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Abstract A set Q ⊆ V is a hub set of a graph G = (V ,E) if, for every pair of ver-
tices u,v ∈ V \ Q, there exists a path from u to v such that all intermediate vertices
are in Q. The hub number of G is the minimum size of a hub set in G. This paper
derives the hub numbers of Sierpiński-like graphs including: Sierpiński graphs, ex-
tended Sierpiński graphs, and Sierpiński gasket graphs. Meanwhile, the correspond-
ing minimum hub sets are also obtained.
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1 Introduction

Let G = (V ,E) be a simple connected graph with vertex set V (G) and edge set
E(G). Sets V (G) and E(G) are simply written as V and E, respectively, when it is
clear from context. In [16], Walsh defined a hub set as follows: A set Q ⊆ V is a hub
set of G if, for every pair of vertices u,v ∈ V \ Q, there exists a path from u to v

such that all intermediate vertices are in Q. Such a path is called a Q-path, denoted
hp(u, v;Q). The hub number of G, denoted h(G), is the minimum size of a hub set
in G. A set of vertices is called a connected set if the subgraph of G induced by S is
connected. A hub set Q is a connected hub set if Q is a connected set. The connected
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Fig. 1 Sierpiński graphs

hub number of G, denoted hc(G), is the minimum size of a connected hub set in G.
For brevity, we use Qh(G) (respectively, Qch(G)) to stand for a minimum (respec-
tively, minimum connected) hub set of G. Walsh proved that determining whether a
graph G has a (connected) hub set of size k is NP-complete [16]. The problem of
finding the hub number of a graph can be applied to a network, e.g., a rapid transit
system (RTS), so that every vertex in the network in which no hub is allocated is
adjacent to a vertex with a hub [16]. This system can be viewed as that the distance
between any two vertices is at most two if the time spent in RTS can be neglected.

A dominating set in a graph G is a subset D of V such that every vertex in V \ D

has at least one adjacent vertex in D. A connected dominating set D is a dominating
set such that the subgraph of G induced by D is connected. The minimum size of
a dominating (respectively, connected dominating) set in G, denoted γ (G) (respec-
tively, γc(G)), is called the domination number (respectively, connected domination
number) of G. In [16], Walsh also proved that γ (G) � h(G)+1 and hc(G) � γc(G).
Later, Grauman et al. showed that γc(G) � h(G) + 1 and obtain the consecutive in-
equality h(G) � hc(G) � γc(G) � h(G) + 1 [1].

In this paper, we are concerned with the hub numbers of Sierpiński-like graphs.
The Sierpiński graph S(n, k) consists of k copies of S(n − 1, k) for n > 1 where
S(1, k) is the complete graph of k vertices [8]. For example, S(1,3), S(2,3), and
S(3,3) are shown in Figs. 1(a), (b), and (c), respectively. Formal definitions of
Sierpiński-like graphs including: Sierpiński graphs, extended Sierpiński graphs, and
Sierpiński gasket graphs will be introduced in Sect. 2. The hub number is a newly
introduced graph invariant and it is known that its determination is NP-hard. Hence
it makes sense to determine this invariant exactly for some interesting and non-trivial
graph classes. The classes of graphs considered in this paper certainly qualify into
this category.

The organization of this paper is as follows. In Sect. 2, we introduce Sierpiński-
like graphs in detail. In Sect. 3, we construct a connected set from a Sierpiński graph
S(n, k). Then, we prove that the constructed set is a minimum hub set of S(n, k).
Accordingly, we also prove that h(S(n, k)) = hc(S(n, k)). The hub numbers of ex-
tended Sierpiński graphs and Sierpiński gasket graphs are discussed in Sects. 4 and 5,
respectively. We also prove that the hub number is equal to the connected hub number
for these Sierpiński-like graphs. Finally, concluding remarks are given in Sect. 6.
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Fig. 2 Labeled Sierpiński graphs

2 Sierpiński-Like Graphs

A formal definition of Sierpiński graphs is described as follows. The reader is referred
to [4, 8, 13] for the details. The vertex set of S(n, k) consists of all n-tuples of integers
1,2, . . . , k for some integers n, k � 1, that is, V (S(n, k)) = {1,2, . . . , k}n. For sim-
plicity, we use �(v) to denote the label of v. Thus, if the label of v is 〈v1, v2, . . . , vn〉,
then �(v) = 〈v1, v2, . . . , vn〉, or in the regular expression form �(v) = v1v2 . . . vn. By
using a convention on representing regular expression, we always use w,x, y, and z to
denote a substring of v1v2 . . . vn and a, b, c, and d to denote a number in v1v2 . . . vn,
i.e., a, b, c, d ∈ {1,2, . . . , k}. For example, �(v) = wabn−h, for 1 � h � n, means that
the label of v begins with a prefix w, then concatenates with a number a, and finally
ends with n − h b′s, i.e., the Kleene closure in regular expression. For convenience,
we also use the label form to represent a vertex. This means that if �(v) = wabn−h,
then we also say that wabn−h is a vertex.

Two different vertices u and v are adjacent in S(n, k) if and only if �(u) = wabn−h

and �(v) = wban−h with a �= b, and for some 1 � h � n. Note that if h = 1, then
w = ∅. Further, if h = n, then both of bn−h and an−h are empty. By the above de-
finition, the subgraph of S(n, k) induced by the vertices whose labels begin with a

is a Sierpiński subgraph S(n − 1, k) and we use Sa(n − 1, k) to stand for these sub-
graphs. Vertex v ∈ V (S(n, k)) is an extreme vertex if �(v) = an. Therefore, there are
exactly k extreme vertices in S(n, k). Since the label of an extreme vertex v is an,
by definition, v has only k − 1 neighbors whose labels are of the form an−1b with
b �= a. Every non-extreme vertex v with �(v) = wabn−h has exactly k neighbors
whose labels are of the form wban−h and wabn−h−1c with 1 � c � k and c �= b.
We use N(v) to denote the open neighborhood of v, i.e., all adjacent vertices of v.
The closed neighborhood N [v] = N(v)∪{v}. Thus, the degree of every extreme ver-
tex, say v, is |N(v)| = k − 1 while all other vertices have degree k. Figure 2 depicts
S(3,3) and S(3,4) with labels. An interesting connection is that S(n,3), for n � 1,
is isomorphic to the graphs of the Tower of Hanoi puzzle with n disks [2, 8] and has



Theory Comput Syst (2011) 49:588–600 591

Fig. 3 Extended Sierpiński graphs: S+(3,3) and S++(3,3)

been extensively studied (see [4] for an overview and the references therein for the
details).

The extended Sierpiński graphs S+(n, k) and S++(n, k) were introduced by
Klavžar and Mohar [9]. The graph S+(n, k) is obtained from S(n, k) by adding a spe-
cial vertex, say s, and edges joining s to all extreme vertices of S(n, k) (see Fig. 3(a)).
The graph S++(n, k) is obtained from S(n, k) by adding a new copy of S(n − 1, k)

which is denoted by Sk+1(n, k), and joining extreme vertex an in S(n, k) to extreme
vertex ban−1 in the added S(n − 1, k), for a = 1,2, . . . , k, where b = k + 1 (see
Fig. 3(b)). The vertex-, edge-, and total-colorings on S(n, k), S+(n, k), and S++(n, k)

have been studied by Jakovac and Klavžar [5].
The Sierpiński gasket graph Sn is a variant of Sierpiński graph S(n,3). Sn can be

obtained from S(n,3) by contracting every edge of S(n,3) that lies in no triangle. For
example, see Figs. 2(a) and 4. Vertices 〈1,1,2〉 and 〈1,2,1〉 in S(3,3) are contracted
to be a vertex in S3 in which we use the regular expression 1(12|21) to denote the
label of the resulting vertex where | is the union operation in regular expression.
According to the definition of extreme vertices in S(n, k), the vertices with labels 1n,
2n, and 3n in Sn are also called extreme vertices. The labels of other vertices are of
the form w(abh|bah) where 1 � h � n − 1, w ∈ {1,2, . . . , k}n−h−1, and a and b are
one of the pairs: 1 and 2, 1 and 3, or 2 and 3. The vertices with labels 12n−1|21n−1,
13n−1|31n−1, and 23n−1|32n−1 are called the waist vertices of Sn. The neighbors
of the extreme vertex an are of the form an−2(ab|ba) with a �= b. The neighbors of
vertex v with label w(abh|bah) are of the form: wabh−2(bc|cb) and wbah−2(ad|da)

for c �= b and d �= a. The Sierpiński gasket graph Sn also contains three copies of
Sn−1 which are denoted by Sn−1,a , for 1 � a � 3, where Sn−1,a contains the extreme
vertex an.

Many properties of Sierpiński gasket graphs have been studied such as hamil-
tonicity [7, 15], pancyclicity [15], domination number [8, 10], chromatic number
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Fig. 4 Sierpiński gasket
graph S3

[7, 12, 15], total chromatic number [5, 15]. Moreover, Sierpiński gasket graphs play
an important role in dynamic systems and probability [3, 6] as well as in psychology
[11, 14].

3 The Hub Number of S(n,k)

In this section, we consider the hub number of S(n, k). Let QS(n,k) = {v|v ∈
V (S(n, k)) \ {1n}, �(v) = w1am|wa1m, a ∈ {2,3, . . . , k}, 1 � m � n − 1} and
QSa(n,k) = {v|v ∈ V (Sa(n, k)) \ {a1n−1}, �(v) = w1bm|wb1m, b ∈ {2,3, . . . , k},
1 � m � n − 2} for n � 2. Note that, in the definitions of QS(n,k) and QSa(n,k),
w is any prefix in the labels of S(n, k) and Sa(n, k), respectively. For exam-
ple, see Fig. 2(a). QS1(3,3) = {121,112,113,131}, QS2(3,3) = {221,212,213,231},
QS3(3,3) = {321,312,313,331}, and QS(3,3) = QS1(3,3) ∪ QS2(3,3) ∪ QS3(3,3) ∪
{211,122,133,311}.
Lemma 1 [16] Graph G is a complete graph if and only if h(G) = hc(G) = 0.

Lemma 2 |QS(n,k)| = 2(kn−1 − 1) for n � 1.

Proof It is obvious that |QS(1,k)| = 0 = 2(k1−1 − 1) for n = 1. It remains to consider
the case where n � 2. By the definition of QS(n,k), for every m ∈ {1,2, . . . , n − 1},
there are kn−m−1 different combinations of w and, in �(v) = w1am or wa1m, a has
k − 1 possible values. Thus, for every possible value of m, there are 2(k − 1)kn−m−1

corresponding elements of the forms: w1am and wa1m in QS(n,k). Therefore,

|QS(n,k)| =
n−1∑

m=1

2(k − 1)kn−m−1

= 2(kn−1 − 1).

This completes the proof of this lemma. �
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Corollary 3 |QSi(n,k)| = 2(kn−2 − 1) for 1 � i � k and n � 3.

Lemma 4 The subgraph of S(n, k) induced by the vertices in QS(n,k) is connected
for n � 2.

Proof We shall prove this lemma by mathematical induction on n. For the basis step,
i.e., n = 2, QS(2,k) is the vertex set {12,13, . . . ,1k,21,31, . . . , k1}. By definition,
there is an edge between 1a and a1 for a �= 1. Furthermore, 1a and 1b for 1 � a, b �
k and a �= b are also adjacent. Thus, QS(2,k) is connected and the basis step holds.

By the induction hypothesis, every Sa(n, k), for a = 1,2, . . . , k, has a corre-
sponding set QSa(n,k) which is connected. Moreover, vertex b1n−1 is in QS(n,k) for
b = 2,3, . . . , k. By definition, vertex b1n−1, for b = 2,3, . . . , k, is adjacent with ver-
tex 1bn−1 which is also in QS(n,k). Since b1n−1 is adjacent with b1n−2b which is
in QSb(n,k) and 1bn−1 is adjacent with 1bn−21 which is in QS1(n,k), QS(n,k) is con-
nected. Therefore, the lemma follows. �

Lemma 5 QS(n,k) is a connected hub set of S(n, k) for n � 2.

Proof By Lemma 4, QS(n,k) is a connected set. All we have to prove is that QS(n,k) is
a hub set. By definition, every S(n, k) contains k copies of S(n − 1, k), every S(n −
1, k) contains k copies of S(n−2, k), and so on. Consequently, S(n, k) contains kn−1

copies S(1, k) which is a complete graph of k vertices. Clearly, every vertex belongs
to some S(1, k) and every S(1, k) has exactly one vertex whose label ends with a

for a = 1,2, . . . , k. By the definition of QS(n,k), every vertex whose label ends with
1 is in QS(n,k) except 1n. Thus, every vertex with label not ended with 1 is adjacent
with a vertex whose label ends with 1 in their corresponding S(1, k) except the one
containing 1n. For the S(1, k) containing 1n, by definition, all of its other vertices are
in QS(n,k). This reveals that every vertex in V (S(n, k)) \ QS(n,k) is adjacent with a
vertex in QS(n,k). Therefore, for every pair of vertices u,v ∈ V (S(n, k)) \ QS(n,k),
there exists a hp(u, v;QS(n,k)). This completes the proof. �

Corollary 6 For every S(n, k) with n � 2, h(S(n, k)) � hc(S(n, k)) � 2(kn−1 − 1).

Proposition 7 For any two vertices u,v ∈ V in graph G = (V ,E), if N [u] ⊆ N [v],
then at most one of u and v can be in Qh(G).

Proof Suppose to the contrary that Qh(G) contains both of u and v. It is obvious that
Qh(G) \ {u} is still a hub set. This contradicts that Qh(G) is a minimum hub set. �

Lemma 8 For any S(n, k) with n, k � 1, h(S(n, k)) � 2(kn−1 − 1).

Proof We prove this lemma by induction on n. Since S(1, k) is a complete graph of
k vertices, by Lemma 1, h(S(1, k)) = 0 = 2(k1−1 − 1). Thus, the basis step holds
immediately.

Now we consider the induction step. Let Qh(S(n, k)) be a minimum hub set of
S(n, k). Clearly, Qh(S(n, k)) ∩ Si(n, k) is a hub set of Si(n, k) and |Qh(S(n, k)) ∩
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Si(n, k)| � |Qh(Si(n, k))| for i = 1,2, . . . , k. By Proposition 7, any extreme ver-
tex of Si(n, k) and its neighbors cannot be in Qh(Si(n, k)) simultaneously. Since
there are k copies of S(n − 1, k) in S(n, k), at least 2(k − 1) vertices (namely,
k − 1 edges) must be added to

⋃k
i=1 Qh(Si(n, k)) to ensure that there is a hub

path hp(u, v;Qh(S(n, k))) between any two vertices u,v ∈ V (S(n, k))\Qh(S(n, k)).
Therefore, by induction hypothesis, we can have the following derivation.

|Qh(S(n, k))| � 2(k − 1) +
k∑

i=1

|Qh(Si(n, k))|

� 2(k − 1) +
k∑

i=1

2(kn−2 − 1)

= 2(k − 1) + 2k(kn−2 − 1)

= 2(kn−1 − 1).

This concludes the proof of this lemma. �

Combining the results in Corollary 6 and Lemmas 5 and 8, we obtain the following
theorem.

Theorem 9 For S(n, k) with n � 1, hc(S(n, k)) = h(S(n, k)) = 2(kn−1 − 1).

4 The Hub Numbers of S+(n,k) and S++(n,k)

Since S+(n, k) is obtained from S(n, k) by adding a new vertex s and edges join-
ing s with all extreme vertices in S(n, k), S+(n, k) also contains Si(n, k) as a sub-
graph, for i = 1,2, . . . , k. For convenience, we assume that �(s) = 0n. Let QS+(n,k) =
{v|v ∈ V (S+(n, k)), �(v) = w1im|wi1m, i ∈ {2,3, . . . , k}, 1 � m � n − 2} ∪ {in,
0 � i � k} for n � 2. See Fig. 5 for an illustration of QS+(3,4) which consists of
all the gray vertices 11(2|3|4),1(2|3|4)1, . . . ,31(2|3|4),3(2|3|4)1 and black vertices
000,111, . . . ,444.

Lemma 10 |QS+(n,k)| = 2kn−1 − k + 1 for n � 2.

Proof By comparing the constructions of QS+(n,k) with QS(n,k), vertices with la-
bels 1an−1 and a1n−1 for a = 2,3, . . . , k are removed from QS(n,k), then vertices
with labels bn for b = 0,1, . . . , k are added to the resulting set in order to constitute
QS+(n,k). Thus,

|QS+(n,k)| = |Qh(S(n, k))| − 2(k − 1) + k + 1

= 2(kn−1 − 1) − k + 3

= 2kn−1 − k + 1.

This completes the proof. �
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Fig. 5 QS+(3,4)

Lemma 11 The subgraph of S+(n, k) induced by the vertices in QS+(n,k) is con-
nected for n � 2.

Proof By the definition of QS+(n,k), the vertices in QSi(n,k) defined in Lemma 4, for
i = 1,2, . . . , k and n � 3, are also in QS+(n,k). Thus, by Lemma 4, the subgraph of
QS+(n,k) induced by the vertices in QSi(n,k) is connected for i = 1,2, . . . , k and n �
3. It is clear that the subgraph of QS+(n,k) induced by the vertices in {0n,1n, . . . , kn}
is connected. Furthermore, an is adjacent with an−11 in Sa(n, k) and both of them
are in QS+(n,k) for a = 2,3, . . . , k. For S1(n, k), 1n is adjacent with 1n−1a for a =
2,3, . . . , k and all of them are in QS+(n,k). Hence, the subgraph of S+(n, k) induced
by the vertices in QS+(n,k) is connected for n � 3.

To complete the proof, it remains to consider the case where n = 2. In S+(2, k),
QS+(2,k) is the vertex set {02,12, . . . , k2}. By definition, i2 is adjacent with 02 and
every vertex in Si(1, k) is adjacent with i2, for i = 1,2, . . . , k. Thus the lemma fol-
lows. �

Lemma 12 QS+(n,k) is a connected hub set of S+(n, k) for n � 2.

Proof By using a similar reasoning as in Lemma 5, this lemma can be proved. �

Corollary 13 For S+(n, k) with n � 2, h(S+(n, k)) � hc(S
+(n, k)) � 2kn−1 −k+1.

Lemma 14 For S+(n, k) with n � 2, h(S+(n, k)) � 2kn−1 − k + 1.

Proof We can use an analogous way in Lemma 8 to prove this lemma. The only dif-
ference occurs at connecting Qh(Si(n, k)) for i = 1,2, . . . , k to form Qh(S

+(n, k))
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which can be done by adding k edges (or k + 1 vertices, namely the vertex set
{0n,1n, . . . , kn}). Therefore, by Corollary 3, we can have the following derivation.

|Qh(S
+(n, k))| � k + 1 +

k∑

i=1

|Qh(Si(n, k))|

� k + 1 +
k∑

i=1

2(kn−2 − 1)

= k + 1 + 2k(kn−2 − 1)

= 2kn−1 − k + 1.

This completes the proof of this lemma. �

Combining the results in Corollary 13 and Lemmas 12 and 14, we obtain the
following theorem.

Theorem 15 For S(n, k) with n � 2, hc(S
+(n, k)) = h(S+(n, k)) = 2kn−1 − k + 1.

By definition, S++(n, k) has one more copy of S(n − 1, k) than S(n, k). By
using an analogous way, we can determine h(S++(n, k)) and hc(S

++(n, k)) for
S++(n, k). The corresponding hub set of S++(n, k), denoted QS++(n,k), is the set
{v|v ∈ V (S++(n, k)), �(v) = w1im|wi1m|(k + 1)1n−1, i ∈ {2,3, . . . , k}, 1 � m �
n − 1}. Note that the leading number of w is in the range from 1 to k + 1 while k + 1
cannot appear in other positions of w.

Lemma 16 For S++(n, k) with n � 2, |QS++(n,k)| = 2(kn−1 + kn−2 − 1).

Proof Comparing QS++(n,k) with QS(n,k), we can find that all vertices in QS(n,k) are
also in QS++(n,k). Moreover, QS++(n,k) contains the set of vertices in QSk+1(n,k) as
well as vertices 1n and (k + 1)1n−1. Therefore,

|QS++(n,k)| = |QS(n,k)| + |QSk+1(n,k)| + 2

= 2(kn−1 − 1) + 2(kn−2 − 1) + 2

= 2(kn−1 + kn−2 − 1).

This establishes the lemma. �

Lemma 17 QS++(n,k) is a connected hub set of S++(n, k) for n � 2.

Proof By Lemma 5, the subgraphs of S++(n, k) induced by the vertices in QS(n,k)

and QSk+1(n,k), respectively, are connected. It is easy to check that the whole set
becomes connected after adding vertices 1n and (k + 1)1n−1. �

Lemma 18 For S++(n, k) with n, k � 1, h(S++(n, k)) � 2(kn−1 + kn−2 − 1).
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Proof By using a similar reasoning as in Lemma 8, this lemma follows. �

Combining the results in Lemmas 16–18, we obtain the following theorem.

Theorem 19 For S++(n, k) with n � 2, hc(S
++(n, k)) = h(S++(n, k)) = 2(kn−1 +

kn−2 − 1).

5 The Hub Number of Sierpiński Gasket Graphs

By an observation on the labels of Sierpiński gasket graphs Sn, all vertices are con-
tracted vertices except extreme vertices. Moreover, the label of every contracted ver-
tex can be expressed as w(abh|bah) for some 1 � h � n − 1 where the possible
value-pairs of a and b are: 1 and 2, 1 and 3, or 2 and 3. To determine whether a
vertex is in a hub set or not, we define a reduction operation on �(v) as follows. For
�(v) = v1v2 . . . vn with n > 2, the reduction of �(v), denoted r(�(v)), is defined as
follows:

r(�(v)) =
⎧
⎨

⎩

v2v3 . . . vn if v1 = 1,
v2 + 1(mod 3) v3 + 1(mod 3) · · · vn + 1(mod 3) if v1 = 2,
v2 − 1(mod 3) v3 − 1(mod 3) · · · vn − 1(mod 3) if v1 = 3.

Note that, in the above operation, the addition or subtraction is congruent to mod-
ulo 3, i.e., 0 ≡ 3(mod 3). Furthermore, if �(v) = w(abn−1|ban−1), then r(�(v)) =
(r(wabn−1)|r(wban−1)). A label �(v) after taking the reduction operation m times
is represented as rm(�(v)). For example, if �(v) = 31(12|21), then r2(�(v)) =
r2(31(12|21)) = r2(3112)|r2(3121) = r(331)|r(313) = 23|32.

By inspection, we can find that the minimum hub set of S2 contains either any
two adjacent waist vertices or an extreme vertex i2 and the waist vertex having no
i in its label. Note that the former hub set is connected. Since 1 � i � 3, the latter
hub set can be {11, (23|32)}, {22, (13|31)}, or {33, (12|21)}. For clarity, we use the
set {11, (23|32)} as the fundamental set in our discussion and call (23|32) and i2, for
1 � i � 3, the fundamental labels. Thus, we have the following proposition.

Proposition 20 h(S2) = hc(S2) = 2.

For ease of readability, we introduce how to construct a minimum hub set Q

for S3 by using the fundamental set {11, (23|32)} of S2. It is easy to check that
the set Q = {111, (232|322), 2(12|21), (122|212), 1(23|32), (132|312), 3(13|31)}
is a minimum hub set in S3 (see the vertices with gray color in Fig. 4). The con-
struction of Q is explained as follows. We can find that the label of each vertex
in Sn−1,2 (respectively, Sn−1,3) can be mapped to that of a corresponding vertex
in Sn−1,1 after Sn−1,2 (respectively, Sn−1,3) is rotated 4π/3 (respectively, 2π/3)
radians in clockwise. That is what the reduction operation wants to do. We can
see that after applying the reduction operation on the pair of vertices 232|322 and
2(12|21) (respectively, 232|322 and 3(13|31)) in Sn−1,2 (respectively, Sn−1,3), this
yields r(232|322) = 11 and r(2(12|21)) = (23|32) (respectively, r(232|322) = 11
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and r(3(13|31)) = (23|32)) which constitute the fundamental set of S2. After in-
cluding another two waist vertices 122|212 and 132|312 of S3, Q is obtained. By
applying the reduction operation on the labels of these two waist vertices, we can
derive r(122|212) = 22 and r(132|312) = 33. That is the reason why we say that 22
and 33 are also fundamental labels.

In Propositions 21–23 and Lemma 24, we assume that QSn = {v|v ∈ V (Sn) \
{2n,3n}, rn−2(v) is a fundamental label}. The reader can see that, by setting n = 3,
QSn is exactly the set mentioned in the previous paragraph. Before showing that, actu-
ally, QSn is a minimum hub set of Sn, we use the following propositions to introduce
some properties of QSn .

Proposition 21 All v ∈ QSn with rn−2(v) �= 11 form a path of length 2(3n−2 −1) for
n � 3.

Proof For n � 3, we can view that Sn is composed of 3n−2 S2
′s where each S2

contains all of the vertices having the same n − 2 leading numbers in their labels.
Clearly, performing the reduction operation on the label of each vertex in S2 accord-
ing to their n − 2 leading numbers, there is exactly one vertex with label 23|32 in
each S2. Similarly, the labels of all waist vertices will be reduced to 11, 22, and 33.
After including all waist vertices with reduced labels 22 and 33 of each S2, the three
vertices with label 23|32 of the S2

′s in an S3 will form a hexagonal path of length
4 (see the path passing through vertices 2(12|21), 122|212, 1(23|32), 132|312, and
3(13|31) in Fig. 4), three hexagonal paths of length 4 in the S3

′s of an S4 will form a
hexagonal path of length 16, and finally a hexagonal path of length 2(3n−2 − 1) will
be formed in Sn. �

We use PQSn
to denote the hexagonal path described in Proposition 21.

Proposition 22 For every v ∈ QSn with rn−2(v) = 11, no neighbor of v is in QSn .
Furthermore, the number of vertices with reduced label 11 is (3n−2 + 1)/2.

Proof By using a similar reasoning as Proposition 21, we can find that the labels of
all neighbors of each vertex with reduced label 11 are either 12|21 or 13|31. By the
definition of QSn , these neighbors are not in QSn . �

Proposition 23 For every v ∈ V (Sn) \ QSn , there is a neighbor of v is in PQSn
.

Lemma 24 QSn is a hub set of Sn and |QSn | = (5 · 3n−2 − 1)/2.

Proof By Propositions 21–23, this lemma follows directly. �

Corollary 25 For Sn with n � 2, h(Sn) � (5 · 3n−2 − 1)/2.

A path P3 = (u, v,w) of length 2 in Sn is called a waist P3 if v is a waist vertex,
and u and w are in different Sn−1 of Sn.
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Lemma 26 At least two waist vertices must be in Qh(Sn) for n � 3 and each of them
is contained in a waist P3.

Proof For the purpose of contradiction, we assume that less than two waist ver-
tices are in Qh(Sn). Without loss of generality, we may assume that waist vertices
12n−1|21n−1 and 13n−1|31n−1 are not in Qh(Sn). By Proposition 7, for every ex-
treme vertex in, at least one vertex in N [in] is not in Qh(Sn). Accordingly, there
exist vertices u, v, and w which are in N [1n], N [2n], and N [3n], respectively, and all
of them are not in Qh(Sn). Clearly, any path from u to v (respectively, w) must pass
either through 12n−1|21n−1 or 13n−1|31n−1. However, waist vertices 12n−1|21n−1

and 13n−1|31n−1 are not in Qh(Sn). This implies that hp(u, v;Qh(Sn)) (respectively,
hp(u,w;Qh(Sn))) does not exist, a contradiction. Therefore, at least two waist ver-
tices must be in Qh(Sn) and two of the three waist vertices are in waist paths. This
completes the proof. �

Lemma 27 h(Sn) � (5 · 3n−2 − 1)/2, for n � 2.

Proof By Lemma 26, we assume that waist vertices 12n−1|21n−1 and 13n−1|31n−1

are in Qh(Sn) and each of them is in a waist P3. Let Qi = Qh(Sn) ∩ Sn−1,i for 1 �
i � 3. Clearly, by Proposition 7 and the existence of waist P3’s, |Q1| � h(Sn−1) + 2
and |Qi | � h(Sn−1) + 1 for i = 2 and 3. If there are exactly two waist vertices in
Qh(Sn), then |Qh(Sn)| = |Q1| + |Q2| + |Q3| − 2; otherwise, |Qh(Sn)| = |Q1| +
|Q2| + |Q3| − 3. Since the latter equation yields a smaller lower bound, we have the
following derivation when n � 3:

h(Sn) = |Qh(Sn)|
= |Q1| + |Q2| + |Q3| − 3

� h(Sn−1) + 2 + h(Sn−1) + 1 + h(Sn−1) + 1 − 3

� 3h(Sn−1) + 1.

By Proposition 20, the initial condition of the above recurrence formula is h(S2) =
2. After solving this recurrence formula, this yields h(Sn) � (5 · 3n−2 − 1)/2, for
n � 2. �

By Propositions 22 and 23 and Lemma 24, we can replace every v ∈ QSn with one
of its neighbor if rn−2(v) = 11. The resulting set will be a connected hub set. Then,
combining the results in Corollary 25 and Lemma 27, we can obtain the following
theorem.

Theorem 28 For Sn with n � 2, h(Sn) = hc(Sn) = (5 · 3n−2 − 1)/2.

6 Concluding Remarks

In this paper, we prove that the hub number is equal to the connected hub number for
Sierpiński-like graphs. In particular, we also construct a minimum connected hub set
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for each of them. In our proposed constructions, every vertex only needs to examine
its own label to determine whether it is in a hub set or not.
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(2005)
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