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Abstract A new class of languages of infinite words is introduced, called the max-
regular languages, extending the class of w-regular languages. The class has two
equivalent descriptions: in terms of automata (a type of deterministic counter au-
tomaton), and in terms of logic (weak monadic second-order logic with a bounding
quantifier). Effective translations between the logic and automata are given.

Keywords Automata - Monadic second-order logic

1 Introduction

This paper introduces a new class of languages of infinite words, the class of max-
regular languages, which contains all w-regular languages. Max-regular languages
can be described in terms of automata, and also in terms of a logic. A typical max-
regular language is the set of words in (a + b)® where the distance between consec-
utive b’s is unbounded, i.e. the language

L =1{a""ba"ba™ ...:limsupn; = 00}. 1

A practical motivation for this class can be found in verification. For instance a
max-regular language could specify that a system responds to requests with bounded
delay. We will begin, however, with a more fundamental motivation, which is the
question: what is a regular language of infinite words?

There is little doubt as to what is a regular language of finite words. For instance,
the requirement that the Myhill-Nerode equivalence relation has finitely many equiv-
alence classes uniquely determines which languages of finite words should be regular.

Author supported by ERC Starting Grant “Sosna”.

M. Bojariczyk ()
University of Warsaw, Warsaw, Poland
e-mail: bojan@mimuw.edu.pl

@ Springer


mailto:bojan@mimuw.edu.pl

Theory Comput Syst (2011) 48: 554-576 555

Other notions, such as finite semigroups, or monadic-second order logic also point to
the same class.

For infinite words, however, there is more doubt. Of course, the class of w-regular
languages has much to justify calling it regular, but some doubts remain as to its
uniqueness. Consider, for instance, the language L mentioned above, or the set K of
ultimately periodic words, i.e. words of the form wv®, say over alphabet a, b. None
of these languages are w-regular. However, under a popular variant of Myhill-Nerode
equivalence for infinite words, given by Arnold in [2], both languages have exactly
one equivalence class.

Should these languages be called regular? If yes, what is the appropriate notion of
regularity? In this paper we propose a notion of regular languages, which are called
max-regular languages, that captures the language L, but not the language K. This
new notion has many properties that one would wish from regular languages. The
class is (effectively) closed under boolean operations, including negation. There is a
finite index Myhill-Nerode relation, and equivalence classes are regular languages of
finite words. There is an automaton model, there is a logical description, and transla-
tions between the two are effective. Emptiness is decidable. Membership is decidable
(although since we deal with infinite words, the membership test is for certain finitely
presented inputs, such as ultimately periodic words).

So, what is this new class? One definition is in terms of logic. The max-regular
languages are the ones that can be defined by formulas of weak monadic second-
order logic extended with the unbounding quantifier. The term “weak” means that
only quantification over finite sets is allowed, denoted by quantifiers 5, and V.
The unbounding quantifier UX.¢(X) says that the size of sets X satisfying ¢(X) is
unbounded, i.e.

UX.o(X) =\ FX(0(X) A 1X| = n). )
neN

This is not the first paper about logic with the unbounding quantifier. The first pa-
per, which introduced' the unbounding quantifier, is [3]. The setting was much more
general than here: the logic was not weak (i.e. quantification over infinite sets was
allowed), and the models considered were infinite trees and not infinite words. Nev-
ertheless, [3] contains very little as far as decidability or automata models are con-
cerned. The only decidability result concerns a fragment with very limited quantifica-
tion. The study of the unbounding quantifier was continued in [4], where the logic is
also allowed to quantify over infinite sets, but the models are restricted from infinite
trees to infinite words. The results in [4] are substantially more advanced than in [3].
In particular there is an automaton model, called an wBS-utomaton, which is also the
basis of the work in this paper. Unfortunately, wBS-utomata do not capture all of the
logic, but only a fragment with limited quantification patterns. Even for this limited
fragment, proving equivalence of the logic with wBS-utomata is a very difficult task,
due to nondeterminism of the automata.

The basic idea in this paper is to restrict the set quantification to finite sets
(i.e. weak quantification), while keeping the unbounding quantifier. It turns out that

IThe quantifier introduced in [3] was actually the negation of U, saying that the size is bounded.
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with this restriction, lots of the problems encountered in [4] are avoided, and the
resulting class is surprisingly robust. Note that for infinite words and without un-
bounding quantification, weak monadic second-order logic has the same expressive
power as full monadic second-order logic; this is no longer true when the unbounding
quantifier is allowed (we prove this using topological techniques).

The main contribution of this paper is Theorem 5, which shows that over infinite
words, weak monadic second-order logic with the unbounding quantifier has the same
expressive power as deterministic max-automata. Max-automata are a new automaton
model, introduced in this paper. A max-automaton is a finite automaton equipped with
counters, which store natural numbers. The important thing is that the counters are
not read during the run (and therefore do not influence the control of the automaton),
which avoids the usual undecidability problems of counter machines. The counters
are only used in the acceptance condition, which requires some counter values to be
bounded, and some to be unbounded.

To the best of the author’s knowledge, quantifiers similar to the unbounding quan-
tifier have only been considered in [3, 4]. On the other hand, the idea to use automata
with quantitative acceptance conditions has a long history, going back to weighted au-
tomata of Schiitzenberger [14] (see [9] for a recent paper on weighted automata and
related logics). Automata very similar to the wBS-automata of [4] have also appeared
in the literature under the name of distance desert automata in [12], or R-automata
in [1]. One important application, see [12], of these automata is that they can be used
to solve the famous star-height problem,” providing simpler techniques and better
complexities than in the original proof of Hashiguchi [10]. (The reduction from the
star-height problem is not to emptiness of the automata, but to something called lim-
itedness.) Other problems that can be tackled using this type of automata include the
star-height of tree languages [7] or the Mostowski index of w-regular languages [8].

2 The Automaton

We begin our presentation with the automaton model. Fix a set of counters C, which
will store natural numbers. We allow the following operations:

c:i=c+1, increment counter c;
c:=0, reset counter c;
c:=max(d, e), storein counter ¢ the maximal value of counters d, e.

For a counter valuation v € N¢ and a finite sequence of counter operations 7,
we define v € NC to be the counter valuation obtained from v by applying all the
operations in 7.

A max automaton is a finite automaton where each transition is labeled by a finite
sequence of counter operations. A run of the automaton is a sequence of transitions
that is consistent with the input word. Fix a run p, and let 7; be the sequence of

2This is the question of calculating the least number of nested stars in a regular expression (without nega-
tion) that defines a regular language L C £*.
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counter operations that labels the first i transitions in p. For an initial counter valua-
tion v € NC and a counter ¢ € C we define a sequence

pe € N® =v(c), vrri(c), vma(c),....

The acceptance condition of a max automaton is a boolean combination of condi-
tions: “the sequence p. is bounded”. Stated differently, the acceptance condition is a
boolean combination® of conditions

limsup p. < co.

Note that changing the initial counter valuation v does not change the limsup, so
the initial counter valuation is irrelevant to the accepted language, and need not be
supplied with the automaton.

Unless otherwise stated, all max automata are deterministic.

Below we compare max automata to wBS-automata, an automaton model defined
in [4]. A wBS-automaton is defined like a max automaton, with three differences.
First, it is nondeterministic. Second, a wBS-automaton does not have the max counter
operation, only the increment and reset. Third, the acceptance condition in a wBS-
automaton is a boolean combination of two types of conditions: “the sequence o,
is bounded”, called B-conditions, and “the sequence p. tends to infinity”, called S-
conditions.* In other words, the limit properties tested by an wBS-automaton are

lim sup p. = 00, liminf p, = o0

and their negations, while a max automaton is only allowed the lim sup. It turns out
that the max operation can be simulated using nondeterminism, so nondeterministic
max automata are essentially those wBS-automata that only talk about lim sup and
not liminf in their acceptance condition.

Theorem 1 Every max automaton is effectively equivalent to a nondeterministic
wBS-automaton.

Proof Fix a max automaton .4 with counters C. An wS-automaton is a wBS-au-
tomaton where the acceptance condition is a positive boolean combination of S-con-
ditions. For every counter ¢, we will define a nondeterministic wS-automaton O,
whose input alphabet consists of counter operations, and which accepts an infinite
sequence 0107 - - - of counter operations if and only if

limsup(_)ol -vou(c) =o00.
n—00

3Formally speaking, the acceptance condition is a propositional boolean formula, whose variables are
counters. A run is accepting if the formula is made true by the valuation which assigns “true” to the
variables that correspond to bounded counters, and “false” to the other variables.

4As defined in [4], the acceptance condition in a wBS-automaton is a positive boolean combination of
B-conditions and S-conditions. However, the negation of a B-condition can be expressed, by using nonde-
terminism, as an S-condition. This is because a sequence is unbounded if and only if it has a subsequence
that tends to infinity. Likewise, the negation of an S-condition can be expressed using B-conditions.
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In the above, 0 is the zero vector in NC. By [4], any boolean combination of
wS-automata is equivalent to a wBS-automaton. In particular, there is a @wBS-autom-
aton O that accepts exactly those infinite sequence of counter operations that satisfy
the acceptance condition in the max automaton .A. To get an automaton equivalent
with A, we simulate the actions of O online, by doing the transitions and producing
the appropriate counter operations.

We are left with defining the automaton O,.

Below we define what it means for a sequence of counter operations 7 to transfer
a counter c to a counter d. The idea is that after performing the operations in , the
value of counter d is at least as big as the original value of counter ¢, or possibly big-
ger, if there were some increments or max operations involving bigger counters along
the way. The definition is by induction on the length of . The empty sequence of
operations transfers every counter to itself. The operation ¢ := ¢ + 1 transfers every
counter to itself. The operation c := 0 transfers every counter to itself, except c. The
operation ¢ = max(d, e) transfers every counter other than c to itself, and also both d
and e to c. If 7y transfers ¢ to e and m, transfers e to d, then the concatenation 717
transfers ¢ to d. This definition is designed so that the following property holds: if &
transfers c to d, then v (d) > v(c) holds for any counter valuation v € NC€. In a sim-
ilar way to the above, we define a notion of transferred with at least one increment,
which guarantees v (d) > v(c) + 1. The transfer relation is regular in the following
sense: for any counters ¢ and d, the set of words 7 that transfer counter ¢ to d is a
regular language of finite words, likewise for transfers with at least one increment.
Sequences of counter operations 7wy, ..., 7, are called a c-trace (of length n) if there
is a sequence of counters ¢y, ..., ¢, with ¢, = c such that each m; transfers counter
ci—1 to ¢; with an increment. From the very definition we get the following fact.

Fact2 Counter c is unbounded if and only if there are arbitrarily long c-traces.

The automaton O, works as follows. It accepts if and only if the infinite sequence
of counter operations 7 on input can be split into finite sequences as

T =T01,071,1 1,0 2,072,1TW2py " *°

where for each i, the sequences n; 1, ..., 7, form a c-trace, and the sequence n;
tends to infinity. The split is guessed using nondeterminism, and the limit property of
n; is tested using one counter, which is incremented after each 7; ; and reset before
each 7; 1. O

The construction above works also for nondeterministic max automata, but we
stick to deterministic max automata, since this is the only kind used in this paper.
Since emptiness is decidable for wBS-automata, an immediate corollary of the above
theorem is that emptiness is decidable for max automata, even for the nondetermin-
istic variant.

Theorem 3 Emptiness is decidable for max automata.
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An important ingredient in the proof of Theorem 1 is the conversion of a boolean
combination of wS-automata to a single wBS-automaton. This conversion, as pre-
sented in [4], is nontrivial in two ways: the proof is difficult, and the construction in-
curs a non-elementary state explosion. In preliminary work with Szymon Torurczyk,
we present a direct emptiness proof, which achieves the optimal PSPACE complexity.

2.1 Myhill-Nerode Equivalence

In this section we show that languages recognized by deterministic max automata
have finitely many equivalence classes for a strong Myhill-Nerode equivalence rela-
tion. By strong we mean that the equivalence relation is finer than, say, the Arnold
congruence.

We actually prove a stronger result, since instead of deterministic max automata,
we consider nondeterministic wBS-automata, which capture them by Theorem 1.

For a language L C X, call two finite words L-equivalent if they can be swapped
a finite or infinite number of times without L noticing. Formally, words w, v € X*
are called L-equivalent if both conditions below hold.

mwiury €L & ujvup €L foru; e *, up e T

wiwirwuzw .- € L & wujvupvuzv---€ L foruj,uz,...e T*.

Theorem 4 Every language L recognized by a max-automaton has finitely many
classes of L-equivalence.

Proof Consider an wBS-automaton, with input alphabet X, states Q, transitions &
and counters C. Consider a finite run p € §* of this automaton. For every counter
c € C, there are three things that p can do with counter ¢, which we denote using
symbols €, I, R. These things are: (¢) neither increment nor reset c¢; (/) increment ¢
at least once but never reset it; and (R) reset ¢ at least once, possibly incrementing it
several times. The profile of a run is defined as the vector {e, I, R}C which says what
the run does to each counter. The profile of a word in ¥* is defined as the set of all
triples in

(q,v.p)€Q x{e,I,R}* x Q

such that some run over the word begins in state g, has profile v, and ends in state p.
It is not difficult to see that two words with the same profile are L-equivalent. The
theorem follows, since there are finitely many profiles for words. g

3 The Logic

We consider an extension of weak monadic second-order logic, called weak MSO
with the unbounding quantifier. Recall that weak monadic second-order logic is an
extension of first-order logic that allows quantification over finite sets (the restriction
to finite sets is the reason for the name “weak”). In weak MSO with the unbounding
quantifier, we further add the unbounding quantifier U X, as defined in (2).
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Example Consider the set L from (1). This language is not regular, but defined by
the following formula of weak MSO with the unbounding quantifier logic:

VxIy(y=x Ab(Y) AUXVx <y<z x,zeX=a(y)AyeX.
The main result of this paper is that the logic and automata coincide.

Theorem 5 Weak MSO with the unbounding quantifier defines exactly the same lan-
guages as deterministic max-automata. Translations both ways are effective.

The more difficult direction in Theorem 5, from logic to automata, is presented in
Sect. 4. The easier direction is given below. The idea is to say that there are arbitrarily
large c-traces, as in Fact 2 from the proof of Theorem 1.

Lemma 6 Every max-automaton can be effectively translated to an equivalent for-
mula of weak MSO with the unbounding quantifier.

Proof Fix a max-automaton with input alphabet X. For two positions x < y in an
input word w € X, we write 7 [w, x, y] for the sequence of counter operations that
labels the transitions of the automaton which read the part of w between x and y
(beginning with the transition that reads x and ending with the transition that reads y).
Note that 7 [w, x, y] also depends on the positions before x, since these determine the
state of the automaton before reading x. Let IT be the finite set of words over counter
operations that label the individual transitions of the automaton. For each 7 € IT we
write a formula ¢, (x) that is true in a position x of an input word w if and only if
m[w, x, x] is . This formula ¢, (x) only needs to quantify over finite sets, to talk
about the run of the automaton over positions prior to x. Using the formulas ¢, , we
write for any two counters ¢ and d a formula ¢, 4(x, y) of weak MSO which holds
whenever 7 [w, x, y] transfers counter ¢ to d with an increment. Finally, using the
formulas ¢, 4, we write for any counter ¢ a formula ¢.(X), with a free set variable,
which holds in a word w for a set X = {x; < --- < x,,} if and only if the words

wlw,xy,x2 =11, wlw,x2,x3—11, ..., #w[w,xp—1,x, — 1]

form a c-trace. Note that the formula ¢, does not use the unbounding quantifier. The
key property is that UX ¢.(X) holds in a word w if and only if counter ¢ is unbounded
in the unique run over w. A boolean combination these formulas can express the
acceptance condition of the automaton. g

The formulas that are sufficient to simulate a deterministic max-automaton are
of a special type, which gives a normal form for weak MSO with the unbounding
quantifier:

Proposition 7 Every formula of weak unbounding logic is equivalent to a boolean
combination of formulas UX ¢ (X), where ¢(X) does not use the unbounding quanti-

fier.

Proof By translating a formula into an automaton and then back into a formula. [
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4 From Logic to Automata

‘We now turn to the more difficult part of Theorem 5, which says that every formula of
weak MSO with the unbounding quantifier can be effectively translated to an equiv-
alent deterministic max automaton.

To simplify the translation, we use the usual technique of removing first-order
quantification, as in [16]. That is, first-order quantification is replaced by three new
predicates “set X has one element”, “set X is included in set Y and “all elements of
set X are before all elements of set Y. Together with weak second-order quantifica-
tion, these new three predicates can be used to simulate first-order quantification, so
the logic is the same.

The translation is defined by induction on the size of the formula. For purposes of
the induction, we do the translation also for formulas with free variables. What is the
word language corresponding to a formula ¢ (X1, ..., X,)? This language contains
words annotated with valuations for the free set variables. We use the usual encoding,
where the label of a word position x € N is extended with a bit vector in {0, 1}" that
says which of the sets X1, ..., X;, contain position x. More formally, for sets of word
positions X1, ..., X, € N and an infinite word w € £¢, we define the word

WX Q- ®X, e (X x{0,1}")”

as follows. On position x, the new word has a tuple (a, by, ..., b,), with a the label
of the x-th position of the original word w, and the value of bit b; being 1 if and only
if position x belongs to the set X;, fori =1, ..., n. With this notation, we can define
the set of words satisfying a formula ¢ (X1, ..., X,) to be

LW:{w®X1®"'®X}1:waxlv"'7Xn ':(p}

We will show that for every formula ¢(X1, ..., X,) of weak MSO with the un-
bounding quantifier, there is a max automaton recognizing the language L,. The
proof is by induction on the size of the formula ¢. The induction base, which corre-
sponds to the predicates “set X has one element”, “set X is included in set Y and
“all elements of set X are before all elements of set Y is easy, since all of these are

w-regular languages, and we have:
Lemma 8 Deterministic max automata capture all w-regular languages.

Proof Recall that a deterministic Muller automaton is a deterministic automaton
where the acceptance condition is a boolean combination of conditions “state g ap-
pears infinitely often”. Deterministic Muller automata capture all regular languages,
see [16], so it suffices to simulate a deterministic Muller automaton by a max au-
tomaton. We add a new counter ¢, for each state g of the automaton. Each time state
q appears, counter ¢, is incremented. The counters are never reset. In a run of this
automaton, a state appears infinitely often if and only if its counter is unbounded.
Therefore, the Muller acceptance condition is encoded in the unbounding condition
of a max automaton. 0
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The induction step for boolean operations—including negation—is no more diffi-
cult, since the automata are deterministic and the accepting condition is closed under
boolean operations. We are left with weak second-order quantification and the un-
bounding quantifier. We first deal with weak quantification, in Sect. 4.1, while the
unbounded quantifier is treated in Sect. 4.2.

4.1 Weak Existential Quantification
This section is devoted to showing:

Proposition 9 Languages recognized by deterministic max automata are closed un-
der weak quantification. In other words, if L is a language over ¥ x {0, 1} recog-
nized by a deterministic max automaton, then there is a deterministic max automaton
recognizing

{we Z?:w® X € L for some finite set X}.

A convenient way to prove this result would be to use nondeterministic automata.
Unfortunately, as we will later show, nondeterministic max automata are strictly more
powerful than weak MSO with the unbounding quantifier, so we cannot use this strat-
egy. We will have to do the existential quantification directly in the deterministic
automata.

The proof technique is actually very generic. It would work for any model of deter-
ministic automata that recognize all w-regular languages and satisfies some relaxed
assumptions, mainly that the acceptance condition is prefix-independent. A more gen-
eral framework can be found in [5].

Fix a deterministic max automaton A that recognizes L, with state space Q and
transition set 8. The input alphabet of A is T x {0, 1}.

Consider a word w € X®. In the proof we will be interested in runs over the word
w ® @. Intuitively speaking, the word w ® @ is important because for every finite
set X, the words w ® X and w ® ¥ agree on almost all positions. More precisely
speaking, we will study partial runs on the word w ® ¥, which are defined as follows.
A partial run in w € £ is a run that begins in any position of the word w ® ¢
(not necessarily the first position) and in any state (not necessarily the initial one).
In other words, this is a word in 1L*8® U L® that is consistent with the word w &® ?
on those positions where it is defined (i.e. where it is not _L). Since the automaton
is deterministic, a partial run is uniquely specified by giving the first configuration
where it is defined, this is called the seed configuration. (There is also the undefined
partial run L®, which has no seed configuration.) Here, a configuration is a pair
(g, x), where x is a position in the word and ¢ is the state of the automaton before
reading position x. We do not include the counter values in the seed configuration,
since the acceptance condition is not sensitive to finite perturbations.

We say that two partial runs converge if they agree from some position on. Equiv-
alently, they converge if they share some configuration, or both are undefined. We say
a set of partial runs spans a word w if every partial run over w converges with some
run from the set. We will be interested in finite sets of spanning runs.
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Lemma 10 For every word w, there is a set of at most | Q| spanning runs.

Proof We begin with some arbitrary configuration, and take the partial run p; that
begins in that configuration. If {p1} is spanning, then we are done. Otherwise, we
take some partial run p, that does not converge with p1, and see if the set {p1, o2} is
spanning. If it is not, we add a third partial run p3, and so on. This process terminates
after at most | Q| steps, because if two partial runs do not converge, then they must
use different states on each position where they are both defined. So |Q]| partial runs
that do not converge will use up all the states. g

To prove Proposition 9, we use a result stronger than Lemma 10. We will show
that not only the spanning set of runs exists, but it can also be computed by a (de-
terministic, letter-to-letter) transducer. By transducer we mean a finite deterministic
automaton where each transition is equipped with an output letter, from an output al-
phabet I". Therefore, the transducer defines a function f : £ — I'“. The transducer
does not have any accepting conditions (using bounds or even parity or Muller), it
just scans the word and produces its output. It is easy to see that deterministic max
automata are closed under preimages of transducers, as stated in the following lemma.

Lemma 11 [f f : X — T'“ is a transducer and A is a deterministic max automa-
ton with input alphabet T, then there is a deterministic max automaton with input
alphabet Y. recognizing the set of words w € X% such that f(w) is accepted by A.

We now describe how the spanning partial runs will be encoded in the output of
the transducer. When speaking of spanning partial runs, we mean spanning partial
runs of the automaton A in Proposition 9.

A single partial run will be encoded by a sequence of transitions p € §“ and a set
of invalidating positions X. The partial run encoded by p and X is obtained from p
by putting L on all positions that are in X or are followed by an invalidating position.
In particular, if X contains infinitely many positions, then the encoded partial run is
1. To encode n partial runs as a single word, we use n words of the form p ® X
written in parallel

PIO®XI®MOX2® - ®py ® X, € ((6x {0, 1))

With the encoding of spanning runs defined, we are now ready to present the stronger
version of Lemma 10.

Lemma 12 Let n = |Q|. There is a transducer
f:Z%— (6 x {0, 1H)"H®
such that for any word w, the output f(w) encodes n spanning partial runs.
Proof The idea is to implement the proof of Lemma 10 in a transducer. The states

of the transducer will be permutations of the state space, i.e. tuples from Q" where
each state appears exactly once. The initial state is any arbitrarily chosen permutation.
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When reading an input letter a € X in state r, the transducer f works as follows. It
is supposed to output a tuple

(t1, X1, .y tn, Xn) € (8 x {0, 1",

In the above, ¢; is the transition of the underlying deterministic automaton 4 that
is chosen when reading letter (a,0) in the state on the i-th coordinate of . The
invalidating bits x; will be defined below. Let wa be the tuple of target states in
(t1,...,t,). This tuple is not necessarily a permutation and cannot be used as a state
of the transducer, since on some coordinates i € {1, ..., n}, the transition #; might
have the same target state as one of the transitions #1, ...,#_1. Let I = {i1, ..., ix} be
these coordinates, and let {py, ..., p,,} be the states that do not appear in wa. These
two sets have the same size, i.e. k = m. We can now correct a to be a permutation o,
by replacing its coordinate i1 with the state p1, the coordinate i, with state p;, and so
on. Note that on the coordinates from 7, the new permutation o has a value unrelated
to the one from ma (i.e. o begins a new run), while on coordinates from outside 7, the
new permutation o simply continues the runs from 7. This is signified in the output
of the transducer, which sets the invalidating bit x; to 1 if i € [ and to 0 otherwise. [

We are now ready to prove Proposition 9. Let w € £® be an input word of the max
automaton, and let

fw)=p1®X1QmRX2® - ®pp X,

be the n spanning runs that are output by the transducer f. The word w is accepted by
the max automaton if and only if there is some i € {1, ..., n} such that the following
two properties hold:

(A) The i-th spanning run is defined (i.e. the set X; contains finitely many invalidat-
ing positions) and satisfies the accepting condition in the automaton .A.

(B) There is some finite set X C N such that the run of A over w ® X converges
with the i-th spanning run.

Since languages recognized by max automata are closed under union and intersection,
it suffices to show that for each fixed i, both properties (A) and (B) are recognized
by deterministic max automata. For property (A), we use Lemma 11 on preimages.
Property (B), on the other hand, is an w-regular property, which can be recognized
by a deterministic max automaton thanks to Lemma 8.

4.2 Unbounding Quantification

We now turn to the more difficult step in translating a formula to a max automaton,
where the outermost operation in the formula is the U quantifier.

Proposition 13 Languages recognized by deterministic max automata are closed
under unbounding quantification. In other words, if L is a language over ¥ x {0, 1}
recognized by a deterministic max automaton, then so is

UL ={w e X“:w® X € L for arbitrarily large finite sets X}.
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Fix a deterministic max automaton 4 recognizing the language L in the proposi-
tion. Let Q be its state space. For a state ¢ € Q and a finite word w € X*, we define
max(q, w) be the maximal size of a set X C {1, ..., |w|} such that the automaton .A
reaches state g after reading w ® X. As stated in the lemma below, these numbers
can be computed in the counters of a deterministic max automaton (not surprisingly,
using the max operation).

Lemma 14 There is a deterministic max automaton with counters {c,}qe o such that
the value of ¢, after reading w € X* is exactly max(q, w).

Proof We use the following inductive property, for w € £* anda € ¥

max(q, wa) = 1(11a;)< max(p, w) +i.
p,l

In the expression above, the maximum ranges over the pairs (p,i) € Q x {0, 1} such
that automaton A changes state from p to ¢ when reading the input label (a, ).
We assume that the maximum is zero when there is no such pair. To evaluate the
subexpressions, several bookkeeping counters are used. |

We will use the values from the above lemma to capture the unbounding quan-
tifier. However, some more effort is needed: it is not the case that an input word
w =apas - - - belongs to UL if and only if the values max(q, a; - - - a,) are unbounded.
In general, only the left to right implication holds. The right to left implication may
fail since a value max(g, a; - - - a,) is relevant only if the run of A over w that begins
in configuration (g, n) can be extended to an accepting one over the rest of the word.
The correct characterization is given below:

Lemma 15 A word aja; --- € £ belongs to UL if and only if for some state q, the
values

{max(q,ai---an) : ap+1an42- -+ € Ky}
are unbounded, where
K, ={w € X?:w Q¥ is accepted by A when starting in q}.

As suggested by the above lemma, to recognize the language UL it would be con-
venient to have an extension of max automata, where the limsup in the acceptance
condition would not look at all values assumed by a counter, but only at values as-
sumed in positions that have a certain future. Below, we introduce such an extension
of max automata and show that it can be simulated by a standard max automaton,
thus completing the proof of Proposition 13.

An guarded output max automaton is like a max automaton, except that each
counter c is associated with a guard K., which is a language recognized by a max
automaton. In the acceptance condition, instead of saying that the values of counter
¢ are unbounded, we say that the values of counter ¢ are unbounded in positions n
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such that the suffix a,a,1--- belongs to K.. By Lemma 15, the language UL is
recognized by a guarded output max automaton.

We will show that guarded outputs are redundant, and can be simulated by non-
guarded outputs. This completes the proof Proposition 13. The difficulty in the proof
below is that we are dealing with deterministic automata, while a guard looks to the
future.

Proposition 16 Every guarded output max automaton is equivalent to a max automa-
ton.

Proof Let A be a guarded output max automaton. A trivial guard is one that accepts
all words. We will show how to take a counter with a nontrivial guard and replace it
by a finite number of counters with trivial guards. Once all guards are trivial, we are
left with a max automaton.

Let ¢ be a counter with a nontrivial guard K., recognized by a max automaton 5.

In the construction, we will use a concept of thread. A thread consists of a state of
the automaton B, as well as a number, which corresponds to the value of counter ¢ at
some point where the guard was satisfied. Note that a thread does not contain infor-
mation about values of the counters of automaton . The idea is that threads will be
alive for only finitely many steps, so the counters of B are not relevant. We will de-
note threads by 7. If a € X is an input letter, then we write ta for the thread obtained
from 7 by updating the state according to a (and leaving the number unchanged).

The (non-guarded) max automaton C that simulates .A works as follows. It keeps
track of the state of A and of its counter values. (So C has all the counters of A,
but also some other ones, defined below.) At each point, the simulating automaton
contains a finite set {ty, ..., 7;} of active threads. There will be at most one thread
per state of B, so the set of threads can be stored using finitely many counters and
the finite memory of the automaton. This set of active threads is initially empty. After
reading a new letter of the input a, the automaton does the following operations.

e Whenever A does a guarded output with the guard K., a new thread 7 is created,
with the initial state of B and the current value of c.

e The threads 71, ... t;, T are updated to 714, ..., 7;a, Ta.

e Iftwo active threads have the same state, then they are merged, and only the greater
number is kept (using the max operation).

Similarly to the proof of Proposition 9, the automaton C will also read the output
of a transducer f that computes spanning partial runs of the automaton B used for the
guards. Recall that the transducer f outputs n spanning partial runs of the automaton
B, where n is the number of states in .

The automaton C accepts a word w if and only if there is some i = 1,...,n such
that:

(A) The i-thrun encoded by f(w) is defined (i.e. the encoding contains finitely many
invalidating positions) and satisfies the accepting condition in the automaton B.

(B) For every m, some thread storing a number greater than m converges with i-th
run encoded by f(w).
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Since deterministic max automata are closed under finite union, we only need to
show the construction for some fixed i. As in the previous section, property (A) is
recognized by a deterministic max automaton. For property (B), we create a new
counter ¢, which contains the maximal number stored in a thread 7 that had the same
state as p;. (Once a thread has the same state as p;, it continues to have the same state
until p; is invalidated.) O

5 Eliminating Max

In this section, we show that the max counter operation can be eliminated, at the cost
of equipping the automaton with w-regular lookahead. Using the automaton without
max but with lookahead, we give another decision procedure for emptiness of the
automaton, this time without referring to the constructions of [4].

A lookahead transducer is a function f : ¥ — I'“ such that the label of position
x in the output f(w) is determined by a regular property of position x in the input w.
One way of presenting such a lookahead transducer is by giving a weak MSO formula
@4 (x) over the input alphabet ¥ for each letter a of the output alphabet I', such that
in any word w € X%, each position x satisfies exactly one of the formulas ¢, (x), thus
determining the label of x in f(w). Another way would be using a type of automaton,
where the transition function reads not only the current input letter, but can ask w-
regular queries about the suffix of the input word that it has not yet read.

A limsup automaton is a max automaton that does not use the max counter oper-
ation. A lookahead limsup automaton is given by a lookahead transducer f : ¥ —
' and a limsup automaton over alphabet I". It accepts a word w € X if the limsup
automaton accepts the image f(w).

Theorem 17 Max automata and lookahead limsup automata capture the same lan-
guages. Translations both ways are effective.

The translation of a lookahead limsup automaton to a max automaton can be done
via the logic. It is easy to see that languages defined by weak MSO with the unbound-
ing quantifier are closed under inverse images of lookahead transducers (simply use
the formulas of the lookahead transducer instead of letters). In particular, any lan-
guage recognized by a lookahead limsup automaton is also recognized by a max
automaton.

The converse translation also uses the logic. We convert the max automaton into a
formula of the logic, and then put the formula into a boolean combination of formulas
UX@(X), using Proposition 7. Since lookahead limsup automata are closed under
boolean combinations, it suffices to prove the following proposition. (A less wasteful
reduction to the proposition below could also be presented, which would not pass
through the logic.)

Proposition 18 For any w-regular language L over alphabet ¥ x {0, 1}, the lan-
guage UL is recognized by a lookahead limsup automaton.

In the proof we use factorization forests. We present these in the following section.
Next, in Sect. 5.2, we prove Proposition 18.
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5.1 Factorization Forests

In the discussion below, it will be more convenient to talk about edges than positions
in a word. Consider a word w, either finite or infinite. An edge in this word is the
space between two positions. We identify edges with numbers, so that edge x is the
space between its source position x and its target position x + 1. There are one or two
dummy edges: an edge 0 with an undefined source, and in case of a finite word with
n positions, a dummy edge n undefined target. For edges x <y, we write w[x..y] for
the infix of w that begins in the target of x and ends in the source of y. Given a set of
edges E, an E-factor is any infix w[x..y]forx <y e E.

Consider a monoid morphism « : £* — S and a word w € £, We say (s, f) € 52
is a tail pair in w if there is an infinite set of edges E such that all E-factors have
value f under «, and all prefixes w[0..x] have value s under «, for x € E. We say a
language L C ¢ is recognized by a « if there is a set of accepting pairs F € S* such
that if L is the set of words that have an accepting tail pair. A language is w-regular
if and only if it is recognized by a morphism into a finite monoid, see [13].

Fix a finite set of colors C, with a linear order <. An edge coloring in a word—
finite or infinite—is a function o that maps each edge to a color. We say edges
X] < --- < Xx, are neighboring with respect to o if they are all have the same color ¢
and all edges between x1 and x, have colors at most c. Let & : X* — S be a monoid
morphism. The edge coloring o is called an «a-factorization forest if for any set of
neighboring edges, all the factors have the same value under «.

An important result of Imre Simon says that for any morphism «, a finite set of
colors is sufficient to produce factorization forests for all finite words. This result can
be strengthened in two ways: by allowing w-words and by requiring the factorization
forest to be produced by a lookahead transducer. This strengthening is stated below.

Theorem 19 For any morphism « : ¥* — S there is a finite set of colors C, < and
a lookahead transducer f : £“ — C® which maps each word to an a-factorization
forest.

Proof We give two proofs. The second proof was suggested by one of the anonymous
referees.

The first proof uses a theorem of Colcombet [6]. Note that a factorization forest
requires colors on edges, while a lookahead transducer produces colors for positions.
We solve this discrepancy by having the color for an edge output on its target position.
A theorem of Colcombet [6], which says that there is a deterministic transducer (so
the lookahead transducer does not use the lookahead) which produces for every word
w an edge coloring t that satisfies

a(wlx..y]) =a(w[x..z]) for neighboring edges x <y < z. 3)

The edge coloring T can be upgraded into a factorization forest in the following way.
Consider an edge x, and let x’ be the first neighboring edge after x’. The edge x’ may
be undefined, if x has no neighboring edges to the right. We define the fype of x to be
the pair (t(x), a(w[x..x'])). If x’ is undefined, the second coordinate is L. We order
the types lexicographically, using some arbitrary order on S U {_L}. Let o be the edge
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coloring that maps each edge x to its type. Note that o needs to look to the future, to
check the type. We claim that o is a a-factorization forest. Indeed, consider a set of
neighboring edges E. Let (i, s) be the type of these edges. If E has one edge, then
it has no factors, so there is nothing to prove. Otherwise, E has at least two edges.
In particular, s is defined, since at least the first edge in E has a right neighbor, and
therefore a closest right neighbor, under t. Below, we show that every E-factor is
mapped to s by a. Let w[x..y] be such a factor, and let x’ be the first neighboring
edge after x, under t.

a(wlx..y]) =a(wlx..x]T - wix'..y]) (i)a(w[x..x’]) =s.

This completes the first proof. We now do the second proof.

First note that factorization forests exist for w-words. Indeed, consider an w-word
w € X“. By the Ramsey theorem, w can be decomposed as an infinite concatenation
w = wowj - -+ so that all the words w1, wy, ... are mapped to the same idempotent
in S. Apply the Simon theorem to the morphism « : ¥* — S, yielding a finite set
of colors which is sufficient to get «a-factorization forests for all the finite words
wp, Wi, . ... Finally, add a new color (bigger than all the previous colors), and use it
to recolor all the edges that connect two consecutive words w; and w;4, for i € N.
It is easy to see that the resulting edge coloring is a a-factorization forest.

We have shown that a finite set of colors, call it C, is sufficient to produce some
a-factorization forests for every word w € £“. We will use the uniformization
theorem for MSO on w-words to show that an «-factorization forest can be out-
put by a lookahead transducer. We say that a partition {X.}.ec of N encodes an
a-factorization forest in a word w € £ if we get an a-factorization by coloring each
edge with the color corresponding to the unique set containing the edge target. It is
not difficult to see that there is an MSO formula with free variables {X.}.cc and in-
put alphabet ¥, which says that the free variables encode an «-factorization forest
in its input w-word. By the uniformization theorem [15] for MSO on w-words, there
exists an MSO formula ¢, with free variables {X.}.ec and input alphabet X, such
that for every input word w € £, the formula ¢ holds for exactly one choice of sets
{Xc}cec, which encodes an a-factorization forest. From this formula ¢ we can get a
lookahead transducer. 0

5.2 Proof of Proposition 18
For the rest of the proof, we fix a morphism
a: (X x{0,1})—> S

that recognizes the language L. Consider a finite word w € X*. We say s € S is a
possible value in w if s = a(w ® X) holds for some set X. If X is nonempty, we say
s is a possible nonempty value. If X is empty, we say s is the empty value. Let

B:X— P(S) xS

be the function that maps each word w to: the set of possible nonempty values of w,
and the empty value of w. One can equip the target of 8 with a monoid structure so
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that 8 is a monoid morphism, as described below
(S1,51) - (82, 82) = ((s1 U S1) - (52U 82), 51 - 52) forsy,s2€8,81,85CS.

We will be using factorization forests for the morphism .
Lemma 20 Fix a word w € X together with a B-factorization. The word w belongs
to UL if and only if it satisfies the following condition.

(*) For any sufficiently large n € N, there is a sequence of edges
O0=x0<X] <+ <Xp <Xpg] <--- (4)

such that x1, ..., x, are neighboring and (seu, f) is an accepting pair for ele-
ments s,e,u, f € S such that

s is a possible value in w[xg..x2]

e is idempotent and a possible nonempty value in w[x>..x3], ..., wxp—2..Xp—1]
u is a possible value in w[x,—1..Xp+1]

f is the empty value in w[x,y1..Xp42], W[Xp42..X043] .. ..

Proof The bottom up implication is straightforward, so we only show that w € UL
implies condition (*). Let n € N. If we choose a sufficiently large set X withw ® X €
L, we can find neighboring edges

X< <Xp

such that X contains at least one element between each two consecutive edges. Since
w ® X belongs to L it must have an accepting pair (¢, f), which is given by edges

Xn+l < Xp42 <+

By removing a finite number of edges, we can assume without loss of generality
that x,4+1 is after x, and that the finite set X contains no positions after x,y1. We
write xq for the edge whose target is the first position. For i € N, we define w; to be
the part of w between edges x; and x;41, and we define s; to be the value assigned
by « to the part of w ® X between positions x; and x;41. By assumption on the
edges X;+1, Xn+2, - . ., all the elements s,,+1, Sy+42, . .. are equal to f. Since X has no
positions after x,1, the element f satisfies the condition required by (*).

A simple monoid lemma, which can be proved using a Ramsey argument, says
that in any sufficiently long sequence si,...,s, € S there must be indexes 1 <i <
J <n such that s; ---s; is an idempotent, call it e. Since the edges x1, ..., x, are
neighboring, the possible nonempty values for a word w; - - - w; are always the same,
regardless of the choice 1 <i < j < n. In particular e, which is a possible nonempty
value in w; - - - wj, is also a possible nonempty value in all the words wa, ..., w,—1,
as required by (*). Since s1 ---s;_1 is a possible nonempty value in wy ---w;_1, it
is also a possible nonempty value in wi, and therefore s defined as so---s;_1 is a
possible (even nonempty) value in wowi, as required by (*). The same argument
works for u defined as sj11---sy. O
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Lemma 21 Property (*) can be recognized by a lookahead limsup automaton.

Proof Fix aword w € X together with a 8-factorization forest. A neighborhood is a
maximal (with respect to inclusion) set of neighboring positions. There is one infinite
neighborhood. The general idea is that the automaton will calculate the factorization
forest and accept if neighborhoods that satisfy a certain property are of unbounded
size. The lookahead is used to calculate the factorization forest and determine which
neighborhoods satisfy the certain property.

For a neighborhood we define the following three pieces of information, which are
called the neighborhood’s profile.

e Starter type—the set of possible values in the neighborhood’s starter, which is
defined as the part of w before the first edge in the neighborhood.

e Factor type—the value under § of any of its factors.

e Remainder type—the set of tail pairs for the remainder, which is defined as the
suffix of w after the last edge in the neighborhood.

The remainder and its type are defined only when the neighborhood is finite. For
infinite neighborhoods, the profile contains only the starter type and the factor type.
The two types of profile are called finite and infinite profiles, respectively.

Given a profile, we say s € S is a possible nonempty factor value if s appears in the
second coordinate of the factor type (recall that a value of 8 stores nonempty possible
values on the second coordinate, and the empty value on the first coordinate). An
element s € S is called a possible factor value if it is a possible nonempty factor value,
or it belongs to the second coordinate of the factor type. In other words, a possible
factor value is corresponds to a value under « of some decoration of the factor with a
set that is either empty or nonempty.

We say a neighborhood is n-large if there is a sequence of edges as in (4) that
satisfies the properties in (*) and such that xq, ..., x, are all in the neighborhood.
Property (*) is equivalent to saying that there are n-large neighborhoods for arbitrarily
large n.

Lemma 22 There is a set of profiles T1 such that for every neighborhood, the follow-
ing conditions are equivalent: (a) being n-large; and (b) having profile in Tl and at
least n-edges.

We first show how Lemma 22 concludes the proof of Lemma 21. The lookahead
limsup automaton works as follows. The automaton has a counter ¢ for each possible
color of the factorization forest. After reading the prefix of a word w € X that ends
in an edge x, the counter values satisfy the following invariant.

Let ¢ be any counter, and consider the (at most one) neighborhood that contains
c-colored edges both before and after x. If this neighborhood exists and has a
profile in the set I, counter ¢ stores the number of edges in the neighborhood
that are before x. Otherwise, counter ¢ stores 0.

It is not difficult to design an automaton that maintains this invariant. It uses the
lookahead to calculate the factorization forest and the profiles of neighborhoods. The
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automaton accepts if any of the counters ¢ is unbounded. (This will also be the case
if the profile of the unique infinite neighborhood belongs to I1.)

We now prove Lemma 22. We only show it when a finite profile is in II, the
criterion for infinite profiles is defined in a similar way. A finite profile is included in
IT if there are elements

S1,82,e,ui,u2, f €S withe, f idempotent (®))

such that s is in the starter type, s», u; are possible factor values, e is a possible
nonempty factor value, (1>, f) is a pair in the remainder type, and (s1s2euquz, f) is
an accepting pair.

It is not difficult to show that the above condition is sufficient for a finite neigh-
borhood with n edges to be n-large. The accepting pair (seu, f) required in property
(*) is defined by s = 5152 and u = uju>, while e and f are as taken from the profile.

For the converse implication, we will show that the profile of an n-large finite
neighborhood belongs to IT. Let y and z be the first and last edges in the neighbor-
hood. Let the positions x; be defined as in (4), and likewise s, e, u, f. Since e is a
possible nonempty value in some factor of the neighborhood, it is a possible non-
empty factor in the profile. Recall that s is a value in w[0..x2]. Since y is between 0
and xp, there must some s1, 52 € S such that s = 5157, 51 is a possible value in w[0..y]
and s> is a possible value in w[y..x2]. Since w[0..y] is the starter, the element s be-
longs to the starter type of w. Since w[y..xz] is a factor of the neighborhood, the
element s is a possible factor value. In a similar way, we show that u can be decom-
posed as u = ujuy for some elements uq, ur € S such that u; is a possible value in
wlx,—1, z] and uy is a possible value in w[z..x,41].

This completes the proof of Lemma 22, and therefore also of Lemma 21. g

5.3 Emptiness for Lookahead limsup Automata

One advantage of eliminating max in a limsup automaton is that emptiness can be
now decided in an elementary and self-contained fashion, without referring to the
complicated machinery in [4]. Below we show how to decide emptiness for lookahead
limsup automata. This procedure also extends to max automata and weak MSO with
the unbounding quantifier, by using the translations from Theorems 17 and 5.

Theorem 23 Emptiness is decidable for lookahead limsup automata.

Proof In the proof we will use nondeterministic limsup automata. Since they cap-
ture nondeterministic Biichi automata, nondeterministic limsup automata are closed
under inverse images of lookahead transducers. Therefore, every lookahead limsup
automaton can be converted into an equivalent nondeterministic limsup automaton
without lookahead.

We will now show that emptiness for nondeterministic limsup automata is in NP-
complete. NP-hardness is immediate, since emptiness is at least as hard as solving
satisfiability for boolean formula in the acceptance condition. We show membership
in NP.
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Fix a nondeterministic limsup automaton .A. Let § be its transitions and Q its
states. Our strategy is to convert each accepting run of A into a certain normal form,
and show that accepting runs in normal form can be found in NP.

Fix an accepting run p € 6“. Let U be the counters which are unbounded (under
the counter operations labeling this run), likewise let B be the bounded counters. For
a position x in p, the state in x is the source state of the transition labeling x. Let
q be a state that appears infinitely often in p. Let x be a position with state g such
that after x every counter in B is either reset infinitely often, or never incremented.
Consider now a counter ¢ € U. Since counter ¢ assumes arbitrarily large values, we
can find arbitrarily long sequences of positions x| < --- < x,, to the right of x which
are labeled by an increment on counter ¢, and such that counter c is not reset between
positions x and x;. Let m be the maximal value assumed by the bounded counters. If
n is chosen greater than m - | B| - | Q|, we can find two positions x; < x; with the same
state ¢, such that each bounded counter is either not incremented between them, or it
is reset at least once. Let . be the part of the accepting run between x and x;. Let p,
be the part of the accepting run between x; and x ;. Let o be the part of the accepting
run between x; and some position y > x; with state g.

Above, we have shown how that if there is a run, then we can find

B.UCC qe€Q {n.€b8 p.€é* 0.€8 ey {qc€ Qlecu (6)

such that B, U satisfy the acceptance condition® in the limsup automaton and the
following conditions hold for each ¢ € U

1. Run 7, goes from g to g, run p. goes from g, to g., and run o, goes from g,
toq.

2. Run p. contains at least one increment and no reset on c.

3. For every counter d € B, run p. contains either no increment, or some reset on d.
Likewise for m.p.0..

Conversely, if we can find elements as in (6), there exists an accepting run, namely
2 2
0 Ty PciOcy * " Ty Py Oc, Ty (,Ocl) O¢y =" T, (;Oc,,) O¢,

where 7 is a run that leads the automaton to state g—we assume all states in A are
reachable—and cy, ..., ¢, is some enumeration of the counters in U.

Therefore, proving the theorem boils down to finding runs as described above, by
a nondeterministic polynomial time machine. The machine uses nondeterminism to
guess the sets B, U, as well as the states g and {g.}ccv . Also, for each counter c € U
the machine nondeterministically guesses sets

‘Sn,c, Sp,c, 80,c cé

which represent the transitions that will be used by the runs n., p., o.. These sets
have to be consistent with condition 3 above. Namely, for every counter d € B, if the

5 Formally speaking, the boolean propositional formula in the acceptance condition is made true by the
valuation which assigns “true” to the counters in B and “false” to the other counters.
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set 8,,. contains a transition that increments d, then it must also contain a transition
that resets d; likewise for the union 6; . U8, U §5 . After doing all this guessing,
the machine has to answer for each ¢ € U the following question: is there a run =,
from ¢ to g, that uses exactly the transitions from 8 .? (And similar questions for
p and o.) These questions can be answered in polynomial time (even deterministic
polynomial time). g

6 Problems with Nondeterminism

In this section we show that nondeterministic max automata are more expressive than
deterministic ones.

Theorem 24 Nondeterministic max automata recognize strictly more languages than
deterministic ones.

Contrast this result with the situation for Muller or parity automata, which are
equally expressive in the deterministic and nondeterministic variants. Since full
monadic second-order can capture nondeterministic automata by existentially quan-
tifying over infinite sets, the above theorem immediately implies:

Corollary 25 Full monadic second-order logic with the unbounding quantifier is
stronger than weak monadic second-order with the unbounding quantifier.

The separating language in Theorem 24 is
L ={a""ba™ba™b...:liminfn; < oo}. @)

This language is captured by a nondeterministic max automaton. The automaton uses
nondeterminism to output a subsequence of n1, ny, . .. and accepts if this subsequence
is bounded.

It remains to show that the language L cannot be recognized by a deterministic
max automaton. For this, we will use topological complexity. In Lemmas 26 and 27,
we will show that every language recognized by a deterministic max automaton is a
boolean combination of sets on level X, in the Borel hierarchy, while the language L
is not.

Below we briefly describe the Borel hierarchy, a way of measuring the complexity
of a subset of a topological space. See [13] for more on the topological approach to
languages of infinite words. The topology that we use on words is that of the Cantor
space, as described below. A set of infinite words (over a given alphabet X)) is called
open if it is a union

le‘Ew, w; € E*,
iel

with the index set I being possibly infinite. In other words, membership of a word
w in an open set is assured already by a finite prefix of w. For the Borel hierarchy,
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as far as max automata are concerned, we will only be interested in the first two
levels X1, ITq, X7, [T5. The open subsets are called X, the complements of these
(the closed subsets) are called IT;. Countable intersections of open subsets are called
I1,, the complements of these (countable unions of closed subsets) are called X.

Lemma 26 Any language accepted by a deterministic max automaton is a boolean
combination of X sets.

Proof Fix a max automaton A, and a counter ¢ of this automaton. We will examine
the topological complexity of the set of runs of this automaton. For any fixed n, the
following set of runs is clearly open:

Counter ¢ has value at least n at some point in the run.
In particular, its complement
Counter ¢ has value at most » at all points in the run.

is a closed set of runs. By taking a countable union of the above over n € N, we
deduce that the property

The values of counter ¢ are bounded.

is a ¥, property. In particular, the set of accepting runs of any max automaton is
a boolean combination of ¥, sets. Since the automata are deterministic, the func-
tion that maps an input word to its run is continuous, i.e. preimages of open sets are
also open. Since preimages of continuous functions preserve the levels of the hierar-
chy, we conclude that any language accepted by a deterministic max automaton is a
boolean combination of X sets. O

Lemma 27 The language L is not a boolean combination of X sets.
Proof Consider the mapping from N® to {a, b} defined by
NN, ... —  a™ba"ba™b. ..

This is a continuous mapping. The preimage, under this mapping, of the language L
is the set of sequences with liminfn; < oco. This set is known not to be a boolean
combination of X sets, see Exercise 23.2 in [11]. O

7 Conclusion

This paper is intended as a proof of concept. The concept is that w-regular languages
can be extended in various ways, while still preserving good closure properties and
decidability. The class presented in this paper, languages recognized by (determin-
istic) max regular automata, is closed under boolean operations, inverse morphisms,
and quotients. It is not closed under morphic images (which corresponds to nonde-
terminism on the automaton side).
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