
Theory Comput Syst (2012) 50:158–184
DOI 10.1007/s00224-011-9341-8

Searching for Black Holes in Subways

Paola Flocchini · Matthew Kellett ·
Peter C. Mason · Nicola Santoro

Published online: 28 July 2011
© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence 2011

Abstract Current mobile agent algorithms for mapping faults in computer networks
assume that the network is static. However, for large classes of highly dynamic net-
works (e.g., wireless mobile ad hoc networks, sensor networks, vehicular networks),
the topology changes as a function of time. These networks, called delay-tolerant,
challenged, opportunistic, etc., have never been investigated with regard to locating
faults. We consider a subclass of these networks modeled on an urban subway sys-
tem. We examine the problem of creating a map of such a subway. More precisely,
we study the problem of a team of asynchronous computational entities (the mapping
agents) determining the location of black holes in a highly dynamic graph, whose
edges are defined by the asynchronous movements of mobile entities (the subway
carriers). We determine necessary conditions for the problem to be solvable. We then
present and analyze a solution protocol; we show that our algorithm solves the fault
mapping problem in subway networks with the minimum number of agents possi-
ble, k = γ + 1, where γ is the number of carrier stops at black holes. The num-
ber of carrier moves between stations required by the algorithm in the worst case is
O(k ·n2

C · lR +nC · l2
R), where nC is the number of subway trains, and lR is the length

of the subway route with the most stops. We establish lower bounds showing that this
bound is tight. Thus, our protocol is both agent-optimal and move-optimal.
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1 Introduction

1.1 Background and Problem

Distributed algorithms are often designed under the assumptions that the network on
which they run is both reliable and connected. However, these assumptions are often
far from reality. In the real world, a reliable network—one that has no faults over
the lifetime of the network—is the exception rather than rule. Faults are often unde-
tectable, caused by the failure of computers and network equipment. And while the
assumption of connectivity is more or less realistic for wired networks, it is entirely
unrealistic for emerging dynamic networks with topologies that change as a func-
tion of time. These networks are often disconnected at any point in time but can be
connected over some time interval.

There is a large body of research into distributed algorithms for finding faults. By
mapping the faults in a network, algorithms that come afterwards can work in the
network as if there are no faults. The fault-finding algorithms use mobile agents—
autonomous, mobile, computational entities—to do the mapping. The faults, from
an agent point of view, include nodes that eliminate agents arriving at them without
leaving a discernible trace, often referred to as black holes, and links between neigh-
boring nodes that have the same effect, often referred to as black links. The problem
of mapping a network with black holes is often referred in the literature to as the black
hole search (BHS) problem, while the problem of finding both black holes and black
links is often referred to as the dangerous graph exploration problem (see [8–15, 17,
18, 20, 23–25] for examples of both types of problem). As we discuss below, most
of this work is focused on static networks, some with specific topologies such as the
ring.

There is also a large body of research into distributed algorithms for networks with
dynamic topologies. There are several classes of these networks that have emerged in
the last decade or two. These include, but are not limited to, wireless mobile ad hoc
networks where the network’s topology may change dramatically over time due to
the movement of the network’s nodes; sensor networks where links only exist when
two neighboring sensors are awake and have power; and vehicular networks, similar
to mobile ad hoc networks, where the topology changes constantly as vehicles move.
These networks are often referred to in the literature as delay-tolerant, challenged,
opportunistic, evolving, etc. (e.g., see [6, 7, 21, 22, 28, 30]). However, the work on
these networks mostly focuses on broadcasting and routing (e.g., see [3, 4, 21, 26,
27, 29, 30]). There has been little work on mobile agent algorithms for networks with
dynamic topologies. One study [19] has looked at how agents can explore one class
of these networks: periodically-varying graphs. In the periodically-varying graph (PV
graph) exploration problem, agents ride carriers between sites in the network. A link
only exists between sites when a carrier is passing between them. The agents explore
the network by moving from carrier to carrier when they meet at a site.

We are interested in how to combine these two concepts and search for black holes
in dynamic networks. We are also interested in deterministic solutions to the problem.
As a result, we look at the black hole search problem in a class of networks similar to
PV graphs, based on a subway system. Like PV graphs, the subway model includes
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carriers that travel on repeating routes amongst the sites in the network. However,
unlike PV graphs, agents in the subway model can disembark from a carrier onto a
site and, in fact, must do so in order to find the faults in the networks. The faults are
black holes that eliminate agents but leave the carriers unaffected.

The subway model gives us a number of benefits as a model of dynamic networks.
Subway systems, by their very nature as public transportation systems, are strongly
connected directed graphs, allowing passengers at any station to reach any other sta-
tion in the subway system. However, their connectivity is dynamic in that a link only
really exists between two neighboring stations when a train is moving between them.
Mapping the subway model onto real-world computing systems, the subway model
can be used to describe opportunistic or parasitic movement by computational enti-
ties, like mobile agents, in a computer network. For example, take a team of mobile
agents passively scanning a network for nodes infected with malicious code. The ma-
licious code resides in a node’s user space and is agent aware, eliminating all agents it
sees. The agents can travel through the network opportunistically using control traf-
fic, which passes safely through kernel space of intermediate nodes. It is only when
an agent steps off a control packet into user space that it becomes vulnerable.

In fact, the subway model is more generally applicable than this simple passive
scanning example. It allows us to look at the effect of mobile agents moving through
a network using other entities’ movements. Normally, mobile agent algorithms for
black hole search assume that the agent is mobile and can freely move between neigh-
boring nodes. In the subway model, the agents are at the mercy of the movements of
the carriers. As we will show, there are costs for both moving and waiting to move,
neither of which can be avoided.

1.2 Our Contribution

We introduce the subway model, a way of looking at the effects of mobile agents
moving opportunistically or parasitically in a network. The class of networks de-
scribed by the model is much larger than the set of real subway systems and in-
cludes some real-world computer systems. We look at the asynchronous version of
the black hole search problem where the agents’ calculations and the carriers’ move-
ments take a finite but unpredictable amount of time to complete. We introduce a
new measure of complexity, carrier moves, that is specific to the subway model. The
carrier moves metric combines agents moves, the traditional measure of complexity
for asynchronous mobile agent measurements, with agent waits, the cost to the agent
of waiting for the carrier to arrive. We show that neither of these agent costs can be
avoided in a system where the agents must rely on other entities for movement.

We first investigate, in Sect. 3, the computability of the BHS problem and establish
necessary conditions for the problem to be solvable. In particular, the number k of
agents must greater than the faulty load γ (G), which is the number of carrier stops
that are black holes. Hence, any minimal solution requires at least γ (G) + 1 agents.

We then prove, in Sect. 4, that the limitations on computability are indeed tight. In
fact, we prove that all necessary conditions are also sufficient. We do so by designing
a protocol for the BHS problem in the subway model. We prove its correctness and
analyze its complexity. Our solution has a complexity O(k · n2

C · lR + nC · l2
R) carrier
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moves, where k ≥ γ (G) + 1 is the number of agents, nC is the number of carriers,
and lR is the length of the longest carrier route.

Our solution is worst-case agent and move optimal. In fact, in Sect. 5, we establish
a lower bound on the worst case complexity of carrier moves, proving that �(γ ·n2

C ·
lR + nC · l2

R) carrier moves are needed.

1.3 Related Work

There is a large amount of work on distributed algorithms for finding faults. There
are a number of papers that look at black hole search in networks with specific topol-
ogy. Dobrev et al. look at algorithms for finding a single black hole in several spe-
cific topologies: hypercubes, cube-connected cycles, star graphs, wrapped butterflies,
chordal rings, and restricted-diameter multidimensional meshes and tori [13]. Czy-
zowicz et al. look at finding a single black hole in a bounded-synchronous tree net-
work, where agent moves take an unpredictable but bounded amount of time [12].
Dobrev et al. look at finding a single black hole in an anonymous ring network [15].
These algorithms take advantage of the characteristics of the network’s specific topol-
ogy, most, if not all, of which would be disrupted by the addition or deletion of a
single link.

Some work looks at bounds on solutions to the BHS problem in arbitrary networks.
Czyzowicz et al. determine a lower bound for agents finding a single black hole in
an arbitrary bound-synchronous network [11]. Klasing et al. improve on the lower
bound from [11] and look at the problem for two agents searching for a black hole in
an arbitrary synchronous network [23]. In [24], the same authors find a lower bound
for the synchronous network problem and further improvements on the lower bound
from [11]. Kosowski et al. express the lower bound for the static network problem
in terms of the network’s maximum degree and look at the same problem in directed
graphs [25]. Unfortunately, while all these papers deal with arbitrary networks, they
assume that networks remain static and that agent movements are synchronous.

There are also papers that look at BHS solutions under different assumptions on the
amount of knowledge available to the agents, although the assumptions always im-
plicitly include the networks remaining static. In a journal version of one of the earli-
est conference papers on black hole search by agents, Dobrev et al. look at the effects
of topological knowledge—complete ignorance, complete knowledge, and sense of
direction—on the search for a single black hole [14]. Flocchini et al. show that pure
tokens (single bit) are computationally just as powerful as whiteboards (shared mem-
ory on nodes) in solving the single black hole search problem [17]. Glaus shows that
it is still possible to solve the single black hole search problem even if the agents have
no knowledge of the link from which they arrive on a node [20].

Some papers look at the search for multiple black holes or black holes and black
links. For example, Cooper et al. study the multiple black hole search problem in syn-
chronous systems [9]. Chalopin et al. look at the related problem of agent rendezvous
in the presence of both black holes and black links in an anonymous network [8]. Un-
der certain assumptions, their rendezvous solution also solves the dangerous graph
exploration problem. Flocchini et al. consider specifically the problem of dangerous
graph exploration in non-anonymous networks [17]. Recently, the optimality of black
hole search has been studied in [2].



162 Theory Comput Syst (2012) 50:158–184

Unlike the work on finding faults, there is less work on dynamic networks that is
relevant to ours. Most looks at routing and broadcast in dynamic networks that use
message passing. Bui Xuan et al. developed many of the metrics used to measure
message passing dynamic networks, including developing the idea of journeys—the
paths of dynamic networks—and cost measures such as hop count, arrival time, and
time span [3]. O’Dell and Watenhoffer look at the algorithmic limits for broadcasting
information in dynamic networks where the links change but the underlying network
remains connected, not unlike the subway model [27]. Three papers propose routing
protocols specifically for delay-tolerant networks, where the connections can be very
unpredictable [4, 26, 30]. Zhang et al. actually look at real-world performance of
routing protocols for dynamic networks on UMass DieselNet, a network made up of
WiFi nodes on buses at the University of Massachusetts Amherst [29].

There is relatively little research into agents or agent-like entities working in dy-
namic networks. Avin et al. look at the cost of random walks in evolving graphs
where the topology of the network changes each time step as links are inserted or
deleted [1]. As we mentioned in the introduction, Flocchini et al. look at agents ex-
ploring a dynamic network deterministically [19]. However, the solution proposed
deals only with exploration and, because the agents never leave the carriers, it is diffi-
cult to introduce the idea of a fault into their graph model. Furthermore Casteigts et al.
[5] study the problem of broadcasting with termination detection in highly dynamic
networks under unstructured mobility, that is when the edges of the dynamic graph
may appear infinitely often but without any (known) pattern. The class of dynamic
networks that we consider is the periodic subclass corresponding to carrier graphs.

2 Definitions and Terminology

We consider a set C of nC carriers that move among a set S of nS sites. A car-
rier c ∈ C follows a route R(c) between all the sites in its domain S(c) =
{s0, s1, . . . , snS(c)−1} ⊆ S, where nS(c) = |S(c)|. A carrier’s route R(c) = 〈r0, r1, . . . ,

rl(c)−1〉 is a cyclic sequence of stops: after stopping at site ri ∈ S(c), the carrier will
move to ri+1 ∈ S(c), where all operations on the indices are modulo l(c) = |R(c)|
called the length of the route. Carriers move asynchronously, taking a finite but unpre-
dictable amount of time to move between stops. We call a route simple if nS(c) = l(c).
A transfer site is any site that is in the domain of two or more carriers. A terminal stop
is denoted by a bar over the stop (e.g., R(c) = 〈. . . , r̄i , . . .〉) is a stop where all pas-
sengers on a carrier are forced to disembark while the carrier continues on its route.1

Note that excluding terminal stops would have no effect on the model discussed here
or the algorithm presented in the next section.

A carrier’s route R(c) = 〈r0, r1, . . . , rl(c)−1〉 defines an edge-labeled directed
multigraph G(c) = (S(c),E(c), λ(c)), called a carrier graph, where S(c) are the
nodes, E(c) are the edges,2 and λ(c) the set of labels, and where there is an edge

1We include terminal stops to allow us to model real life subway systems where staying indefinitely on the
same train is not possible because trains are often switched out at end stations.
2Although self-loops have no real-world equivalents, we allow them for theoretical completeness.
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labeled (c, i + 1) from ri to ri+1, and the operations on indices and inside labels
are modulo l(c). The entire network is then represented by the edge-labeled di-
rected multigraph G = (R,E, λ), called a subway graph, where R = ⋃

c∈C R(c),
E = ⋃

c∈C E(c), and λ = {λ(c) : c ∈ C}. Associated to the subway graph is the
transfer graph of G, which we define as the edge-labeled undirected multigraph
H(G) = (C,ET ) where the nodes are the carriers and, ∀c, c′ ∈ C,c 	= c′, s ∈ S, there
is an edge between c and c′ labeled s iff s ∈ S(c) ∩ S(c′), i.e., s is a transfer site
between c and c′. In the following, where no ambiguity arises, we will omit the edge
labels in all graphs.

Working in the network is a team A of k computational agents that start at unpre-
dictable times from the same site, called the homebase. The agents move opportunis-
tically around the network using the carriers. An agent can move from a carrier to a
site (disembark at a stop) or from a site to a carrier (board a carrier), but not from one
carrier to another directly.3 An agent on a transfer site can board any carrier stopping
at it. When traveling on a carrier, an agent can count the number of stops that the
carrier has passed, and can decide whether or not to disembark at the next stop.

Agents communicate with each other using shared memory, available at each site
in the form of a whiteboard, which is accessed in fair mutual exclusion. The agents are
asynchronous in that they take a finite but unpredictable amount of time to perform
computations at a site. All agents execute the same protocol.

Among the sites there are nB < nS black holes: sites that eliminate agents disem-
barking on them without leaving a discernible trace; black holes do not affect carriers.
The black hole search (BHS) problem is that of the agents determining the locations
of the black holes in the subway graph. A protocol solves the BHS problem if within
finite time at least one agent survives and all surviving agents enter a terminal state
and know which stops are black holes. Let γ (c) = |{i : ri ∈ R(c) is a black hole}| be
the number of black holes among the stops of c; and let γ (G) = ∑

c∈C γ (c), called
the faulty load of subway graph G, be the total number of stops that are black holes.
Note that, since a site might appear in more than one route, in general γ (G) ≥ b(G),
where b(G) is the number of black holes in G.

As in traditional mobile agent algorithms, the basic cost measure used to evaluate
the efficiency of a BHS solution protocol is the size of the team, that is, the number
k of agents needed by the protocol. To solve BHS, it is obviously necessary to have
more agents than the faulty load of the network, i.e. k > γ . A solution protocol is
agent optimal if it solves the BHS problem for k = γ + 1.

The other cost measure is the number of carrier moves, which is a combination of
the traditional mobile agent algorithm metric of agent moves with the cost of waiting
imposed on the agent by its use of opportunistic movement in the network. When an
agent is riding on a carrier, which we call agent moves, or waiting for a carrier, which
we call agent waits, we count each move made by that carrier as a carrier move for
the agent. A solution protocol is move optimal in the worst case if the total number of
carrier moves incurred by all agents in solving the BHS problem is the best possible.

3As a result, agents forced off at a terminal stop, somewhat unrealistically, must wait for the carrier to
return to that stop before they can board the same carrier again.
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Table 1 Example subway graph

Carrier Route Length Domain Size

c R(c) = 〈r0, . . . , rl(c)−1〉 l(c) = |R(c)| S(c) = {s0, . . . , snS (c)−1} nS(c) = |S(c)|
c1 〈1,3,3,2, 4̄,4,2,6,1,2,5,6〉 12 {1,2,3,4,5,6} 6

c2 〈1,9,10,9〉 4 {1,9,10} 3

c3 〈5,7,8,15,13〉 5 {5,7,8,13,15} 5

c4 〈9̄,11,13,14,12, 1̄0,12,14,13,11〉 10 {9,10,11,12,13,14} 6

c5 〈14,13, 1̄5,16〉 4 {13,14,15,16} 4

Homebase: s = 1; Black holes: 6,12,13, nB = 3; Transfer sites: 1,5,9,10,13,14,15

Terminal sites: 4 (r4 on c1), 9 (r0 on c4), 10 (r5 on c4), and 15 (r2 on c5)

Fig. 1 Subway graph of
example. Nodes in black are
black holes; doubly-circled node
is the homebase. Diamond
arrow head indicates next stop
is terminal

Throughout the rest of the paper, we use the subway graph presented in Table 1
as an example to help explain how our proposed solution works. Figure 1 shows
a view of the subway graph G. The routes of carriers c3 and c5 are simple while
the other carriers’ routes are not. Sites 9 and 10 are terminal stops on carrier c4 but
normal stops on carrier c2. The same for site 15, which is terminal on carrier c5 but
normal on carrier c3. Figure 2 shows the transfer graph associated with the example.
Note that the transfer graph remains connected when the black holes are removed,
including transfer site 13. Figure 3 shows the routes R(c) for each carrier c. Even
though there are only three black holes (nodes 6, 12, 13), the routes show that there
are γ = 8 black hole stops in the network.
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Fig. 2 Transfer graph H(G) of
example. Edge labels are
corresponding transfer site ids.
Transfer site 13 is a black hole

Fig. 3 Carrier routes for carriers in example. Diamond arrow head indicates that the next stop is a terminal
stop

3 Basic Limitations and Assumptions

There are some basic limitations for the BHS problem to be solvable in subway
graphs; these in turn dictate some necessary assumptions.

Since solving the BHS problem requires visiting all carrier stops, some immediate
limitations follow from those existing for the easier safe exploration EXP problem:
all sites are safe; within finite time all the exploring agents enter a terminal state,
and all sites have been visited by at least one agent. First of all, the EXP problem
is deterministically unsolvable if the carriers do not have distinct ids visible to the
agents.
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Lemma 1 If the carriers do not have distinct ids visible to the agents, the EXP prob-
lem is deterministically unsolvable. This result holds regardless of the number k ≥ 1
of agents and even if the agents know nC , nS , and the length of the routes.

Proof By contradiction, let P be a deterministic protocol that always allow a team of
k > 0 agents to explore all the sites of all subway graphs in which there are no black
holes but the carriers do not have distinct identities visible to the agents. Consider now
the subway graph G, corresponding to the routes R(c1) and R(c2) of only two carriers
c1 and c2, in which the only transfer site is the homebase s and S(c1) = S(c2) > 1.
Since the two carriers have no visible identifiers, an agent at s cannot distinguish
whether an arriving carrier is c1 or c2. An adversary can clearly choose the speed of
the two carriers in such a way that, whenever an agent a at s decides to board the
next carrier, the carrier arriving there is c1. In other words, none of the agents will
ever board c2 and visit the sites reachable only through that route, contradicting the
correctness of P. �

In other words, the carriers must have distinct identities visible to the agents for
the problem to be solvable.

Next notice that some metric information, either the number of carriers nC or the
number of sites nS , must be available to the agents for exploration, and thus black
hole search, to be possible.

Lemma 2 If the agents have no knowledge of nC nor of nS , the EXP problem is de-
terministically unsolvable. This result holds regardless of the number k ≥ 1 of agents
and even if the carriers have distinct visible ids.

Proof By contradiction, let P be a deterministic protocol that always allows a team of
k > 0 agents to explore all the sites of all subway graphs in which there are no black
holes without knowledge of nC nor of nS . Consider now an execution of P in the
subway graph G corresponding to the route of a single carrier c. Since the protocol
is correct, within finite time T all sites will have been visited and all agents enter a
terminal state. Consider now the subway graph G′ corresponding to the routes R(c1)

and R(c2) of two carriers c1 and c2, where R(c1) = R(c), S(c2) > 1, and the only
transfer site is the homebase s, Consider now in G′ precisely the same execution of P
as in G, in which the adversary delays the arrival of c2 at s until time T ′ > T . Notice
that by time T none of the other agents will discover the existence of c2. Since neither
nC nor nS are known, at time T the agents will notice no difference with the previous
setting and will thus enter a terminal state without visiting the sites on the route of
c2, contradicting the correctness of the protocol. �

In other words, at least one of nC and nS must be known to the agents. for the
problem to be solvable.

Transfer sites play a crucial role in the connectivity of the system, with and without
black holes. Knowing that a site is a transfer site is necessary but not sufficient; in fact
an agent disembarking there must also know the number of distinct carriers stopping
there.
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Lemma 3 If the agents have no knowledge of the number of carriers stopping at a
site, the EXP problem is deterministically unsolvable. This result holds regardless of
the number nS − 1 > k > 0 of agents, even if the carriers have distinct visible ids,
and the agents know nC , nS and the length of the routes.

Proof By contradiction, let P be a deterministic protocol that always allows a team
of nS − 1 > k > 0 agents to explore all the sites of all subway graphs, in which
there are no black holes, when the agents can detect whether a site is a transfer site
but without knowledge of the number of carriers stopping there. Consider now the
subway graph G corresponding to the route of three carriers c1, c2 and c3. The routes
of c1, c2 coincide except for the direction; i.e., R(c1) = 〈r0, r1, . . . , rl−1〉 and R(c2) =
〈r0, rl−1, . . . , r1〉 where l = |R(c1)| = |R(c1)| = nS −1 > 1. The routes of c1, c2 meet
with the route of c3 at a single transfer site x, where l(c3) = 2. Notice that all the sites
r0, r1, . . . , rl−1 are transfer sites between two carriers, except for x which is a transfer
site between all three carriers. The agents can detect whether a site is a transfer site,
but not the number of carriers stopping there. The adversary allows the agents to
board both c1 and c2 and visit all the l sites on their route. Now, to complete the
exploration, at least one agent must board c3; to do so, an agent must wait at x until
c3 arrives; because of asynchrony, this might take a finite but unpredictable amount
of time. Since the agents do not know which stop is x and since k < nS − 1 = l(c),
they cannot wait at all the sites on the route of c1 (or c2) simultaneously. Hence the
adversary can make the agents wait forever, contradicting the termination of every
execution of P . �

In other words, the agents must be able to determine the number of carriers stop-
ping at a site for the problem to be solvable.

The next set of limitations are directly related to the nature of black hole search
and are a direct extension to the subway graph model of the limitations existing for
standard network models.

Lemma 4 For the BHS problem to be deterministically solvable

(i) the homebase and the terminal stops must be safe sites;
(ii) the transfer graph must stay connected once the black holes are removed;

(iii) k > γ ;
(iv) γ must be known to the agents.

This result holds even if the carriers have distinct visible ids and the agents know nC

and nS , and the length of the routes.

Proof Conditions (i) and (ii) trivially follow from the fact that, since solving the BHS

problem requires visiting all carrier stops, it is clearly necessary that the safe stops are
reachable from the homebase. Condition (iii) expresses the obvious fact that to solve
BHS, it is necessary to have more agents than the number of stops at black holes. The
necessity of condition (iv) follows from the requirement of knowledge of the stops
leading to black holes when an agent enters a terminal state. Because of asynchrony,
slow computation by an agent exploring a safe stop is indistinguishable from an agent
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having been eliminated by a black hole stop; hence if γ is not known to the agents, a
surviving agent cannot decide whether to wait or enter a terminal state. �

We will refer to this set of conditions as standard for the BHS problem, and assume
that they hold. Note that a corollary to condition (ii) is that if there is more than one
carrier, i.e. nC > 1, then each carrier must have at least one safe transfer site in its
domain.

Another important condition for solvability with an optimal team of agents refers
again to knowledge; this time it is about knowledge by the agents of the length of
each route.

Lemma 5 Let the standard conditions for the BHS problem hold. If the agents have
no knowledge of the length of each route in the subway graph, the BHS problem is
deterministically unsolvable by a set of k = γ + 1 agents. This result holds even if the
carriers have distinct visible ids and the agents know nC and nS .

Proof By contradiction, let P be a deterministic protocol that always allows a team of
k = γ + 1 agents to solve the BHS problem in all subway graphs under the standard
conditions without knowledge by the agents the length of each route in the subway
graph. Consider the subway graph G consisting of a single route defined on-line by an
adversary as follows. The carrier route is initially a sequence of distinct sites starting
from s: R = 〈s, s1, s2, . . .〉; the adversary will execute P until each agent descends
at a stop (they must); let x1, . . . , xγ , xγ+1 be these stops, with x1 the closest to s.
The adversary sets x1, . . . , xγ−1 to be black hole stops. Clearly only the agents a

stopping at xγ = x and b stopping at xγ+1 = y survive (for the moment) while all
others are destroyed. When ready to move, agent a will make a decision on where to
go based on algorithm P; since the length of the route is not known, for any algorithm,
this decision can be only of the form: wait for the wa-th carrier passage, board the
carrier, descend at the ma-th stop. Similarly for b. The adversary adds to the route the
stops (s, x)wa , z1, z2, . . . , z(ma−1), z, (s, y)wb , z1, z2, . . . , z(mb−1), z where the zi are
additional sites, and αf denotes f consecutive occurrences of the subsequence α. In
other words, the adversary finalizes the route as follows:

R = 〈s, . . . , x, . . . , y, (s, x)wa , z1, z2, . . . , z(ma−1), z,

(s, y)wb , z1, z2, . . . , z(mb−1), z〉
The adversary then makes a and b ready to move before the carrier reaches x for the
second time; in this way both agents stop at z which is chosen by the adversary as a
black hole stop. Hence all agents are destroyed, contradicting the correctness of P. �

Even if the length of each route is known to the agents, this condition alone is
not sufficient for black hole search with an optimal number of agents. In fact, once
disembarked, an agent must be able to board the same carrier at the same point in its
route, otherwise the problem is unsolvable.

Lemma 6 Let the standard conditions for the BHS problem hold. Unless each agent,
once disembarked, is able to board the same carrier at the same point in its route, the
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BHS problem is deterministically unsolvable by a set of k = γ + 1 agents. This result
holds even if the carriers have distinct visible ids and the agents know nC , nS and the
length of each route.

Proof By contradiction, let P be a deterministic protocol that always allows a team of
k = γ + 1 agents to solve the BHS problem in all subway graphs under the standard
conditions even if the agents have no means, once disembarked from a carrier, to
board the same carrier at the same point in its route. Consider a subway graph G
consisting of a single route v0v1 . . . v(l(c)−1) where there is only one black hole stop;
the team thus consists of two agents, a and b both starting from the homebase v0 = s.
The location of the black hole stop and the nature of the other sites in the route
is decided on-line by an adversary as follows. The adversary executes P until each
agent descends at a stop (they must); let a descend at vi and b at vj , where without
loss of generality i < j . If ready to move, agent a will make a decision on where to
go based on algorithm P; since it is unable to board the carrier at the same point in
its route, this decision will be of the form: wait for wa-th passage, board the carrier,
descend at the ma-th stop. Similarly for b.

If ma 	= j then the adversary defines that, in the route, v(j−ma) = x = vi , where
the operations on the indices are modulo l(c); that is v(j−ma) is the same site where a

is currently stopped. This means that by activating a again when the carrier reaches
v(j−ma), a will stop at vj , the site where b is currently stopped. By choosing vj

as the black hole site, the adversary makes both agents disappear, contradicting the
correctness of P. The same argument can be used if ma = j but mb 	= i (just exchange
a and b, and i and j ).

If both ma = j and mb = i, let p ∈ {1, . . . , nS − 1} \ {i, j} be such that p − i 	=
j and p − j 	= i where the operations are modulo l(c); such an index p always
exists for l(c) > 9. Notice that by definition of p, v(p−j) 	= s 	= v(p−i) and, since
mb = i < j = ma , then v(p−j) 	= v(p−i). The adversary then defines that, in the route,
v(p−j) = x = vi and v(p−i) = y = vj ; in other words, v(p−j) and v(p−i) are the same
sites where a and b are currently stopped, respectively; This means that, by activating
a again when the carrier reaches v(p−j) and activating b when the carrier reaches
v(p−i), both a and b will stop at vp; notice that by definition vp is neither s, nor
x nor y. By choosing vp as the black hole site, the adversary makes both agents
disappear, contradicting the correctness of P. �

Summarizing, in light of the above impossibility results, we make the following
necessary assumptions. The standard assumptions for black hole search hold (neces-
sary by Lemma 4). Each carrier is labeled with a distinct id and with the length of its
route, and when at a site an agent can read the labels and the route length of any car-
rier stopping there (necessary by Lemmas 1 and 5). Each transfer site is labeled with
the number of carriers stopping there (necessary by Lemma 3). Once disembarked,
an agent is able to board the same carrier at the same point in its route (necessary by
Lemma 6). Furthermore, we assume that, while the number of sites nS might be un-
known, the agents know the number of carriers nC (one of the two values is necessary
by Lemma 2).
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4 Exploration Algorithm

In this section we present the proposed algorithm SubwayExplore; as we will show
later, our algorithm works correctly with any number of agents k ≥ γ + 1 and is cost
optimal. We first describe how the algorithm works in general, followed by a more
detailed description.

4.1 Overview

Algorithm SubwayExplore works as follows. The agents start at unpredictable times
from the same site s, called the homebase. and collectively search all the carriers,4

by visiting all their stops, looking for black holes. Each agent performs a series of
search tasks; each task, called work, involves visiting a previously unexplored stop
on a carrier’s route and returning, if possible, to report what was found there.

Every carrier is searched starting from a work site; the work sites are organized
into a logical work tree that is rooted in the homebase, The first agent to access the
homebase’s whiteboard initializes the homebase as a work site (Sect. 4.2). It and the
agents awaking after it then begin to work by visiting the stops of the carriers stop-
ping at the homebase (Sect. 4.3). If an exploring agent finds a previously unexplored
transfer site, the agent “competes” to add the transfer site to the work tree. If the agent
succeeds, the transfer site becomes a work site for some or all of the other carriers
stopping at it and the work site from which it was discovered becomes the work site’s
parent in the work tree (Sect. 4.4).

When the carrier that the agent is exploring has no more unexplored stops, the
agent tries to find work by walking the work tree looking for another carrier with
work to be done. The agent looks for work in the subtree rooted in its current work
site and if there is no work available it moves to the work site’s parent and tries again
(Sect. 4.5). An agent terminates if it is at the homebase, there is no work, and there
are nC carriers in the work tree. Whenever an agent takes a carrier, it is possible for
it to encounter terminal stops where the agent is temporarily kicked off the carrier. If
this happens and the agent needs to continue on that route, the agent simply gets back
on the same carrier.

4.2 Initialization

When an agent awakes for the first time on the homebase, it tries to initialize the
homebase as a work site. Only the first agent accessing the whiteboard succeeds and
executes the INITIALIZE WORK SITE procedure. All other agents proceed directly to
trying to find work.

The INITIALIZE WORK SITE procedure is used to set up each work site in the
work tree. The procedure takes as input the parent of the work site and the carriers
to be worked on or serviced from the work site. For the homebase, the parent is null
and the carriers to be accessed are all those stopping at s. The procedure initializes
the work site’s whiteboard with the information needed to find work, do work, and

4We use the terminology of searching a carrier to mean the searching of the route traveled by that carrier.
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Algorithm 1 Initialization
Agent a awakes on starting site s.
� Initialize work information on whiteboard

1: if whiteboard is blank then
2: INITIALIZE WORK SITE(null, carriers stopping at s)
3: end if
4: FIND WORK

Agent a is initializing the whiteboard of work site ws with information needed to find
work, do work, and compete to add work.

5: procedure INITIALIZE WORK SITE(parent p, carriers C)
6: for c ∈ C do

� Work site information (Do work)
7: Uc ← {r1, r2, . . . , rl(c)−1} � Set of c’s unexplored stops
8: Dc ← ∅ � Set of c’s stops being explored
9: Ec ← {r0} � Set of c’s explored stops where r0 is the work site

� Work competition information (Compete to add work)
10: Csubtree ← Csubtree ∪ {c} � Set of carriers in subtree rooted in current node

� Work tree information (Find work)
11: Clocal ← Clocal ∪ {c} � Add c to set of carriers worked on from this work site
12: Cwork ← Cwork ∪ {c} � Add c to set of carriers in subtree with unexplored stops
13: end for

� Work tree information (Find work)
14: parent ← p

15: children ← ∅
16: end procedure

compete to add work. More precisely, when a work site ws is initialized, its parent is
set to the work site from which it was discovered (null in the homebase’s case) and its
children are initially null. The carriers it will service are added to Csubtree, the set of
carriers in the work tree at and below this work site. The same carriers are also added
to Cwork, the set of carriers in the subtree with unexplored stops, and Clocal, the set of
carriers serviced by this work site. For each carrier c added to Clocal, the agent setting
up the whiteboard creates three sets Uc , Dc , and Ec. The set Ec of explored stops is
initialized with the work site at r0 = ws (r0 is always the work site servicing the
carrier). The set Uc of unexplored stops is initialized with the rest of the stops on the
carrier’s route {r1, r2, . . . , rl(c)−1}, which is possible because each carrier is labeled
with its length as well as its id. The set Dc of stops being explored (and therefore
potentially dangerous sites) is initially empty. The pseudocode for initialization is in
Algorithm 1.

4.3 Do Work

We now discuss how the agents do their exploration of unexplored stops. To limit
the number of agents eliminated by black holes, we use a technique similar to the
cautious walk technique used by black hole search algorithms in static networks.
Consider an agent a on the work site ws of a carrier c that still has unexplored stops,
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i.e. Uc 	= ∅. The agent does the following. It chooses an unexplored stop r ∈ Uc for
exploration, removes r from Uc, and adds it to the set Dc of stops being explored. It
then takes c to r and disembarks.

If r is a black hole, the agent disappears.
If r is not a black hole, the agent marks the site as visited on its whiteboard and

returns to ws using the same carrier c and disembarks. The agent can make the trip
back to ws because it knows the index of r and the length of c’s route, l(c), and can
therefore calculate the number of stops between r and ws. At ws, it removes r from
Dc and adds it to the set Ec of explored stops. At this point, the agent also adds the
site id and any other information of interest.

If r is a transfer site and a is the first to visit it (its whiteboard is not marked
visited), then, before returning to ws, the agent proceeds as follows. It records on r’s
whiteboard all the carriers that pass by r including their id and lengths of their route.
It initializes two sets in its own memory: the set of new carriers initially containing
all the carriers stopping at r ; and the set of existing carriers, initially empty. Upon
returning to ws and updating the local information, the agent then executes the next
procedure that we discuss: competing to add work. The DO WORK procedure is in
Algorithm 2.

Algorithm 2 Do work
Agent a is working on carrier c from work site ws.

17: procedure DO WORK(carrier c)
18: while Uc 	= ∅ do
19: choose a stop r from Uc

20: Uc ← Uc \ {r} � Remove r from the set of unexplored stops
21: Dc ← Dc ∪ {r} � Add r to the set of stops being explored
22: take c to r and disembark

� If not eliminated by black hole
23: if whiteboard is blank then
24: mark node as visited
25: if r is a transfer site then
26: a.newC ← ∅ � Initialize agent’s set of new carriers
27: a.existingC ← ∅ � Initialize agent’s set of existing carriers
28: for each carrier c stopping at r do
29: record c on whiteboard
30: a.newC ← a.newC ∪ {c} � Add carrier to agent’s set of new carriers
31: end for
32: end if
33: end if
34: take c to ws and disembark
35: Dc ← Dc \ {r} � Remove r from the set of stops being explored
36: Ec ← Ec ∪ {r} � Add r to the set of explored stops
37: if r was a transfer site then
38: COMPETE TO ADD WORK

39: end if
40: end while
41: end procedure
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Fig. 4 Work site information for doing work in our example subway graph at some instant

Figure 4 shows an example of the work site information at some instant used
by agents to do work from the root in our example subway graph. At this point in
the execution, carrier c1 has 5 unexplored stops, 4 stops being explored that could
potentially be black holes, and 4 stops that have been explored and are known not to
be black holes. Carrier c2 has no unexplored stops, 3 stops being explored, and one
stop that has been explored, which happens to be the homebase in this case.

4.4 Compete to Add Work

When an agent a discovers that a stop r is an unvisited transfer site, that stop is a
potential new work site for the other carriers stopping at it. There is a problem, how-
ever: other agents may have independently discovered some or all of those carriers
stopping at r . To ensure that to each carrier there is only one associated work site in
the work tree, in our algorithm agent a must compete with all those other agents to
add r as the new work site in the tree for these carriers. We use Csubtree on the work
sites in the work tree to decide the competition (if any).

Let us describe the actions that agent a performs; let a have just finished exploring
r on carrier cws from work site ws and found that r is a new transfer site. The agent
has a set of new carriers that initially contains all the carriers stopping at r , a set
of existing carriers that is initially empty, and is currently on its work site ws. The
agent walks up the work tree from ws to s checking the set of new carriers against
Csubtree on each work site. If a new carrier is not in Csubtree, the agent adds it. If a
new carrier is in Csubtree, the agent moves it to the set of existing carriers. The agent
continues until it reaches s or its set of new carriers is empty. The agent then walks
down the work tree to ws. It adds each carrier in its set of new carriers to Cwork on
each work site on the way down to ws. For each carrier in its set of existing carriers,
it removes the carrier from Csubtree if it was the agent that added it. When it reaches
ws, it removes the existing carriers and if there are no new carriers, it continues its
work on cws . If there are new carriers, the agent adds r as a child of ws and goes
to r . At r , the agent initializes it as a work site using the INITIALIZE WORK SITE

procedure with ws as its parent and the set of new carriers as its carriers. The agent
then returns to ws and continues its work on cws . The pseudocode for the COMPETE

TO ADD WORK procedure is in Algorithm 3.
Figure 5 shows the work competition information at some instant used by two

agents to compete to add a new work site servicing carrier c5 to the work tree for our
example subway graph. Agents a1 and a2 have discovered carrier c5 independently
from carriers c3 and c4 respectively. The agents will walk up the tree towards s adding
c5 to Csubtree on the way. Only one of the agents will be able to add c5 to s’s Csubtree

and that agent’s site will become the new work site for carrier c5.
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Algorithm 3 Compete to Add Work
Agent a has found a new transfer site r while exploring carrier cws from work site ws

and is competing to add it to the work tree with ws as r’s parent.

42: procedure COMPETE TO ADD WORK

� Walk up tree
43: repeat
44: take the appropriate carrier to parent and disembark
45: for c ∈ a.newC do
46: if c ∈ Csubtree then
47: a.newC ← a.newC \ {c} � Remove from agent’s set of new carriers
48: a.existingC ← a.existingC ∪ {c} � Add to agent’s set of existing carriers
49: else
50: Csubtree ← Csubtree ∪ {c}
51: end if
52: end for
53: until (on s) ∨ (a.newC = ∅)

� Walk down tree
54: while not on ws do
55: for c ∈ a.newC do
56: Cwork ← Cwork ∪ {c} � Add new carriers with work in subtree
57: end for
58: for c ∈ a.existingC do
59: if a added c to Csubtree then
60: Csubtree ← Csubtree \ {c} � Remove carrier from subtree set
61: end if
62: end for
63: take appropriate carrier to child in direction of ws and disembark
64: end while

� Remove any existing carriers on ws

65: for c ∈ a.existingC do
66: if a added c to Csubtree then
67: Csubtree ← Csubtree \ {c} � Remove carrier from subtree set
68: end if
69: end for

� Add any new carriers to the tree with r as their work site
70: if a.newC 	= ∅ then
71: children ← children ∪ {r}
72: for c ∈ a.newC do
73: Cwork ← Cwork ∪ {c}
74: end for
75: take carrier cws to r and disembark
76: INITIALIZE WORK SITE(ws, a.newC)
77: take carrier cws to ws and disembark
78: end if
79: DO WORK(cws ) � Keep working on original carrier
80: end procedure
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Fig. 5 Work competition
information for competing to
add work at some instant after
Fig. 4

The COMPETE TO ADD WORK procedure ensures the acyclic structure of the
work-tree and that all new work is reported to the root:

Lemma 7 If a new carrier is discovered, within finite time it is added to the work
tree and the new work is reported to the root.

Proof By construction, all the steps taken by an agent after finding a new carrier are
safe. They involve either moving on the carrier, which is immune to black holes, to a
work site in the work tree, which must be safe. Hence each move will be completed
in finite time. Let c be a newly discovered carrier. If it is discovered by only a single
agent a, working from work site ws, then the agent a clearly reaches s, adding c to
Csubtree on ws up to s. Consider now the case when two or more agents a1, a2, . . . ai

from work sites ws1,ws2, . . .wsi independently discover carrier c; let w be the clos-
est common ancestor in the work tree of the work sites ws1,ws2, . . .wsi . Each such
agent competes to add the new information to the work tree. However, mutual exclu-
sion access to the whiteboards ensures that only one, say aj , will be able to proceed
from w to s, and wsj will become the only work site for carrier c. �

4.5 Find Work

Now that we have seen work being done and new work added to the tree, it is easy
to discuss how an agent a finds work. When a work site is initialized, its parent is set
to the work site from which it was discovered (null in the homebase’s case) and its
children are initially null. As mentioned before, each work site has a set Cwork that
contains the carriers in its subtree with unexplored stops.

An agent a looking for work at a work site checks the local set Cwork. If it is
not empty a chooses a carrier c ∈ Cwork and walks down the tree until it reaches the
work site ws servicing c, or it finds that c is no longer in Cwork. Assume that agent a

reaches ws without finding c missing from Cwork. Then a works on c until it is either
eliminated by a black hole or Uc is empty. If the agent survives and is the first agent
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to discover that Uc is empty, it walks up the tree from ws to s removing c from Cwork

along the way. So, it is possible for an agent descending to do work on c to find out
before it reaches ws that the work on c is finished. In that case, the agent starts over
trying to find work.

If agent a looking for work finds that Cwork at the current work site is empty, it
moves to the work site’s parent and tries again. If it reaches the root without finding
work but the termination condition is not met (there are fewer than nC carriers in the
work tree), the agent waits (loops) until new work arrives or the termination condition
is finally met. The pseudocode for the FIND WORK procedure is in Algorithm 4.

Algorithm 4 Find work
Agent a is looking for work in the work tree. The agent knows nC , the number
of carriers, which is needed for termination. Let ws be the current work site.

81: procedure FIND WORK

� Main loop
82: while (not on s) ∨ (Cwork 	= ∅) ∨ (|Csubtree| < nC ) do � Termination

conditions
� Choose carrier to work on and go there

83: if Cwork 	= ∅ then
84: choose carrier c from Cwork

85: while (c /∈ Clocal) ∧ (c ∈ Cwork) do � While not c’s work site and c

has work
86: take appropriate carrier to child in direction of c and disembark
87: end while
88: if c ∈ Clocal then � On the work site servicing c

89: DO WORK(c)

� Carrier c has no more work so remove it from the tree
90: if c ∈ Cwork then � The first agent to find no work left on c

91: while not on s do
92: Cwork ← Cwork \ {c} � Remove c from all Cwork on way

to s

93: take appropriate carrier to parent and disembark
94: end while
95: Cwork ← Cwork \ {c} � Remove c from Cwork on s

96: end if
97: end if

� No work in subtree
98: else
99: take appropriate carrier to parent and disembark
100: end if
101: end while
102: end procedure
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Fig. 6 Work tree information
for finding work at some instant
after Fig. 5

Figure 6 shows the work tree information at some instant used to find work in our
example subway graph. Note the agent from carrier c4 won the competition to add
carrier c5 to the tree. Assume that an agent has just finished exploring carrier c3 from
stop r10 on carrier c1’s route and the agent finds no more unexplored stops. There
are no other carriers in this part of the work tree, so the agent moves to the parent
in the tree, s. It finds that three carriers, c1, c4, and c5, still have work. It randomly
chooses a carrier from Cwork and safely traverses the work tree to that carrier’s work
site, where it starts to do work.

The FIND WORK procedure ensures the following property:

Lemma 8 Within finite time, an agent looking for work either finds it or waits on the
root.

Proof By Lemma 7, all work gets reported to the root within finite time. By con-
struction, if an agent does not find work on the current work site, it moves to the
work site’s parent. Both checking for work and moving to the parent take finite time.
Therefore, within finite time, an agent looking for work either finds it or reaches the
root and waits there until work arrives or the termination conditions are satisfies. �

4.6 Correctness

Now that we have seen how algorithm SubwayExplore works, we can show that it
works correctly.

To do so, we need to establish some additional properties of the Algorithm:

Lemma 9 Let ri ∈ R(c) be a black hole. At most one agent is eliminated by stopping
at ri when riding c.

Proof By contradiction, assume that two agents have chosen to explore a black hole
stop ri on the same carrier c. By Lemma 7, each carrier is worked on from a single
work site, so both agents must have chosen ri from Uc on the work site. However,
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since Uc is kept on the whiteboard which is accessed in mutual exclusion, it is im-
possible for both agents to choose the same stop for exploration. Hence, the lemma
follows. �

Lemma 10 There is at least one agent alive at all times before termination.

Proof By Lemma 9, we know that only one agent can die per black hole stop. Since
we have γ (G) + 1 agents working, where γ (G) is the number of black hole stops
in G, there is always at least one more agent than can be eliminated by the black
holes in the network. �

Lemma 11 An agent that undertakes work completes it within finite time.

Proof An agent works by visiting an unexplored stop on a carrier’s route. The carrier
arrives within finite time and takes finite time to deliver the agent to the stop. If the
agent is eliminated then its work is completed and other agents are protected from
being eliminated by the same stop on the same carrier. If the agent survives then
within finite time it takes the carrier back to the work site to report on the work.
Hence, the lemma follows. �

Lemma 12 If there is work available, some agent eventually does it.

Proof By contradiction, assume that there is work available but no agent does it. By
construction, an agent is either trying to do work, competing to add work, or find
work and by Lemmas 7, 8, and 11, the agent completes each activity in finite time.
Furthermore, by Lemma 8, if there is work available an agent finds it. Therefore, the
only reason that work would be available but no agent does it is if all the agents have
been eliminated by a black hole. But, we know from Lemma 10 that there is always
at least one agent alive, a contradiction. Hence, the lemma follows. �

Lemma 13 All carriers are eventually added to the tree.

Proof By Lemma 12, available work is eventually done. As a result, every carrier is
eventually discovered. When an agent doing work finds a new carrier, by Lemma 11,
it is added to the tree in finite time. Therefore, all carriers are added within finite time
and the lemma follows. �

We can now state the correctness of our algorithm:

Theorem 1 Protocol SubwayExplore correctly and in finite time solves the mapping
problem with k ≥ γ (G) + 1 agents in any subway graph G.

5 Bounds and Optimality

We now analyze the costs of our algorithm, establish lower bounds on the complexity
of the problem and prove that they are tight, showing the optimality of our protocol.
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Theorem 2 The algorithm solves black hole search in a connected dangerous asyn-
chronous subway graph in O(k · n2

C · lR + nC · l2
R) carrier moves in the worst case.

Proof First let us examine the do work procedure. Each time an agent chooses a node
for exploration, it waits up to l(c) − 1 carrier moves for the carrier to return to the
work site. The agent then takes at most l(c) carrier moves to reach the stop and return
to the work site. Once the stop has been explored, the agent waits at most l(c) carrier
moves for the carrier to return. Therefore, the cost for exploring one stop is at most
3l(c)−1 carrier moves. Since l(c) ≤ lR , the cost for exploring all the stops on a route
is therefore O(l2

R) carrier moves and the cost for searching all carriers is O(nC · l2
R).

Next let us examine the cost of competing to add work. Consider when an agent
finds a transfer site where a previously unknown carrier c causing the resulting work
to have to be added. Note that several agents, possibly all, might discover c indepen-
dently and must compete to add the new work to the tree. Each of these agents tries
to move towards the root, moving from its current work site to its parent, each move
costing up to l(c) − 1 ≤ lR − 1 carrier moves. However, for each work site, at most
one agent wanting to add the work of c is allowed to proceed to its parent work site.
Hence the total number of moves up the tree incurred to add the work of c is at most
one for each edge in the tree, i.e. nC − 1, for a total of at most O(nC · lR) carrier
moves.

Finally, let us consider the cost of finding work. When finding work, an agent a

first looks for information of where work can be found, moving up the work tree
if needed; once the information is found, agent a moves down the tree following the
specified direction. Notice that it is possible that, when looking for information, agent
a finds none, ending up at the root of the work tree; if there are still some routes to
be explored (a condition that a can verify), eventually some other agent will add a
new carrier to be explored (i.e., new work to be performed) to the list at the root and
a will follow the indication. All this movement will elicit at most 2nC − 1 moves
up and down the tree, each costing at most lR carrier moves. An agent looks for an
indication only when it has no work; i.e., when the stops of the local carrier it was
working for have all been explored; this means that this process can occur at most nC

times. In other words, the total number of carrier moves caused by finding work will
be at most O(k · n2

C · lR).
Summarizing, the total number of carrier moves required by the algorithm in the

worst case is at most O(k · n2
C · lR + nC · l2

R). �

We now establish some lower bounds on the worst case complexity of any protocol
using the minimal number of agents.

Theorem 3 For any α,β, γ , where α,β > 2 and 1 < γ < 2αβ , there exists a simple
subway graph G with α carriers with maximum route length β and faulty load γ in
which every protocol P solving the EXP problem requires �(α2 ·β ·γ ) carrier moves
in the worst case.

Proof Consider a subway graph G whose transfer graph is a line graph; all α routes
are simple and have the same length β; there exists a unique transfer stop between
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Fig. 7 Transfer graph in the lower bound proof

neighboring carriers in the line graph; no transfer site is a black hole, and the number
of black holes is γ . The agents have all this information, but do not know the order of
the carriers in the line (the agents do not know in what order the carriers will arrive).

Let P be a subway mapping protocol that always correctly solves the problem
within finite time with the minimal number of agents k = γ + 1. Consider an adver-
sary A playing against the protocol P . The power of the adversary is the following:
(1) it can choose which stops are transfers and which are black holes; (2) it can
“block” a site being explored by an agent (i.e., delay the agent exploring the stop) for
an arbitrary (but finite) amount of time; (3) it can choose the order of the carriers in
the line graph. The order of the carrier will be revealed to the agents incrementally,
with each revelation consistent with all previous ones; at the end the entire order must
be known to the surviving agents.

Let the agents start at the homebase on carrier c1. Let q = � k−2
β−2�. Assume that

the system is in the following configuration, which we shall call Flip(i), for some
i ≥ 1: (1) carrier c1 is connected to c2, and carrier cj (j < i) is connected to cj+2;
(2) all stops of carriers c1, c2, . . . , ci have been explored, except the transfer stop ri+1,
leading from carrier ci−1 to carrier ci+1, and the stop ri+2 on carrier ci+1, which are
currently being explored and are blocked by the adversary; and (3) all agents, except
the ones blocked at stops ri+1 and ri+2, are on carrier ci . See Fig. 7.

If the system is in configuration Flip(i), with i < α − q , the adversary operates as
follows.

1. The adversary unblocks ri+1, the transfer site leading to carrier ci+1. At this point,
all k − 1 unblocked agents (including the k − 2 currently on ci ) must move to ri+1

to explore ci+1 without waiting for the agent blocked at ri+2 to come back. To see
that all must go within finite time, assume by contradiction that only 1 ≤ k′ ≤ k−2
agents go to explore ci+1 within finite time, while the others never go to ri+1. In
this case, the adversary first reveals the order of the carriers in the line graph by
assigning carrier cj to be connected to cj+1 for α > j > i. Then the adversary
chooses to be black holes: ri+2, the first k′ non-transfer stops visited by the k′
agents, and other k − k′ − 2 non-transfer stops arbitrarily chosen in those carriers.
Notice this can be done because, since q = � k−2

β−2�, the number of non-transfer
stops among these carriers is q(l − 2) + 1 ≥ k − 1. Thus all k′ agents will enter a
black hole. Since none of the other agents will ever go to ci+1, the mapping will
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never be completed. Hence, within finite time all k − 1 non blocked agents must
go to ri+1, with a total cost of O(k · i · β) carrier moves.

2. The adversary blocks each stop of ci+1 being explored, until k − 1 stops are being
explored. At that point, it unblocks all those stops except one, ri+3. Furthermore,
it makes ri+2 the transfer stop leading to carrier ci+2.

Notice that after these operations, the system is precisely in configuration Flip(i+1).
Further observe now that, from the initial configuration, when all agents are at the
homebase and the protocol starts, the adversary can create configuration Flip(0) by
simply blocking the first two stops of c1 being explored, and making one of them the
transfer to c2.

In other words, within finite time, the adversary can create configuration Flip(0);
it can then transform configuration Flip(i) into Flip(i+1), until configuration Flip
(α − q − 1) is reached.

At this point the adversary reveals the entire graph as follows: it unblocks rα−q+1,
the transfer site leading to carrier cα−q+1; it assigns carrier cj to be connected to cj+1
for α > j > α − q; finally it chooses k − 1 non-transfer stops of these carriers to be
black holes; notice that they can be chosen because, since q = � k−2

β−2�, the number of
non-transfer stops among these carriers is q(l − 2) + 1 ≥ k − 1.

The transformation from Flip(i) into Flip(i+1) costs the solution protocol P at
least �(k ·i ·β) carrier moves, and this is done for 1 ≤ i ≤ α−q; since α(l−2) ≥ (k−
2) it follows that α − q = α − � k−2

β−2� ≥ α − k−2
β−2 ≥ α

2 ; hence,
∑

1≤i≤α−q i = O(α2).

In other words, the adversary can force any solution protocol to use �(α2 · β · γ )

carrier moves. �

Theorem 4 For any α,β, γ , where α,β > 2 and 1 < γ < β −1, there exists a simple
subway graph G with α carriers with maximum route length β and faulty load γ in
which every protocol P solving the EXP problem requires �(α · β2) carrier moves
in the worst case. This result holds even if the transfer graph H(G) is known to the
agents.

Proof Consider a subway graph G whose transfer graph is a line graph, where ci is
connected to ci+1, 1 ≤ i < α; all α routes are simple and have the same length β;
there exists a unique transfer stop between neighboring carriers in the transfer graph;
no transfer site is a black hole and the number of black holes is γ . The agents have
all this information, including the order of the carriers in the line. Let P be a subway
mapping protocol that always correctly solves the problem within finite time. Cor-
rectness of P implies that all stops are explored. If the stop is not a black hole, after
exploring it, the agent must take a carrier; the adversary can delay this operation en-
suring that β−1 carrier moves are elapsed from the time the agent starts waiting to the
time the carrier arrives. Thus the adversary can ensure that the execution of protocol
P costs at least m (β − 1) carrier moves, where m is the number of safe stops in the
subway graph. Since the total number of stops is α(β − 2) + 2 and γ ≤ β − 2, it fol-
lows that m (β −1) = (α(β −2)+2−γ )(β −1) ≥ (α(β −2)+2−(β −2))(β −1) =
((α − 1)(β − 2) + 2)(β − 1), and the theorem holds. �

The optimality of the protocol with respect to carrier moves now follows.
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Theorem 5 Protocol SubwayExplore is agent-optimal and move-optimal.

Proof Agent optimality derives from the fact that the protocol correctly solves the
problem in a subway graph G for any k > γ (G), hence also when k = γ (G) + 1.
As for the number of carrier moves with the minimal number of agents, observe
that, in case γ (G) < lR − 1, by Theorems 3 and 4, the lower bound for any agent-
optimal solution protocol is �(γ (G) · n2

C · lR + nC · l2
R); hence, by Theorem 2, the

protocol is move optimal in that case. Further observe that, when γ (G) > lR − 1 and
k = γ (G) + 1, the protocol uses O(γ (G) · n2

C · lR) moves, which, by Theorem 3, are
needed in the worst case. �

6 Concluding Remarks

In this article, we introduced the subway model, a class of dynamic networks with
links that appear and disappear in cyclical patterns. We provided an algorithm that
solves the black hole search problem in this new model with k = γ (G) + 1 agents
and O(k · n2

C · lR + nC · l2
R) carrier moves in the worst case. We then prove lower

bounds on the problem that show that our solution is both agent and carrier move
optimal. By Lemma 2, the agents need to know either the number of carriers, nC , or
the number of sites, nS , in order to terminate. Our algorithm assumes knowledge of
nC but could be easily modified to use nS .

We showed in Sect. 2 that there are a number of assumptions that are not only
sufficient for solving BHS in the subway model, but also necessary. There are other
parameters that can be considered and these lead to a number of open problems. For
instance, it may be possible to change the method of inter-agent communications.
We chose whiteboards as a simple, unrestricted form of communication between the
agents that is often used in solutions to the BHS problem. It is an open question
whether it is possible to use some potentially weaker form of communication, such
as tokens, to solve BHS in the subway model. The token model has been extensively
studied in static networks (e.g. [16, 17]). We speculate that the use of tokens may
require that the agents be able to see the presence of a token on a site from the safety
of a carrier; however, the change in visibility alone may not be sufficient to implement
a variation on the cautious walk technique using tokens.

We considered the standard case where the agents all start on the same homebase.
In the case of static networks, some work has also been done on the more difficult
scattered agent case where the agents start on multiple homebases [8, 15, 16, 18].
This setting is clearly more difficult and little is known. An open question is how can
the scattered agent case be solved in the subway model at what cost in agents and
moves.

A final open problem is changing the timing of the network to be synchronous.
A synchronous subway network would allow for face-to-face agent communications.
If agents were allowed to jump from carrier to carrier at the same site, the subway
model could be combined with the model of periodically-varying graphs presented in
[19].
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