
Theory Comput Syst (2011) 49:698–719
DOI 10.1007/s00224-010-9304-5

Inherent Limitations on Disjoint-Access Parallel
Implementations of Transactional Memory

Hagit Attiya · Eshcar Hillel · Alessia Milani

Published online: 2 December 2010
© Springer Science+Business Media, LLC 2010

Abstract Transactional memory (TM) is a popular approach for alleviating the dif-
ficulty of programming concurrent applications; TM guarantees that a transaction,
consisting of a sequence of operations, appear to be executed atomically. Two fun-
damental properties of TM implementations are disjoint-access parallelism and the
invisibility of read operations. Disjoint access parallelism ensures that operations on
disconnected data do not interfere, and thus it is critical for TM scalability. The in-
visibility of read operations means that their implementation does not write to the
memory, thereby reducing memory contention.

This paper proves an inherent tradeoff for implementations of transactional mem-
ories: they cannot be both disjoint-access parallel and have read-only transactions
that are invisible and always terminate successfully. In fact, a lower bound of Ω(t) is
proved on the number of writes needed in order to implement a read-only transaction
of t items, which successfully terminates in a disjoint-access parallel TM implemen-
tation. The results assume strict serializability and thus hold under the assumption
of opacity. It is shown how to extend the results to hold also for weaker consistency
conditions, snapshot isolation and serializability.

Keywords Transactional memory · Disjoint-access parallelism · Partial snapshots ·
Lower bound · Impossibility result

This research is partially supported by the Israel Science Foundation (grant number 953/06) and Intel
Corporation. A. Milani is on leave from Sapienza, Universitá di Roma, supported in part by a
fellowship from the Lady Davis Foundation and by a grant Progetto FIRB Italia-Israele
RBIN047MH9.

H. Attiya (�) · E. Hillel · A. Milani
Department of Computer Science, Technion, Haifa, Israel
e-mail: hagit@cs.technion.ac.il

E. Hillel
e-mail: eshcar@cs.technion.ac.il

A. Milani
e-mail: milani@labri.fr

mailto:hagit@cs.technion.ac.il
mailto:eshcar@cs.technion.ac.il
mailto:milani@labri.fr

Theory Comput Syst (2011) 49:698–719 699

1 Introduction

Transactional memory is an attractive paradigm for programming concurrent appli-
cations for multicores. A transaction encapsulates a sequence of operations, and it is
guaranteed that if any operation takes place, they all do, and that if they do, they ap-
pear to other threads to do so atomically, as one indivisible operation. A transactional
memory implementation translates high-level transaction operations on data items to
low-level primitive operations on base objects, containing the data and the meta-data
needed for the implementation.

Transactional memory is seriously considered as part of software solutions and as
a basis for novel hardware designs. It is therefore imperative to understand inherent
tradeoffs in the design and implementation of transactional memory.

One property that is considered critical for the scalability of a transactional mem-
ory implementation is disjoint-access parallelism: operations on disconnected data
should not interfere. Conceptualizing this notion is best done through the conflict
graph of transactions that overlap in time. Informally, the vertices of the conflict
graph represent transactions; an edge connects two conflicting transactions, i.e., two
transactions that access the same item. Consider, for example, four concurrent trans-
actions: T1 accessing data items ı1, ı2, T2 accessing data items ı2, ı3, T3 accessing
data item ı3, and T4 accessing data item ı4. Figure 1 depicts the conflict graph of the
execution interval of these four transactions. This conflict graph contains two edges
connecting T2 with the transactions with which it has conflicts, T1 and T3. (See the
formal definition in Sect. 2.)

Several transactional memories, e.g. [4, 16], guarantee that transactions access the
same base object only if they are connected in the conflict graph. In particular, there
is no concurrent access to the shared memory by transactions without common data
items. In these implementations, the transactions T1 and T4 in the example of Fig. 1,
should not access the same base object, since they are not connected in the conflict
graph. On the other hand, transactions T1 and T3 may access the same base object
although they do not have a common data item.

Another important goal is to optimize read-only transactions, i.e., transactions that
access the memory only through read operations. It is desirable that implementations
of read-only transactions do not execute primitive write operations to the memory, so
as to reduce memory contention; implementations of read-only transactions that do
not write to the memory are called invisible. Moreover, since read-only transactions
do not write to data items, it seems plausible that they should eventually be able to
obtain a consistent view of the data, provided previous versions are kept (as is done
in multi-version implementations [24, 26, 27]). Thus, read-only transactions should

Fig. 1 Example of a simple
conflict graph: T1 accesses ı1
and ı2; T2 accesses ı2 and ı3;
T3 accesses ı3; and T4
accesses ı4

700 Theory Comput Syst (2011) 49:698–719

(eventually) terminate successfully, regardless of concurrent transactions; such trans-
actions are called wait-free.

None of the existing transactional memory implementations is both disjoint-access
parallel and has invisible, wait-free read-only transactions. Some are disjoint-access
parallel and have invisible but not wait-free read-only transactions [4, 16], while oth-
ers have invisible, wait-free read-only transactions but are not disjoint-access paral-
lel [26].

Consider, for example, the four transactions above, and assume T1 is a read-only
transaction, while T2, T3, and T4 all write to their data items. The algorithm given
in [16], is disjoint-access parallel and has invisible read-only transactions. In some
execution, T1 reads ı2 then T1 stops taking steps and T2 writes to ı2. The transaction
T2 runs solo without interruption and since the algorithm is obstruction-free T2 com-
pletes successfully. Then, T1 resumes, reads ı1, and finally validates its read set at
commit time. The value of ı2 has changed since T1 read it, and T1 aborts.

The algorithm given in [26] is a multiversioned transactional memory, with invis-
ible, wait-free read-only transactions, which uses a common counter to totally order
committed transactions writing different versions of the same data item. This allows
each read-only transaction to return a consistent snapshot of the memory, despite
concurrent writing transactions. Due to the common counter, it is not disjoint-access
parallel: In the example of Fig. 1, it is possible that all the transactions access the
counter, some of them for writing, thus violating disjoint-access parallelism.

This paper shows that there is an inherent tradeoff—no transactional memory im-
plementation can be disjoint-access parallel and have invisible, wait-free read-only
transactions—and one of these desirable properties must always be compromised. In
fact, we prove a stronger result, showing that in a disjoint-access parallel transactional
memory implementation with wait-free read-only transactions, a transaction reading
t data items must apply non-trivial primitives (e.g., writes) to at least t − 1 base ob-
jects. Thus, a read-only transaction must perform one low-level write essentially for
each item in its read set.

The wait-freedom requirement might seem too restrictive for practical purposes;
however, we can prove a similar result where a read-only transaction repeatedly
aborts and never terminates successfully; see further discussion in Sect. 6. For read-
dominated applications, this implies too much wasted work.

The consistency condition commonly used for transactional memory is opac-
ity [10]; very roughly stated, opacity requires all transactions to appear to execute
sequentially in an order that agrees with the order of non-overlapping transactions.
This is similar to requiring strict (view) serializability [25] applied to all transactions
(including each aborted transaction, separately), extended to allow operations other
than reads and writes. Our proofs only assume strict serializability [25], and hence
hold also under the assumption of opacity. In fact, the results also hold for weaker
consistency conditions, snapshot isolation and serializability.

The rest of the paper is organized as follows: Sect. 2 introduces basic definitions
and in particular, the notion of disjoint-access parallelism. Section 3.1 presents an im-
possibility result showing that in a disjoint-access parallel transactional memory im-
plementation with invisible read-only transactions, some read-only transaction may
never terminate successfully; this result is proved using only three processes. Sec-
tion 3.2 strengthens this result and shows that a read-only transaction on t items (in

Theory Comput Syst (2011) 49:698–719 701

a disjoint-access parallel transactional memory implementation with wait-free read-
only transactions) must apply write primitives to t −1 base objects; this result requires
t + 1 processes. Section 4 extends the results to hold even with the weaker conditions
of snapshot isolation and serializability. We discuss related work in Sect. 5, and con-
clude in Sect. 6.

2 Preliminaries

A transaction is a sequence of operations executed by a single process on a set of
data items shared with other transactions; all data items are initially 0. We assume
data items are accessed by simple read and write operations; our impossibility results
clearly hold for transactional memory that also supports other operations. A complete
interface of transactional memory also includes commit and abort operations, which
we do not model here, since they are not needed for our impossibility results.

The collection of data items accessed by a transaction is the transaction’s data set;
in particular, the items written by the transaction are its write set, and the items read
by the transaction are its read set. A transaction whose write set is empty, is said to
be a read-only transaction. We assume the transaction’s read set and write set are
provided at the start of the transaction, and do not elaborate further on the manner a
transaction issues its operations; this only makes our impossibility results stronger.

An implementation of software transactional memory (abbreviated STM) provides
data representation for transactions and data items using base objects, and algorithms,
specified as primitive operations (abbreviated primitives) on the base objects, which
asynchronous processes have to follow in order to execute the operations of transac-
tions. In addition to ordinary read and write (low level) primitives, we allow arbitrary
read-modify-write primitives, like CAS, even those accessing several locations simul-
taneously.

A primitive is non-trivial if it may change the value of the object, e.g., a write or
CAS; otherwise, it is trivial, e.g., a read.

An event is a computation step by a process consisting of local computation and
the application of a primitive to base objects, followed by a change to the process’s
state, according to the results of the primitive. A configuration is a complete descrip-
tion of the system at some point in time, i.e., the state of each process and the value
of each shared base object. There is a unique initial configuration in which every
process is in its initial state and every base object contains its initial value.

An execution interval α is a finite or infinite alternating sequence C0, φ0,C1,
φ1,C2, . . . , where Ck is a configuration, φk is an event and the application of φk

to Ck results in Ck+1, for every k = 0,1, An execution is an execution interval in
which C0 is the initial configuration.

Two executions α1 and α2 are indistinguishable to a process p, if p goes through
the same sequence of state changes in α1 and in α2; in particular, p executes the same
sequence of computation steps, which return the same results.

We point out that the model encompasses two levels of abstraction: The high level
has transactions, each of which is a sequence of operations accessing data items. At
the low level, these transactions are translated into executions in which a sequence of

702 Theory Comput Syst (2011) 49:698–719

events apply primitive operations to base objects, containing the data and the meta-
data needed for the implementation.

2.1 STM Properties

The interval of a transaction T is the execution interval that starts at the first event
of T and ends at the last event of T , if there is one, taken by the process executing
the algorithm for T . If T does not have a last event in the execution, then the interval
of T is the (possibly infinite) execution interval starting at the first event of T . Two
transactions overlap if their intervals overlap. A configuration C is quiescent if no
transaction is pending in C, i.e., it is not inside the interval of any transaction.

An STM is serializable if transactions appear to execute sequentially, one after the
other [25]; we assume that this serialization order preserves the per-process order,
i.e., transactions of the same process maintain their order. Since infinite executions
also have to be serializable, it follows that if transactions by the same process read a
data item, they eventually return the last value written to it. Traditional definitions of
serializability (e.g., [25, 29]) apply only to finite executions, and hence, admit trivial
implementations, where read operations always return the initial values of the data
items.

An STM is strictly serializable if the serialization order preserves the order of non-
overlapping transactions [25]; this notion is called order-preserving serializability
in [29], and is the analogue of linearizability [15] for transactions. Note that strict
serializability is implied by the opacity correctness condition, recently defined for
transactional memory [10].

We assume that a transaction terminates successfully if it runs alone from a qui-
escent configuration. This property is satisfied by obstruction-free STM implementa-
tions, in which a process that eventually runs alone for long enough makes progress,
i.e., transactions terminate successfully when eventually executing solo [16]. This
property is also satisfied by STM implementations that are weakly progressive [11],
in which a transaction that does not encounter conflicts has to terminate successfully;
note that blocking, lock-based STM implementations like TL2 [7] are weakly pro-
gressive.

2.2 Memory disjoint-access parallelism

An important property STM implementations have to provide is allowing unrelated
transactions to progress independently, even if they are concurrent. Below, we for-
mally define what it means for two transactions to be unrelated through a conflict
graph that represents the relations between transactions. Then we define disjoint-
access parallelism, a property that captures the intuition that an implementation
should not cause two transactions, which are unrelated at the high-level, to simul-
taneously access the same low-level shared memory.

The conflict graph of an execution interval I is an undirected graph, where vertices
represent transactions; an edge connects two transactions that access the same item.
Two transactions T1 and T2 are disjoint-access if there is no path between them in the
conflict graph of the minimal execution interval containing the intervals of T1 and T2.

Theory Comput Syst (2011) 49:698–719 703

Two events contend on a base object o if they both access o, and at least one of
them applies a non-trivial primitive to o. Two processes concurrently contend on a
base object o if they have pending events at the same configuration that contend on o.

Definition 1 An STM implementation is weakly disjoint-access parallel if two
processes p1 and p2, executing transactions T1 and T2, concurrently contend on the
same base object, only if T1 and T2 are not disjoint-access.

This definition captures the first condition of the disjoint-access parallelism prop-
erty of Israeli and Rappoport [20], in accordance with most of the literature (cf. [14]).
Our requirement is weaker than theirs, as we allow two processes to apply a trivial
primitive on the same base object, e.g., read, when executing two transactions even if
they are disjoint-access. Moreover, our definition only prohibits concurrent contend-
ing accesses, allowing transactions to contend on a base object o at different points
of the execution; we shall see in Lemma 2 that, under some conditions, these trans-
actions can be made to concurrently contend on o.

The original definition [20] also restricts the impact of concurrent transactions
on the step complexity of a transaction; our results do not rely on this additional
condition, making them stronger.

3 Strictly Serializable STMs

3.1 Impossibility of Invisible Read-Only Transactions

A read-only transaction is invisible if its algorithm only applies trivial primitives to
base objects. We prove that in a disjoint-access parallel STM implementation with
invisible read-only transactions, some read-only transaction will not terminate suc-
cessfully in a finite number of steps; this is formally stated in Theorem 1.

Specifically, we construct an infinite execution of a read-only transaction. This
execution consists of a single read-only transaction with one complete update trans-
action between any pair of consecutive steps by the read-only transaction; an update
is a transaction with a singleton write set and an empty read set. We first define a spe-
cial (finite) execution of this form, called flippable, and show that such a read-only
transaction cannot terminate successfully. Then we show how a flippable execution
can be repeatedly extended to construct successively longer flippable executions.

An execution is called flippable since there are two similar executions in which we
flip the position of two update transactions and one of the executions is indistinguish-
able from the original execution. One type of flipped execution is called a forward
flip since an update transaction is moved earlier in the execution, while other is called
a backward flip since an update transaction is deferred in the execution. Formally:

Definition 2 A flippable execution of length k with t updaters is a finite execution
Ek = U0s1U1 . . . skUk executed by processes p0, . . . , pt−1 executing update transac-
tions and process q executing a read-only transaction, which reads and returns the
value of t data items ı0 . . . ıt−1. The execution Ek satisfies all the following condi-
tions:

704 Theory Comput Syst (2011) 49:698–719

1. for j = 1, . . . , k, sj is a single step by q ,
2. for j = 0, . . . , k, Uj is a solo execution of a complete update transaction, in which

process ph ∈ {p0, . . . , pt−1}, writes j + 1 to the data item ıh,
3. consecutive updates are executed by different processes, and
4. for any l, 0 < l ≤ k, the execution

Ek = U0s1U1 . . . sl−1Ul−1slUl . . . skUk

is indistinguishable to all processes from one of the following executions:

←−
F l = U0s1U1 . . . sl−1UlUl−1sl . . . skUk

in which the update transaction Ul is executed before Ul−1sl instead of after
Ul−1sl (forward flip) or

−→
F l = U0s1U1 . . . sl−1slUlUl−1 . . . skUk

in which the update transaction Ul−1 is executed after slUl instead of before slUl

(backward flip).

Figures 2(b) and 2(c) present the forward and the backward flips of the execution
in Fig. 2(a).

This definition, and the structure of our proof, is similar to the lower bound of
Attiya, Ellen and Fatourou [2] on the step complexity of update operations in imple-
mentations of atomic snapshot objects. The main difference is that our definition of
a flippable execution has two types of flipped executions, and t processes executing
update transactions instead of just two.

The next lemma proves that if the implementation has a flippable execution then
the read-only transaction in this execution does not terminate; it is proved by argu-
ments similar to those applied in [2], extended to handle the possibility of two kinds
of flips (forward and backward).

Fig. 2 A flippable execution of
length k with two updaters:
(a) shows a flippable
execution Ek ; (b) shows the
forward flip execution of Ek ,
where the update transaction Ul

by process p1 is executed before
the update transaction Ul−1 by
process p0 and before the step
sl of the read-only transaction;
(c) shows the backward flip
execution of Ek , where the
update Ul−1 by process p0 is
deferred after the update
transaction Ul by process p1
and after the step sl of the
read-only transaction

Theory Comput Syst (2011) 49:698–719 705

Lemma 1 The read-only transaction in a flippable execution does not terminate suc-
cessfully.

Proof Let Ek = U0s1U1 . . . skUk be a flippable execution. Assume, towards a contra-
diction, that q successfully terminates its read-only transaction in Ek , with a result
(v0, . . . , vt−1). The proof first fixes the serialization of the update transactions, and
then shows that it is not possible to serialize the read-only transaction among the
update transactions, using the forward and backward flip executions, which are indis-
tinguishable to q from Ek .

Since the update transactions in the execution Ek do not overlap, they must be
serialized in the order U0, . . . ,Uk . Since all steps of the read-only transaction by q

are after U0 and before Uk , it has a unique serialization point between Ul−1 and Ul ,
for some l, 1 ≤ l ≤ k. Let ıh be the item written by Ul−1, and recall that Ul−1 writes
l to ıh; hence vh = l.

The execution Ek is indistinguishable to process q from Fl , which is either the
forward flip

←−
F l = U0s1U1 . . . sl−1UlUl−1slsl+1 . . .Uk

in which update Ul is executed before Ul−1sl instead of after Ul−1sl ; or the backward
flip

−→
F l = U0s1U1 . . . sl−1slUlUl−1sl+1 . . .Uk

in which update Ul−1 is executed after slUl instead of before slUl . Hence, the read-
only transaction executed by q in Fl returns the same vector, (v0, . . . , vt−1), as in Ek .

Since the update transactions do not overlap in Fl , they are serialized in the order
U0, . . . ,Ul,Ul−1, . . . ,Uk , that is, the same as for Ek , except that Ul−1 and Ul are
flipped. Since two consecutive update transactions are to different items, the values
of {ı0, . . . , ıt−1} are the same after both update transactions have been executed, no
matter which has been executed first. Hence, at all points in the serialization of Fl , ex-
cept between Ul and Ul−1, the value of all items {ı0, . . . , ıt−1} is the same as its value
in the corresponding points in the serialization of Ek . Thus, the read-only transaction
of q can only be serialized after Ul and before Ul−1 in Fl . However, since Ul−1 is
the first write of l to ıh, the value of ıh is not l before Ul−1, and hence, the read-only
transaction executed by q cannot be serialized between Ul and Ul−1. This contradicts
the assumption that the read-only transaction terminates successfully. �

It remains to prove that a flippable execution exists. Lemma 3 (below) shows how
to inductively construct a flippable execution, when read-only transactions are invisi-
ble. The crux of this lemma is quite different from [2], as it relies on weakly disjoint-
access parallelism. A critical step in the proof is provided by Lemma 2, showing
that in a weakly disjoint-access parallel STM, two consecutive updates by different
processes on different items cannot contend on the same base objects. Note that two
consecutive update transactions do not contradict weak disjoint-access parallelism
since the steps of their executing processes are not interleaved. The proof of the next
lemma shows that two such consecutive updates can be perturbed to concurrently
contend on the same base object.

706 Theory Comput Syst (2011) 49:698–719

Fig. 3 Illustration for the proof of Lemma 2

Lemma 2 Given a weakly disjoint-access parallel STM implementation and a quies-
cent configuration C, consider the consecutive execution of two update transactions
Ujh

Ujh′ , executed by a process ph on an item ıh and by process ph′ on an item ıh′ ,
h �= h′, respectively, from C. Then ph and ph′ do not contend on the same base object
when executing Ujh

and Ujh′ .

Proof Assume, towards a contradiction, that ph and ph′ contend on a base object
when executing Ujh

Ujh′ from a quiescent configuration C. If in Ujh
, ph applies a

non-trivial primitive to a base object on which they contend, let φh be the last event
in Ujh

in which ph applies such a primitive, say, to base object o. Let φh′ be the first
event in Ujh′ that accesses o.

Otherwise, ph only applies trivial primitives in Ujh
to base objects on which it

contends with ph′ in Ujh′ ; let φh′ be the first event in Ujh′ in which ph′ applies a
non-trivial primitive to some base object, say, o, on which they contend. Let φh be
the last event of ph in Ujh

that accesses o.
In both cases, denote by αhφh the prefix of the execution of Uh from C and by

αh′φh′ the prefix of the execution of Uh′ after Uh (see Fig. 3(a)).
We now create an overlapping execution of the update transactions Ujh

and Ujh′ ,
by processes ph and ph′ , from C. We argue that ph and ph′ perform the same steps
up to the events φh and φh′ , and as illustrated in Fig. 3(b), ph and ph′ concurrently
contend on base object o.

In more detail, consider the execution αhαh′ from C, in which ph executes Ujh

until it is about to perform φh, and then ph′ executes Ujh′ until it is about to per-
form φh′ . Clearly, ph is about to perform φh also after αhαh′ . By construction, the
execution interval αhαh′ from C is indistinguishable to ph′ from the execution in-
terval Ujh

αh′ from C. Hence, ph′ is about to perform the event φh′ also after αhαh′ ,
that is, ph′ and ph concurrently contend on o. However, the conflict graph of the ex-
ecution interval αhαh′φh′φh does not contain a path between the data sets of Ujh

and
Ujh′ , contradicting the assumption that the implementation is weakly disjoint-access
parallel. �

Theory Comput Syst (2011) 49:698–719 707

Since two consecutive updates do not contend on the same base object, we can
construct an execution where either the previous update is deferred or the next update
is moved forward in the execution without affecting the single step of the read-only
transaction in between them. This allows us to inductively construct a flippable exe-
cution, in the proof of the next lemma.

Lemma 3 For every k ≥ 0, every weakly disjoint-access parallel implementation
of an STM with invisible read-only transactions, has a flippable execution Ek =
U0s1U1s2 . . .Uk with two updaters p0 and p1, which is indistinguishable to p0 and
p1 from the execution E′

k = U0U1 . . .Uk in which only p0 and p1 take steps.

Proof The proof is by induction on the length, k, of the flippable execution Ek exe-
cuted by a process q and two updaters p0 and p1 on two items {ı0, ı1}. In the base
case, k = 0, the lemma holds with a solo execution of U0, an update transaction by
p0 that writes 1 to ı0. U0 successfully terminates since it runs solo from a quiescent
configuration.

For the induction step, consider a flippable execution of length k ≥ 1, Ek =
U0s1U1s2 . . .Uk , which is indistinguishable to p0 and p1 from the execution E′

k =
U0U1 . . .Uk . We show how to construct a flippable execution of length k + 1, which
is indistinguishable from an execution in which only p0 and p1 take steps.

By Lemma 1, the read-only transaction does not terminate successfully in Ek . Let
sk+1 be the next step by q . Assume Uk is executed by ph′ and let h = 1−h′; note that
h �= h′. Let Ek+1 = Eksk+1Uk+1, where process ph writes k + 2 to ıh in the update
transaction Uk+1. Note that Uk+1 terminates successfully: The configuration at the
end of Ek+1 = Eksk+1 is indistinguishable from the configuration at the end of E′

k ,
which is quiescent; since the execution of Uk+1 from the configuration at the end of
E′

k must terminate successfully, by our progress condition, Uk+1 must also terminate
successfully when executing from the configuration at the end of Ek+1 = Eksk+1.

Since the read-only transaction by q is invisible, Ek+1Uk+1 is indistinguishable to
p0 and p1 from the execution E′

kUk+1.
It remains to prove that Ek+1 is a flippable execution, i.e., that for every l, 0 < l ≤

k + 1, the execution Ek+1 is indistinguishable to all processes from either
←−
F l or

−→
F l .

For every l, 0 < l ≤ k, by the inductive assumption, the execution

Ek = U0s1U1 . . . sl−1Ul−1slUl . . . skUk

is indistinguishable to all processes from the flipped execution Fl which is either

←−
F l = U0s1U1 . . . sl−1UlUl−1sl . . .Uk

or
−→
F l = U0s1U1 . . . sl−1slUlUl−1 . . . skUk.

In particular, the configurations at the end of the two executions Ek and Fl are
the same. Hence, Ek+1 = Eksk+1Uk+1 and Flsk+1Uk+1 are indistinguishable to all
processes.

708 Theory Comput Syst (2011) 49:698–719

To prove the condition for l = k + 1, let C′
k−1 be the configuration at the end of

E′
k−1; C′

k−1 is quiescent, and Lemma 2 implies that ph′ and ph do not contend on
the same base object when executing Uk followed by Uk+1 from C′

k−1, namely, in
the suffix of E′

k+1. By the indistinguishability of E′
k+1 and Ek+1, ph′ and ph do not

contend on the same base object while executing Uk and Uk+1 also in the execution
Ek+1. Moreover, if q accesses a base object o in sk+1, then either at least one of the
two processes ph or ph′ does not access o in Uk+1 or Uk , respectively, or they both
apply a trivial primitive to o. In the former case, if ph does not access o in Uk+1 then

←−
F k+1 = U0s1U1 . . . skUk+1Uksk+1

is indistinguishable to all processes from Ek+1, while if ph′ does not access o in Uk ,
then

−→
F k+1 = U0s1U1 . . . sksk+1Uk+1Uk

is indistinguishable to all processes from Ek+1. If both ph and ph′ apply a trivial
primitive to o, then both flipped executions,

←−
F k+1 and

−→
F k+1, are indistinguishable

to all processes from Ek+1. �

The impossibility result follows from Lemmas 1 and 3.

Theorem 1 There is no weakly disjoint-access parallel implementation with invisible
read-only transactions of a strictly serializable STM, in which read-only transactions
always terminate successfully.

The impossibility result stated in Theorem 1 holds also for opaque STMs [10],
since opacity implies strict serializability.

3.2 Lower Bound for Read-Only Transactions

The technique of the previous section can be extended to prove that a read-only trans-
action of t items in a disjoint-access parallel STM implementation, which success-
fully terminates in a finite number of steps, must apply non-trivial primitives to t − 1
base objects; this assumes that there are at least t + 1 processes.

The proof of Lemma 1—showing that the read-only transaction in a flippable ex-
ecution cannot terminate successfully—does not rely on the fact that the read-only
transaction is invisible, and the lemma continues to hold. On the other hand, we must
modify the proof showing the existence of the flippable execution.

This result relies on a stronger notion of disjoint-access parallelism, which re-
quires two transactions to be connected (in the conflict graph) even if they both just
apply a trivial primitive to the same base object. (This is the definition in [20].) Two
processes concurrently access a base object o if both have a pending access to o at
some configuration.

Definition 3 An STM implementation is disjoint-access parallel if two processes p1,
p2 concurrently access the same base object when executing transactions T1 and T2,
respectively, only if T1 and T2 are not disjoint-access.

Theory Comput Syst (2011) 49:698–719 709

Fig. 4 Illustration for the proof of Lemma 4

Since we now put a stronger requirement on disjoint-access parallel STM imple-
mentations, Lemma 2, assuming a weaker requirement, still holds.

We first show (in Lemma 4) that, in a disjoint-access parallel STM implementa-
tion, two update transactions executed by different processes on different items do
not access a common base object when each of them runs solo from a quiescent con-
figuration. This is used in Lemma 5 to prove the existence of a flippable execution,
when a read-only transaction of t data items applies non-trivial primitives to at most
t − 2 base objects.

Lemma 4 Given a disjoint-access parallel STM implementation and a quiescent con-
figuration C, consider the execution of an update transaction Ujh

to the item ıh by
process ph, and an update transaction Ujh′ to the item ıh′ by process ph′ , h �= h′,
from C. Then, ph and ph′ do not access a common base object when executing Ujh

and Ujh′ , respectively.

Proof Assume, towards a contradiction, that ph and ph′ access the same base object
while executing Ujh

and Ujh′ , respectively, from C. Let o be the first base object
accessed by ph that is also accessed by ph′ . Let αhφh be the prefix of the execution
of Ujh

from C, where φh is the first event in which ph accesses o (see Fig. 4(a)). Let
αh′φh′ be the prefix of the execution of Ujh′ from C, where φh′ is the first access of
ph′ to o (see Fig. 4(b)). We show how to paste the executions so that the events φh

and φh′ are concurrently pending.
Consider the execution αhαh′ from C, where ph executes Ujh

until it is about to
access o, and then ph′ executes Ujh′ until it is about to access o (see Fig. 4(c)). By
construction, the execution αhαh′ from C is indistinguishable to ph and ph′ from the
corresponding executions αh and αh′ from C. Thus, ph′ has the event φh′ pending and
ph has the event φh pending after αhαh′ ; that is, ph′ and ph concurrently access o.
However, in the conflict graph of the execution interval αhαh′φh′φh from C, there is

710 Theory Comput Syst (2011) 49:698–719

no path between the data sets of Ujh
and Ujh′ , contradicting the assumption that the

implementation is disjoint-access parallel. �

We show that at any point during the execution of the read-only transaction, there
is a process that can write to its item without accessing any base object to which
q applies non-trivial primitives, thus making the read-only transaction “invisible”
to the other processes. Note that, by the definition of a flippable execution, each
process always updates the same item. We prove such a process exists by applying a
“pigeon hole” argument to show that the process does not access any base object to
which the read-only transaction applies non-trivial primitives. Since there are t − 1
processes to choose from, each accessing a different item, and since the read-only
transaction applies non-trivial primitives to at most t − 2 base objects, at least two
update transactions by different processes access the same base object, which can be
shown to violate disjoint-access parallelism.

Lemma 5 For every k ≥ 0, a disjoint-access parallel implementation of an STM
in which a read-only transaction of t > 2 data items applies non-trivial primi-
tives to at most t − 2 base objects, has a flippable execution Ek = U0s1U1s2 . . .Uk

with t updaters, which is indistinguishable to p0, . . . , pt−1 from the execution E′
k =

U0U1 . . .Uk in which only p0, . . . , pt−1 take steps.

Proof The proof is by induction on the length k of the flippable execution Ek . The
base case is when k = 0. The lemma holds with a solo execution of an update trans-
action, U0, by process p0 that writes 1 to ı1. U0 successfully terminates since it runs
solo from a quiescent configuration.

For the induction step, consider a flippable execution of length k, Ek =
U0s1U1s2 . . .Uk , which is indistinguishable to p0, . . . , pt−1 from the execution E′

k =
U0U1 . . .Uk . We show how to construct a flippable execution of length k + 1, which
is indistinguishable to p0, . . . , pt−1 from an execution in which only p0, . . . , pt−1
take steps.

By Lemma 1, the read-only transaction does not terminate successfully in Ek . Let
sk+1 be the next step by q and let Ck+1 denote the configuration at the end of Eksk+1;
also, let C′

k+1 be the configuration at the end of E′
k .

The process ph to execute Uk+1 is chosen from p0, . . . , pt−1 such that ph did
not execute Uk and a solo execution of Uk+1 from Ck+1 by ph does not access any
base objects to which q applies non-trivial primitives in Eksk+1. Note that this trans-
action must terminate successfully, by our progress condition; although Ck+1 is not
quiescent, it is indistinguishable from C′

k+1, which is quiescent.
We claim such a process exists. Assume, towards a contradiction, that for every

process phk+1 , hk+1 �= hk , the solo execution by phk+1 from Ck+1 of the update trans-
action that writes k +2 to ıhk+1 accesses a base object to which q applies a non-trivial
primitive in Eksk+1. We consider t − 1 possible processes, each writing to a different
item. Since the read-only transaction applies non-trivial primitives to at most t − 2
base objects, at least two update transactions executed by different processes ph and
ph′ to different items ıh and ıh′ , starting from configuration Ck+1, access the same
base object in their first access to a base object to which q applies a non-trivial prim-
itive. Recall that C′

k+1 is quiescent. Since the execution Eksk+1 is indistinguishable

Theory Comput Syst (2011) 49:698–719 711

to processes ph and ph′ from the execution E′
k , they access the same base object also

when executing the update transactions from C′
k+1, which by Lemma 4, violates the

assumption that the implementation is disjoint-access parallel.
Pick some process phk+1 , hk+1 �= hk , that does not access any base objects to

which q applies non-trivial primitives in Eksk+1; let Uk+1 be an update by phk+1 that
writes k + 2 to ıhk+1 and denote Ek+1 = Eksk+1Uk+1.

Next, we prove that the execution Ek+1 is indistinguishable to p0, . . . , pt−1 from
the execution E′

k+1. This holds for processes other than phk+1 by the inductive as-
sumption and since these processes take no steps in the suffix of this execution. For
phk+1 , this holds by the inductive assumption and since the solo execution Uk+1 of
an update transaction by phk+1 does not access base objects to which q applies a
non-trivial primitive in Eksk+1.

It remains to prove that for every l, 0 < l ≤ k + 1, the execution Ek+1 is indistin-
guishable to all processes from the flipped execution Fl which is either

←−
F l or

−→
F l ,

as defined in Definition 2. For every l, 0 < l ≤ k, by the inductive assumption, the
execution

Ek = U0s1U1 . . . sl−1Ul−1slUl . . . skUk

is indistinguishable to all processes from the flipped execution Fl which is either

←−
F l = U0s1U1 . . . sl−1UlUl−1sl . . .Uk

or
−→
F l = U0s1U1 . . . sl−1slUlUl−1 . . . skUk.

In particular, the configurations at the end of the two executions Ek and Fl are the
same. Hence, the executions Ek+1 = Eksk+1Uk+1 and Flsk+1Uk+1 are indistinguish-
able to all processes.

For l = k+1, consider the flipped executions
←−
F k+1 and

−→
F k+1. The configuration

C′
k−1 at the end of E′

k−1 is quiescent. Any STM implementation which is disjoint-
access parallel is also weakly disjoint-access parallel, hence we can apply Lemma 2 to
deduce that phk

and phk+1 do not contend on, and hence do not access the same base
object while executing Uk and Uk+1 from C′

k−1. The indistinguishability property
implies that phk

and phk+1 do not access the same base object while executing Uk

and Uk+1 also in Ek+1.
Moreover, if q applies a trivial primitive to some base object o in sk+1, then either

at least one of the two processes phk+1 and phk
does not access o in Uk+1 and in Uk

respectively, or they both apply a trivial primitive to o. In the former case, if phk+1

does not access in Uk+1 any object that q accesses in sk+1, then

←−
E k+1 = U0s1U1 . . . skUk+1Uksk+1

is indistinguishable to all processes from Ek+1, while if phk
does not access in Uk

any object that q accesses in sk+1, then

−→
E k+1 = U0s1U1 . . . sksk+1Uk+1Uk

712 Theory Comput Syst (2011) 49:698–719

is indistinguishable to all processes from Ek+1. If phk+1 and phk
apply a trivial

primitive to o, then both flipped executions are indistinguishable to all processes
from Ek+1. �

The lower bound follows:

Theorem 2 In a strict serializable disjoint-access parallel STM implementation for
t + 1 processes, where all read-only transactions terminate successfully, some read-
only transaction of t > 2 data items applies non-trivial primitives to at least t − 1
base objects.

This lower bound holds also for opaque STMs, since opacity implies strict serial-
izability.

4 Extending the Results to Weaker Consistency Conditions

In this section, we show that both Theorems 1 and 2 hold for weaker consistency
conditions, namely, snapshot isolation and serializability.

4.1 Snapshot Isolation

Snapshot isolation [6, 23, 27, 29] decouples the consistency of the reads and the
writes. Informally, all read operations in a transaction return the value of the most
recent value as of the time the transaction starts. In addition, the write sets of any
pair of concurrent transactions must be disjoint. For a formal definition, see [29,
Definition 10.3].

We prove an analogue of Lemma 1, that is, we show that the read-only transaction
by process q in a flippable execution cannot terminate successfully, also when the
implementation provides snapshot isolation.

Lemma 6 Consider a flippable execution of length k ≥ 0 with t updaters, Ek =
U0s1U1 . . . skUk , of an STM that provides snapshot isolation. The read-only transac-
tion by process q does not terminate successfully.

Proof Assume, towards a contradiction, that q successfully terminates its read-only
transaction in Ek , with a result (v0, . . . , vt−1). Let ıfl

be the item written by Ul ;
recall that the initial value of all items is zero and that Ul writes l + 1 to ıfl

. By the
definition of snapshot isolation, each read operation from an item in the read-only
transaction by q returns the most recent committed write operation that updated this
item as of the time the read-only transaction starts. The read-only transaction by q

returns the most recent values after U0 is executed and before any other update is
executed. Hence, vf0 = 1, and for every l, 1 ≤ l ≤ t − 1, vfl

= 0.
The execution Ek is indistinguishable to process q from F1, which is either the

forward flip
←−
F 1 = U1U0s1s2U2 . . .Uk

Theory Comput Syst (2011) 49:698–719 713

or the backward flip
−→
F 1 = s1U1U0s2U2 . . .Uk.

Hence, the read-only transaction executed by q in F1 returns the same vector as in E1.
However, the definition of snapshot isolation requires different results for the read-

only transaction in these executions. In
←−
F 1, the read-only transaction returns the most

recent values after U0 and U1 are executed and before any other update is executed,
hence it returns a vector where vf0 = 1, vf1 = 2, and vfl

= 0, for every l, 2 ≤ l ≤
t − 1. In

−→
F 1, the read-only transaction returns the most recent values before any

update is executed, hence it returns a vector where vfl
= 0, for every l, 0 ≤ l ≤ t − 1.

Thus, the read-only transaction cannot terminate successfully. �

Arguments similar to Sect. 3 can be used to derive the following impossibility
result and lower bound:

Theorem 3 There is no weakly disjoint-access parallel STM implementation with
invisible read-only transactions of an STM providing snapshot isolation, in which
read-only transactions always terminate successfully.

Theorem 4 In a disjoint-access parallel STM implementation for t + 1 processes
providing snapshot isolation, where all read-only transactions terminate successfully,
some read-only transaction of t > 2 data items applies non-trivial primitives to at
least t − 1 base objects.

4.2 Serializability

Recall that an STM is serializable if transactions appear to execute sequentially, one
after the other; note that we require that transactions of the same process preserve
their order (per-process order) and that repeatedly reading the same data item even-
tually returns a non-initial value.

The proof uses an additional process q ′. Given a flippable execution Ek =
U0s1U1 . . . skUk , we construct an augmented flippable execution

̂Ek = U0s1S
∗
1U1 . . . skS

∗
k Uk,

where the additional process q ′ performs invisible read-only transactions. For every
j ∈ {1, . . . , k}, q ′ performs solo a sequence S∗

j of read-only transactions after the
event sj by process q and before the update Uj . Each read-only transaction in S∗

j

accesses the items ıfj−1 and ıfj
updated by Uj−1 and Uj . The result of the last read-

only transaction in the sequence S∗
j , denoted Sj , is the value written by Uj−1 to ıfj−1

and the last value of ıfj
before Uj updates it.

Figure 5 shows the augmented flippable execution obtained by augmenting the
flippable execution Ek of Fig. 2 with sequences of read-only transactions performed
by process q ′.

We apply the per-process ordering of transactions to prove that the read-only trans-
actions of q ′ must eventually read the latest value written in Uj−1, and thus, S∗

j is
finite.

714 Theory Comput Syst (2011) 49:698–719

Fig. 5 An augmented flippable execution ̂Ek derived from the flippable execution Ek of Fig. 2

Lemma 7 Consider an augmented flippable execution of length k ≥ 0, ̂Ek =
U0s1S

∗
1U1 . . . skS

∗
k Uk . In any serialization of ̂Ek that preserves the per-process or-

der, U0, U1, . . . , Uk appear in their order of execution.

Proof We show, by induction on �, that U0,U1, . . . ,U� appear in their order of exe-
cution. In the base case, k = 0, the serialization of U0 is trivial.

For the induction step, consider U�+1. By the induction assumption, the updates
U0,U1, . . . ,U� are serialized by their execution order in ̂Ek . By construction, S∗

�+1 is
a sequence of read-only transactions that access ıf�

and ıf�+1 , and the last read-only
transaction in S∗

�+1, denoted S�+1, returns the value written by U� and the last value
of ıf�+1 before the one written by U�+1.

The sequence S∗
�+1 is finite since the STM is serializable and so, eventually, some

transaction must return the latest values written to ıf�
and ıf�+1 , and by the induction

assumption, U� is the last to write to ıf�
. Moreover, S�+1 completes before U�+1

starts, so it cannot return the value written by U�+1, since due to serializability, a read
operation can not return a value not written.

Since each data item is written by a different process, and due to per-process order,
U�+1 can not be serialized before the last update of ıf�+1 preceding U�+1.

Moreover, U�+1 can not be serialized after this update and before S�+1, since S�+1

does not return the value written by U�+1. Hence, U�+1 is serialized after S�+1. �

We use Lemma 7 to prove an analogue of Lemma 1.

Lemma 8 Consider an augmented flippable execution of length k ≥ 0 with t up-
daters, ̂Ek = U0s1S

∗
1U1 . . . skS

∗
k Uk . If the read-only transactions by process q ′ are

invisible, then the read-only transaction by process q does not terminate successfully.

Proof Assume, towards a contradiction, that the read-only transaction of process q

in ̂Ek terminates successfully and returns a value (v0, . . . , vt−1), which does not vio-
late serializability. Let the augmented flippable execution ̂Ek = U0s1S

∗
1U1 . . . skS

∗
k Uk

correspond to a flippable execution Ek = U0s1U1 . . . skUk .
By Lemma 7, the updates in ̂Ek are serialized in the order U0,U1, . . . ,Uk . The

vector (v0, . . . , vt−1) determines where q’s read-only transaction is serialized. In par-
ticular, for some l, 0 < l ≤ k, the read-only transaction of q is serialized after Ul−1

and before Ul , and for each item ıf in {ı0 . . . ıt−1}, either vf is zero and no update
wrote to ıf before Ul , or the last update to ıf before Ul wrote vf to ıf . Let S be the
serialization of execution ̂Ek .

Since the read-only transactions executed by process q ′ are invisible, ̂Ek and Ek

are indistinguishable to p0, . . . , pt−1 and q . Thus, they will execute the same steps in

Theory Comput Syst (2011) 49:698–719 715

both executions. Note that S is a serialization also for Ek . Since S preserves the real-
time order among transactions, Ek is a flippable execution where the read-only trans-
action terminates and strict serializability is preserved, contradicting Lemma 1. �

As discussed before the lemma, the existence of a flippable execution (guaranteed
by Lemma 3) implies there is an augmented flippable execution, and hence, Lemma 8
implies the following impossibility result:

Theorem 5 There is no weakly disjoint-access parallel STM implementation with in-
visible read-only transactions of a serializable STM, in which read-only transactions
always terminate successfully.

When a read-only transaction of t ≥ 2 data items applies non-trivial primitives to
at most t − 2 base objects, the read-only transactions of q ′ in the augmented flippable
execution are, in fact, invisible since their read set contains only two data items. As
discussed before Lemma 8, the existence of a flippable execution (guaranteed by
Lemma 5) implies there is an augmented flippable execution, and hence, Lemma 8
implies the following lower bound:

Theorem 6 In a serializable disjoint-access parallel STM implementation for t + 2
processes, where all read-only transactions terminate successfully, some read-only
transaction of t > 2 data items applies non-trivial primitives to at least t − 1 base
objects.

The impossibility result and lower bound also hold for virtual world consistency,
recently proposed by Imbs et al. [19]. This consistency condition requires serializ-
ability or strict serializability of committed transactions, and ensures that aborted
transactions always see a consistent state of the memory, although not necessarily
consistent with each other. Since our results do not consider the behavior of aborted
transactions, they also hold for virtual world consistency.

5 Related Work

Many STM implementations are centralized; in particular, Lazy Snapshot Algorithm
(LSA) [26] relies on a single shared monotonically increasing counter to determine a
unique commit timestamp for transactions, while Transactional Locking II (TL2) [7]
relies on a global clock. The former approach introduces a single hot-spot accessed by
all transactions, regardless of their data sets, and is therefore not disjoint-access par-
allel, while the latter approach relies on a single source of synchronous time, which
is not realistic for systems with a larger number of processes.

More recently, two STM implementations without a centralized hot-spot have been
proposed. Avni and Shavit [4] present a thread-local clock mechanism that provides a
decentralized solution for maintaining a consistent view. The key idea is using Lam-
port clock (scalar causal timestamps) instead of the real-time global clock. Integrated
with TL2, this mechanism provides an STM supporting invisible read-only transac-
tions, without a centralized contention point. A drawback of this algorithm is that

716 Theory Comput Syst (2011) 49:698–719

transactions that terminated long before the current one may cause it to fail since
the timestamp recorded for them is not current enough. Thus, read-only transactions
are not wait-free. Imbs and Raynal [17] propose an opaque lock-based STM with no
centralized hot-spot but their solution has visible reads.

Guerraoui and Kapalka [9] prove that obstruction-free implementations of soft-
ware transactional memory cannot ensure strict disjoint-access parallelism. This
property requires transactions with disjoint data sets not to access a common base
object. This notion is stronger than the one originally proposed by Israeli and Rap-
poport [20], and commonly used in the literature [14], where two transactions with
disjoint data sets are allowed to access the same base objects, provided they are con-
nected via other transactions. All other transactions have to progress in parallel, even
if they are concurrent. Their definition of strict disjoint-access parallelism, like our
first definition (Definition 1), allows concurrent reads to the same base objects even
by transactions that are not connected in the conflict graph.

Our lower bound applies to the notion of disjoint-access parallelism as originally
defined in [20]. In contrast, the result of Guerraoui and Kapalka [9] does not hold for
this weaker requirement. Indeed, Herlihy et al. [16] present an obstruction-free and
disjoint-access parallel STM. Obstruction-freedom does not prevent interfering con-
current processes from starving each other and thus, the implementation presented
in [16] does not guarantee that a read-only transaction eventually terminates success-
fully.

Elsewhere, Guerraoui and Kapalka [10] prove a lower bound on the number of
steps a process takes to successfully terminate a transaction, for every implementa-
tion that uses invisible reads, is single-version, and never aborts a transaction unless it
conflicts with another live transaction. Our lower bound allows multi-version imple-
mentations, but requires read-only transactions to terminate successfully, regardless
of overlapping transactions.

Serializability provides a weaker guarantee on the ordering of transactions (it does
not have to respect the real-time order of non-overlapping ones). Nevertheless, our
impossibility results hold also for serializable STMs that preserve the per-process
order. Indeed, none of the serializable STM implementations presented in the lit-
erature, e.g., [5, 8, 24, 28], provides disjoint-access parallelism and has wait-free,
invisible read-only transactions. In fact, the impossibility results hold also for STMs
that satisfy the even weaker condition of snapshot isolation known from the data-
base literature [23, 29] and suggested as an efficient alternative to serializability for
STMs [27].

Riegel et al. [28] proposed an STM implementation that supports invisible reads
and is disjoint-access parallel, but it provides only causal serializability; more-
over, read-only transactions may abort infinitely many times. Causal serializability
is weaker than serializability since it allows different processes to have a different
view of the system. This leaves open the question of whether our results holds for
causally serializable STMs, or whether the algorithm of [28] can be extended to have
wait-free read-only transactions.

A read-only transaction can be considered as a partial scan operation [3]: a partial
snapshot object is an atomic snapshot object [1], where processes can scan any subset
of the components. In the wait-free algorithms for partial snapshot objects [3, 18],

Theory Comput Syst (2011) 49:698–719 717

scanners announce which components they are currently attempting to scan, i.e., read-
only transactions are visible.

Our proof techniques draw ideas from the lower bounds on the step complexity of
update operations in snapshot objects. Israeli and Shirazi [21] prove an Ω(m) lower
bound on the number of steps to update a component in an m-component single-
writer snapshot objects, implemented from single-writer registers. Attiya, Ellen and
Fatourou [2] extend this lower bound to implementations of m-component multi-
writer objects from base objects of any type.

6 Discussion

This paper shows that no transactional memory implementation can be disjoint-
access parallel and have invisible, wait-free read-only transactions. There are im-
plementations that are disjoint-access parallel and have invisible but not wait-free
read-only transactions [4, 16], while others have invisible, wait-free read-only trans-
actions but are not disjoint-access parallel [26]. In principle, the invisibility of read-
only transactions can also be sacrificed in order to keep them wait-free, and the
implementation disjoint-access parallel. This can be done by treating the read set
together with the write set and adapting a dynamic disjoint-access parallel imple-
mentation of multi-location synchronization operator. For example, Harris et al. [13]
give a disjoint-access parallel implementation of a multi-word compare-and-swap
operation: an operation acquires locks on the words it needs, one by one; if another
operation already holds the lock on a word, the operation helps the conflicting oper-
ation, thereby guaranteeing progress. (This algorithm is not wait-free, but additional
helping can make it wait-free without sacrificing the other properties.) Thus, each of
the assumptions made in our impossibility result is necessary, since removing either
of them admits an implementation with the two remaining properties.

The multi-word compare-and-swap of [13], can be used to atomically validate the
read set and update the write set of a transaction; it requires locking all items in the
data set of the transaction. This application of a multi-word operation demonstrates
our lower bound: A read-only transaction has to lock all items in its read set, and
therefore it writes to distinct base objects representing these locks.

Our work joins recent efforts to explore the boundaries of STM implementations,
so as to guide algorithm designers in their attempt to find better and more efficient
implementations. Such boundaries demonstrate which directions are futile and which
might lead to performance gains. It would be interesting to derive additional quanti-
tative results on the complexity of transactions, and in particular, read-only transac-
tions.

Our proof shows that the read-only transaction cannot terminate successfully, but
it is possible to terminate it unsuccessfully, by aborting it; however, this abort is not
justified by data conflicts. Moreover, when the read-only transaction is retried, it is
possible to continue the construction and force it to abort again. An implementation is
permissive with respect to a safety property [12] if it never aborts a transaction unless
necessary for ensuring correctness. Our proof shows that a disjoint-access parallel im-
plementation with invisible read-only transactions that always terminate—however,

718 Theory Comput Syst (2011) 49:698–719

not always successfully—is not permissive with respect to opacity, strict serializ-
ability, serializability or snapshot isolation. We would like to further investigate the
connections between our results and the study of unnecessary aborts [8, 12, 22] or
wasted work in STM implementations.

Acknowledgements We would like to thank Faith Ellen, Panagiota Fatourou, Rachid Guerraoui, Michal
Kapalka, Martin Vechev and the referees for helpful comments.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots of shared memory.
J. Assoc. Comput. Mach. 40(4), 873–890 (1993)

2. Attiya, H., Ellen, F., Fatourou, P.: The complexity of updating multi-writer snapshot objects. In: Proc.
8th International Conference on Distributed Computing and Networking, pp. 319–330 (2006)

3. Attiya, H., Guerraoui, R., Ruppert, E.: Partial snapshot objects. In: Proc. 20th ACM Symposium on
Parallelism in Algorithms and Architectures, pp. 336–343 (2008)

4. Avni, H., Shavit, N.: Maintaining consistent transactional states without a global clock. In: Proc. 15th
International Colloquium on Structural Information and Communication Complexity, pp. 131–140
(2008)

5. Aydonat, U., Abdelrahman, T.: Serializability of transactions in software transactional memory. In:
3rd ACM SIGPLAN Workshop on Transactional Computing (2008)

6. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique of ANSI SQL
isolation levels. SIGMOD Rec. 24(2), 1–10 (1995)

7. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Proc. 20th International Symposium on
Distributed Computing, pp. 194–208 (2006)

8. Gramoli, V., Harmanci, D., Felber, P.: Towards a theory of input acceptance for transactional memo-
ries. In: Proc. 13th International Conference on Principle of Distributed Systems, pp. 527–533 (2008)

9. Guerraoui, R., Kapalka, M.: On obstruction-free transactions. In: Proc. 20th ACM Symposium on
Parallelism in Algorithms and Architectures, pp. 304–313 (2008)

10. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: Proc. 13th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, pp. 175–184 (2008)

11. Guerraoui, R., Kapalka, M.: The semantics of progress in lock-based transactional memory. In: Proc.
14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 404–415
(2009)

12. Guerraoui, R., Henzinger, T.A., Singh, V.: Permissiveness in transactional memories. In: Proc. 22nd
International Symposium on Distributed Computing, pp. 305–319 (2008)

13. Harris, T.L., Fraser, K., Pratt, I.A.: A practical multi-word compare-and-swap operation. In: Proc.
16th International Symposium on Distributed Computing, pp. 265–279 (2002)

14. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann, San Mateo
(2008)

15. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM Trans.
Program. Lang. Syst. 12(3), 463–492 (1990)

16. Herlihy, M., Luchangco, V., Moir, M.: Scherer III W. N.: Software transactional memory for dynamic-
sized data structures. In: Proc. 22nd ACM Symposium on Principles of Distributed Computing, pp.
92–101 (2003)

17. Imbs, D., Raynal, M.: A lock-based protocol for software transactional memory. In: Proc. 13th Inter-
national Conference on Principle of Distributed Systems, pp. 226–245 (2008)

18. Imbs, D., Raynal, M.: Help when needed, but no more: efficient read/write partial snapshot. In: Proc.
23nd International Symposium on Distributed Computing, pp. 142–156 (2009)

19. Imbs, D., Raynal, M., de Mendivil, J.R.: Brief announcement: virtual world consistency: a new con-
dition for STM systems. In: Proc. 28th ACM Symposium on Principles of Distributed Computing,
pp. 280–281 (2009)

20. Israeli, A., Rappoport, L.: Disjoint-access-parallel implementations of strong shared memory primi-
tives. In: Proc. 13th ACM Symposium on Principles of Distributed Computing, pp. 151–160 (1994)

21. Israeli, A., Shirazi, A.: The time complexity of updating snapshot memories. Inf. Process. Lett. 65(1),
33–40 (1998)

Theory Comput Syst (2011) 49:698–719 719

22. Keidar, I., Perelman, D.: On avoiding spare aborts in transactional memory. In: Proc. 21th ACM
Symposium on Parallelism in Algorithms and Architectures, pp. 59–68 (2009)

23. Lu, S., Bernstein, A., Lewis, P.: Correct execution of transactions at different isolation levels. IEEE
Trans. Knowl. Data Eng. 16(9), 1070–1081 (2004)

24. Napper, J., Alvisi, L.: Lock-free serializable transactions. Technical Report TR-05-04, The University
of Texas at Austin (2005)

25. Papadimitriou, C.H.: The serializability of concurrent database updates. J. Assoc. Comput. Mach.
26(4), 631–653 (1979)

26. Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation. In: Proc. 20th
International Symposium on Distributed Computing, pp. 284–298 (2006)

27. Riegel, T., Fetzer, C., Felber, P.: Snapshot isolation for software transactional memory. In: 1st ACM
SIGPLAN Workshop on Transactional Computing (2006)

28. Riegel, T., Fetzer, C., Sturzrehm, H., Felber, P.: From causal to z-linearizable transactional memory.
In: Proc. 26th ACM Symposium on Principles of Distributed Computing, pp. 340–341 (2007)

29. Weikum, G., Vossen, G.: Transactional Information Systems: Theory, Algorithms, and the Practice of
Concurrency Control and Recovery. Morgan Kaufmann, San Mateo (2001)

	Inherent Limitations on Disjoint-Access Parallel Implementations of Transactional Memory
	Abstract
	Introduction
	Preliminaries
	STM Properties
	Memory disjoint-access parallelism

	Strictly Serializable STMs
	Impossibility of Invisible Read-Only Transactions
	Lower Bound for Read-Only Transactions

	Extending the Results to Weaker Consistency Conditions
	Snapshot Isolation
	Serializability

	Related Work
	Discussion
	Acknowledgements
	References

