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Abstract The Tile Assembly Model is a Turing universal model that Winfree in-
troduced in order to study the nanoscale self-assembly of complex DNA crystals.
Winfree exhibited a self-assembly that tiles the first quadrant of the Cartesian plane
with specially labeled tiles appearing at exactly the positions of points in the Sierpin-
ski triangle. More recently, Lathrop, Lutz, and Summers proved that the Sierpinski
triangle cannot self-assemble in the “strict” sense in which tiles are not allowed to
appear at positions outside the target structure. Here we investigate the strict self-
assembly of sets that approximate the Sierpinski triangle. We show that every set that
does strictly self-assemble disagrees with the Sierpinski triangle on a set with fractal
dimension at least that of the Sierpinski triangle (≈1.585), and that no subset of the
Sierpinski triangle with fractal dimension greater than 1 strictly self-assembles. We
show that our bounds are tight, even when restricted to supersets of the Sierpinski
triangle, by presenting a strict self-assembly that adds communication fibers to the
fractal structure without disturbing it. To verify this strict self-assembly we develop
a generalization of the local determinism method of Soloveichik and Winfree.

1 Introduction

Self-assembly is a process in which simple objects autonomously combine to form
complex structures as a consequence of specific, local interactions among the objects
themselves. It occurs spontaneously in nature as well as in engineered systems and is
a fundamental principle of structural organization at all scales. Since the pioneering
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work of Seeman [17], the self-assembly of DNA molecules has developed into a field
with rich interactions between the theory of computing (the information processing
properties of DNA) and geometry (the structural properties of DNA), and with many
applications to nanotechnology [18].

Winfree [25] introduced the Tile Assembly Model (TAM) as a mathematical
model of self-assembly in order to study the growth of complex DNA crystals. The
TAM is a constructive version of Wang tiling [22, 23] that models the self-assembly
of unit square tiles that can be translated, but not rotated. A tile has a glue on each
side that is made up of a color and an integer strength (usually 0, 1, or 2). Intuitively, a
tile models a DNA double crossover molecule and the glues correspond to the “sticky
ends” on the four arms of the molecule. Two tiles with the same glue on each side are
of the same tile type. Two tiles placed next to each other interact if the glues on their
abutting sides match in both color and strength.

A tile assembly system (TAS) is a finite set of tile types, a single tile for the seed,
and a specified integer temperature (usually 2). The process starts with the seed tile
placed at the origin, and growth occurs by single tiles attaching one at a time. A tile
can attach at a site where the summed strengths of the glues on sides that interact
with the existing structure is at least the temperature. The assembly is terminal when
no more tiles can attach. A TAS is directed if it always results in a unique termi-
nal assembly. Winfree proved that the TAM is Turing Universal [25]. The TAM is
described formally in Sect. 2.2.

This paper is concerned with the self-assembly of fractals. Structures that self-
assemble in naturally occurring biological systems are often fractals, which have ad-
vantages for materials transport, heat exchange, information processing, and robust-
ness [7]. There are two types of fractals, continuous and discrete. Continuous fractals
are typically bounded and exhibit the same structure at arbitrarily small scales. In
contrast, discrete fractals are unbounded and exhibit the same structure at arbitrarily
large scales. Many fractals have both continuous and discrete “versions” that share
the same fractal dimension and other properties [21]. This duality is a topic of ongo-
ing investigation [1, 7, 10, 24].

The TAM models the bottom-up self-assembly of discrete tiles, so structures that
self-assemble in the TAM are discrete. We thus restrict our attention to fractals that
are discrete. There are two main notions of the self-assembly of such a fractal. In
weak self-assembly one typically causes a two-dimensional surface to self-assemble
with the desired fractal appearing as a labeled subset of the surface. In contrast, strict
self-assembly requires the fractal, and nothing else, to self-assemble. For many pur-
poses, strict self-assembly is needed in order to achieve the above mentioned advan-
tages of fractal structures.

The Sierpinski triangle is a canonical starting point for many investigations of
fractals, and this is certainly true for self-assembly. Winfree [19] showed that the
Sierpinski triangle weakly self-assembles, and Rothemund, Papadakis, and Winfree
[15] achieved a molecular implementation of this self-assembly. More recently, Lath-
rop, Lutz, and Summers [9] proved that the Sierpinski triangle cannot strictly self-
assemble. Patitz and Summers [12] then exhibited a large class of fractals that cannot
strictly self-assemble. It appears to be a challenging question whether these results—
or ours—hold more generally. Even the Sierpinski carpet, a natural “next” fractal to
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consider after the Sierpinski triangle, is a case in point. Kautz and Lathrop [8] have
shown that the Sierpinski carpet weakly self-assembles, but its strict self-assembly
remains an open question. In fact, at the time of this writing, it is not known whether
any nontrivial self-similar discrete fractal strictly self-assembles.

This has motivated the development of techniques to approximate self-similar
fractals with strict self-assembly. The only previously known technique, introduced
by Lathrop, Lutz, and Summers [9], and later generalized by Patitz and Summers
[12], enables strict self-assembly of the intended fractal structure by adding com-
munication fibers that shift successive stages of the fractal. However, this results in
a structure that only visually resembles, but does not contain, the intended fractal
structure.

In this paper we address a quantitative question: given that the Sierpinski trian-
gle S cannot strictly self-assemble, how closely can strict self-assembly approxi-
mate S? That is, if X is a set that does strictly self-assemble, how small can the
fractal dimension—a measure of how completely a fractal fills space—of the sym-
metric difference X�S be? Our first main theorem says that the fractal dimension of
X�S is at least the fractal dimension of S.

To gain further insight, we restrict our attention to subsets of S and show that here
the limitation is even more severe. Any subset of the Sierpinski triangle that strictly
self-assembles must have fractal dimension 0 or 1. Roughly speaking, the axes that
bound S form the largest subset of S that strictly self-assembles. Hence, S cannot
even be approximated “closely” with strict self-assembly.

Our second main theorem shows that our first main theorem is tight, even when
restricted to supersets of S. To prove this we demonstrate the existence of a set X

with the following three properties.

(1) S ⊆ X.
(2) The fractal dimension of X�S is the fractal dimension of S.
(3) X strictly self-assembles in the Tile Assembly Model.

What we have achieved here is a means of fibering S in place, i.e., adding the needed
communication fibers (the set X \ S) without disturbing the set S. To the best of our
knowledge, this is the first such construction for a self-similar fractal.

The local determinism method of Soloveichik and Winfree [20] is a common tech-
nique for proving a TAS is directed. However, the TAS in the proof of our second
main theorem uses a blocking technique that prevents it from being locally determin-
istic. We thus introduce conditional determinism, a generalization of local determin-
ism, to verify this TAS is directed.

The proof techniques used here, along with our blocking technique (and thus our
generalization of local determinism), are likely to be useful in the design and analysis
of other tile assembly systems that approximate self-similar fractals. Our fibering
technique may be a useful example for other contexts where one seeks to enhance the
“internal bandwidth” of a set in a distortion-free manner.

The self-assembly of large complex systems is a long-term objective of nanotech-
nology [13]. DNA tile assembly may—at least in its present form—be too fault-prone
to directly achieve this objective. Nevertheless DNA tile assembly and the Tile As-
sembly Model have given us the beginnings of a general theory of self-assembly, its
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potentialities, and its limitations. We hope that our results lead to a more general un-
derstanding of the self-assembly and approximate self-assembly of fractal structures.

2 Preliminaries

2.1 Notation and Terminology

We work in the discrete Euclidean plane Z
2. We write U2 for the set of all unit vectors

in Z
2. We often refer to the elements of U2 as the cardinal directions, and write uN

for (0,1), uS for (0,−1), uE for (1,0), and uW for (−1,0).
Let X and Y be sets. We write [X]2 for the set of all 2-element subsets of X. For

a partial function f : X ��� Y , we write f (x)↓ if x ∈ domf and f (x)↑ otherwise.
We write X�Y for the symmetric difference of X and Y . For a Boolean expression
φ, [[φ]] = 1 if φ is true, and [[φ]] = 0 if φ is false.

All graphs here are undirected graphs of the form G = (V ,E), where V ⊆ Z
2

is a set of vertices and E ⊆ [V ]2 is a set of edges. A grid graph is a graph where
each {m,n} ∈ E satisfies m − n ∈ U2. If E contains every {m,n} ∈ [V ]2 such that
m − n ∈ U2, we say it is the full grid graph on V , written G#

V . A cut of a graph
is a partition of V into two subsets. A binding function on a graph is a function
β : E → N. If β is a binding function on G and C is a cut of G, then the binding
strength of β on C is

βC =
∑

{β(e) | e ∈ E and e ∩ C0 	= ∅ and e ∩ C1 	= ∅},

and the binding strength of β on G is

βG = min {βC | C is a cut of G}.

A binding graph is an ordered triple (V ,E,β), where β is a binding function on
(V ,E). For τ ∈ N, a binding graph (V ,E,β) is τ -stable when β(V,E) ≥ τ .

We now review finite-tree depth [9]. Let G=(V ,E) be a graph and let D ⊆ V .
For r ∈ V , the D-r-rooted subgraph of G is the graph GD,r = (VD,r ,ED,r ), where

VD,r = {v ∈ V | r is on every path from v to (any vertex in) D}

and ED,r = E ∩ [VD,r ]2. A D-subtree of G is a rooted tree B with root r ∈ V such
that B = GD,r . The finite-tree depth of G relative to D is

ft-depthD(G) = sup{depth(B) | B is a finite D-subtree of G}.

Intuitively, given a set D of vertices of G (which is in practice the domain of the seed
assembly), the D-subtree of G is a rooted tree in G that consists of all vertices of G

that lie at or on the far side of the root from D.
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Fig. 1 An example illustration of a tile. Glue strengths are represented by lines that are dotted for 0, solid
for 1, and solid with notches for 2. Glue colors are drawn in the interior of the tile on the corresponding
side. In this example t (uN) = (a,1), t (uE) = (b,1), t (uS) = (λ,0) where λ represents the empty string,
and t (uW) = (c,2). Also, we sometimes give a label to a tile type. This label does not play a role in the
TAM, it is only to make referring to tiles of that type more convenient

2.2 The Tile Assembly Model

We now review the Tile Assembly Model [14, 16, 25]. Our notation follows that of
[9] but is tailored somewhat to our objectives.

A tile t is a unit square that can be translated, but not rotated, so it has a well
defined “side u ” for each u ∈ U2. Each side u of t has a glue t (u) = (colt (u), strt (u))

where colt (u) ∈ �∗, for some fixed alphabet �, is the glue color, and strt (u) ∈ N is
the glue strength. Two tiles with the same glue on each side are of the same tile type.
See Fig. 1 for an example illustration of a tile.

Let T be a set of tile types. A T -configuration is a partial function α : Z
2 ��� T .

For m,n ∈ domα, the tiles at these locations interact with strength

strα(m,n) = [[n − m ∈ U2]] · strα(m)(n − m) · [[α(m)(n − m) = α(n)(m − n)]].
The binding graph of α is Gα = (domα,E,β), where

E = {{m,n} ∈ [V ]2 | strα(m,n) > 0},
and for all {m,n} ∈ E, β({m,n}) = strα(m,n). For τ ∈ N, α is τ -stable if Gα is
τ -stable. We write Aτ

T for the set of all τ -stable T -configurations. Let α,α′ ∈ Aτ
T . If

domα ⊆ domα′ and α(m) = α′(m) for all m ∈ domα, then α is a subconfiguration
of α′ and we write α � α′. If |domα′ \ domα| = 1, then α′ is a single-tile-extension
of α and we write α′ = α + (m �→ t) where {m} = domα′ \ domα and t = α′(m).
For each t ∈ T , the τ–t-frontier of α is

∂τ
t α = {m ∈ Z

2 \ domα | (�u∈U2strα+(m �→t)(m,m + u)) ≥ τ },
and the τ -frontier of α is

∂τα =
⋃

t∈T

∂τ
t α.

We say α is terminal when ∂τα = ∅.
A tile assembly system (TAS) is an ordered triple T = (T ,σ, τ ) where T is a finite

set of tile types, the seed assembly σ ∈ Aτ
T is such that domσ = 0, and τ ∈ N is the
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temperature. An assembly sequence in T is a sequence α = (αi | 0 ≤ i < k) where
α0 = σ , k ∈ Z

+ ∪ {∞} and for each 0 ≤ i < k, αi+1 = αi + (m �→ t) for some t ∈ T

and m ∈ ∂τ
t αi . The result of α, written resα, is the unique α ∈ Aτ

T satisfying domα =⋃
0≤i<k domαi and for each 0 ≤ i < k, αi � α. We write σ −→ α if there exists an

assembly sequence α in T such that α = resα. The set of producible assemblies is

A[T ] = {α ∈ Aτ
T | σ −→ α}

and the set of terminal assemblies is

A�[T ] = {α ∈ A[T ] | ∂τα = ∅}.
T is directed if |A�[T ]| = 1. A set X strictly self-assembles in T if every α ∈ A�[T ]
satisfies domα = X. We say X strictly self-assembles if X strictly self-assembles in
some TAS.

Let T = (T ,σ, τ ) be a TAS, α = (αi | 0 ≤ i < k) be an assembly sequence in T ,
and α = resα. For each m ∈ Z

2, the α-index of m is

iα(m) = min{i ∈ N | m ∈ domαi}.
If m,n ∈ domα and iα(m) < iα(n), we say m precedes n in α, and write m ≺α n. For
X ⊆ domα, α restricted to X, written α�X, is the unique T -configuration satisfying
(α�X)�α and dom (α�X) = X.

Winfree and Soloveichik [20] introduced local determinism as a convenient way
to prove a TAS is directed. Let T = (T ,σ, τ ) be a TAS, α = (αi | 0 ≤ i < k) be an
assembly sequence in T , and α = resα. For each m ∈ domα, define [20] the sets

INα(m) = {u ∈ U2 | m + u ≺α m and strαiα (m)
(m,m + u) > 0},

and

OUTα(m) = {u ∈ U2 | −u ∈ INα(m + u)}.
Then, α is locally deterministic [20] if the following three conditions hold.

(1) For all m ∈ domα \ domα0,
∑

u∈INα(m)

strαiα (m)
(m,m + u) = τ.

(2) For all m ∈ domα \ domα0 and t ∈ T \ {α(m)},
m 	∈ ∂τ

t (α � (domα \ ({m} ∪ (m + OUTα(m))))).

(3) ∂τα = ∅.

Conceptually, (1) requires that each tile added in α “just barely” binds to the existing
assembly; (2) holds when the tiles at m and m + OUTα(m) are removed from α,
no other tile type can attach to the assembly at location m; and (3) requires that α

is terminal. A TAS is locally deterministic if it has a locally deterministic assembly
sequence. Soloveichik and Winfree [20] proved every locally deterministic TAS is
directed.
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Fig. 2 The first five stages of the continuous Sierpinski triangle

2.3 Zeta-Dimension

A fractal dimension is a measure of how completely a fractal fills space. The most
commonly used fractal dimension for discrete fractals is zeta-dimension. Although
the origins of zeta-dimension lie in eighteenth and nineteenth century number theory,
namely Euler’s zeta-function [5], it has been rediscovered many times by researchers
in a variety of fields. See [4] for a review of the origins of zeta-dimension, the devel-
opment of its basic theory, and the connections between zeta-dimension and classical
fractal dimensions.

In this paper we use the entropy characterization of zeta-dimension [3]. For each
m ∈ Z

2, let ‖m‖ be the Euclidean distance from the origin to m, i.e., if m = (m1,m2)

then ‖m‖ =
√

m2
1 + m2

2. For A ⊆ Z
2 and I ⊆ [0,∞), let AI = {m ∈ A | ‖m‖ ∈ I }.

Then, the ζ -dimension (zeta-dimension) of a set A ⊆ Z
2 is

Dimζ (A) = lim sup
n→∞

log2 |A[0,n]|
log2 n

.

By routine calculus it follows that

Dimζ (A) = lim sup
n→∞

log2 |A[0,2n)|
n

. (1)

Note that ζ -dimension has the following functional properties of a fractal dimen-
sion [4].

Observation 1 Let A,B ⊆ Z
2. Then,

(1) A ⊆ B =⇒ Dimζ (A) ≤ Dimζ (B) (monotonicity), and
(2) Dimζ (A ∪ B) = max{Dimζ (A),Dimζ (B)} (stability).

2.4 The Sierpinski Triangle

The Sierpinski triangle, a.k.a. the Sierpinski gasket or the Sierpinski sieve, is a self-
similar fractal named after the Polish mathematician Waclaw Sierpiński who first de-
scribed it [19]. It is formed by starting with a solid triangle and removing the middle
fourth. This process is continued ad infinitum on all remaining triangles. See Fig. 2
for an illustration of the this process.

This continuous version of the Sierpinski triangle is bounded and has the same
detail at arbitrarily small scales. But, because the TAM models the bottom-up self-
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Fig. 3 Stages 0 through 4 of the discrete Sierpinski triangle

assembly of tiles, which are discrete objects, structures that self-assemble in the TAM
are fundamentally discrete. Therefore, we shall focus on the strict self-assembly of a
discrete version of the Sierpinski triangle that is unbounded and has the same detail
at arbitrarily large scales.

Formally, the discrete Sierpinski triangle is a set of points in Z
2. Let V = {(1,0),

(0,1)} and define the sets S0,S1, . . . by the recursion

S0 = {(0,0)}, and

Si+1 = Si ∪ (Si + 2iV ),
(2)

where A + cB = {m + cn | m ∈ A and n ∈ B}. The discrete Sierpinski triangle is the
set

S =
∞⋃

i=0

Si . (3)

We often refer to Si as the ith stage of S. Note that S can also be defined as the
nonzero residues modulo 2 of Pascal’s triangle [2]. It is also a numerically self-similar
fractal [8]. See Fig. 3 for an illustration.

Using (2) it is easy to give a formula for the cardinality of the ith stage of S.

Observation 2 For each n ∈ N, |Sn| = 3n.

Then, using Observation 2 and (1) and (2), we can easily calculate the ζ -dimension
of S.

Observation 3 Dimζ (S) = log2 3.

Winfree [25] proved that S weakly self-assembles in the TAM. Rothemund, Pa-
padakis, and Winfree [15] later achieved a molecular implementation of this self-
assembly. More recently, Lathrop, Lutz, and Summers [9] proved that S cannot
strictly self-assemble in the TAM.

Theorem 4 (Lathrop, Lutz, and Summers [9]) S cannot strictly self-assemble in the
Tile Assembly Model.
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3 Limitations on Approximating the Sierpinski Triangle

In this section we present our first main theorem. We show that every set that strictly
self-assembles disagrees with S on a set with ζ -dimension at least that of S. We then
show that for subsets of S, the limitation is even more severe.

Our lower bound is proven by establishing a bound on the number of tile
types needed for the self-assembly of Sn (Lemma 7). We then calculate the
ζ -dimension of the symmetric difference of a terminal assembly with Sn (Theo-
rem 8) using a recursive argument, and show that it works out to the ζ -dimension
of S.

We first show that in any τ -stable assembly in the configuration of some stage
of S, each tile that attaches during the assembly sequence does so by interact-
ing with exactly one tile. Hence, all of the interactions are between pairs of
tiles that interact with a strength of at least the temperature τ on their abutting
side.

Lemma 5 Let T be a set of tile types, τ,n ∈ N, and α ∈ Aτ
T such that domα = Sn.

For each m ∈ domα and u ∈ U2, if m + u ∈ domα, then α(m)(u) = α(m + u)(−u)

and strα(m)(u) ≥ τ.

Proof Assume the hypothesis with T , τ , α, and n as witness. Let m ∈ domα and
u ∈ U2 such that m + u ∈ domα. It suffices to show that strα(m,m + u) ≥ τ . Let
Gα = (V ,E,β) be the binding graph of α. Note that since domα = Sn, (V ,E) is a
tree rooted at the origin and since α is τ -stable, β(V,E) ≥ τ . So, it suffices to show
that β((m,m + u)) ≥ τ .

Since (V ,E) is a tree, and m and m + u are adjacent in (V ,E), either m is on the
path from the origin to m + u or m + u is on the path from the origin to m. Without
loss of generality, assume m is on the path from the origin to m + u (otherwise, the
theorem holds for m′ = m + u and u′ = −u). Let C = (C0,C1) be the unique cut of
G such that

C1 = {n ∈ domα | m + u is on a path in G from the origin to n}, and

C0 = V \ C1.

Then, m ∈ C0 and m+u ∈ C1. Furthermore, since (V ,E) is a tree, (m,m+u) ∈ E is
the unique edge across C. But then, βC = β((m,m+u)), and since βC ≥ β(V,E) ≥ τ ,
β((m,m + u)) ≥ τ . �

Lemma 5 allows us to show that all of the boundary tiles of a terminal assembly
in the configuration of some stage of S are each a unique tile type via a pumping
argument used in the proof of Lemma 6.

Lemma 6 If Sn strictly self-assembles in a TAS (T ,σ, τ ), then |T | ≥ 2n+1 − 1.

Proof Assume the hypothesis with n ∈ N and TAS T = (T ,σ, τ ) as witness. Let α ∈
A�[T ]. If n = 0 the lemma is trivially true, so assume n > 1. Let A = Ah∪Av , where
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Fig. 4 Illustrating the proof of Lemma 6 for n = 3

Ah = {(i,0) | 0 ≤ i < 2n}and Av = {(0, i) | 0 ≤ i < 2n}. Conceptually, Ah (and Av)
represent the left (and right) boundary of Sn. Let TA = {α(m) | m ∈ A} be the set of
all tile types placed at locations in A. Clearly, TA ⊆ T , so it suffices to show that
|TA| ≥ 2n+1 − 1. Suppose |TA| < 2n+1 − 1. By (2) and α ∈ A�[T ], m ∈ domα for
all m ∈ A. Then, there exist a m,n ∈ A such that m 	= n and α(m) = α(n). Either
m,n ∈ Ah, m,n ∈ Av , or m ∈ Ah \ {0} and n ∈ Av \ {0}. In each case we show that
Sn does not strictly self-assemble in T .

Case 1. Suppose m,n ∈ Ah. Without loss of generality, let m = (i,0) and n = (j,0)

where 0 ≤ i < j < 2n. Let β be the unique T -configuration such that for all k =
(k1, k2) ∈ N,

β(k) =

⎧
⎪⎨

⎪⎩

↑, if k1 > 2n or k2 	= 0

α(k), if k1 < j

α(m + ((k1 − j) mod (j − i),0)), otherwise.

See Fig. 4(a) for an illustration. By (2) and j > 0, n + uW ∈ domα. So, by
Lemma 5, α(n)(uW) = α(n + uW)(uE) and strα(n)(uW) ≥ τ . But since α(n) =
α(m), α(m)(uW) = α(n + uW)(uE) and strα(m)(uW) ≥ τ . So, β ∈ A[T ]. Then,
there exists a γ ∈ A�[T ] such that β � γ and since β((2n,0)) ↓, γ ((2n,0)) ↓.
But (2n,0) 	∈ Sn. So, Sn does not strictly self-assemble in T .

Case 2. The case for m,n ∈ Av is similar to Case 1.
Case 3. Suppose m ∈ Ah \{0} and n ∈ Av \{0}. Let m = (i,0) and n = (0, j), where
i, j ∈ {1, . . . ,2n − 1}. Let β be the unique T -configuration such that for all k =
(k1, k2) ∈ N,

β(k) =

⎧
⎪⎨

⎪⎩

α(k), if k1 = 0 and k2 ≤ j or k2 = 0 and k1 ≤ i

α(m + uW), if k1 = −1 and k2 = j

↑, otherwise.

See Fig. 4(b) for an illustration. By (2) and i > 0, m + uW ∈ domα. So, by
Lemma 5, α(m)(uW) = α(m + uW)(uE) and strα(m)(uW) ≥ τ . But since α(m) =
α(n), α(n)(uW) = α(m + uW)(uE) and strα(n)(uW) ≥ τ . So, β ∈ A[T ]. Then, there
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Fig. 5 Illustrating the proof of Lemma 7 for n = 3

exists a γ ∈ A�[T ] such that β � γ and since β((−1, j)) ↓, γ ((−1, j)) ↓. But
(−1, j) 	∈ Sn. So, Sn does not strictly self-assemble in T . �

Even if we only require that Sn appear somewhere in the terminal assembly (not
necessarily at the origin), we still have an exponential lower bound on the minimum
number of tile types needed. To show this we use the ruler function ρ : Z

+ → N

defined by the recurrence ρ(2k+1) = 0 and ρ(2k) = ρ(k)+1 for all k ∈ N. The value
of ρ(n) is the exponent of the largest power of 2 that divides n, or equivalently, ρ(n)

is the number of 0’s lying to the right of the rightmost 1 in the binary representation
of n [6]. Now, for each i ∈ N, the width of the longest horizontal bar rooted at (0, i)

and the height of the tallest vertical bar rooted at (i,0) in S is 2ρ(i) − 1 [9].

Lemma 7 Let n ∈ N and m ∈ Z
2. If T = (T ,σ, τ ) is a TAS such that for every

α ∈ A�[T ], domα ∩ (m + {0, . . . ,2n − 1}2) = m + Sn, then |T | ≥ 2n − 2.

Proof Assume the hypothesis with n ∈ N, m = (m1,m2) ∈ Z
2, and TAS T =

(T ,σ, τ ) as witness. Let α ∈ A�[T ]. Suppose |T | < 2n − 2. We will construct a
TAS T ′ = (T ′, σ ′, τ ) in which Sn strictly self-assembles but with |T ′| ≤ 2n+1 − 2,
thus contradicting Lemma 6.

The TAS T ′ = (T ′, σ ′, τ ) is constructed as follows. We will assume that none of
the glue colors on tiles in T use digits. Thus, we can safely assume that the following
algorithm doesn’t introduce any unwanted interactions.

(1) For every n ∈ m + {1,2, . . . ,2n−1 − 1}2, if α(n) ↓, then α(n) ∈ T ′.
(2) Let i = 2n−1. There exists tiles hi, vi ∈ T ′ such that

hi(uN) = vi(uN) = α(m + (2n−1,1))(uS), vi(uS) = hi(uW) = (i − 1, τ ),

hi(uE) = vi(uE) = α(m + (1,2n−1))(uW), and vi(uW) = hi(uS) = (0,0).

(3) For each 0 < i < 2n−1, there exists tiles vi, hi ∈ T ′ such that

vi(uW) = hi(uS) = (0,0),

vi(uE) =
{

α(m + (2n−1 − 2ρ(i) + 1,2n−1)), ρ(i) > 0

(0,0), ρ(i) = 0,
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vi(uN) = hi(uE) = (i, τ ),

hi(uN) =
{

α(m + (2n−1,2n−1 − 2ρ(i) + 1)), ρ(i) > 0

(0,0), ρ(i) = 0,

and

vi(uS) = hi(uW) = (i − 1, τ ).

(4) There exists a tile σ ′ ∈ T ′ such that

σ ′(uN) = σ ′(uE) = (0, τ ) and σ ′(uS) = σ ′(uW) = (0,0).

Each tile type added to T ′ in step (1) is also a tile type in T , so, by assumption, we
add at most 2n − 3 tile types to T ′ in step (1). Then, 2 tile types are added to T ′ in
step (2), 2n − 2 tile types are added to T ′ in step (3). and 1 tile type is added to T ′ in
step (4). Thus, |T ′| ≤ 2n+1 − 2. But, by using (2) and the ruler function properties,
it is easy to verify that Sn strictly self-assembles in T ′. This contradicts Lemma 6.
Thus, no such TAS exists. �

We now have the necessary machinery to prove our first main theorem which
says that every set that strictly self-assembles disagrees with S on a set with fractal
dimension at least that of S. Hence, S cannot even be approximated closely with strict
self-assembly.

Theorem 8 If X ⊆ Z
2 strictly self-assembles, then Dimζ (X�S) ≥ Dimζ (S).

Proof Assume the hypothesis with X ⊆ Z
2 and TAS T = (T ,σ, τ ) as witness.

Let V = {(0,0), (0,1), (1,0)} and n = �log2 (|T | + 2) + 1�. Since X strictly self-
assembles in T , for every α ∈ A�[T ], X = domα. Let d : Z

2 × N → N where

d(m, k) = |(X ∩ (m + {0, . . . ,2n+k − 1}2))�(m + Sn+k)| (4)

for all m ∈ Z
2 and k ∈ N. Then, by (2), d(m, k) ≥ ∑

v∈V d(m + 2n+k−1v, k − 1).

Since |T | < 2n − 2, by Lemma 7, for all m ∈ Z
2, X ∩ (m + {0, . . . ,2n − 1}2) 	=

m + Sn. So, for all m ∈ Z
2, d(m,0) ≥ 1. Then, the recurrence solves to

d(m, k) ≥ 3k (5)

for all m ∈ Z
2. So,

Dimζ (X�S)
(1)= lim sup

n→∞
log |X[0,2n)|

n

(4)= lim sup
k→∞

logd(0, k)

n + k

(5)= lim sup
k→∞

log 3k

n + k
= log2 3.

By Observation 3, the theorem holds. �
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Fig. 6 Illustrating the partition
used in the proof of Lemma 11

To gain further insight, we now consider the strict self-assembly of subsets of S,
and show that here the limitation is even more severe. We first give an upper bound
on the number of tiles located within a given distance of the seed tile in any strict
self-assembly of a subset of S. We use the a theorem from [9] that for any structure
to strictly self-assemble, the number of tile types used is at least the finite-tree depth
of the structure.

Theorem 9 (Lathrop, Lutz, and Summers [9]) If X ⊆ Z
2 strictly self-assembles in a

TAS (T ,σ, τ ), then |T | ≥ ft-depthdomσ (G#
X).

It easily follows that in any strict self-assembly of a subset of S, not too many tiles
can be placed far from the boundary.

Corollary 10 If X ⊆ S strictly self-assembles in a TAS (T ,σ, τ ), then for all
m = (m1,m2) ∈ Z

2 such that m1 ≥ |T | and m2 ≥ |T |, m 	∈ X.

Lemma 11 If X ⊆ S strictly self-assembles in a TAS (T ,σ, τ ), then for every n ∈ N,
|X[0,n]| ≤ 2|T |(n + 1).

Proof Assume the hypothesis with X ⊆ Z
2 and T = (T ,σ, τ ) as witness. Let α ∈

A�[T ] and let n ∈ N. If n ≤ |T | the theorem is trivially true, so assume n > |T |.
Let A = {0, . . . , |T | − 1}2, B = {0, . . . , |T | − 1} × {|T |, . . . , n}, C = {|T |, . . . , n} ×
{0, . . . , |T | − 1}, and D = {|T |, . . . , n}2. See Fig. 6 for an illustration. It is clear that
A,B,C,D is a partition of {0, . . . , n}2. Then,

|X[0,n]| = |{0, . . . , n}2 ∩ domα| since X ⊆ N
2

= |A ∩ domα| + |B ∩ domα| + |C ∩ domα| by Corollary 10

≤ |T |2 + 2|T |(n − |T | + 1)

≤ 2|T |(n + 1). �

Theorem 12 If X ⊆ S strictly self-assembles, then Dimζ (X) ∈ {0,1}.

Proof Assume the hypothesis with X ⊆ S and TAS (T ,σ, τ ) as witness. By
Lemma 11, |X[0,n]| ≤ 2|T |(n + 1). Then, Dimζ (X) ≤ 1. But, the binding graph of
any α ∈ Aτ

T must be connected and any infinite connected structure has ζ -dimension
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Fig. 7 The TAS TB = (TB,σB,1) which uses a blocking technique

at least 1. It follows that either Dimζ (X) = 1 or X is finite, in which case X has
ζ -dimension 0. So, Dimζ (X) ∈ {0,1}. �

Note that boundary of S is a subset of S that strictly self-assembles and has ζ -
dimension 1. A single tile placed at the origin is a subset of S that strictly self-
assembles and has ζ -dimension 0. Hence, Theorem 12 is trivially tight.

4 Conditional Determinism

The method of local determinism introduced by Soloveichik and Winfree [20] is a
common technique for showing that a TAS is directed. However, there exists very
natural constructions that are directed but not locally deterministic. Consider the TAS
TB = (TB,σB,1) of Fig. 7. Clearly, there is only one assembly sequence α in TB such
that resα is terminal. Hence, TB is directed. However, α fails condition (2) of local
determinism at the location (0,1). The culprit is the blocking technique used by this
TAS which is marked by a red X in Fig. 7(b). Since α is the only possible locally
deterministic assembly sequence in TB , then TB is not a locally deterministic TAS.
Thus, new techniques are needed to show this TAS is directed.

In this section we give sufficient conditions for proving such a TAS is directed.
First, we introduce some new notation. For m,n ∈ Z

2, if m ≺α n for every assembly
sequence α in a TAS T , then we say m precedes n in T , and we write m ≺T n. For
each m ∈ Z

2, we define the set

DEPT (m) = {u ∈ U | m ≺T m + u}.

Now, let T be a TAS, α an assembly sequence in T , and α = resα. Then, α is
conditionally deterministic if the following three conditions hold.

(1) For all m ∈ domα \ domα0,
∑

u∈INα(m) strαiα (m)
(m,m + u) = τ .

(2) For all m ∈ domα \ domα0 and all t ∈ T \ {α(m)},

m 	∈ ∂τ
t (α � (domα \ ({m} ∪ (m + (OUTα(m) ∪ DEPT (m)))))).

(3) ∂τα = ∅.
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Note that conditions (1) and (3) are the same as in the definition of local determinism.
Conceptually, (1) requires that each tile added in α “just barely” binds to the existing
assembly; (2) holds when the tiles at m and m+OUTα(m)+DEPT (m) are removed
from α, no other tile type can attach to the assembly at location m; and (3) requires
that α is terminal. A TAS is conditionally deterministic if it has a conditionally deter-
ministic assembly sequence.

Our first theorem shows that conditional determinism is a weaker notion than local
determinism.

Theorem 13 Every locally deterministic TAS is conditionally deterministic.

Proof Let T be a locally deterministic TAS with α = (αi | 0 ≤ i < k) as witness.
Let α = res (α). It suffices to show that α is a conditionally deterministic assembly
sequence. Since conditions (1) and (3) in the definitions of both local determinism
and conditional determinism are the same, it suffices to show that condition (2) in the
definition of conditional determinism holds for α. Since α is locally deterministic, by
condition (2) of local determinism, for all m ∈ domα \domα0 and all t ∈ T \{α(m)},

m 	∈ ∂τ
t (α � (domα \ ({m} ∪ (m + OUTα(m))))).

Then, since OUTα(m) ⊆ OUTα(m) ∪ DEPT (m), it follows that for all m ∈ domα \
domα0 and all t ∈ T \ {α(m)},

m 	∈ ∂τ
t (α � (domα \ ({m} ∪ (m + (OUTα(m) ∪ DEPT (m)))))).

Hence, α is a conditionally deterministic assembly sequence in T . �

We now show that although conditional determinism is weaker than local deter-
minism, it is strong enough to show a TAS is directed.

Theorem 14 Every conditionally deterministic TAS is directed.

Proof Our proof is similar to the proof in [20] that every locally deterministic TAS is
directed. Let T = (T ,σ, τ ) be a conditionally deterministic TAS with α = (αi | 0 ≤
i < k) as witness. Let α = res (α) and note that α ∈ A�[T ]. To see that T is directed,
it suffices to show that for all β ∈ A�[T ], β � α.

Let β ∈ A�[T ]. Then, there is an assembly sequence β = (βj | 0 ≤ j < l) in T
such that β0 = σ and β = res (β). To see that β � α, it suffices to show that for each
0 ≤ j < k, the following conditions hold:

(1) INβ(domβj+1 \ domβj ) = INα(domβj+1 \ domβj ), and
(2) β(domβj+1 \ domβj ) = α(domβj+1 \ domβj ).

Suppose there exists a 0 ≤ j < k such that either condition (1) or condition (2)
fails. Let i be the smallest such j . To prove the theorem, it suffices to show no
such i exists. Let bi = domβi+1 \ domβi . Consider any u ∈ INβ(bi ). It is clear that
−u ∈ OUTβ(bi + u), so −u 	∈ INβ(bi + u). Either bi + u ∈ domσ or there exists an
h < i such that bh = bi + u.
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Case 1. Suppose bi + u ∈ domσ . Then, since both α and β are assembly sequences
in T , INβ(bi + u) = INα(bi + u) = ∅. Then, −u 	∈ INα(bi + u). So, u 	∈ OUTα(bi ).
Also, iβ(bi + u) = 0, so bi 	≺T bi + u. Then, u 	∈ DEPT (bi ).

Case 2. Suppose there exists an h < i such that bh = bi + u. Then, by condition (1),
INβ(bi + u) = INα(bi + u). Then, −u 	∈ INα(bi + u). So, u 	∈ OUTα(bi ). Also,
h ≺β i, so bi 	≺T bi + u. Then, u 	∈ DEPT (bi ).

In either case,

INβ(bi ) ∩ (OUTα(bi ) ∪ DEPT (bi )) = ∅. (i)

Since for all m ∈ domβi,βi(m) = α(m), then for all u ∈ U2,

strβi+1(bi ,bi + u) ≤ strα(bi ,bi + u). (ii)

Then, by (i) and (ii),
∑

u∈INβ (bi )

strβi+1(bi ,bi + u) ≤
∑

u∈U2\(OUTα(bi )∪DEPT (bi ))

strα(bi ,bi + u).

But, by property (2) of conditional determinism, the only type of tile that can attach
to βi at location bi is α(bi ). Thus, β(bi ) = α(bi ).

So it must be the case that INβ(bi ) 	= INα(bi ). By property (1) of conditional
determinism, there must be some u ∈ INβ(bi )\ INα(bi ). Since u ∈ INβ(bi ), bi +u ∈
domβi , so β(bi + u) = α(bi + u). We’ve already established that β(bi ) = α(bi ). So,
By property (2) of conditional determinism, it must be the case that iα(bi + u) >

iα(bi ). So, u 	∈ INα(bi ). But then −u ∈ INα(bi + u), and so u ∈ OUTα(bi ). But,
by (i), this is impossible. Therefore, no such i exists. �

It is now a straightforward task to show that the TAS of Fig. 7 is directed.

5 Fibering the Sierpinski Triangle in Place

In this section we present our second main theorem. We construct a TAS in which a
superset of S with the same ζ -dimension strictly self-assembles. Thus, our first main
theorem is tight, even when restricted to supersets of S. To prove this we define a new
fractal, the laced Sierpinski triangle, denoted L. We show that S ⊆ L, Dimζ (L�S) =
Dimζ (S), and that L strictly self-assembles in the Tile Assembly Model.

Formally, the laced Sierpinski triangle is a set of points in Z
2. Our goal is to

define the sets L0,L1, . . . such that each Li is the ith stage in our construction of L.
We will break each Li up into disjoint subsets representing the different “types” of
fibers added to S that allow L to strictly self-assemble. Let V = {(0,1), (1,0)}, W =
{(0,0)} ∪ V , and X = {(0,2), (2,0), (−1,1), (1,−1)} ∪ W. Then, we define the sets
C0,C1, . . . by

Ci =

⎧
⎪⎨

⎪⎩

∅, if i < 2

2i−1(1,1) + W, if i = 2

(2i−1(1,1) + X) ∪ ⋃
w∈W(2i−1w + Ci−1), otherwise.

(6)
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Fig. 8 Stage 6 of the laced Sierpinski triangle

Intuitively, each Ci is the set of cap fibers in Li . For each i ∈ N, let

�i =
i−2⋃

j=1

2i−2j⋃

k=2j +1

{(2i − j, k), (k,2i − j)}. (7)

Note that �i = ∅ for i < 3. Then, we define the sets N0,N1, . . . by

Ni =
{

∅, if i < 3

�i ∪ Ni−1 ∪ ⋃
v∈V (2i−1v + (Ni−1 − �i−1)), otherwise.

(8)

Intuitively, Ni is the set of counter fibers that run along the top and right sides of the
empty triangles that form in the negative space around the interior of Si+1. For each
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i ∈ N, let

�i =
i−1⋃

j=3

2i−j⋃

k=2i−2j +3

{(2j − 1, k), (2j , k), (k,2j − 1), (k,2j )}. (9)

Note that �i = ∅ for i < 4. Then, we define the sets T0, T1, . . . ⊆ Z
2 by

Ti =
{

∅, if i < 4

�i ∪ Ti−1 ∪ ⋃
v∈V (2i−1v + (Ti−1 − �i−1)), otherwise.

(10)

Intuitively, Ti is the set of test fibers between the counter fibers and cap fibers in Li .
Now, for each i ∈ N, let

Li = Si ∪ Ci ∪ Ni ∪ Ti. (11)

Then, the laced Sierpinski triangle is the set

L =
∞⋃

i=0

Li . (12)

We often refer to Li as the ith stage of L. See Fig. 8 for an illustration. From (11), it
is clear that L is a superset of S.

Observation 15 S ⊆ L.

We now show that the ζ -dimension of L�S (hence also of L) is the same as the
ζ -dimension of S.

Theorem 16 Dimζ (L�S) = Dimζ (S).

Proof Since S ⊆ L, it suffices to show that Dimζ (L \ S) = Dimζ (S). By (11), for
each n ∈ N, |(L \ S)[0,2n)| = |Cn| + |Nn| + |Tn|. By (6),

|Cn| =

⎧
⎪⎨

⎪⎩

0, if n < 2

3, if n = 2

3|Cn−1| + 7, otherwise.

Solving this recurrence for n ≥ 2 gives |Cn| = 6.5 · 3n−2 − 3.5. By (7), for n ≥ 2,
|�n| = 2n+1(n − 3) + 8. Then, by (8),

|Nn| =

⎧
⎪⎨

⎪⎩

0, if n < 3

8, if n = 3

3|Nn−1| + |�n| − 2|�n−1|, otherwise.
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Solving this recurrence for n ≥ 2 gives |Nn| = 4 · 3n−1 − 2n+2 + 4. By (9), for n ≥ 3,
|�n| = 2n+2 − 2n2 − 6n + 4. Then, by (10),

|Tn| =
{

0, if n ≤ 3

3|Tn−1| + |�n| − 2|�n−1|, otherwise.

Solving this recurrence for n ≥ 3 gives |Tn| = 3n−3(n + 16.5) − 3n2 − 9n + 34.5.
Then,

Dimζ (L�S) = lim sup
n→∞

log2(|Cn| + |Nn| + |Tn|)
n

= lim sup
n→∞

log2(3
n−3(n + 72) − 2n+2 − 3n(n + 3) + 35)

n

= log2 3

= Dimζ (S) by Observation 3. �

It remains to show that L strictly self-assembles. Our proof is constructive in that
we exhibit a TAS in which L strictly self-assembles. We begin by explaining the
general techniques used to fiber S in place, i.e., strictly self-assembly a superset of S
without disturbing the set S, and then delve into the details of a TAS implementing
those techniques.

Conceptually, the communication fibers added to S enable a superset of Si+1 to
strictly self-assemble when given a superset of Si as input. By (2), Si+1 can be con-
structed by placing a copy of Si on top and to the right of itself. This is achieved by
copying the left boundary of Si to the right of Si , and the bottom boundary of Si to
the top of Si . These communication fibers are divided into three functional groups.
To ensure that the newly added bars are of the proper length, counter fibers con-
trol their attachment. The counter fibers increment until they have reached the same
height as the middle point of the largest diagonal in Si , and then decrement to zero.
To know where the middle point is, the counter fibers initiate the attachment of test
fibers which grow back to Si , test whether the middle point is reached, and return
the result to the counters. However, if Si has not yet fully attached, the test fibers
will read from the wrong location. Nor can the test fibers wait until Si has completed
attaching before returning to the counters, because the test fibers would have to know
where to wait! The solution to this is the diagonal cap fibers that attach along the
largest diagonal in S on the side opposite the seed. The purpose of the diagonal cap
fibers is to force the necessary part of Si to complete attaching before its middle is
read by the test fibers. Then, a blocking technique can be used for the test fibers. The
bottom row of the test fibers runs from the counters until blocked by the cap fibers.
This attachment forms a path on which information can propagate from the diagonals
back to the counters in a controlled manner. This is achieved by the diagonal cap
fibers that attach along the largest diagonal in S on the side opposite the seed. They
force the necessary part of Si to complete attaching before the counters for Si+1 can
begin to attach. Then, a blocking technique is used for the test fibers. The bottom row
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Fig. 9 Fibering S in place

of the test fibers runs from the counters until blocked by the cap fibers. This attach-
ment forms a path on which information can propagate from the diagonals back to
the counters in a controlled manner. See Fig. 9 for an illustration. We now describe
how the self-assembly determines the center of Si . A location is at the center of Si

when it sits directly above the left boundary of the Si−1 structure on the right part
of Si and directly to the right of the bottom boundary of the Si−1 structure on the
top part of Si . This is computed in our construction by assigning to each bar of S a
boolean value that is true (represented in Fig. 9 by orange) only if it meets the criteria
above. Every new bar that attaches to an existing bar will carry a true value unless it
is the unique bar that attaches at the halfway point. Then, when two true bars meet, it
is always at a location in the middle of the largest diagonal of some stage of S. When
this is the case, it is noted by the diagonal cap fibers so it can be passed to the test
fibers. Note that every bar that attaches on the boundary has a true value.

We now construct a TAS TL that implements the techniques described. Let TL =
(TL, σL,2) be a TAS such that the set TL has ninety-five tile types as illustrated in
Fig. 10, and σL is a tile of type S from Fig. 10.

There are five tile types to assemble the boundary of S, two for the bottom bound-
ary and two for the left boundary. The bottom boundary is assembled by a tile with
a west glue color of 0 attaching to the east side of S and a tile with a west glue
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Fig. 10 The tile set TL of the TAS TL
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Fig. 11 Example assembly of the horizontal and vertical bars of S

color of 1 attaching to the east side of it. This process continues ad infinitum. The left
boundary assembles in a similar fashion. See Fig. 11 for an illustration.

The are thirty-two tile types to assemble the horizontal and vertical bars in the
interior of S, sixteen for the vertical bars and sixteen for the horizontal bars. Here,
we focus on the assembly of a vertical bar. A horizontal bar assembles in a similar
fashion. The glue colors on the north and south sides of the tiles in a vertical bar are
made up of the characters +,−,∗, T, and F. Tiles used for the bottom half of a vertical
bar use the + and cause the counter that assembles next to the bar to increment. Tiles
used for the top half of a vertical bar use the − and cause the counter to decrement.
A tile with a ∗ in its south glue color also has a ∗ for its east glue color. The ∗ will
be used by the cap tiles to know when to stop attaching. The T or F in the north and
south glue colors propagates through the entire bar. When a location m has a tile with
a T in the glue color of both its south and west sides it means that m is the middle
point of the largest diagonal to which it belongs and the cap tiles start their assembly
at location m. The west side of alternating tiles in the vertical bar have a glue color
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Fig. 12 Example assembly of
the cap fibers in L

of either T, F, or @. These glues allow the vertical bar to receive feedback from the
counters. A T glue color tells the bar that it is at half of its intended height, at which
point the bar switches from instructing the counter to increment to instructing the
counter to decrement. An @ glue color instructs the bar to complete its assembly.
An F glue allows the bar continue assembling. The east side of these tiles also starts
the growth of new horizontal bars. If the tile abuts a glue of color T (or F) on the
counter, then it negates this value for the horizontal bar originating on its east side.
See Figs. 11 and 13 for an illustration.

The cap tiles are fibers that sit on top of the diagonals of S. There are eighteen
tile types to assemble the cap tiles. Each diagonal of S has a vertical (horizontal) bar
directly to the right (above) it. The height (length) of these bars can be computed
directly from knowledge of the location of the middle of this diagonal. The test tiles
will handle the two way communication between the caps and the counters so that
this information can be used in the assembly of the bars. The cap tiles also delay
the assembly of these bars until the assembly of the relevant part of the diagonal has
been completed. This allows for the blocking behavior needed for proper assembly of
these two-way communication fibers. The middle point of the diagonal will always
be at the unique location that has a tile with a T in the glue color on both its south
and west sides. When tiles meeting this criteria are present, a cap tile will attach to
the assembly at that location. This will trigger the assembly of cap tiles both up and
down the diagonal. The growth of the cap tiles are controlled by the ∗ glue colors on
the tops (right sides) of the vertical (horizontal) bars making up the diagonal. They
first attach to a tile having a ∗ in its glue color on the abutting side, and then to a tile
having a T or F in its glue color on the abutting side, then the process repeats. When
a ∗ glue color is not present, the cap tiles cease their assembly. See Fig. 12 for an
illustration.
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Fig. 13 Example assembly of
the counter fibers in L

There are thirty-four tile types to assemble the binary counter fibers that assemble
adjacent to the bars of S, seventeen for the vertical counters and seventeen for the
horizontal counters. The counters assemble in a zig-zag fashion. Alternating rows
go from east to west (zig) and west to east (zag). The zig row either increments
or decrements the value of the counter depending on the glue color on the abutting
side of the tile on the bar of S. During the increment phase of the counter, if the
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Fig. 14 Example assembly of
the test fibers in L.

counter is at a value that is one less than a power of two, then it initiates the two-way
communication with the cap fibers by presenting a tst glue. The result of the test, either
a T or F glue color, is propagated back to the bar. If the counter is not at a power of
two, then the zag row returns the value F. During the decrement phase of the counter,
if the counter is at a power of two, the zag row is triggered by a @− glue color, which
instructs the counter to shrink in width by one. See Fig. 13 for an illustration.

There are six tile types to assemble the test fibers. Three for the vertical tests
and three for the horizontal tests. These fibers allow for the two-way communication
between the counter fibers and cap fibers. The request made by the counter fibers is
sent along the bottom row of the test fibers and the response is returned along the
top row of the test fibers. Because the counters do not assemble until the assembly
of the corresponding caps have completed, we can be sure that the bottom row will
not continue indefinitely—it will be blocked by the cap fibers. See Fig. 14 for an
illustration. We conclude with the following theorems which prove that L strictly
self-assembles in the Tile Assembly Model.

We now show that TL satisfies the conditions for the generalization of local deter-
minism we introduced in Sect. 4.

Theorem 17 TL is conditionally deterministic.

Proof Let α = (αi | 0 ≤ i < k) be any assembly sequence in TL such that res (α) is
terminal. It should be clear that there is such an assembly sequence and that k = ∞.
First, we make the following observations that the reason that TL is not locally deter-
ministic is because of the locations in α at which there is a tile of type ut or dt (of
Fig. 10).

(1) For each 0 ≤ i < k, the unique tile type t = α(m), where m ∈ domαi+1 \domαi ,
attaches to αi with a strength of exactly 2.

(2) For each location m ∈ domα \ domα0 such that α(m) = ut , either

m + uN ∈ ∂τ

ht
(α � (domα \ ({m} ∪ (m + OUTα(m)))))

or

∂τ (α � (domα \ ({m} ∪ (m + OUTα(m))))) = ∅,

and for all t ∈ TL \ { ut , ht },
∂τ
t (α � (domα \ ({m} ∪ (m + OUTα(m))))) = ∅.
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(3) For each location m ∈ domα \ domα0 such that α(m) = dt ,

m + uE ∈ ∂τ

vt
(α � (domα \ ({m} ∪ (m + OUTα(m)))))

or

∂τ (α � (domα \ ({m} ∪ (m + OUTα(m))))) = ∅,

and all t ∈ TL \ { ut , ht },
∂τ
t (α � (domα \ ({m} ∪ (m + OUTα(m))))) = ∅.

(4) For each location m ∈ domα \ domα0 such that α(m) 	∈ { ut , dt }, and all t ∈
TL \ {α(m)},

∂τ
t (α � (domα \ ({m} ∪ (m + OUTα(m))))) = ∅.

(5) ∂τα = ∅.

Thus, α satisfies conditions (1) and (3) of both local determinism and conditional
determinism. What prevents α from satisfying condition (2) of local determinism is
the second and third observation above. So, it suffices to show that

(1) For each location m ∈ domα \ domα0 such that α(m) = ut ,

∂τ (α � (domα \ ({m} ∪ (m + (OUTα(m) ∪ DEPT (m)))))) = ∅, and

(2) For each location m ∈ domα \ domα0 such that α(m) = dt ,

∂τ (α � (domα \ ({m} ∪ (m + (OUTα(m) ∪ DEPT (m)))))) = ∅.

We will argue that (2) holds. The argument that (1) holds is similar. Let m ∈ domα \
domα0 such that α(m) = dt . By construction, it must be the case that either α(m +
uE) ↑ or α(m + uE) ↓. If α(m + uE) ↑ then it follows that

∂τ (domα \ ({m} ∪ (m + OUTα(m))))) = ∅, so

∂τ (α � (domα \ ({m} ∪ (m + (OUTα(m) ∪ DEPT (m)))))) = ∅.

If α(m + uE) ↓ then the tile at α(m + uE) must have attached along the bottom
row of the test fibers initiated by the vertical bar directly to the right of m (i.e.,
α(m + uE) = vt ). However, as illustrated in Fig. 13, the second tile from the bottom
uses the bottom right location of these caps as an input side. Hence, the vertical bar
can not assemble above this point until all of the down caps along this diagonal have
assembled. Thus, m ≺TL m + uE. Hence, m + uE ∈ DEPT (m). Thus,

∂τ (α � (domα \ ({m} ∪ (m + (OUTα(m) ∪ DEPT (m)))))) = ∅. �

We now show that L strictly self-assembles in TL.

Theorem 18 L strictly self-assembles in TL.
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Proof We say some set of locations X ⊆ L “properly assembles” if the intended tile
type was placed at each location in the set, and no tile is placed at a location in Z

2 \L.
By Theorems 17 and 14, |A�[TL]| = 1. Pick the unique α ∈ A�[TL]. It suffices to
show that domα = L. We make the following claims about TL.

(1) If Li assembles properly, then Si+1 assembles properly. To see this note that
Si ⊆ Li . Then, the same mechanics used to assemble Si are used to assemble
(2i ,0) + Si and (0,2i ) + Si . Then, by (2), Si+1 assembles properly.

(2) If Si assembles properly, then Ci assemble properly. To see this Let m =
(2i−1,2i−1). Note that the tallest (widest) vertical (horizontal) bar of Si origi-
nates from the boundary and hence propagates a T glue color throughout its as-
sembly. Then, m + uS and m + uW have a glue color of T on its uN and uE sides
respectively. Thus, Ci are allowed to begin their assembly at location m and since
all of the smaller horizontal and vertical bars of Si assemble properly, the caps
will assemble up and down the longest diagonal in Si .

(3) If Ci assembles properly, then the largest horizontal and vertical bar of Si+1
along with Ni and Ti assemble properly. To see this note that the longest vertical
and widest horizontal bar of Si+1 cannot grow very far until Ci has completed
assembling (see Fig. 13 for an illustration). At this point the proper assembly
of these bars depends upon the proper assembly of Ni . But for Ni to assemble
properly only depends on Ti to assemble properly, which in turn depends on Ci

to assemble properly.

Our proof by induction easily follows from these claims. It is easy to see that L0, L1,
L2, L3 properly assemble in TL. It suffices to show that if Li properly assembles in
TL, then Li+1 properly assembles in TL. Suppose Li has properly assembled in TL.
Then, by claim (1), Si+1 assembles properly. Then, by claim (2), Ci+1 assemble prop-
erly. Then, by claim (3), Ni+1 and Ti+1 assemble properly. Hence Li+1 assembles
properly. �

It is also interesting to note that S also weakly self-assembles in TL.

Observation 19 S weakly self-assembles in TL.

Instructions for simulating TL with the ISU TAS [11] are available at
http://www.cs.iastate.edu/~shutters/asast .

We conclude this section by presenting our second main theorem which shows
that the bound given in our first main theorem, Theorem 8 is tight.

Theorem 20 There exists a set X ⊆ Z
2 with the following properties.

(1) S ⊆ X.
(2) Dimζ (X�S) = Dimζ (S).
(3) X strictly self-assembles in the Tile Assembly Model.

Proof Let X = L. By Observation 15, condition (1) is satisfied. By Theorem 16 and
Observation 1, condition (2) is satisfied. By Theorem 18 condition (3) is satisfied. �

http://www.cs.iastate.edu/~shutters/asast


Theory Comput Syst (2012) 51:372–400 399

6 Open Questions

Our results show that in the case of the Sierpinski triangle, no set “close” to the Sier-
pinski triangle strictly self-assembles. Given that no self-similar fractal is known to
strictly self-assemble, a natural question is whether there exists a self-similar fractal
that can be approximated closely. Is there a set X that strictly self-assembles and a
self-similar fractal F such that Dimζ (X�F) < Dimζ (F )?

We demonstrated a distortion-free fibering technique that enables a superset of the
Sierpinski triangle to strictly self-assemble without increasing the fractal dimension
of the intended structure. However, this technique depends on properties unique to
the Sierpinski triangle and does not generalize to a large class of fractals. Is there a
distortion-free fibering technique that generalizes to a large class of fractals without
increasing the fractal dimension of the intended structure?

We gave an extension of local determinism sufficient for showing a blocking tile
assembly system is directed. However, the relative order of when certain tiles attach in
every assembly sequence must be established. In contrast, local determinism requires
only the analysis of a single assembly sequence. Is there a set of conditions that only
requires the analysis of a single assembly sequence that is sufficient for showing a
blocking tile assembly system is directed?
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