and when the
modeling of the problem allows rounding as a way to get to fewer distinct values.

In classical complexity, this “parameterization” has been explored in distribution-
sensitive algorithmics [29]. For example, while Ω(n logn) is a lower bound on sort-
ing n values in the comparison model [18], a multiset of cardinality n and h distinct
values can be sorted using O(n logh) comparisons [22].

It is perhaps surprising that this parameterization in the sense of Niedermeier’s “art
of problem parameterization” [23, 24] has not been considered before in parameter-
ized complexity, as it seems entirely well-motivated. While weighted combinatorial
optimization problems have generally strong claims to model realism, it is often the
case that, e.g., the jobs to be scheduled may be of certain standard sizes arising in
a limited number of ways, or that the costs of the nodes in a network problem may
depend on the model and vendor of the device, of which there are a limited num-
ber of possibilities. Many similar scenarios easily come to mind. A bounded number
of numbers may also arise naturally and implicitly in parameterized problems when
numbers are associated to other parameterized aspects of a problem, such as alphabet
size.

As an initial foray, we first show that a number of classic NP-hard problems about
multisets of integers, when parameterized in this way, become fixed-parameter tracta-
ble. The proofs are easy, and the knowledgeable reader might anticipate them almost

Theory Comput Syst (2012) 50:675–693 677

as exercises today—they use the relatively deep result that INTEGER LINEAR PRO-
GRAMMING, parameterized by the number of variables, is FPT. Until recently, as
noted in the 2006 monograph by Niedermeier [23], there were not so many interest-
ing applications of this fundamental result (see [1, 11, 12, 16] for some exceptions).

At a deeper level of engagement with this parameterization, we describe some
examples of how number-of-numbers parameterized problems reduce to numerical
problems about Mealy machines, parameterized by the size of the description of the
machine. We show that one basic problem about Mealy machines, parameterized in
this way, is FPT, and that another is W [1]-hard.

2 Preliminaries

Integer Linear Programming In the INTEGER LINEAR PROGRAMMING FEASIBIL-
ITY problem (ILPF), the input is an m×n matrix A of integers and an m-vector b of
integers, the parameter is n, and the question is whether there exists an n-vector x of
integers satisfying the m inequalities Ax ≤ b. ILPF, parameterized by the number of
variables, was shown to be fixed-parameter tractable by Lenstra [20] and the running
time has been improved by Kannan [17] and by Frank and Tardos [14].

Multisets Let A be a multiset. The cardinality of A, denoted |A|, is the total number
of elements in A, including repeated memberships. The variety of A, denoted ‖A‖,
is the number of distinct elements in A. Element a has multiplicity m in A if it occurs
m times in A. We denote the set of integers from 1 to n by [n] = {1, . . . , n}.

Graphs Let G = (V ,E) be a graph, v ∈ V be a vertex of G, and S ⊆ V be a subset
of vertices of G. The subgraph of G induced on S is the graph G[S] = (S,E ∩
{uv : u,v ∈ S}). The set S is a clique of G if G[S] is complete, i.e. there is an edge
between every two distinct vertices of G[S]. The set S is an independent set of G if
G[S] is empty, i.e. G[S] has no edge. The neighborhood of v is the set of vertices
incident to v and denoted N(v). The degree of v is d(v) = |N(v)|. We also define
NS(v) = N(v) ∩ S and dS(v) = |NS(v)|.

Words Let Σ be an alphabet. The elements of Σ are called letters, and a word x of
length n = |x| is a sequence of n letters. The symbol ε denotes the empty letter. We
denote the concatenation of two words x1, x2 ∈ Σ∗ by x1x2. The ith power of a word
x is denoted xi or (x)i and represents the word xx . . . x

︸ ︷︷ ︸

i times

.

Parameterized Complexity We define the basic notions of Parameterized Complex-
ity and refer to other sources [6, 13, 23] for an in-depth treatment. A parameterized
problem is a set of pairs (I, k), the instances, where I is the main part and k is the
parameter. A parameterized problem is fixed-parameter tractable if there exist a com-
putable function f and an algorithm that solves any instance (I, k) of size n in time
f (k)nO(1). FPT denotes the class of all fixed-parameter tractable parameterized de-
cision problems.

678 Theory Comput Syst (2012) 50:675–693

Parameterized complexity offers a completeness theory that allows the accumula-
tion of strong theoretical evidence that some parameterized problems are not fixed-
parameter tractable. This theory is based on a hierarchy of complexity classes

FPT ⊆ W[1] ⊆ W[2] ⊆ W[3] ⊆ · · · ⊆ XP,

where all inclusions are believed to be strict. Each class W[i] contains all parame-
terized decision problems that can be reduced to a canonical parameterized satisfia-
bility problem Pi under parameterized reductions. These are many-to-one reductions
where the parameter for one problem maps into the parameter for the other. More
specifically, a parameterized problem L reduces to a parameterized problem L′ if
there is a mapping R from instances of L to instances of L′ such that

1. (I, k) is a YES-instance of L if and only if (I ′, k′) = R(I, k) is a YES-instance
of L′,

2. there is a computable function g such that k′ ≤ g(k), and
3. there is a computable function f such that R can be computed in time f (k) ·nO(1),

where n denotes the size of (I, k).

A parameterized problem L is then in W[i], for i ∈ N, if it has a parameterized re-
duction to the problem of deciding whether a Boolean decision circuit (a decision
circuit is a circuit with exactly one output), with AND, OR, and NOT gates, of con-
stant depth such that on each path from an input to the output, all but i gates have
a constant number of inputs, parameterized by the number of ones in a satisfying
assignment to the inputs of the circuit [6].

A parameterized problem is in XP if there exist computable functions f and g and
an algorithm that solves any instance (I, k) of size n in time f (k)ng(k).

3 Subset Sum and Partition

We start with two classic problems on multisets and show that they are fixed-parame-
ter tractable, parameterized by the number of numbers.

variety-SUBSET SUM (var-SUBSUM)

Input: A multiset A of integers and an integer s.
Parameter: k = ‖A‖, the number of distinct integers in A.
Question: Is there a multiset X ⊆ A such that

∑

a∈X a = s?

variety-PARTITION (var-PART)

Input: A multiset A of integers.
Parameter: k = ‖A‖.
Question: Is there a multiset X ⊆ A such that

∑

a∈X a = ∑

b∈A\X b?

The parameterizon of SUBSET SUM by |X| is W [1]-hard [9]. This hardness also
holds for the parameterization of PARTITION by |X| as an easy reduction from
SUBSET SUM adds the integer (

∑

a∈A a) − 2s to A if s ≤ (
∑

a∈A a)/2, and if

Theory Comput Syst (2012) 50:675–693 679

s > (
∑

a∈A a)/2, the reduction looks instead for the complement set A \ X that sums
to (

∑

a∈A a) − s and uses the previous construction.
Our FPT results use a deep result of Lenstra, stating that INTEGER LINEAR PRO-

GRAMMING FEASIBILITY (ILPF), parameterized by the number of variables, is FPT.
They are obtained by very natural formulations of the respective problems as integer
programs.

Theorem 1 var-SUBSUM is fixed-parameter tractable.

Proof Given an instance (A, s) for var-SUBSUM, with ‖A‖ = k, we create an equiv-
alent instance of ILPF whose number of variables is upper bounded by a function
of k. Let a1, . . . , ak denote the distinct elements of A and let m1, . . . ,mk denote their
respective multiplicities in A. The ILPF instance has the integer variables x1, . . . , xk

and the following inequalities and equalities.

xi ≤ mi, ∀i ∈ [k],
xi ≥ 0, ∀i ∈ [k],

k
∑

i=1

xi · ai = s.

For each i ∈ [k], the variable xi represents the number of times ai occurs in X, the
set summing to s in a valid solution. Using standard techniques in mathematical pro-
gramming, these constraints can be transformed into the form Ax ≤ b. �

A very similar proof shows that var-PART is fixed-parameter tractable.

Theorem 2 var-PART is fixed-parameter tractable.

Proof Given an instance A for var-PART, with ‖A‖ = k, we create an equivalent
instance of ILPF whose number n of variables is upper bounded by a function of k.

Let a1, . . . , ak denote the distinct elements of A and let m1, . . . ,mk denote their
respective multiplicities in A. The ILPF instance has the integer variables x1, . . . , xk

and the following inequalities and equalities.

xi ≤ mi, ∀i ∈ [k],
xi ≥ 0, ∀i ∈ [k],

k
∑

i=1

xi · ai =
∑

a∈A

a/2.

For each i ∈ [k], the variable xi represents the number of times ai occurs in X, such
that

∑

a∈X a = ∑

b∈A\X b = ∑

a∈A a/2 in a valid solution.
Using standard techniques in mathematical programming, these constraints can be

transformed such that they respect the form Ax ≤ b. �

680 Theory Comput Syst (2012) 50:675–693

4 Other Classic Numerical Problems

Using the ILPF machinery, we show in this section that several other problems,
which are often used in NP-hardness proofs, become fixed-parameter tractable when
parameterized by the number of numbers.

variety-NUMERICAL 3-DIMENSIONAL MATCHING (var-NUM3-DM)

Input: Three multisets A,B,C of n integers each and an integer s.
Parameter: k = ‖A ∪ B ∪ C‖.
Question: Are there n triples S1, . . . , Sn, each containing one element from

each of A,B, and C such that for every i ∈ [n], ∑

a∈Si
a = s?

Theorem 3 var-NUM3-DM is fixed-parameter tractable.

Proof Let (A,B,C, s) be an instance for var-NUM3-DM, with k1 = ‖A‖, k2 = ‖B‖,
k3 = ‖C‖, and k = ‖A ∪ B ∪ C‖. Let a1, . . . , ak1 denote the distinct elements of A,
b1, . . . , bk2 denote the distinct elements of B , and c1, . . . , ck3 denote the distinct el-
ements of C. Also, let m1,a, . . . ,mk1,a,m1,b, . . . ,mk2,b,m1,c, . . . ,mk3,c denote their
respective multiplicities in A, B , and C. We create an instance of ILPF with at most
k3 integer variables xi,j,�, for i ∈ [k1], j ∈ [k2], � ∈ [k3]:

xi,j,� = 0 for each (i, j, �) ∈ [k1] × [k2] × [k3] such that ai + bj + c� �= s,

∑

(j,�)∈([k2],[k3])
xi,j,� = mi,a, ∀i ∈ [k1],

∑

(i,�)∈([k1],[k3])
xi,j,� = mj,b, ∀j ∈ [k2],

∑

(i,j)∈([k1],[k2])
xi,j,� = m�,c, ∀� ∈ [k3].

A variable xi,j,� represents the number of times the elements ai ∈ A, bj ∈ B and
c� ∈ C are used together to form a triple summing to s. The first constraint makes
sure that such a triple is formed only if it sums to s. The remaining equalities make
sure that each element of A∪B∪C appears in a triple. Thus n such triples are formed,
all summing to s if the integer program is feasible. �

Note that the problem is also fixed-parameter tractable if parameterized by
‖A ∪ B‖ only: we face a NO-instance if ‖C‖ > ‖{a + b : a ∈ A,b ∈ B}‖. A closely
related, well known numerical problem, is the following.

Theory Comput Syst (2012) 50:675–693 681

variety-NUMERICAL MATCHING WITH TARGET SUMS (var-NMTS)

Input: Three multisets A,B,S of n integers each.
Parameter: k = ‖A ∪ B ∪ S‖.
Question: Are there n triples C1, . . . ,Cn ∈ A × B × S, such that the A-

element and the B-element from each Ci sum to its S-element?

Corollary 1 var-NMTS is fixed-parameter tractable.

By the previous discussion, the natural parameterization by ‖A∪B‖ is also fixed-pa-
rameter tractable. A straightforward adaptation of the proof of Theorem 3 shows that
variety-3-PARTITION is fixed-parameter tractable.

variety-3-PARTITION (var-3-PART)

Input: A multiset A of 3n integers.
Parameter: k = ‖A‖.
Question: Are there n triples S1, . . . , Sn ⊆ A, all summing to the same

number?

Theorem 4 var-3-PART is fixed-parameter tractable.

Proof Let A be an instance for var-3-PART, with ‖A‖ = k and |A| = 3n. Let
s = ∑

a∈A a/n. Let a1, . . . , ak denote the distinct elements of A and let m1, . . . ,mk

denote their multiplicities in A. We create an instance of ILPF with at most k3 integer
variables xi,j,�, for i, j, � ∈ [k]:

xi,j,� = 0 for each i, j, � ∈ [k] such that ai + aj + a� �= s,

∑

j,�∈[k]
j,��=i

(xi,j,� + xj,i,� + xj,�,i)

+ 2 ·
∑

j∈[k]
j �=i

(xi,i,j + xi,j,i + xj,i,i)

+ 3 · xi,i,i = mi, ∀i ∈ [k].

A variable xi,j,� represents the number of times the elements ai, aj and a� are used
together to form a triple summing to s. The first constraint makes sure that such a
triple is formed only if it sums to s. The second set of equalities make sure that each
element of A appears in a triple. Thus n such triples are formed, all summing to s if
the integer program is feasible. �

682 Theory Comput Syst (2012) 50:675–693

5 Mealy Machines

In this section, we explore how far we can generalize the rather simple FPT results of
the previous two sections. To this end, we investigate the parameterized complexity
of two problems about Mealy Machines. Both problems can be viewed as parameter-
ized problems implicitly parameterized by the number of numbers, because in each
case the size of the alphabet is part of the parameterization, and each letter of the
alphabet is associated with a census requirement. The richer structure of these prob-
lems means that a simple appeal to integer linear programming no longer suffices:
one turns out to be FPT, and the other W[1]-hard. In Sect. 6, we show that other
problems parameterized by the number of numbers reduce to these two seemingly
general problems of this kind.

Mealy machines [21] are finite-state transducers, generating an output based on
their current state and input. They have important applications in cryptanalysis [2],
computational linguistics [27], and control and system theory [30]. A deterministic
Mealy machine is a dual-alphabet state transition system given by a 5-tuple M =
(S, s0,Γ,Σ,T):

– a finite set of states S,
– a start state s0 ∈ S,
– a finite set Γ , called the input alphabet,
– a finite set Σ , called the output alphabet, and
– a transition function T : S × Γ → S × Σ mapping pairs of a state and an input

letter to the corresponding next state and output letter.

The alphabets Γ and Σ may contain the empty letter ε, as in [28]. This eases some
of the description, but all our results also hold if we restrict ε /∈ Γ ∪ Σ .

In a non-deterministic Mealy machine, the only difference is that the transition
function is defined T : S × Γ → P (S × Σ) as for a given state and input letter, there
may be more than one possibility for the next state and output letter. (Here P (X)

denotes the powerset of a set X.)
A census requirement c : Σ \ {ε} → N is a function assigning a non-negative inte-

ger to each letter of the output alphabet (except ε). It is used to constrain how many
times each letter should appear in the output of a Mealy machine. A word x ∈ Σ∗
meets the census requirement if every letter b ∈ Σ \ {ε} appears exactly c(b) times
in x.

The notion of census requirement is related to Parikh images [25]. Let Σ \ {ε} =
{b1, . . . , bσ }. For x ∈ Σ∗, the Parikh image is Ψ (x) = (c(b1), . . . , c(bσ)), where c

is the census requirement such that x meets c. The Parikh image of a language L

is Ψ (L) = {Ψ (x) : x ∈ L}. Parikh’s theorem [25] states that the Parikh image of a
context-free language is semilinear, i.e., that for every context-free language there is
a regular language with the same Parikh image.

Our first problem about Mealy machines asks whether there exists an input word
and a computation of the Mealy machine such that the output word meets the census
requirement.

Theory Comput Syst (2012) 50:675–693 683

variety-EXISTS WORD MEALY MACHINE (var-EWMM)

Input: A non-deterministic Mealy machine M = (S, s0,Γ,Σ,T), and
a census requirement c : Σ \ {ε} → N.

Parameter: |S| + |Γ | + |Σ |.
Question: Does there exist a word x ∈ Γ ∗ for which a computation of M

on input x generates an output y that meets c?

Our proof that var-EWMM is fixed-parameter tractable is inspired by the proof
from [10] showing that BANDWIDTH is fixed-parameter tractable when parameter-
ized by the maximum number of leaves in a spanning tree of the input graph. We
need the following definition and lemma from [10].

In a digraph D, two directed walks Δ and Δ′ from a vertex s to a vertex t are
arc-equivalent, if for every arc a of D, Δ and Δ′ pass through a the same number of
times.

Lemma 1 [10] Any directed walk Δ through a finite digraph D on n vertices from a
vertex s to a vertex t of D is arc-equivalent to a directed walk Δ′ from s to t , where
Δ′ has the form:

(1) Δ′ consists of an underlying directed walk ρ from s to t of length at most n2,
(2) together with some number of short loops, where each such short loop l begins

and ends at a vertex of ρ, and has length at most n.

The algorithm will first subdivide state transitions in order to make the underly-
ing directed graph simple. As suggested by Lemma 1, the algorithm goes over all
possible choices for selecting an underlying directed walk ρ starting from s0. For
every short loop starting and ending at a vertex from ρ, the algorithm associates an
integer variable representing the number of times this short loop is executed while
moving along ρ. Again by INTEGER LINEAR PROGRAMMING FEASIBILITY, it can
be checked whether there is a set of integers, representing the number of executions
of the short loops, such that the number of times each output letter is written is com-
patible with the census requirement.

Theorem 5 var-EWMM is fixed-parameter tractable.

Proof Let (M ′ = (S′, s′
0,Γ

′,Σ ′, T ′), c) be an instance for var-EWMM with k =
|S′| + |Γ ′| + |Σ ′|. As M ′ might have multiple transitions from one state to another,
we first subdivide each transition in order to obtain a simple digraph underlying the
Mealy machine (so we can use Lemma 1): create a new non-deterministic Mealy
machine M = (S, s0,Γ,Σ,T) such that, initially, S = S′, s0 = s′

0, Γ = Γ ′ ∪ {ε},
and Σ = Σ ′ ∪ {ε}; for each transition t of T ′ from a couple (si , 〈i〉) to a couple
(so, 〈o〉), add a new state st to S and add the transition from (si , 〈i〉) to (st , 〈o〉)
and the transition from (st , ε) to (so, ε) to T . Clearly, there is at most one transition
between every two states in M .

Our algorithm goes over all transition walks in M of length at most |S|2 that start
from s0. There are at most |S|(|S|2) such transition walks and each such transition

684 Theory Comput Syst (2012) 50:675–693

walk has at most |S||S| short loops, as they have length at most |S| by Lemma 1. Let
P = (s0, s1, . . . , s|P |) be such a transition walk and L = (�1, �2, . . . , �|L|) be its short
loops. It remains to check whether there exists a set of integers X = {x1, x2, . . . , x|L|}
such that a word output by a computation of M moving from s0 to s|P | along the
walk P , and executing xi times each short loop �i , 1 ≤ i ≤ |L|, meets the census
requirement. Note that if one such word meets the census requirement, then all such
words meet the census requirement, as it does not matter in which order the short
loops are executed. We verify whether such a set X exists by ILPF.

Let Σ \ {ε} = {〈�,1〉, 〈�,2〉, . . . , 〈�,σ 〉}. Define m(i, j), for 1 ≤ i ≤ |L|, 1 ≤ j ≤
σ , to denote the number of times that M writes the letter 〈�, j〉 when it executes the
loop �i once. Define m(j), for 1 ≤ j ≤ σ , to be the number of times that M writes
the letter 〈�, j〉 when it transitions from s0 to s|P | along the walk P . Then, we only
need to verify that there exist integers x1, x2, . . . , x|L| such that

m(j) +
|L|
∑

i=0

xi · m(i, j) = c(〈�, j〉), ∀j ∈ [σ].

By construction, |S| ≤ |S′| + |T ′| ≤ |S′| + |S′|2 · |Γ ′| · |Σ ′| ≤ k + k4. As the num-
ber of integer variables of this program is at most |L| ≤ |S||S| ≤ (k + k4)k+k4

, and
the number of transition walks that the algorithm considers is at most |S|(|S|2) ≤
(k + k4)k

2+2k5+k8
, var-EWMM is fixed-parameter tractable. �

We note that the proof in [10] concerned a special case of a deterministic Mealy
machine where the input and output alphabet are the same, and all transitions that
read a letter 〈�〉 also write 〈�〉.

In our second Mealy machine problem, the question is whether, for a given input
word, there is a computation of the Mealy machine which outputs a word that meets
the census requirement.

variety-GIVEN WORD MEALY MACHINE (var-GWMM)

Input: A non-deterministic Mealy machine M = (S, s0,Γ,Σ,T), a
word x ∈ Γ ∗, and a census requirement c : Σ \ {ε} → N.

Parameter: |S| + |Γ | + |Σ |.
Question: Is there a computation of M on input x generating an output y

that meets c?

By dynamic programming we show that two restrictions of this problem are in XP.
In the first one, the census requirement is encoded in unary. This restriction of the
problem seems lenient, especially when one is actually interested in finding the output
word, as the census function acts then as a placeholder for the produced word.

Theorem 6 var-GWMM is in XP if c is encoded in unary.

Proof Let |Σ \ {ε}| = σ and Σ \ {ε} = {b1, . . . , bσ }. Our dynamic programming
algorithm computes the entries of a boolean table A. The table A has an en-
try A[s, c1, . . . , cσ , i,p] for each state s ∈ S, each cj ∈ {0, . . . , c(bj)}, j ∈ [σ],

Theory Comput Syst (2012) 50:675–693 685

each index i ∈ {0, . . . , |x|}, and each integer p ∈ P = {0, . . . , |S| − 1}. The entry
A[s, c1, . . . , cσ , i,p] is set to true if there exists a computation of M reading the
first i letters of x, outputting a word y in which the letter bj occurs cj times, for each
j ∈ [σ], followed by p transitions that read ε and write ε, and ending up in state s,
and to false otherwise.

Set A[s, c1, . . . , cσ ,0,0] to true if s = s0 and c1 = · · · = cσ = 0, and to false
otherwise. Compute the values of the table by increasing values of

∑σ
i=1 ci , index i,

propagation integer p, and state number s:

A[s, c1, . . . , cσ , i,p]
=

∨

s′∈S,bj ∈Σ\{ε},p′∈P :
(s,bj)∈T (s′,x[i])

A[s′, c1, . . . , cj−1, cj − 1, cj+1, . . . , cσ , i − 1,p′]

∨
∨

s′∈S,p′∈P :
(s,ε)∈T (s′,x[i])

A[s′, c1, . . . , cσ , i − 1,p′]

∨
∨

s′∈S,bj ∈Σ\{ε},p′∈P :
(s,bj)∈T (s′,ε)

A[s′, c1, . . . , cj−1, cj − 1, cj+1, . . . , cσ , i,p′]

∨
∨

s′∈S:(s,ε)∈T (s′,ε)
A[s′, c1, . . . , cσ , i,p − 1].

Finally, there exists an x-computation of M generating a word y that meets the census
requirement if and only if

∨

s∈S,p∈P A[s, c(b1), . . . , c(bσ), |x|,p] is true. Denote
by n is the length of the description of an input instance. The table has |S| · |x| · |P | ·
Πσ

j=1c(bj) ≤ |S|2 ·nσ+1 entries, and each entry can be computed in time O(|S|2 ·σ).

The running time of the algorithm is thus upper bounded by O(nσ+1 · k5), where k

is the parameter. �

For the version where c is encoded in binary, a restriction on the input alphabet
gives an XP algorithm as well.

Corollary 2 var-GWMM is in XP if ε /∈ Γ .

Proof If
∑

b∈Σ\{ε} c(b) > |x|, then return false, as M cannot output more than |x|
letters. Otherwise, run the algorithm described in the proof of Theorem 6. Its running
time is O(k5 · |x| · Πσ

j=1c(bj)) = O(nσ+1 · k5). �

Note that the XP-results also hold if the parameter is only |Σ |.
To show that var-GWMM is W [1]-hard, we reduce from the MULTICOLORED

CLIQUE problem, which is W [1]-hard [8, 26].

686 Theory Comput Syst (2012) 50:675–693

MULTICOLORED CLIQUE (MCC)

Input: An integer k and a connected undirected graph G = (V (1) ∪
V (2) ∪ · · · ∪ V (k),E) such that for every i ∈ [k], the vertices of
V (i) induce an independent set in G.

Parameter: k.
Question: Is there a clique of size k in G?

Clearly, a solution to this problem has one vertex from each color.
Our parameterized reduction encodes G in the input word x of the Mealy machine

M , and the description of M depends only on k. The Mealy machine is divided into
k parts, one for each color class V (i), with 1 ≤ i ≤ k. Its ith part is responsible for
selecting a vertex vi from V (i) and edges vivj for every vj ∈ V (j), with 1 ≤ j �=
i ≤ k. All consistency issues and communication is done via the census requirement.
Within part i, we need to make sure that the selected edges are all incident to the
selected vertex vi . This is achieved by making M output p times each letter 〈l, i, j〉,
with 1 ≤ j �= i ≤ k, if it selects the pth vertex in V (i). The census requirement for
〈l, i, j〉 is |V (i)| + 1, meaning that 〈l, i, j〉 needs to be output |V (i)| + 1 − p times
later. To select an edge vivj , the machine M will be constrained to select this edge
among the edges incident to vi . To achieve this, edges from V (i) to V (j) appear
in x grouped by the vertex from V (i) on which they are incident. After each group
of edges incident on one vertex from V (i), there is a special state where 〈l, i, j〉 is
output if and only if the edge towards V (j) has already been selected. As 〈l, i, j〉
needs to be output exactly |V (i)| + 1 − p times, we force in this way that an edge
is selected which is incident on vi . This enforces that all edges selected in the ith
part are incident on the same vertex. It remains to make sure that distinct parts i and
j select the same edge between V (i) and V (j). This is again achieved by a census
requirement where a part of the census of letter 〈l, ē, i, j〉 is output in the ith part and
the remaining part in the j th part of M .

Theorem 7 var-GWMM is W [1]-hard.

Proof Let (k,G = (V (1) ∪ V (2) ∪ · · · ∪ V (k),E)) be an instance of MCC. Suppose
V (i) = {vi,1, vi,2, . . . , vi,|V (i)|} is the vertex set of color i, for each color class i ∈
[k], E = {e1, e2, . . . , e|E|}, and E(i, j) = {e(i, j,1), e(i, j,2), . . . , e(i, j, |E(i, j)|)}
is the subset of edges with one vertex in color class i and the other in color class
j , for i, j ∈ [k]. Moreover, suppose E(i, j) follows the same order as E, that is if
ep = e(i, j,p′), eq = e(i, j, q ′), and p ≤ q , then p′ ≤ q ′. For a vertex vi,p and two
integers j ∈ [k] \ {i} and q ∈ [dV (j)(vi,p) + 1], we define gap(vi,p, j, q) = t − s,
where e(i, j, t) is the qth edge in E(i, j) incident to vi,p (respectively, t = |E(i, j)|
if q = dV (j)(vi,p) + 1) and e(i, j, s) is the (q − 1)th edge in E(i, j) incident to vi,p

(respectively, s = 0 if q = 1).
We construct an instance (M = (S, s0,Γ,Σ,T), x, c) for var-GWMM as follows.

M’s input alphabet, Γ , is {〈i〉, 〈i, j 〉, 〈ē, i, j〉, 〈e, i, j〉 : i, j ∈ [k], i �= j}. M’s output
alphabet, Σ , is {ε} ∪ {〈l, i, j〉, 〈l, ē, i, j〉 : i, j ∈ [k], i �= j}. The word x is defined

x := x1x2 . . . xk,

Theory Comput Syst (2012) 50:675–693 687

xi := xi,0xi,1 . . . xi,i−1xi,i+1xi,i+2 . . . xi,k〈i〉, ∀i ∈ [k],
xi,0 := (〈i,1〉〈i,2〉 . . . 〈i, i − 1〉〈i, i + 1〉〈i, i + 2〉 . . . 〈i, k〉)|V (i)|, ∀i ∈ [k],
xi,j := 〈i, j 〉xi,j,1〈i, j 〉xi,j,2 . . . 〈i, j 〉xi,j,|V (i)|〈i, j 〉, ∀i, j ∈ [k], i �= j,

xi,j,p := 〈ē, i, j〉gap(vi,p,j,1)〈e, i, j〉〈ē, i, j〉gap(vi,p,j,2)〈e, i, j〉,
. . . 〈ē, i, j〉gap(vi,p,j,dV (j)(vi,p))〈e, i, j〉〈ē, i, j〉gap(vi,p,j,dV (j)(vi,p)+1).

The census requirement c is, for every i, j ∈ [k], i �= j ,

c(〈l, i, j〉) := |V (i)| + 1,

c(〈l, ē, i, j〉) := |E(i, j)|.
On reading a subword xi , the Mealy machine will select a vertex vi,p in V (i) and
one edge incident to vi,p for each color class j ∈ [k] \ {i}. The vertex vi,p is se-
lected in the subword xi,0 of xi . Next, for each j ∈ [k] \ {i}, a vertex in V (i)

and a vertex in V (j) are selected in the subword xi,j . The census requirement for
〈l, i, j〉 makes sure that the vertex from V (i) is vi,p . The subword xi,j,p ensures
that vi,p and the vertex that is selected from V (j) are joined by an edge. Finally,
the census requirement for 〈l, ē, i, j〉 is responsible for the inter-partition commu-
nication and makes sure that the edge selected in xi,j is equal to the edge selected
in xj,i .

The Mealy machine M consists of k parts. The ith part of M is depicted in Fig.
1. Its initial state is sv,1. There is a transition from the last state of each part, s

(4)
e,i,k , to

the first state of the following part, sv,i+1 (from the kth part, there is a transition to a
final state): it reads the letter 〈i〉 and writes the letter ε. We set 〈l′, ē, i, j〉 = 〈l, ē, j, i〉
for all i �= j ∈ [k]. Note that, in the description of M , the letter 〈l, i, j〉 can only
be output on reading 〈i, j 〉, and 〈l, ē, i, j〉 can only be output on reading 〈ē, i, j〉
or 〈ē, j, i〉.

Let us first verify that the parameter for var-GWMM is a function of k, and that
there exists a function f such that the size of the instance for var-GWMM is f (k) ·
nO(1), where n is the number of vertices of G. We have |Γ | = k + 3 · k · (k − 1),
|Σ | = 1 + 2 · k · (k − 1), and |S| = 1 + k · (2 + 4 · (k − 1)). The parameter of var-
GWMM is thus bounded by a function of k. The length of x is O(k2 · n3). Now,
we show that (M,x, c) is a YES-instance for var-GWMM if and only if (G, k) is a
YES-instance for MCC.

First, suppose (M = (S, s0,Γ,Σ,T), x, c) is a YES-instance for var-GWMM.
We say that M selects a vertex vi,p if it makes a transition from state sv,i to state

s′
v,i reading 〈i, k〉 (respectively 〈i, k − 1〉 if i = k) for the pth time. In other words,

in the ith part of M , it reads p · (k − 1) − 1 letters of xi,0, staying in state sv,i and
outputs the letter 〈l, i, r〉 for each letter 〈i, r〉 it reads; then it transitions to state s′

v,i

on reading 〈i, k〉 (respectively 〈k, k − 1〉 if i = k) and outputs 〈l, i, k〉 (respectively
〈l, k, k − 1〉); in the state s′

v,i it outputs the empty letter for each letter 〈i, r〉 it reads.

We say that M selects an edge e(i, j, q) if it makes a transition from state s
(2)
e,i,j

to state s
(3)
e,i,j after having read the letter 〈ē, i, j〉 of xi,j,p exactly q times, where

688 Theory Comput Syst (2012) 50:675–693

Fig. 1 The ith part of the Mealy machine M . It does not have the states s
(1)
e,i,i

, s
(2)
e,i,i

, s
(3)
e,i,i

, and s
(4)
e,i,i

;

there is instead a transition from s
(4)
e,i,i−1 to s

(1)
e,i,i+1 reading 〈i − 1〉 and writing ε, and there is a transition

from s
(4)
e,k,k−1 to the last state reading 〈k〉 and writing ε. There are no transitions starting at the last state.

(Drawing all this would have cluttered the figure too much)

vi,p is the vertex of color i that e(i, j, q) is incident on. In other words, in the ith

part of M , it transitions from the state s
(1)
e,i,j to the state s

(2)
e,i,j on reading the first

letter of xi,j,p (if it did this transition any later, the census requirement of 〈l, ē, i, j〉
could not be met, as shown in the proof of Claim 2 below); then it stays in the state
s
(2)
e,i,j until it has read q times the letter 〈ē, i, j〉 of xi,j,p; then it transitions to the

state s
(3)
e,i,j on reading 〈e, i, j〉; it stays in this state and outputs 〈l′, ē, i, j〉 for each

letter 〈ē, i, j 〉 it reads until transitioning to the state s
(4)
e,i,j on reading the letter follow-

ing xi,j,p .
The following claims ensure that the edge-selection and the vertex-selection are

compatible, i.e., that exactly one edge is selected from color i to color j , and that this
edge is incident on the selected vertex of color i. �

Theory Comput Syst (2012) 50:675–693 689

Claim 1 Let i be a color and let vi,p be the vertex selected in the ith part of M . In
its ith part, M selects one edge incident to vi,p and to a vertex of color j , for each
j ∈ [k] \ {i}.

Proof After M has selected vi,p , it has output p times each of the letters 〈l, i,1〉,
〈l, i,2〉, . . . , 〈l, i, i − 1〉, 〈l, i, i + 1〉, 〈l, i, i + 2〉, . . . , 〈l, i, k〉. For each j ∈ [k] \ {i},
the only other transitions that output 〈l, i, j〉 are the transition from s

(3)
e,i,j to s

(4)
e,i,j

and a transition that loops on s
(4)
e,i,j . To meet the census requirement of |V (i)| + 1

for 〈l, i, j〉, M selects an edge while reading xi,j,p . This edge is incident on vi,p by
construction. �

The following claim makes sure that the edge selected from color i to color j is
the same as the edge selected from color j to color i.

Claim 2 Suppose M selects the edge e(i, j, q) in its ith part. Then, M selects the
edge e(j, i, q) in its j th part.

Proof Before M selects e(i, j, q), it has output q ′ ≤ q times the letter 〈l, ē, i, j〉. On
selecting e(i, j, q) it transitions to the state s

(3)
e,i,j , and after the selection it outputs

〈l′, ē, i, j 〉 for every letter 〈ē, i, j〉 of xi,j,p it reads. As it reads

(dV (j)(vi,p)+1
∑

r=1

gap(vi,p, j, r)

)

− q = |E(i, j)| − q

times the letter 〈ē, i, j〉 of xi,j,p after it has selected e(i, j, q), the Mealy machine
outputs |E(i, j)| − q times the letter 〈l′, ē, i, j 〉 in its ith part.

The only other transition where it outputs 〈l, ē, i, j 〉 = 〈l′, ē, j, i〉 is the transition in
the j th part of M looping on s

(3)
e,j,i that reads 〈ē, j, i〉 and outputs 〈l′, ē, j, i〉. To meet

the census requirement for 〈l, ē, i, j 〉, this transition must be used exactly |E(i, j)| −
q ′ times.

The only other transitions where it outputs 〈l′, ē, i, j 〉 = 〈l, ē, j, i〉 are two transi-
tions in the j th part of M : the transition from s

(1)
e,j,i to s

(2)
e,j,i and the transition looping

on s
(2)
e,j,i , both reading 〈ē, j, i〉 and writing 〈l, ē, j, i〉. These transitions can be used at

most q ′ times as the transition of the previous paragraph is used |E(i, j)| − q ′ times.
These transitions have to be used at least q times to meet the census requirement for
〈l′, ē, i, j 〉. Thus, these transitions are used exactly q times and q = q ′.

Finally, the transition from s
(2)
e,j,i to s

(3)
e,j,i happens after having read q times the

letter 〈ē, j, i〉 of some vertex xj,i,p′ ,p′ ∈ [|V (j)|], which means that M selects the
edge e(j, i, q) in its j th part.

By Claims 1 and 2, the k vertices that are selected by M form a multicolored
clique. Thus, (k,G = (V (1) ∪ V (2) ∪ · · · ∪ V (k),E)) is a YES-instance for MCC.

Now, suppose that (k,G = (V (1) ∪ V (2) ∪ · · · ∪ V (k),E)) is a YES-instance for
MCC.

Let {v1,p1, v2,p2 , . . . , vk,pk
} be a multicolored clique in G. We will construct a

word y meeting c such that a computation of M on input x generates y. For two

690 Theory Comput Syst (2012) 50:675–693

adjacent vertices vi,pi
and vj,pj

, define edge(vi,pi
, vj,pj

) = t such that e(i, j, t) =
vi,pi

vj,pj
. The word y is y1y2 . . . yk , where yi , for i ∈ [k], is

(〈l, i,1〉〈l, i,2〉 . . . 〈l, i, i − 1〉〈l, i, i + 1〉〈l, i, i + 2〉 . . . 〈l, i, k〉)pi

yi,1yi,2 . . . yi,i−1yi,i+1yi,i+2 . . . yi,k

and yi,j , for i �= j ∈ [k], is

〈l, ē, i, j 〉edge(vi,pi
,vj,pj

)〈l′, ē, i, j〉|E(i,j)|−edge(vi,pi
,vj,pj

)〈l, i, j〉|V (i)|−pi+1.

We note that y meets the census requirement c. Moreover, the computation of M on
input x, which selects (as defined in the first part of the proof) exactly the vertices
and edges of the multicolored clique {v1,p1, v2,p2 , . . . , vk,pk

}, outputs y. Thus (M =
(S, s0,Γ,Σ,T), x, c) is a YES-instance for var-GWMM. �

The theorem holds if we restrict ε /∈ Γ ∪ Σ . Indeed, ε /∈ Γ in the target instance,
and one can add a new letter e to Σ , which replaces ε and has census requirement
c(e) = |x| − ∑

i,j∈[k],i �=j (c(〈l, i, j〉) + c(〈l, ē, i, j〉). This instance is equivalent since
the modified M outputs one letter for each letter in x.

6 Applications

In this section we sketch two examples that illustrate how number-of-numbers param-
eterized problems may reduce to census problems about Mealy machines, parameter-
ized by the size of the machine. For another application, see [10].

Example 1 (Heat-Sensitive Scheduling) In a recent paper Chrobak et al. [5] intro-
duced a model for the issue of temperature-aware task scheduling for microprocessor
systems. The motivation is that different jobs with the same time requirements may
generate different heat loads, and it may be important to schedule the jobs so that
some temperature threshold is not breached.

In the model, the input consists of a set of jobs that are all assumed to be of
unit length, with each job assigned a numerical heat level. If at time t the processor
temperature is Tt , and if the next job that is scheduled has heat level H , then the
processor temperature at time t + 1 is

Tt+1 = (Tt + H)/2.

It is also allowed that perhaps no job is scheduled for time t + 1 (that is, idle time is
scheduled), in which case H = 0 in the above calculation of the updated temperature.

The relevant decision problem is whether all of the jobs can be scheduled, meet-
ing a specified deadline, in such a way that a given temperature threshold is never
exceeded. This problem has been shown to be NP-hard [5] by a reduction from 3-
DIMENSIONAL MATCHING. An image instance of the reduction, however, involves
arbitrarily many distinct heat levels asymptotically close to H = 2, for a temperature
threshold of 1.

Theory Comput Syst (2012) 50:675–693 691

Fig. 2 A winning game for the
census: 1 (1), 3 (3), 4 (1), 5 (2)

Processor 1 4 3 3
Processor 2 5 3 1 5

x = 4 1 2 1 1 1 4

In the spirit of the “deconstruction of hardness proofs” advocated by Komusiewicz
et al. [19] (see also [4, 24]), one might regard this problem as ripe for parameterization
by the number of numbers, for example (scaling appropriately), a model based on 2k

equally-spaced heat levels and a temperature threshold of k. Furthermore, if the heat
levels of the jobs are only roughly classified in this way, it also makes sense to treat
the temperature transition model similarly, as:

Tt+1 = �(Tt + H)/2�.
The input to the problem can now be viewed equivalently as a census of how

many jobs there are for each of the 2k + 1 heat levels, with the available potential
units of idle time allowed to meet the deadline treated as “jobs” for which H = 0.
Because of the ceiling function modeling the temperature transition, the problem now
immediately reduces to var-EWMM, for a machine on k + 1 states (that represent
the temperature of the processor) and an alphabet of size at most 2k +1. By Theorem
5, the problem is fixed-parameter tractable.

Example 2 (A Problem in Computational Chemistry) The parameterized problem
of WEIGHTED SPLITS RECONSTRUCTION FOR PATHS that arises in computational
chemistry [15] reduces to a special case of var-GWMM. The input to the problem
is obtained from time-series spectrographic data concerning molecular weights. The
problem as defined in [15] is equivalent to the following two-processor scheduling
problem. The input consists of

– a sequence x of positive integer time gaps taken from a set of positive integers Γ ,
and

– a census requirement c on a set of positive integers Σ of job lengths.

The question is whether there is a “winning play” for the following one-person two-
processor scheduling game. At each step, first, Nature plays the next positive integer
“gap” of the sequence of time gaps x—this establishes the next immediate deadline.
Second, the Player responds by scheduling on one of the two processors, a job that
begins at the last stop-time on that processor, and ends at the immediate deadline.
The Player wins if there is a sequence of plays (against x) that meets the census
requirement c on job lengths. Figure 2 illustrates such a game.

This problem easily reduces to a special case of var-GWMM. Whether this special
case is also W [1]-hard remains open.

7 Concluding Remarks

The practical world of computing is full of computational problems where inputs are
“weighted” in a realistic model—weighted graphs provide a simple example relevant
to many applications. Here we have begun to explore parameterizing on the numbers

692 Theory Comput Syst (2012) 50:675–693

of numbers as a way of mitigating computational complexity for problems that are
numerically structured. One might view some of the impulse here as moving approx-
imation issues into the modeling, as illustrated by Example 1 in Sect. 6. We believe
this line of attack may be widely applicable.

To date, there has been little attention to parameterized complexity issues in the
context of cryptography, control theory, and other numerically structured areas of
application. Number of numbers parameterization may provide some inroads into
these underdeveloped areas.

Our main FPT result, Theorem 5, has a poor worst-case running-time guarantee.
Can this be improved—at least in important special cases?

Acknowledgement We thank Iyad Kanj for stimulating conversations about this work.

References

1. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for scheduling on parallel
machines. J. Sched. 1, 55–66 (1998)

2. Bard, G.V.: Algebraic Cryptanalysis. Springer, Berlin (2009)
3. Bazgan, C.: Schémas d’approximation et complexité paramétrée. Master’s thesis, Université Paris Sud

(1995)
4. Betzler, N., Fellows, M.R., Guo, J., Niedermeier, R., Rosamond, F.A.: Fixed-parameter algorithms

for Kemeny rankings. Theor. Comput. Sci. 410(45), 4554–4570 (2009)
5. Chrobak, M., Dürr, C., Hurand, M., Robert, J.: Algorithms for temperature-aware task scheduling in

microprocessor systems. In: Fleischer, R., Jinhui, X. (eds.) AAIM 2008. Lecture Notes in Computer
Science, vol. 5034, pp. 120–130. Springer, Berlin (2008)

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)
7. Fellows, M.R., Gaspers, S., Rosamond, F.A.: Parameterizing by the number of numbers. In: Ra-

man, V., Saurabh, S. (eds.) IPEC 2010. Lecture Notes in Computer Science, vol. 6478, pp. 123–134.
Springer, Berlin (2010)

8. Fellows, M.R., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity of
multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61 (2009)

9. Fellows, M.R., Koblitz, N.: Fixed-parameter complexity and cryptography. In: Cohen, G.D., Mora,
T., Moreno, O. (eds.) AAECC 1993. Lecture Notes in Computer Science, vol. 673, pp. 121–131.
Springer, Berlin (1993)

10. Fellows, M.R., Lokshtanov, D., Misra, N., Mnich, M., Rosamond, F.A., Saurabh, S.: The complexity
ecology of parameters: An illustration using bounded max leaf number. Theory Comput. Syst. 45(4),
822–848 (2009)

11. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, E.A., Saurabh, S.: Graph layout problems
parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008.
Lecture Notes in Computer Science, vol. 5369, pp. 294–305. Springer, Berlin (2008)

12. Fiala, J., Golovach, P.A., Kratochvíl, J.: Parameterized complexity of coloring problems: Treewidth
versus vertex cover. Theor. Comput. Sci. 412(23), 2513–2523 (2011)

13. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An
EATCS Series, vol. XIV. Springer, Berlin (2006)

14. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial
optimization. Combinatorica 7(1), 49–65 (1987)

15. Gaspers, S., Liedloff, M., Stein, M.J., Suchan, K.: Complexity of splits reconstruction for low-degree
trees. In: Kratochvíl, J. (ed.) WG 2011. Lecture Notes in Computer Science, vol. 6986 pp. 167–178.
Springer, Berlin (2011)

16. Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for closest string and related
problems. Algorithmica 37(1), 25–42 (2003)

17. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3),
415–440 (1987)

Theory Comput Syst (2012) 50:675–693 693

18. Knuth, D.E.: The Art of Computer Programming, Volume III: Sorting and Searching. Addison-
Wesley, Reading (1973)

19. Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Deconstructing intractability—a multivariate com-
plexity analysis of interval constrained coloring. J. Discrete Algorithms 9(1), 137–151 (2011)

20. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548
(1983)

21. Mealy, G.H.: A method for synthesizing sequential circuits. Bell Syst. Tech. J. 34(5), 1045–1079
(1955)

22. Munro, I., Spira, P.M.: Sorting and searching in multisets. SIAM J. Comput. 5(1), 1–8 (1976)
23. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics

and Its Applications. Oxford University Press, Oxford (2006)
24. Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Mar-

ion, J.-Y., Schwentick, T. (eds.) STACS 2010. LIPIcs, vol. 5, pp. 17–32. Schloss Dagstuhl—Leibniz-
Zentrum fuer Informatik, Dagstuhl (2010)

25. Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966)
26. Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common supersequence

and longest common subsequence problems. J. Comput. Syst. Sci. 67(4), 757–771 (2003)
27. Roche, E., Schabes, Y.: Finite-state language processing. The MIT Press, Cambridge (1997)
28. Savage, J.E.: Models of Computation—Exploring the Power of Computing. Addison-Wesley, Reading

(1998)
29. Sen, S., Gupta, N.: Distribution-sensitive algorithms. Nord. J. Comput. 6, 194–211 (1999)
30. Sontag, E.: Mathematical Control Theory: Deterministic Finite Dimensional Systems, 2nd edn.

Springer, Berlin (1998)

	Parameterizing by the Number of Numbers
	Abstract
	Introduction
	Preliminaries
	Integer Linear Programming
	Multisets
	Graphs
	Words
	Parameterized Complexity

	Subset Sum and Partition
	Other Classic Numerical Problems
	Mealy Machines
	Applications
	Concluding Remarks
	Acknowledgement
	References

