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Abstract This paper presents the following results on sets that are complete for NP.

(i) If there is a problem in NP that requires 2n�(1)
time at almost all lengths, then

every many-one NP-complete set is complete under length-increasing reductions
that are computed by polynomial-size circuits.

(ii) If there is a problem in co-NP that cannot be solved by polynomial-size non-
deterministic circuits, then every many-one NP-complete set is complete under
length-increasing reductions that are computed by polynomial-size circuits.

(iii) If there exist a one-way permutation that is secure against subexponential-size
circuits and there is a hard tally language in NP ∩ co-NP, then there is a Turing
complete language for NP that is not many-one complete.
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Our first two results use worst-case hardness hypotheses whereas earlier work that
showed similar results relied on average-case or almost-everywhere hardness as-
sumptions. The use of average-case and worst-case hypotheses in the last result
is unique as previous results obtaining the same consequence relied on almost-
everywhere hardness results.

Keywords Computational complexity · NP-completeness · Turing completeness ·
Length-increasing reductions · Approximable sets

1 Introduction

It is widely believed that many important problems in NP such as satisfiability, clique,
and discrete logarithm are exponentially hard to solve. Existence of such intractable
problems has a bright side: research has shown that we can use this kind of intractabil-
ity to our advantage to gain a better understanding of computational complexity, for
derandomizing probabilistic computations, and for designing computationally-secure
cryptographic primitives. For example, if there is a problem in EXP (such as any of
the aforementioned problems) that has 2n�(1)

-size worst-case circuit complexity (i.e.,
that for all sufficiently large n, no subexponential size circuit solves the problem
correctly on all instances of size n), then it can be used to construct pseudoran-
dom generators [9, 32]. Using these pseudorandom generators, BPP problems can
be solved in deterministic quasipolynomial time. Similar average-case hardness as-
sumptions on the discrete logarithm and factoring problems have important ramifi-
cations in cryptography. While these hardness assumptions have been widely used
in cryptography and derandomization, more recently Agrawal [3] and Agrawal and
Watanabe [5] showed that they are also useful for improving our understanding of
NP-completeness. In this paper, we provide further applications of such hardness as-
sumptions.

1.1 Length-Increasing Reductions

A language in NP is NP-complete if every language in NP is reducible to it. While
there are several ways to define the notion of reduction, the most common defini-
tion uses polynomial-time computable many-one functions. Many natural problems
that arise in practice have been shown to be NP-complete using polynomial-time
computable many-one reductions. However, it has been observed that all known
NP-completeness results hold when we restrict the notion of reduction. For example,
SAT is complete under polynomial-time reductions that are one-to-one and length-
increasing. In fact, all known many-one complete problems for NP are complete
under this type of reduction [11]. This raises the following question: are there lan-
guages that are complete under polynomial-time many-one reductions but not com-
plete under polynomial-time, one-to-one, length-increasing reductions? Berman [7]
showed that every many-one complete set for E is complete under one-to-one, length-
increasing reductions. Thus for E, these two completeness notions coincide. A weaker
result is known for NE. Ganesan and Homer [19] showed that all NE-complete sets
are complete via one-to-one reductions that are exponentially honest.
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For NP, until recently there had not been any progress on this question. Agrawal [3]
showed that if one-way permutations exist, then all NP-complete sets are complete
via one-to-one, length-increasing reductions that are computable by polynomial-size
circuits. Hitchcock and Pavan [23] showed that NP-complete sets are complete under
length-increasing P/poly reductions under the measure hypothesis on NP [30]. Re-
cently Buhrman et al. improved the latter result to show that if the measure hypothesis
holds, then all NP-complete sets are complete via length-increasing, polynomial-time
computable functions that require O(log logn) bits of advice [13]. More recently,
Agrawal and Watanabe [5] showed that if regular one-way functions exist, then all
NP-complete sets are complete via one-one, length-increasing, P/poly-computable
reductions. All the hypotheses used in these works require the existence of an almost-
everywhere hard language or an average-case hard language in NP.

In the first part of this paper, we consider hypotheses that only concern the worst-
case hardness of languages in NP. Our first hypothesis concerns the deterministic
time complexity of languages in NP. We show that if there is a language in NP for
which every correct algorithm spends more than 2nε

time at almost all lengths, then
NP-complete languages are complete via length-increasing P/poly-computable re-
ductions. The second hypothesis concerns nondeterministic circuit complexity of lan-
guages in co-NP. We show that if there is a language in co-NP that cannot be solved
by nondeterministic polynomial-size circuits, then all NP-complete sets are complete
via length-increasing P/poly-computable reductions. For more formal statements of
the hypotheses, we refer the reader to Sect. 3. We stress that these hypotheses require
only worst-case hardness. The worst-case hardness is of course required at every
length, a technical condition that is necessary in order to build a reduction that works
at every length rather than just infinitely often.

1.2 Turing Reductions versus Many-One Reductions

In the second part of the paper we study the completeness notion obtained by allowing
a more general type of reduction—Turing reduction. Informally, with Turing reduc-
tions an instance of a problem can be solved by asking polynomially many (adaptive)
queries about the instances of the other problem. A language in NP is Turing com-
plete if there is a polynomial-time Turing reduction to it from every other language in
NP. Though many-one completeness is the most commonly used completeness no-
tion, Turing completeness also plays an important role in complexity theory. Several
properties of Turing complete sets are closely tied to the separation of complexity
classes. For example, Turing complete sets for EXP are sparse if and only if EXP has
polynomial-size circuits. Moreover, to capture our intuition that a complete problem
is easy, then the entire class is easy, Turing reductions seem to be the “correct” re-
ductions to define completeness. In fact, the seminal paper of Cook [15] used Turing
reductions to define completeness, though Levin [28] used many-one reductions.

This raises the question of whether there is a Turing complete language for NP
that is not many-one complete. Ladner, Lynch and Selman [29] posed this question
in 1975, thus making it one of the oldest problems in complexity theory. This ques-
tion is completely resolved for exponential time classes such as EXP and NEXP [14,
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37]. We know that for both these classes many-one completeness differs from Turing-
completeness. However progress on the NP side has been very slow. Lutz and May-
ordomo [31] were the first to provide evidence that Turing completeness differs from
many-one completeness. They showed that if the measure hypothesis holds, then the
completeness notions differ. Since then a few other weaker hypotheses have been
used to achieve the separation of Turing completeness from many-one complete-
ness [4, 24, 33–35].

All the hypotheses used in the above works are considered “strong” hypotheses
as they require the existence of an almost everywhere hard language in NP. That is,
there is a language L in NP and every algorithm that decides L takes exponential-
time on all but finitely many strings. A drawback of these hypotheses is that we do
not have any candidate languages in NP that are believed to be almost everywhere
hard.

It has been open whether we can achieve the separation using more believable
hypotheses that involve average-case hardness or worst-case hardness. None of the
proof techniques used earlier seem to achieve this, as they crucially depend on the
almost everywhere hardness.

In this paper, for the first time, we achieve the separation between Turing com-
pleteness and many-one completeness using average-case and worst-case hardness
hypotheses. We consider two hypotheses. The first hypothesis states that there ex-
ist 2nε

-secure one-way permutations and the second hypothesis states that there is a
language in NEEE ∩ coNEEE that can not be solved in triple exponential time with
logarithmic advice, i.e., NEEE ∩ coNEEE �⊆ EEE/ log. We show that if both of these
hypothesis are true, then there is a Turing complete language in NP that is not many-
one complete.

The first hypothesis is an average-case hardness hypothesis and has been stud-
ied extensively in past. The second hypothesis is a worst-case hardness hypothesis.
At first glance, this hypothesis may look a little esoteric, however, it is only used to
obtain hard tally languages in NP ∩ co-NP that are sufficiently sparse. Similar hy-
potheses involving double and triple exponential-time classes have been used earlier
in the literature [8, 16, 17, 22].

We use length-increasing reductions as a tool to achieve the separation of Turing
completeness from many-one completeness. We first show that if one-way permuta-
tions exist then NP-complete sets are complete via length-increasing, polynomially-
bounded, quasipolynomial-time computable reductions. We then show that if the sec-
ond hypothesis holds, then there is a Turing complete language for NP that is not
many-one complete via length-increasing, polynomially-bounded, quasipolynomial-
time computable reductions. Combining these two results we obtain our separation
result.

2 Preliminaries

In the paper, we use the binary alphabet � = {0,1}. Given a language A, An denotes
the characteristic sequence of A at length n. We also view An as a boolean function
from �n to �. We use A≤n to denote the set of strings in A whose length is at most n,
and use A=n to denote the set of strings in A whose length is n.
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For languages A and B , we say that A = ioB , if An = Bn for infinitely many n.
For a complexity class C , we say that A ∈ io C if there is a language B ∈ C such that
A = ioB .

For a boolean function f : �n → �, CC(f ) is the smallest number s such that
there is circuit of size s that computes f . A function f is quasipolynomial time com-
putable (QP-computable) if can be computed deterministically in time O(2logO(1) n).

We will use the triple exponential time class EEE = DTIME(222O(n)

), and its nonde-
terministic counterpart NEEE.

A language A is in NP/poly if there is a polynomial-size circuit family C =
(C1,C2, . . . ) and a polynomial p such that for every x, x is in A if and only if there
is a y of length p(|x|) such that C|x|(x, y) = 1. Let f : N → N be a function such
that f (n) < n.

Definition A language L is in EEE/f (n) if there is a function g : 0∗ → �∗ such that
|g(0n)| ≤ f (n) and a triple exponential time algorithm M such that x is in L if and
only if M accepts 〈x,g(0|x|)〉.

We define EEE/O(logn) to be
⋃

c>0 EEE/c logn.

Definition Given a language A, let fold(A) be a language such that for every n,
fold(A)n = A0A1 · · ·An−10.

Our proofs make use a variety of results from approximable sets, instance com-
pression, derandomization and hardness amplification. We mention the results that
we need.

Definition 1 A language A is t (n)-time 2-approximable [6] if there is a function f

computable in time t (n) such that for all strings x and y, f (x, y) �= A(x)A(y).
A language A is io-lengthwise t (n)-time 2-approximable if there is a function f

computable in time t (n) such that for infinitely many n, for every pair of n-bit strings
x and y, f (x, y) �= A(x)A(y). We say that f is the approximator of A.

Let A be a io-lengthwise t (n)-time 2-approximable and let f be its approximator.
Given a natural number m > 0, we say that A is 2-approximable at length m, if for
every pair of m-bit strings x and y f (x, y) �= A(x)A(y).

Amir, Beigel and Gasarch [2] proved that every polynomial-time 2-approximable
set is in P/poly. Their proof also implies the following extension.

Theorem 2.1 [2] If A is io-lengthwise t (n)-time 2-approximable, then for infinitely
many n, CC(An) ≤ t2(n).

If a language is disjunctively self-reducible and is 2-approximable, then it is in P.
See the survey paper by Buhrman, Fortnow and Thierauf [10] for a proof. Though this
proof carries overs to other time-bounds, it does not carry over to the infinitely-often
setting. This is because the proof makes use of the fact that the approximator has the
ability to compare strings at different lengths. However, if we use folded language A,
then the proof carries through.
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Theorem 2.2 Let A be a disjunctive self-reducible language. If fold(A) is io-
lengthwise t (n)-time 2-approximable, then there is an algorithm M that decides
A and M runs in time t2(n) for infinitely many n. In addition, if fold(A) is
2-approximable at length n, then M runs in t2(n) time on all strings of length n − 1.

Given a language H ′ in co-NP, let H be {〈x1, . . . , xn〉||x1| = · · · = |xn| = n,

xi ∈ H ′,1 ≤ i ≤ n}. Observe that a n-tuple consisting of strings of length n can be en-
coded by a string of length n2. From now we view a string of length n2 as an n-tuple
of strings of length n.

Theorem 2.3 [12, 18] Let H and H ′ be defined as above. Suppose there is a lan-
guage L, a polynomial-size circuit family {Cm}, and a polynomial p such that for
infinitely many n, for every x ∈ �n2

, x is in H if and only if there is a string y of
length p(n) such that C(x, y) is in L≤n. Then H ′ is in io NP/poly.

The proof of Theorem 2.3 is similar to the proofs in [12, 18]. The difference is
rather than having a polynomial-time many-one reduction, here we have a NP/poly
many-one reduction which works infinitely often. The nondeterminism and advice
in the reduction can be absorbed into the final NP/poly decision algorithm. The
NP/poly decision algorithm correctly works at infinitely many lengths, correspond-
ing to the lengths at which the NP/poly reduction works.

Definition A function f : {0,1}n → {0,1}m is s-secure if for every δ < 1, every
t ≤ δs, and every circuit C : {0,1}n → {0,1}m of size t , Pr[C(x) = f (x)] ≤ 2−m + δ.
A function f : {0,1}∗ → {0,1}∗ is s(n)-secure if it is s(n)-secure at all but finitely
many lengths n.

Definition An s(n)-secure one-way permutation is a polynomial-time computable
bijection π : {0,1}∗ → {0,1}∗ such that |π(x)| = |x| for all x and π−1 is s(n)-secure.

Under widely believed average-case hardness assumptions about the hardness of
the RSA cryptosystem or the discrete logarithm problem, there is a secure one-way
permutation [21].

Definition A pseudorandom generator (PRG) family is a collection of functions G =
{Gn : {0,1}m(n) → {0,1}n} such that Gn is uniformly computable in time 2O(m(n))

and for every circuit of C of size n,

∣
∣
∣ Pr
x∈{0,1}n[C(x) = 1] − Pr

y∈{0,1}m(n)
[C(Gn(y))] = 1

∣
∣
∣ ≤ 1

n
.

There are many results that show that the existence of hard functions in exponen-
tial time implies PRGs exist. We will use the following.

Theorem 2.4 [26, 32] If there is a language A in E such that CC(An) ≥ 2nε
for

all sufficiently large n, then there exist a constant k and a PRG family G = {Gn :
{0,1}logk n → {0,1}n}.
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3 Length-Increasing Reductions

In this section we provide evidence that many-one complete sets for NP are complete
via length-increasing reductions. We use the following hypotheses.

Hypothesis 1 There is a language L in NP and a constant ε > 0 such that L is not in
io DTIME(2nε

).

Informally, this means that every algorithm that decides L takes more than
2nε

-time on at least one string at every length.

Hypothesis 2 There is a language L in co-NP such that L is not in io NP/poly.

This means that every nondeterministic polynomial size circuit family that at-
tempts to solve L is wrong on at least one string at each length.

We will first consider the following variant of Hypothesis 1.

Hypothesis 3 There is a language L in NP and a constant ε > 0 such that for all but
finitely many n, CC(Ln) > 2nε

.

We will first show that if Hypothesis 3 holds, then NP-complete sets are complete
via length-increasing, P/poly reductions. Then we describe how to modify the proof
to derive the same consequence under Hypothesis 1. We do this because the proof is
much cleaner with Hypothesis 3 and contains all essential ideas. To use Hypothesis 1
we have to fix encodings of boolean formulas and work with folded languages.

3.1 If NP has Subexponentially Hard Languages

Theorem 3.1 If there is a language L in NP and an ε > 0 such that for all but
finitely many n, CC(Ln) > 2nε

, then all NP-complete sets are complete via length-
increasing, P/poly reductions.

Proof Let A be a NP-complete set that is decidable in time 2nk
. Let L be a lan-

guage in NP that requires 2nε
-size circuits at every length. Since SAT is complete

via polynomial-time, length-increasing reductions, it suffices to exhibit a length-
increasing, P/poly-reduction from SAT to A.

Let δ = ε
2k

. Consider the following intermediate language

S = {〈x, y, z〉 | |x| = |z| = |y|1/δ�,MAJ[L(x),SAT(y),L(z)] = 1},
where MAJ is the majority function.

Clearly S is in NP. Since A is NP-complete, there is a many-one reduction f from
S to A. We will first show that at every length n there exist strings on which the
reduction f must be length-increasing. Let

Tn = {〈x, z〉 | |x| = |z| = n1/δ�,L(x) �= L(z), ∀y ∈ {0,1}n|f (〈x, y, z〉)| > n}. �
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Lemma 3.2 For all but finitely many n, Tn �= ∅.

Assuming that the above lemma holds, we complete the proof of the theorem.
Given a length n, fix an (arbitrary) ordering of tuple from Tn. Let 〈xn, zn〉 be the
first tuple from Tn. Consider the following reduction from SAT to A: Given a string
y of length n, the reduction outputs f (〈xn, y, zn〉). Given xn and yn as advice, this
reduction can be computed in polynomial time. Since |xn| and |zn| are polynomial
in n, this is a P/poly reduction.

By the definition of Tn, L(xn) �= L(zn). Thus y ∈ SAT if and only if 〈xn, y, zn〉 ∈ S,
and so y is in SAT if and only if f (〈xn, y, zn〉) is in A. Again, by the definition
of Tn, for every y of length n, the length of f (〈xn, y, zn〉) is bigger than n. Thus
there is a P/poly-computable, length-increasing reduction from SAT to A. This, to-
gether with the proof of Lemma 3.2 we provide next, completes the proof of Theo-
rem 3.1. �

Proof of Lemma 3.2 Suppose Tn = ∅ for infinitely many n. We will show that this
yields a length-wise 2-approximable algorithm for L at infinitely many lengths. This
enables us to contradict the hardness of L. Consider the following algorithm:

1. Input x, z with |x| = |z| = m.
2. Find n such that n1/δ� = m. If no such n exists, then output 10.
3. Find a y of length n such that |f (〈x, y, z〉)| ≤ n.
4. If no such y is found, Output 10.
5. If y is found, then solve the membership of f (〈x, y, z〉) in A. If f (〈x, y, z〉) ∈ A,

then output 00, else output 11.

We first bound the running time of the algorithm. Step 3 takes O(2mδ
) time. In

Step 5, we decide the membership of f (〈x, y, z〉) in A. This step is reached only if the
length of f (〈x, y, z〉) is at most n. Thus the time taken for this step is (2n)k ≤ 2mε/2

time. Thus the total time taken by the algorithm is bounded by 2mε/2.
Consider a length n at which Tn = ∅. Let x and z be any two strings of length

m = n1/δ�. Suppose for every y of length n, the length of f (〈x, y, z〉) is at least n.
Then it must be the case that L(x) = L(z), otherwise the tuple 〈x, z〉 belongs to Tn.
Thus if the above algorithm fails to find y in Step 3, then L(x)L(z) �= 10.

Suppose the algorithm succeeds in finding a y in Step 3. If f (〈x, y, z〉) ∈ A,
then at least one of x or z must belong to L. Thus L(x)L(z) �= 00. Similarly,
if f (〈x, y, z〉) /∈ A, then at least one of x or z does not belong to L, and so
L(x)L(z) �= 11.

Thus L is 2-approximable at length m = n1/δ�. If there exist infinitely many
lengths n, at which Tn is empty, then L is infinitely-often, length-wise, 2mε/2-time ap-
proximable. By Theorem 2.1, L has circuits of size 2mε

at infinitely many lengths. �

We will now describe how to modify the proof if we assume that Hypothesis 1
holds. Let L be the hard language guaranteed by the hypothesis. This means that
there exists an ε > 0 such that L is not in io DTIME(2nε

). Fix an encoding of 3CNF
formulas such that formulas with same numbers of variables can be encoded as strings
of same length. We will work with fold(3-SAT).
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Trivially, fold(3-SAT) is also NP-complete and there is a reduction f and a con-
stant r ≥ 1 from L to fold(3-SAT) such that all strings of length n are mapped to
strings of length nr . Let

H = fold(3-SAT) ∩
⋃

n

�nr

.

The following observation is easy to prove.

Observation 3.3 If there is an algorithm A that decides H such that for infinitely
many n the algorithm A runs in 2nε

time on all strings of length nr , then L is in
io DTIME(2nε

).

Now H plays the role of L from previous theorem and the proof proceeds same
as before except that we use H instead of L. Our intermediate language will be

S = {〈x, y, z〉 | |x| = |z| = (|y|1/δ�)r , and MAJ[H(x),SAT(y),H(z)] = 1}.
Clearly S is in NP and since A is NP-complete there is a reduction g from S to A.
Consider the set Tn as before.

Tn = {〈x, z〉 | H(x) �= H(z), |x| = |z| = (n1/δ�)r ,∀y ∈ �n|g(〈x, y, z〉)| > n}.
We can show the following.

Lemma 3.4 For all but finitely many n, Tn �= ∅.

As before, we can show that if Tn is empty for infinitely many n, then H

is infinitely-often, length-wise, 2nε/2
-time approximable. More precisely, we can

show that for every length n at which Tn is empty, H is 2-approximable in time
2nε/2

at length nr . Since 3-SAT is disjunctive self-reducible and H coincides with
fold(3-SAT) at lengths of form nr , it follows from Theorem 2.2 that H can be de-
cided in time 2nε

-time at infinitely many lengths of the form nr . By Observation 3.3
this implies that L is in io DTIME(2nε

).
If Tn is not empty at all but finitely many lengths, then there is a P/poly, length-

increasing reduction from SAT to A. Thus we have the following theorem.

Theorem 3.5 If there is a language in NP that is not in io DTIME(2nε
), then all

NP-complete sets are complete via length-increasing P/poly reductions.

3.2 If co-NP is Hard for Nondeterministic Circuits

In this subsection we show that Hypothesis 2 also implies that all NP-complete sets
are complete via length-increasing reductions.

Theorem 3.6 If there is a language in co-NP that is not in io NP/poly, then NP-
complete sets are complete via P/poly-computable, length-increasing reductions.
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Proof We find it convenient to work with co-NP rather than NP. We will show that
all co-NP-complete languages are complete via P/poly, length-increasing reductions.

Let H ′ be a language in co-NP that is not in io NP/poly. Let H be

{〈x1, . . . , xn〉 | ∀i 1 ≤ i ≤ n, [xi ∈ H ′ and |xi | = n]}.
Note that every n-tuple that may potentially belong to H can be encoded by a string
of length n2. From now we view a string of length n2 as an n-tuple of n bit strings.

Let S = 0H ′ ∪ 1SAT. Observe that S is in co-NP and S is not in io NP/poly.
Since 1SAT is many-one complete for co-NP via length-increasing reductions, S is
also co-NP-complete via length-increasing reductions. Let A be any co-NP-complete
language. It suffices to exhibit a length-increasing reduction from S to A.

Consider the following intermediate language:

L = {〈x, y, z〉 | |x| = |z| = |y|2,MAJ[x ∈ H,y ∈ S, z ∈ H ] = 1}.
Clearly the above language is in co-NP. Let f be a many-one reduction from L

to A. As before we will first show at every length n that there exits strings x and z

such that for every y in S the length of f (〈x, y, z〉) is at least n. �

Lemma 3.7 For all but finitely many n, there exist two strings xn and zn of length n2

with H(xn) �= H(zn) and for every y ∈ S=n, |f (〈xn, y, zn〉)| > n.

Proof Suppose not. Then there exist infinitely many lengths n at which for every pair
of strings (of length n2) x and z with H(x) �= H(z), there exist a y of length n such
that y ∈ S and |f (x, y, z)| ≤ n.

From this we obtain a NP/poly-reduction from H to A such that for infinitely
many n, for every x of length n2, |f (x)| ≤ n. By Theorem 2.3, this implies that H ′ is
in io NP/poly. We now describe the reduction. Given n let zn be a string (of length n2)
that is not in H .

1. Input x, |x| = n2. Advice: zn.
2. Guess a string y of length n.
3. If |f (〈x, y, zn〉)| > n, the output ⊥.
4. Output f (〈x, y, zn〉).

Suppose x ∈ H . Since zn /∈ H , there exists a string y of length n such that y ∈ S

and |f (〈x, y, zn〉)| ≤ n. Consider a path that correctly guesses such a y. Since zn /∈ H ,
and y ∈ S, 〈x, y, zn〉 ∈ A. Thus f (〈x, y, zn〉) ∈ A≤n. Thus there exists at least one
path on which the reduction outputs a string from A≤n. Now consider the case x /∈ H .
On any path, the reduction either outputs ⊥ or outputs f (〈x, y, zn〉). Since both zn

and x are not in H , 〈x, y, zn〉 /∈ A. Thus f (〈x, y, zn〉) /∈ A for any y.
Thus there is a NP/poly many-one reduction from H to A such that for infinitely

many n, the output of the reduction, on strings of length n2, on any path is at most n.
By Theorem 2.3, this places H ′ in io NP/poly.

Thus for all but finitely many lengths n, there exist strings xn and zn of length n2

with H(xn) �= H(zn) and for every y ∈ Sn, the length of f (〈xn, y, zn〉) is at least n. �
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This suggests the following reduction h from S to A. The reduction will have xn

and zn as advice. Given a string y of length n, the reductions outputs f (〈xn, y, zn〉).
This reduction is clearly length-increasing and is length-increasing on every string
from S. Thus we have the following lemma.

Lemma 3.8 Consider the above reduction h from S to A, for all y ∈ S, |h(y)| > |y|.

Now we show how to obtain a length-increasing reduction on all strings. We make
the following crucial observation.

Observation 3.9 For all but finitely many n, there is a string yn of length n such that
yn /∈ S and |f (〈xn, yn, zn〉)| > n.

Proof Suppose not. This means that for infinitely many n, for every y from S ∩ �n,
the length of f (〈xn, y, zn〉) is less than n. Now consider the following algorithm
that solves S. Given a string y of length n, compute f (〈xn, y, zn〉). If the length of
f (〈xn, y, zn〉) > n, then accept y else reject y.

The above algorithm can be implemented in P/poly given xn and zn as advice.
If y ∈ S, then we know that the length of f (〈xn, y, zn〉) is bigger than n, and
so the above algorithm accepts. If y /∈ S, then by our assumption, the length of
f (〈xn, y, zn〉) is at most n. In this case the algorithm rejects y. This shows that S is
in io P/poly which in turn implies that H ′ is in io P/poly. This is a contradiction. �

Now we are ready to describe our length increasing reduction from S to A. At
length n, this reduction will have xn, yn and zn as advice. Given a string y of length n,
the reduction outputs f (〈xn, y, zn〉) if the length of f (〈xn, y, zn〉) is more than n.
Else, the reduction outputs f (〈xn, yn, zn〉).

Since H(xn) �= H(zn), y ∈ S if and only if f (〈xn, y, zn〉) ∈ A. Thus the reduction
is correct when it outputs f (〈xn, y, zn〉). The reduction outputs f (〈xn, yn, zn〉) only
when the length of f (〈xn, y, zn〉) is at most n. We know that in this case y /∈ S. Since
yn /∈ S, f (〈xn, yn, zn) /∈ A.

Thus we have a P/poly-computable, length-increasing reduction from S to A.
Thus all co-NP-complete languages are complete via P/poly, length-increasing re-
ductions. This immediately implies that all NP-complete languages are complete via
P/poly-computable, length-increasing reductions. �

4 Separation of Completeness Notions

In this section we consider the question of whether the Turing completeness differs
from many-one completeness for NP under two plausible complexity-theoretic hy-
potheses:

(1) There exists a 2nε
-secure one-way permutation.

(2) NEEE ∩ coNEEE �⊆ EEE/ log.
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It turns out that the first hypothesis implies that every many-one complete language
for NP is complete under a particular kind of length-increasing reduction, while the
second hypothesis provides us with a specific Turing complete language that is not
complete under the same kind of length-increasing reductions. Therefore, the two hy-
potheses together separate the notions of many-one and Turing completeness for NP.

Theorem 4.1 If both of the above hypotheses are true, there is a language that is
polynomial-time Turing complete for NP but not polynomial-time many-one complete
for NP.

Theorem 4.1 is immediate from Lemma 4.2 and Lemma 4.3 below.

Lemma 4.2 Suppose 2nε
-secure one-way permutations exist. Then for every NP-

complete language A and every B ∈ NP, there is a quasipolynomial-time computable,
polynomially-bounded, length-increasing reduction from B to A.

A function f is polynomially-bounded if there is a polynomial p such that the
length of f (x) is at most p(|x|) for every x.

Lemma 4.3 If NEEE ∩ coNEEE � EEE/ log, then there is a polynomial-time Turing
complete set for NP that is not many-one complete via quasipolynomial-time com-
putable, polynomially-bounded, length-increasing reductions.

To show Lemma 4.2 we use results and ideas from Agrawal [3].
Let γ > 0 and let S ⊆ {0,1}n. A function g is γ -sparsely many-one on S if for

every x ∈ S,

|g−1(g(x)) ∩ {0,1}n| ≤ 2n

2nγ .

Lemma 4.4 (Agrawal [3]) Suppose 2nε
-secure one-way permutations exists. For ev-

ery NP-complete language L for every set S in NP, there is a reduction from f from
S to L that is ε

2 -sparsely many-one on {0,1}n for all n ∈ N.

Proof of Lemma 4.2 Let δ = ε/3. Consider the following set

S = {〈x, y〉 | x ∈ B and |y| = n1/δ}.
For |x| = n, let m = |〈x, y〉|. By Lemma 4.4, there is a reduction f from S to A that
is ε

2 -sparsely many-one on �m for every m. For any x of length n, let Sx = {y ∈
�n1/δ | |f (〈x, y〉)| ≤ n}. It follows that the size of Sx is at most 2n+m+1

2mε/2 . Thus for at

least 1 − 2−2n3/2
fraction of strings y from {0,1}n1/δ

, |f (〈x, y〉)| > n. If we randomly
pick a y ∈ {0,1}n1/δ

, then with very high probability |f (〈x, y〉)| > n.
We can derandomize the above process. If 2nε

-secure one-way permutations ex-
ist, then EXP does not have 2nε

-size circuits. Thus by Theorem 2.4, there exists a
pseudorandom generator family {Gn} that map strings of length logk n to strings of
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length n. These pseudorandom generators are computable in O(2logd n) time for some
constant d .

Now the length-increasing reduction from B works as follows. Given x as input
of length n, let t = n1/δ . Cycle through all seeds s of length logk t till the length of
f (〈x,Gt (s)〉) is bigger than n. Output f (〈x,Gt (s)〉). Since Gt is a pseudorandom
generator, it follows that there exists at least one s for which the length f (〈x,Gt (s)〉)
is bigger than n.

Clearly, the above reduction can be computed in time quasipolynomial in n. The
output of the reduction is bounded by the length of f (〈x, y〉), where |y| = n1/δ . Since
f is polynomial-time computable, the reduction is polynomial-bounded. �

The remainder of this section is devoted to proving Lemma 4.3. For this we first
prove two auxiliary results. The first result establishes a connection between worst-
case and average-case complexities for languages in NEEE ∩ coNEEE. The second
result extends a well known equivalence between languages and their tally-encodings
to the average-case world.

We know several results that establish worst-case to average-case connections for
classes such as EXP and PSPACE [9, 25, 26, 36, 38]. The following lemma estab-
lishes a similar connection for triple exponential time classes. This lemma can be
proved using classical hardness amplification results [9, 20, 25, 38] or using list de-
coding techniques of error correcting codes. (See [1] for a good review.) The tech-
nique is now fairly standard in the area of hardness amplification and the situation
is only made easier since we are concerned with deterministic and nondeterministic

computation in time O(222O(n)

). For the sake of completeness, we include a proof in
the Appendix.

Lemma 4.5 If NEEE ∩ coNEEE �⊆ EEE/ log, then there is language L in NEEE ∩
coNEEE such that no EEE/ log algorithm can decide L, at infinitely many lengths n,
on more than 1

2 + 1
n

fraction of strings from {0,1}n.

It is well known that any set A over �∗ can be encoded as a tally set TA such
that A is worst-case hard for exponential-time if and only if TA is worst-case hard
for polynomial-time. For our purposes, we need an average-case version of the this
equivalence. Below we describe particular encoding of languages using tally sets that
is helpful for us and prove the average-case equivalence.

Let t0 = 2, ti+1 = t2
i for all i ∈ N. Observe that ti = 22i

. Let T = {0ti | i ∈ N}. For
each l ∈ N, let Tl = {0ti | 2l − 1 ≤ i ≤ 2l+1 − 2}. Observe that T = ⋃∞

l=0 Tl . Given a

set A ⊆ {0,1}∗, let TA = {022rx |x ∈ A}, where rx is the rank index of x in the standard
enumeration of {0,1}∗. It is easy to verify that for all l ∈ N and every x,

x ∈ A ∩ {0,1}l ⇐⇒ 0trx ∈ TA ∩ Tl . (4.1)

Lemma 4.6 Let A and TA be as above. Suppose there is a quasipolynomial time
algorithm A such that for every l, on an ε fraction of strings from Tl , this algorithm
correctly decides the membership in TA, and on the rest of the strings the algorithm
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outputs “I do not know”. There is a 222k(l+1)

-time algorithm A′ for some constant
k that takes one bit of advice and correctly decides the membership in A on 1

2 + ε
2

fraction of the strings at every length l.

Proof Consider the following algorithm A′′ for A: For each x, run the algorithm A
on 0trx and output the same answer.

If the length of x is l, then |0trx | ≤ 222l+1−2
. Thus the time algorithm A′′ takes is

at most 222k(l+1)

for some constant k. Algorithm A decides TA correctly on ε fraction
of strings from Tl . Thus by (4.1), the algorithm A′′ correctly decides A on ε fraction
strings from {0,1}l , and say “I do not know” on the rest.

For algorithm A′, Let Sl be the set of strings of length l on which the algorithm
A′′ says “I do not know”, if |Sl ∩ A| > 1

2 |Sl |, then set the advice be 1, otherwise let
the advice be 0. The algorithm A′ simulates the algorithm A′′ and gives the advice
bit as the answer when it says “I do not know”. The fraction of strings of length l on
which A′ is correct is at least 1−ε

2 + ε = 1
2 + ε

2 . �

Now we are ready to prove Lemma 4.3.

Proof of Lemma 4.3 By Lemma 4.5, there is a language L ∈ (NEEE ∩ coNEEE) −
EEE/ log such that no EEE/ log algorithm can decide L correctly on more than a
1
2 + 1

n
fraction of the inputs for infinitely many lengths n.

Without loss of generality, we can assume that L ∈ NTIME(222n

) ∩
coNTIME(222n

) Let

TL = {
022rx ∣

∣x ∈ L
}
.

Clearly, TL ∈ NP ∩ coNP.
Recall that t0 = 2 and ti = 22i

. Define τ : N → N such that τ(n) = max{i | ti ≤ n}.
Observe that τ(n) is at most log logn. Thus for every n, tτ (n) ≤ n. Now we will define
our Turing complete language. Let

SAT0 = {0x | 0tτ (|x|) /∈ TL and x ∈ SAT},
SAT1 = {1x | 0tτ (|x|) ∈ TL and x ∈ SAT}.

Let A = SAT0 ∪ SAT1. Since L is in NP ∩ co-NP and tτ (|x|) is at most |x|, A is
in NP. The following is a Turing reduction from SAT to A: Given a formula x, ask
queries 0x and 1x, and accept if and only if exactly one of them is in A. Thus A is
polynomial-time 2-tt complete for NP. �

Suppose A is complete via length-increasing, polynomially-bounded, quasipoly-
nomial-time reductions. Then there is such a reduction f from {0}∗ to A. Since f is
polynomially-bounded, there is a constant d such that for every x, the length of f (x)

is less that |x|d .
The following observation is easy to prove.
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Observation 4.7 Let y ∈ {0,1}∗ and b ∈ {0,1} be such that f (0ti ) = by. Then
0tτ (|y|) ∈ TL if and only if b = 1.

Proof Fix a length l. We will describe a quasipolynomial-time algorithm that will
decide the membership in TL on at least 1

logd
fraction of strings from Tl , and says

“I do not know” on other strings. By Lemma 4.6, this implies that there is EEE/1
algorithm that decides L on more than 1

2 + 1
2 logd

fraction of strings from {0,1}l . This
contradicts the hardness of L and completes the proof. �

Let s = 2l − 1 and r = 2l+1 − 2. Recall that Tl = {0ti | s ≤ i ≤ r}. Partition Tl in
sets T0, T2, . . . , Tm where

Tk = {0ti | s + k logd ≤ i < s + (k + 1) logd and i ≤ r}.

This gives at least 2l

logd
sets. We make the following observation.

Observation 4.8 Fix k. If f (0ts+k logd ) = by, then 0tτ (|y|) ∈ Tk .

Proof Recall that the length of f (0ts+k logd ) is less than tds+k logd . Since ti = 22i
,

tds+k logd ≤ ts+(k+1) logd . Since f is length-increasing, we have the following bound
on the length of y.

ts+k logd ≤ |y| < ts+(k+1) logd .

By definition of τ , we have

s + k logd ≤ τ(|y|) < s + (k + 1) logd.

By the definition of Tk , we have 0tτ (|y|) ∈ Tk . �

This suggests the following algorithm for TL: Let 0tj be its input. Say it lies in Tk .
Compute f (0ts+k logd ) = by. If tτ (|y|) �= tj , then output “I do not know”. Otherwise,
accept 0tj if and only if b = 1. By Observation 4.7 this algorithm never errs. Since f

is computable in quasipolynomial time, this algorithm runs in quasipolynomial time.
By Observation 4.8, 0tτ (|y|) belongs to Tk and on this input the algorithm does not

output “I do not Know”. Thus there is at least one string in Tk on which this algorithm
does not output “I do not Know”.

Thus for every k, 0 ≤ k ≤ m, there is at least one string from Tk on which the
above algorithm correctly decides TL. Thus the above algorithm correctly decides TL

on at least 1
logd

fraction of strings from Tl , and never errs.

Acknowledgements We thank anonymous reviewers for several comments and suggestions that led to
a vastly improved presentation of the paper.

Appendix

Here we provide a proof of Lemma 4.5
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Definition Let x, y ∈ {0,1}m. 	(x,y) = 1
m

|{i | x[i] �= y[i]}|. We say that E :
{0,1}n → {0,1}m is an error correcting code with distance δ if for every x �= y ∈
{0,1}n, 	(E(x),E(y)) ≥ δ.

Theorem 5.1 (Johnson Bound [27]) If E : {0,1}n → {0,1}m is an ECC with distance
at least 1

2 − ε, then for every x ∈ {0,1}m, and η ≥ √
ε, there exist at most l ≤ 1/(2η2)

strings y1, . . . , yl ∈ E({0,1}n) such that 	(x,yi) ≤ 1
2 − η for every i ∈ [l].

Consider an ECC E : {0,1}2n logn → {0,1}n4
with distance 1/2 − /2n. An explicit

example of such ECC is the code obtained by concatenating the Walsh-Hadamard
code with the Reed-Solomon code. We will view strings of length 2n logn and n4

truth tables of languages at certain lengths. For this, both 2n logn and n4 must be
powers of 2. If n is of the form 22k−1

, then both 2n logn and n4 are powers of two.
For any language L′′, let L′ be fold(L′′). It is clear that L′′ ∈ NEEE ∩ coNEEE if

and only if L′ ∈ NEEE ∩ coNEEE. The following fact is easy to verify.

Lemma 5.2 If L′′ /∈ EEE/O(logn), then L′ /∈ EEE/O(logn) and for every EEE/

O(logn) algorithm A, there are infinitely many lengths n of the form 2k+1 + k such
that A fails to decide L′ correctly at length n.

Lemma 4.5 If there is a language in L′′ ∈ NEEE ∩ coNEEE − EEE/O(logn), then
there is a language L ∈ NEEE ∩ coNEEE such that for every EEE/O(logn) algo-
rithm A, there exist infinitely many n and A correctly decides L on at most 1

2 + 1
n

fraction of strings from �n.

Proof Let L′′ ∈ NEEE ∩ coNEEE − EEE/O(log). Let L′ = fold(L′′). Let L be the
language such that for every k ∈ N, L2k+1 = E(L′

2k−1+k
) where E is the WH-RS

code. On other lengths, we set L to be empty. It is clear that L ∈ NEEE ∩ coNEEE
since we can actually compute the truth table of L′ in NEEE ∩ coNEEE.

Now, for the sake of contradiction, assume that there is an EEE/O(logn) algo-
rithm A that correctly decides L on more than 1

2 + 1
n

fraction of inputs at every
length n. We will first show that this yields a EEE/O(logn) algorithm for L. Since
L is empty at lengths that are not of the form 2k+1, we can decide L easily at those
lengths. Thus we will concentrate on lengths of the form 2k+1.

Consider n of the form 2k+1. By the definition of L, we know that Ln =
E(L′

2k−1+k
). Let N = 2n. Recall that the distance of the code E is 1

2 − ε, where

ε = 1
2 4√

N
. Let η = 1

n
= 1

logN
>

√
ε.

By running A on all strings of length n compute a candidate sequence, x ∈ {0,1}N ,
for Ln. By our assumption, A is correct on at least 1

2 + 1
n

of strings from �n. Thus

	(x,Ln) ≤ 1
2 − 1

n
. By the Johnson bound 5.1, there exist at most l ≤ n2

2 strings

y1, . . . , yl in E(�2k−1+k) such that 	(x,yi) ≤ 1
2 − 1

n
. By running E on all strings

from �2k−1+k , we can compute these yis. Since WH-RS code is computable in poly-
nomial time, this computation can be done in triple exponential time. Since Ln =
E(L′

2k−1+k
), there exists a j , 1 ≤ j ≤ l such that Ln = yj . Thus log l = O(logn) bits

of information is enough to identify j for which Ln = yj . Thus L ∈ EEE/O(logn).
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Recall that Ln = E(L′
2k−1+k

) when n = 2k . Since L ∈ EEE/O(logn), by inverting

the WH-RS code E, we can decide L′ correctly on all lengths of the form 2k+1 + k,
using an EEE/O(logn) algorithm. This contradicts Lemma 5.2. �
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