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Abstract We study local, distributed algorithms for the capacitated minimum dom-
inating set (CapMDS) problem, which arises in various distributed network appli-
cations. Given a network graph G = (V ,E), and a capacity cap(v) ∈ N for each
node v ∈ V , the CapMDS problem asks for a subset S ⊆ V of minimal cardinality,
such that every network node not in S is covered by at least one neighbor in S, and
every node v ∈ S covers at most cap(v) of its neighbors. We prove that in general
graphs and even with uniform capacities, the problem is inherently non-local, i.e.,
every distributed algorithm achieving a non-trivial approximation ratio must have a
time complexity that essentially grows linearly with the network diameter. On the
other hand, if for some parameter ε > 0, capacities can be violated by a factor of
1 + ε, CapMDS becomes much more local. Particularly, based on a novel distrib-
uted randomized rounding technique, we present a distributed bi-criteria algorithm
that achieves an O(log�)-approximation in time O(log3 n + log(n)/ε), where n and
� denote the number of nodes and the maximal degree in G, respectively. Finally,
we prove that in geometric network graphs typically arising in wireless settings, the
uniform problem can be approximated within a constant factor in logarithmic time,
whereas the non-uniform problem remains entirely non-local.
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1 Introduction

In large-scale and highly-decentralized networks, the concept of clustering plays an
important role in a variety of network coordination tasks. In wireless multi-hop net-
works, for instance, self-organized clustering of nodes has been proposed and used
for facilitating communication between nodes in physical proximity (MAC layer pro-
tocols [16]), for enabling efficient routing [32–34]), or to improve localization [7] and
energy efficiency [9]. As different as these applications are, the required structures are
typically based on key primitives and boil down to classic graph-theoretic objects.

Possibly the most well-studied combinatorial optimization problems in this con-
text is the minimum dominating set (MDS) problem. In this problem, given a graph
G = (V ,E), the goal is to choose a subset S ⊆ V of minimal cardinality such that
every node V \ S has at least one neighbor in S. In a sensor network, for instance, if
only nodes in S stay awake, each remaining node can go to an energy-saving sleep-
mode while still having an active node within its communication range.

Although the MDS problem formulation thus captures an important problem do-
main, it has the shortcoming that it allows (in fact, favors) solutions in which some
nodes cover a large number of neighboring nodes. In principle, applying an MDS
algorithm therefore requires that each node can manage all its neighbors, as this situ-
ation may turn out to be the solution. Considering that a cluster center offers a service
to all its “clients”, cluster centers can handle only a limited number of covered nodes.

In this paper, we therefore study distributed approximation algorithms for the ca-
pacitated minimum dominating set problem (CapMDS). In this problem, every net-
work node v ∈ V can cover only a certain number cap(v) of neighboring nodes. The
task is to select a subset S ⊆ V of dominators and to assign each of the remaining
nodes V \S to one of the dominators such that all capacity bounds are satisfied. To the
best of our knowledge, this paper presents the first distributed algorithms and lower
bounds for the capacitated dominating set problem.

In particular, we are interested in devising local, distributed algorithms for the
CapMDS problem or proving the impossibility of such algorithms. A local algo-
rithm is a distributed algorithm that bases its decision only on information in its local
neighborhood (as opposed to requiring global knowledge). Technically speaking, a
distributed algorithm is called local if its distributed time complexity is significantly
smaller than the network’s diameter [18, 25, 29].

We derive a number of results on the distributed complexity and local approx-
imability of the CapMDS problem, both in general graphs as well as in bounded
independence graphs (BIGs). These graphs are a non-geometric generalization of
unit disk graphs (UDG) and more accurately model the communication topologies
encountered in wireless networks. In general graphs, we prove that even the uniform
CapMDS problem cannot be approximated to within a non-trivial approximation ra-
tio by any local algorithm. If small violations of capacities are allowed, much bet-
ter solutions become possible. Specifically, we present a bi-criteria algorithm that
achieves an O(log�)-approximation in time O(log3(n) + log(n)/ε) and violates ca-
pacity constraints by at most a factor of 1 + ε for an arbitrary parameter ε > 0. We
also prove that any distributed algorithm that violates constraints only by a factor
of 1 + ε must have a time complexity of at least �(1/ε · √

logn/ log logn) in or-
der to achieve a polylogarithmic approximation ratio. In contrast to this lower bound
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in general graphs, we show that better solutions are possible for bounded indepen-
dence graphs. In particular, we present a local, distributed algorithm for the uniform
CapMDS problem in such graphs that has constant approximation ratio and polylog-
arithmic time complexity.

In a broader context, these results shed new light on the local approximability of
an important capacitated network problem. Modern distributed systems such as peer-
to-peer networks, wireless sensor networks, or the Internet have grown so large that
in many cases, global requirements, solutions, or equilibria can only be achieved by
local algorithms. Inevitably, if the number of communication rounds is smaller than
the network’s diameter, each node can base its decision only on partial, in fact local
knowledge. This observation evokes the key question of what can and what cannot
be computed locally? [18, 25, 29].

In recent years, the distributed computing community has therefore been interested
in characterizing the local and distributed approximability of combinatorial optimiza-
tion problems, e.g. [6, 10, 20, 24]. Clearly, there exists a trade-off between the amount
of local knowledge and the time-complexity of the distributed algorithm on the one
hand, and the achievable global approximation ratio on the other hand. Our lower
bounds and distributed approximation algorithms characterize this trade-off, thereby
capturing the inherent locality of the CapMDS problem.

The remainder of this paper is organized as follows. An overview of relevant pre-
vious work is given in Sect. 2. The different network and communication models are
introduced in Sect. 3. The main technical contributions are then presented in Sects. 4
and 5 in which we give upper and lower bounds on the distributed approximability of
the CapMDS problem in general graphs and bounded independence graphs, respec-
tively. Finally, Sect. 6 relates our results to known results for the basic MDS problem
and concludes the paper.

2 Related Work

Because of its practical importance in different areas of networking, and in the wake
of a genuine interest in the distributed approximability of combinatorial optimization
problems, there has recently been a lot of work on distributed algorithms for finding
minimum dominating sets.

MDS–General Graphs: Since any maximal independent set (MIS) constitutes a
dominating set in a graph, the earliest distributed algorithms for the MDS problem
are in fact the classic distributed MIS algorithms in [1, 27]. These algorithms compute
a MIS in time O(logn), but they do not provide any non-trivial approximation guar-
antees in general since the size of a MIS can be by a factor of n larger than the size of
an optimal MDS in general graphs. Several subsequently proposed distributed MDS
algorithms also provide either no guarantees on the time complexity or on the approx-
imation guarantees [23, 34]. The first distributed algorithm with both bounded time
complexity and approximation guarantees was given by Jia et al. [17]. This random-
ized algorithm achieves an approximation ratio of O(log�) in time O(logn log�),
where n is the number of nodes and � is the largest degree in the network. Later
these bounds were improved by Kuhn et al. [20, 22]. In particular, the work in [20]
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presents a local algorithm that, for any constant k, achieves an approximation factor
of O(�1/

√
k log�) in time O(k). On the other hand, it was shown by Kuhn et al.

in [18] that this is close to optimal since there exists no distributed algorithm with
running time k that can achieve a better approximation ratio than �(�1/k/k).

MDS–Geometric Graph Classes: For the unit disk graph and generalizations
thereof, a multiplicity of algorithms have been proposed. Again, most of the earlier
proposals have the property that in the worst case, they either have linear time com-
plexity (i.e., are not local) [2, 32] or achieve no non-trivial approximation guarantees
[8, 34]. There has recently been a series of work trying to establish the exact power
of local algorithms in unit disk graphs, and interestingly, it turns out that this power
depends on the amount of additional information given to the nodes. Three models
have been studied:

• If nodes know their location or coordinates, a straightforward single-round algo-
rithm can compute a constant approximation to the MDS problem [19].

• If nodes have only distance information to their neighbors, it was shown by Gao et
al. that a constant approximation can be computed in time O(log logn) [12]. This
was later improved to O(log∗n) in [19].1

• If nodes do not have any such extra information, deterministic and randomized lo-
cal, constant-approximation algorithms with time complexities of O(log� log∗ n)

and O(log logn log∗ n) were proposed in [21] and [14], respectively. Most recently,
it was shown in [31] that even without distance information, a constant approxima-
tion can be computed in time O(log∗ n). Furthermore, this was shown to be optimal
as shown by a matching lower bound of �(log∗ n) in [24].

The problem has also been studied in harsher radio network models that allow for
possible collisions of (wireless) messages. The work in [11] proposed an algorithm
that computes a constant approximation to the connected dominating set problem
in polylogarithmic time. In an even harsher model of computation, [28] presents an
algorithm with time complexity O(log2 n) for computing a maximal independent set
in unit disk graphs.

Capacitated MDS: In contrast to the regular dominating set problem, there ex-
ists no previous work on the distributed computation of capacitated dominating sets.
Centralized approximation algorithms for the problem were given by Bar-Ilan et al.
in [4] and [5], respectively. More specifically, the work in [4] presents approximation
algorithms for a variety of NP-hard capacitated network center allocation problems.
For the capacitated dominating set problem with uniform capacities, they give an ele-
gant greedy algorithm, which achieves an optimal approximation ratio of lnn, unless
NP = DTIME(nO(log logn)). The only paper that studies the distributed approxima-
bility of a capacitated covering problem is the work of Grandoni et al. [15] on the
capacitated vertex cover problem.

1The function log∗n is defined as the number of times we have to take the logarithm before the value
decreases below 2. For instance, if log logn > 2 and log log logn < 2, then log∗n = 3.
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3 Model and Definitions

We model the network as a graph G = (V ,E), where vertices and edges represent net-
work nodes and communication links, respectively. Every node has a unique identifier
ID(v) (for instance its IP-address) and, at the outset of the algorithm, has no global
knowledge about the network. For the sake of simplicity, we consider the standard
synchronous message passing model in which time is divided into communication
rounds. In each round, a node can send a message to all its neighbors. However, note
that at the cost of higher message complexity, our algorithms can also be deployed in
asynchronous settings without deteriorating their time complexity using the notion of
synchronizers [3]. As for notation, d(u, v) denotes the shortest hop-distance between
two nodes u and v. For any r ≥ 0, and v ∈ V , we define the (closed) r-neighborhood
�r(v) := {u ∈ V | d(u, v) ≤ r}. As a special case, the 1-neighborhood �1(v) consists
of v and all its direct neighbors and is abbreviated as �(v).

In a graph G = (V ,E), a dominating set S ⊆ V is a subset of the nodes such that
every node is either in S or has at least one neighbor in S. The Minimum Dominating
Set Problem asks for a dominating set of minimal cardinality and is known to be
NP-hard [13]. In the capacitated minimum dominating set problem (CapMDS), each
node v ∈ V has a capacity that places an upper bound on the number of neighboring
nodes that v can cover.

Definition 3.1 Consider a graph G = (V ,E). For every node v ∈ V , let cap(v) ≥ 1
be the capacity of v. A capacitated dominating set (CapDS) is a subset S ⊆ V and a
mapping φ : V → S, such that φ(v) ∈ �(v) for all v ∈ V and |{u|φ(u) = v}| ≤ cap(v)

for all v ∈ S holds. The CapMDS problem asks for a CapDS with a set S of minimum
cardinality.

The CapMDS problem can be formulated as the following integer linear program
ILPCapDS:

min
∑

vi∈V

xi,

∑

vj ∈�(vi)

yji ≥ 1, ∀vi ∈ V, (1)

∑

vj ∈�(vi)

yij ≤ xi · cap(vi), ∀vi ∈ V, (2)

yij ≤ xi, ∀vi, vj ∈ V, (3)

xi, yij ∈ {0,1}, ∀vi, vj ∈ V. (4)

The communication graphs formed by wireless networks are much more struc-
tured than captured by general graphs. In particular, if two nodes are physically too
far from each other, there is guaranteed to be no direct communication link. More-
over, if there are many nodes in close physical proximity, not too many of them can
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be mutually independent.2 The frequently studied unit disk graph captures these in-
tuitions, but tends to be a too optimistic and rigid model. In this paper, we study a
more general family of graphs to model wireless networks.

Definition 3.2 (Bounded Independence Graph [21]) A graph G is called f -indepen-
dence-bounded if there is a function f (r) such that every r-neighborhood �r(v) of
G contains at most f (r) independent (i.e., pairwise non-adjacent) nodes. A graph G

has polynomially bounded independence if f (r) is a polynomial in r .

An alternative characterization of a BIG is that there exists a constant C such
that every 2-hop neighborhood of any node contains at most C pairwise independent
nodes. It is clear that for an BIG, C ≤ f (2). On the other hand, it is not difficult to see
that the cardinality of the largest independent set in a r-hop neighborhood is at most
Cr (per induction, because the 2-hop neighborhood of all MIS-nodes in a (r − 1)-
neighborhood cover the entire r-hop neighborhood.). Note that f (r) depends neither
on n nor on any other property of G. Hence, for constant r , the number of indepen-
dent nodes in an r-neighborhood is constant. Further, notice that an f -independence
bounded graph is K1,f (1)+1-free.

The advantage of the BIG model compared to the unit disk graph model is that it
does not imply an explicit geometry and therefore, obstacles or irregular signal prop-
agation are easily captured in the BIG model. For instance, Fig. 1 shows a network
topology that can easily be modeled as a BIG, but does not form a unit disk graph.
By a standard area argument, it follows that for unit disk graphs

fUDG(r) ≤ (r + 1
2 )2π

π/4
= 4

(
r + 1

2

)2

.

For general d-dimensional Euclidean spaces, the corresponding independence func-
tion is f (r) ∈ O(rd) and a constant degree graph with maximum degree � has an
independence function of f (r) ∈ O(�r).

Finally, a maximal independent set (MIS) is a subset R ⊆ V in which every node
v /∈ R has at least one neighbor in R, but any two nodes in R are independent. While

Fig. 1 A bounded
independence graph with
f (1) = 4 and f (2) = 7. No
node u has more than 4 and 7
mutually independent nodes in
its one and two-hop
neighborhood, respectively

2Two nodes u and v are independent if there is no link (u, v) ∈ E. A set of nodes W ⊆ V is mutually
independent if there is no link between any two nodes in W .
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in a centralized scenario, finding a MIS is completely trivial—pick an arbitrary node
and discard all its neighbors from the graph, and repeat this process until there are
no more nodes left—, the MIS problem is a core problem in distributed comput-
ing because it prototypically captures the fundamental notion of symmetry breaking
[25, 27].

4 General Graphs

In this section, we derive upper and lower bounds on the distributed approximability
of the capacitated minimum dominating set problem in general graphs.

4.1 Lower Bounds

Consider the capacitated version of the minimum vertex cover problem. On a sim-
ple ring network, it can easily be seen that this problem is inherently non-local and
therefore cannot be efficiently solved by a distributed algorithm: If every node has a
capacity of 1 on a ring, all nodes in the ring have to decide on a common direction
in order to be able to cover all edges. However, finding such a common direction
requires knowledge about the entire ring. In contrast, the capacitated dominating set
problem intuitively appears to be a much more “local” problem, because every node
is capable of covering itself. However, the following theorem proves that the capaci-
tated dominating set is inherently non-local, too, even if capacities are uniform.

Theorem 4.1 There are graphs G, such that in k communication rounds, every (pos-
sibly randomized) distributed algorithm for the minimum capacitated dominating set
problem on G has approximation ratios at least

�

(
n

k2

)
and �

(
�

k

)
,

even if capacities are uniform.

Proof For every k > 0, consider a graph Ik as illustrated in Fig. 2. We assume for ease
of presentation that k is even, the case where k is odd is analogous. Ik is defined as
follows. The node set is partitioned into k + 2 clusters C1, . . . ,Ck+2 each containing
m nodes. Additionally, there are k + 1 connecting nodes v1, . . . , vk+1. There is an
edge between a connecting node vi and every node in Ci and Ci+1. Finally, there is
a designated connecting node v0 that has a link to either all nodes in C1 or all nodes
in Ck+2. Let the capacity of all nodes v ∈ V be cap(v) = m + 1.

Let v∗ denote the connecting node vk/2+1 in the middle of the graph. After com-
municating for k rounds, every node has only knowledge about its k-hop neighbor-
hood. By the definition of Ik , neither v∗ nor any of its neighbors knows the location
of v0. Therefore, the decision of which nodes v∗ covers cannot depend on the location
of v0.

Consider the nodes that are covered by v∗. Because cap(v∗) = m + 1, at most
m/2 nodes are covered by v∗ in either Ck/2+1 or Ck/2+2. Without loss of generality,



818 Theory Comput Syst (2010) 47: 811–836

Fig. 2 The structure of lower-bound graph Ik

assume that v∗ covers at most m/2 nodes in Ck/2+2. If v0 is connected to C1 as in
Fig. 2, there are at least (k/2 + 1)m nodes to the right of v∗ that must be covered, but
there are only k/2 connecting nodes vj for j > k/2 + 1, each of which can cover at
most m + 1 nodes. The total number of nodes to the right of v∗ that can be covered
by connecting nodes is therefore at most k/2 · (m + 1) + m/2. Therefore, at least
(m − k)/2 nodes in the clusters to the right of v∗ must cover themselves and hence,
ALG ≥ (m − k)/2. The optimal solution can cover all nodes using only connecting
nodes. Because of n = (m + 1)(k + 2), the approximation ratio α of every k-local
distributed algorithm is therefore at best

α ≥ (m − k)/2

k + 2
=

n
k+2 − k − 1

2(k + 2)
∈ �

(
n

k2

)
.

The second bound follows due to � = 2m. �

Theorem 4.1 essentially thwarts all our hopes of devising a local approximation
algorithm with non-trivial guarantees in general graphs. In the sequel, we therefore
focus on the question whether there exist substantially better solutions once we al-
low small violations of the capacity constraints. As it turns out, even in this case, no
constant-time distributed algorithm can approximate CapMDS within a polylogarith-
mic approximation ratio.

In order to prove this result, we present a locality-preserving reduction [18] from
CapMDS with (1 + ε)-violations to the fractional minimum vertex cover (MVC)
problem. In this problem, given a graph G = (V ,E), we need to assign a fractional
value 0 ≤ ai ≤ 1 to each node vi ∈ V such that each edge is covered, i.e., for each
(u, v) ∈ E, it holds that au + av ≥ 1. The goal is to minimize

∑
v∈V av .

Our locality-preserving reduction shows that a local distributed algorithm for solv-
ing CapMDS with (1+ ε)-violations can be used to devise a local distributed approx-
imation algorithm for MVC. Since it has been proven that no such distributed MVC
algorithm exists, our theorem rules out the existence of any corresponding local Cap-
MDS approximation algorithm.

Locality-preserving reduction: Given a graph G = (V ,E) with |V | = n and maxi-
mal degree �. Construct a graph HG = (VH ,EH ) as follows. Define two parameters
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Fig. 3 Each edge e = (vi , vj ) ∈ E is replaced by an edge-chain of width β + 1 and height α. Nodes in
clusters Ci and Cj form cliques

β = 1/(2ε) and α = �/ε. For each node vi ∈ V , HG contains a clique Ci of α nodes
Ci = {v̂1

i , . . . , v̂
α
i }. For each edge eij = (vi, vj ) ∈ E in G, connect the cliques Ci and

Cj as shown in Fig. 3: Node v̂

i ∈ Ci is connected to a node w


e,1, and node v̂

j ∈ Cj is

connected to w

e,β+1. For every edge e ∈ E, HG additionally contains β − 1 clusters

each containing α nodes w

e,g , for g = 2, . . . , β and 
 = 1, . . . , α, and β center-nodes

ce,1, . . . , ce,β . For all 
 = 1, . . . , α, HG contains edges (ce,g,w


e,g) and (ce,g,w



e,g+1).

We call this construction for each edge in G an edge-chain in HG. All nodes in HG

have capacity α + 1.
For the locality preserving reduction from CapMDS to MVC, we need the follow-

ing definitions. Given a graph G, let OVC(G) and OCap(HG) be the optimal solutions
to the MVC problem on G and the CapMDS problem on corresponding HG, respec-
tively. Furthermore, let AVC(G) be the MVC solution in G computed by a (possibly
randomized) distributed algorithm with time complexity at most k, and let ACap(HG)

denote the solution to the CapMDS problem with (1 + ε)-capacity violations on HG

by a (possibly randomized) distributed algorithm with time complexity k/ε.
The first lemma bounds the relative size of the optimum solution in G and HG.

Lemma 4.2 For a graph G and its corresponding HG, it holds that OCap(HG) ≤
5
2α · OVC(G).

Proof Given an optimal solution OPT to MVC, construct a solution S to CapMDS
of size at most 3α · OVC(G) as follows. For every node vi ∈ V with value xi in OPT ,
select αxi nodes from the corresponding clique Ci in HG and use these nodes to
cover all of its adjacent nodes on each incident edge-chain. This is possible due to
α ≥ �. In addition, select all center-nodes ce,g for each edge e ∈ E and finally, select
one arbitrary node from each clique Ci , vi ∈ V to the capacitated dominating set.

The union of nodes thus selected can cover all nodes in HG and hence, forms
a feasible solution to the CapMDS problem on HG. Specifically, because OPT is
a feasible MVC solution, every edge in G is covered and hence, at least α nodes
on each edge-chain in HG are covered by nodes v̂


i ∈ Ci . The remaining βα nodes
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in every edge-chain can be covered by its β selected center-nodes. Finally, a single
node selected in each clique Ci , vi ∈ V suffices to cover the remaining clique nodes.

The number of edges in G (and hence, edge-chains in HG) is at most �OVC(G).
Because αxi + 1 nodes are selected from each clique Ci , the size of S is upper
bounded by

|S| ≤ αOVC(G) + β�OVC(G) + n

≤ 5

2
α · OVC(G),

because of n ≤ �OVC(G) and the definitions of α and β . �

In the sequel, let ρG(k) be defined as the maximum value such that for any ran-
domized distributed algorithm ALG with expected running time at most k, it holds
that AVC(G) ≥ ρG(k) · OVC(G). In other words, ρG(k) denotes the best achievable
approximation ratio by any such k-local MVC algorithm on G. The following lemma
shows that given an efficient (k/ε)-local CapMDS algorithm, a k-local MVC algo-
rithm with good approximation ratio can be constructed.

Lemma 4.3 Given a graph G and corresponding HG, every (possibly randomized)
distributed algorithm with time complexity at most O(k/ε) produces a solution to the
(1 + ε)-violated CapMDS problem of size ACap(HG) ≥ 1

2 (α − 1)ρG(k) · OVC(G).

Proof Assume for contradiction that there is a distributed algorithm ALGCap

whose solution ACap(HG) after k/ε communication rounds is of size less than
1
2 (α − 1)ρG(k) · OVC(G). Using ALGCap we can construct a distributed MVC al-
gorithm ALGVC for G with time complexity k whose solution is of size AVC(G) <

ρG(k)OVC(G), which contradicts the definition of ρG(k).
Given ALGCap, ALGVC proceeds as follows. Each node vi ∈ V collects in time

k its entire k-hop neighborhood. It then locally constructs the (k/ε)-hop neighbor-
hood of a graph HG using an arbitrary assignment of identifiers to nodes wi

e,g and
ce,g on its incident edge-chains and simulates ALGCap on this local part of HG. Let
ACap(HG) be the outcome of this simulation. Without loss of generality, we can as-
sume that only clique nodes v̂


i and center nodes ce,g are chosen as dominators in
ACap(HG). The reason is that any solution containing nodes wi

e,g can be transformed
into a solution of less or equal size in which the dominating set is formed only of
nodes v̂


i and ce,g in time O(β) = O(1/ε). Each node vi then transforms the resulting
CapMDS solution to a MVC solution by setting its local variable ai := 2

α−1

∑α
j=1 x


i ,

where x

i is the primal value assigned to v̂


i .
We now show that the assignment vector a = (a1, . . . , an) forms a feasible so-

lution to the MVC problem on G. The number of nodes on each edge-chain eij is
(β + 1)α + β . Without violating their capacity constraints, the center nodes ce,g

can cover β(α + 1) of these nodes in total. If each center node is allowed to vi-
olate its capacity constraints by a factor of (1 + ε), the number of nodes on the
edge-chain covered by center nodes is at most β(α + 1)(1 + ε). Hence, at least
(β + 1)α + β − β(α + 1)(1 + ε) = α − (α + 1)βε = α−1

2 nodes must be covered
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using clique nodes x

i ∈ Ci and x


j ∈ Cj . For each edge eij ∈ E, it therefore holds

that
∑

v̂

i ∈Ci

x

i + ∑

v̂

j ∈Cj

x

j ≥ α−1

2 and consequently, ai + aj ≥ 1.

As ACap(HG) consists of clique nodes and center nodes, it holds that ACap(HG) >∑
vi∈V

∑
v̂

j ∈Ci

x

j . The size AVC(G) of the resulting MVC solution is at most

AVC(G) =
∑

vi∈V

ai ≤
∑

vi∈V

(
2

α − 1

α∑


=1

x

i

)

<
2

α − 1
· ACap(HG).

The proof is now concluded by observing that if ACap(HG) < α−1
2 ρG(k)OVC(G),

then AVC(G) < ρG(k)OVC(G), which contradicts the definition of ρG(k). �

Combining the results obtained in Lemmas 4.2 and 4.3 allows us to derive a hard-
ness of distributed approximation result on CapMDS with (1 + ε)-violations by re-
duction to a known result on MVC.

Theorem 4.4 For every ε ≥ 1 and some constant c, there are graphs H with n nodes
such that every (possibly randomized) distributed algorithm with time complexity at
most k/ε has an approximation ratio γ at least

γ ∈ �

(
nc/k2

k

)

for the CapMDS problem in which capacities can be violated by a factor of 1 + ε.

Proof It has been shown in [18] that there exist graphs G with nG nodes and maxi-
mum degree �G in which no (possibly randomized) distributed algorithm with run-

ning time k can achieve an approximation ratio better than ρG(k) ∈ �(n
c′/k2

G /k).
For such a graph G, construct the corresponding graph HG. By Lemma 4.2, it
holds that OCap(HG) ≤ 5

2α · OVC(G). Furthermore, we know from Lemma 4.3 that
ACap(HG) ≥ 1

2αρG(k) · OVC(G) for any distributed algorithm with running time at
most k/ε. Finally, the number of nodes n in HG is

n = O

(
nG�α

ε

)
= O

(
nG�2

ε2

)
= O

(
n3

G

ε2

)
.

Plugging in these values in the above bounds and adjusting c′ to an appropriate c′′
yields a lower bound of �((εn)c

′′/k2
/k). Because n > nG/ε2, we know that ε >

1/
√

n and we obtain the theorem by appropriately adapting the constant c′′. �

Finally, solving the approximability lower bound of Theorem 4.4, we can derive
the following time lower bound on any distributed algorithm that achieves a polylog-
arithmic approximation to the CapMDS problem with (1 + ε)-violations.
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Corollary 4.5 Consider an ε ≥ 1. Every distributed algorithm for the CapMDS prob-
lem that achieves an approximation ratio of O(polylog(n)) and violates capacity
constraints by at most a factor of (1 + ε) must have a time complexity of at least

�( 1
ε

√
logn

log logn
) communication rounds.

In the following subsection, we present a distributed algorithm whose approxima-
tion ratio is within a polylogarithmic ratio of this lower bound.

4.2 Upper Bounds

The lower bound established by Theorem 4.4 is much weaker than the one in
Theorem 4.1 which raises hope that, indeed, moderate relaxations of the capac-
ity constraints can significantly improve the approximability of the problem. In
this section, we present a local distributed approximation algorithm that runs in
O(log3(n) + log(n)/ε) communication rounds and computes an O(log�) approxi-
mation, while violating the capacity constraints by a factor of at most 1 + ε.

The algorithm works in two phases. First, we compute a solution for the linear pro-
gramming relaxation of the integer LP ILPCapDS. This results in a fractional solution
to the CapMDS problem where the variables xi and yij can have arbitrary values in
[0,1], i.e., (4) of ILPCapDS is relaxed to xi, yij ∈ [0,1]. We denote the LP version of
ILPCapDS by LPCapDS. In a second phase, we then round this fractional solution to an
integer one. Both phases make use of a distributed network decomposition algorithm
which was proposed by Linial and Saks in [26]. The rest of this section is organized
as follows. We first summarize the main properties of the network decomposition de-
scribed in [26]. Using this algorithm, we then show how to compute an approximate
solution for LPCapDS and we show how to round the fractional solution to an integer
one.

Distributed Network Decomposition

Let G = (V ,E) be a graph with n = |V | nodes. The basic building block of the
algorithm in [26] is a randomized algorithm A(p,R) which computes a subset S ⊆ V

as well as a mapping of each node u ∈ S to some leader node 
(u) ∈ V . The following
properties hold for arbitrary parameters p ∈ [0,1] and R ≥ 1:

1. ∀u ∈ S : dG(u, 
(u)) ≤ R.
2. ∀u,v ∈ S : 
(u) �= 
(v) =⇒ (u, v) �∈ E.
3. S can be computed in O(R) rounds.
4. ∀u ∈ V : P [u ∈ S] ≥ p(1 − pR)n.

Thereby dG(u, v) denotes the distance between two nodes u and v in G. Algorithm
A(p,R) computes a set of clusters of nodes such that nodes of different clusters are
at distance at least 2 and any two nodes of the same cluster are at distance at most
2R in G. Moreover, every node belongs to some cluster with probability at least
p(1 − pR)n. Note that the algorithm does not bound the diameter of the graph which
is induced by the nodes of a given cluster. It merely bounds the distance on G between
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any two nodes of the same cluster. The maximal distance dG in a graph G between
any two nodes of a cluster of nodes of G is called the weak diameter of the cluster.

We will invoke A(p,R) on graphs Gk where G is the graph on which we want
to solve CapMDS. Because nodes in Gk are connected by an edge whenever their
distance in G is at most k, a single communication round on Gk can be simulated by
k communication rounds on G. When applied to Gk , Algorithm A(p,R) therefore
computes clusters of weak diameter kR and the distance between two nodes in differ-
ent clusters is larger than k (both with regard to G). The time complexity of A(p,R)

on Gk is O(kR).

Solving the Linear Program

The basic approach for our distributed solution of the LP relaxation of CapMDS is as
follows. We use the clusters constructed by Algorithm A(p,R) to divide the given LP
into a set of smaller LPs which can be solved efficiently by a distributed algorithm.
By choosing the parameters p and R in the right way and by doing sufficiently many
parallel executions of A(p,R), we can combine the solutions of all small local LPs to
obtain an approximate solution of the original global LP. This technique has already
been applied successfully for the LP of the classical dominating set problem without
capacities in [20].

Let S ⊆ V be the subset of nodes which is selected in an execution of A(p,R)

on G2. Consider a subproblem LPCapDS[S] of the original LP LPCapDS where only
nodes in S have to covered, that is, we change LPCapDS such that Condition (1)
(
∑

vj ∈�(vi)
yji ≥ 1) only needs to hold for all nodes vj ∈ S. Lemma 4.6 shows that

LPCapDS[S] can be solved efficiently.

Lemma 4.6 Given the node set S of an execution of A(p,R), an optimal solution of
LPCapDS[S] can be computed in 4R + 2 rounds.

Proof Let Ci for i = 1, . . . ,C(S) be the clusters induced by S where C(S) denotes
the number of clusters of S. Because nodes of different clusters Ci and Cj are at
distance at least 3, the sets of nodes which can cover nodes in Ci and the set of
nodes which can cover nodes in Cj are disjoint. We can therefore solve LPCapDS[S]
by solving LPCapDS[Ci] for each cluster Ci and sum the solutions of all clusters. Let

i be the leader node of a cluster Ci , i.e., u ∈ Ci → 
(u) = 
i . Because the distance
on G2 between any node u ∈ Ci and 
i is at most R, all information needed to solve
LPCapDS[Ci] is at distance 2R +1 from 
i . In 4R +2 communication rounds, node 
i

can therefore collect its complete (2R+1)-neighborhood, locally compute an optimal
solution of LPCapDS[Ci], and send this information back to the nodes of its (2R + 1)-
neighborhood. Given the set S, we can therefore compute an optimal solution for
LPCapDS[S] in time 4R + 2. �

The following theorem shows that by invoking A(p,R) sufficiently many times
with the right choices of p and R, LPCapDS can be well approximated if we allow a
small violation of the capacities.
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Theorem 4.7 If capacities are allowed to be violated by a factor of 1 + ε, it is pos-
sible to compute a (1 + ε)-approximation of the linear programming relaxation of
CapMDS in O(log(n)/ε) rounds with high probability.

Proof Consider K independent, parallel executions of A(p,R) on G2 that result in K

node sets S1, . . . , SK . Let ki be the number of times, a node vi occurs in one of the
sets, i.e., ki = |{h ∈ [K]|vi ∈ Sh}|. Further let kmin = mini ki . Assume that we choose
K large enough such that kmin ≥ 1. By Lemma 4.6, we can solve all LPs LPCapDS[Sh]
for h ∈ [K] in 4R + 2 rounds. Note that we can solve all K LPs in parallel. Let x

(h)
i

and y
(h)
ij be the values of the variables xi and yij in the solution of LPCapDS[Sh]. As

a first step we combine the solutions of LPCapDS[Sh] to get a solutions of LPCapDS as
follows. We sum the variables of the LPs LPCapDS[Sh] to get variables x̂i and ŷij :

∀vi, vj ∈ V : x̂i =
K∑

h=1

x
(h)
i and ŷij =

K∑

h=1

y
(h)
ij .

Because Inequalities (2) and (3) hold for the variables x
(h)
i and y

(h)
ij , they also hold for

the variables x̂i and ŷij . Inequality (1) which states that every node has to be covered
becomes

∀vi ∈ V :
∑

vj ∈�(vi)

ŷj i ≥ ki . (5)

In order to have every node be covered exactly once, we define

yij := ŷij

kj

and xi := x̂i · max
vj ∈�(vi)

yij

ŷij

≤ x̂i

kmin
. (6)

Inequalities (1) and (3) are now satisfied and instead of Inequality (2), the following
inequality holds for all vi ∈ V :

∑

vj ∈�(vi)

yij ≤ maxvj ∈�(vi) kj

minvj ∈�(vi) kj

· xi · cap(vi)

≤ K

kmin
· xi · cap(vi).

We therefore have to allow to violate the capacity constraints by a factor of K/kmin.
For vi ∈ V , let x∗

i be the value of variable xi in an optimal solution of LPCapDS.

Recall that x
(h)
i is the value of xi in an optimal solution of LPCapDS[Sh]. For all h, we

therefore get
∑

i x
(h)
i ≤ ∑

i x
∗
i and thus by Inequality (6),

∑

vi∈V

xi ≤ 1

kmin
·

K∑

h=1

∑

vi∈V

x
(h)
i ≤ K

kmin
·
∑

vi∈V

x∗
i .



Theory Comput Syst (2010) 47: 811–836 825

By allowing to violate the capacities by a factor of K/kmin, we can therefore com-
pute a K/kmin-approximation in time O(R). It remains to set p, R, and K such that
K/kmin ≤ 1 + ε w.h.p.

Let p = e−αε , R = β ln(n)/ε, and K = γ ln(n)/ε2 for constants α, β , and γ , and
let q := p(1 − pR)n. For any node vi and any set Sh, we have P [vi ∈ Sh] ≥ q . By
choosing p and R as given, we obtain

q = e−αε ·
(

1 − 1

nαβ

)n

≥ e−2αε ≥ 1 − 2αε (7)

if we choose β such that nαβ ≥ (1 + o(1)) · n/(αε). Note that we can assume that
ε ≤ n (the lemma becomes trivial for ε > n) and therefore get β ∈ O(1) if α ∈ O(1).
Let μ(ki) ≥ q · K be the expected value of ki . We can bound the probability that
ki < (1 − δ)μ(ki) by using the Chernoff inequality and Inequality (7):

P [ki < (1 − δ)μ(ki)] ≤ e− μ(ki )δ
2

2 ≤ e− (1−2αε)Kδ2
2 .

We choose K = γ ln(n)/ε2 and δ ∈ O(ε) such that 1/(1 + ε) = (1 − δ)(1 − 2αε) and
obtain

P

[
K

kmin
> 1 + ε

]
≤ n · e− (1−2αε)Kδ2

2 ≤ 1

nc
.

for an arbitrary constant c by using a union bound argument and by choosing the
constants α and γ appropriately. �

Rounding

Having found a solution for LPCapDS, the next step is to convert the computed frac-
tional solution into an integer one. For this, we develop a novel distributed random-
ized rounding technique that consists of two steps. First, we only round the variables
xi to values in {0,1} but still allow the variables yij to be fractional. Thus, we select
a dominating set but still allow the assignment to be fractional. We then round the
assignment of nodes to dominators in a second step.

While solving the LP only requires a small multiplicative violation of the capacity
constraints, we also have to allow additive violations of the capacity constraints for
the rounding. We say that the capacity constraints of a solution of LPCapDS are (ρ,β)-
violated if instead of Inequality (2), we have

∀vi ∈ V :
∑

vj ∈�(vi)

yij ≤ xi · (ρ · cap(vi) + β
)
. (8)

Assume that we start the rounding process with an α-approximate solution of
LPCapDS with (ρ,β)-violated capacity constraints. Let us denote the variables before
the rounding by xi and yij and the variables after the rounding by x′

i and y′
ij . Recall

that before the rounding each node vi only knows its own (fractional) variables xi

and yij , for all neighbors vj .
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To round the variables xi , we use a standard randomized rounding technique which
has been introduced in [30] and which has been adapted to a distributed context
in [22]. The basic idea is to interpret the values of the variables xi as probabilities
for the nodes to join the dominating set. The details of this distributed randomized
rounding are given by Algorithm 1 which is executed by all nodes vi .

Lemma 4.8 When applied to an α-approximate solution with (ρ,β)-violated capac-
ities, Algorithm 1 computes a new solution of LPCapDS with integer variables x′

i and
(ρ,β +1)-violated capacity constraints in 1 round. The expected approximation ratio
of the computed solution is α ln(� + 1) + 1.

Proof Let us first consider the situation after Line 4 of Algorithm 1. The violation
of the capacity constraints is not affected by changing the variables xi and yij to
x′
i and y′

ij in Lines 2 and 3, respectively. Because xi and yij are multiplied by the
same factor, Inequality (8) holds for the variables x′

i and y′
ij if it holds for the vari-

ables xi and yij . The expected number of nodes in the dominating set after Line 4 is
ln(� + 1) · ∑i xi .

Let qi be the probability that a node vi is not covered after Line 4, i.e., qi is
the probability that the condition in the if statement in Line 5 is true for vi . The
probability qi can be bounded as follows (δi denotes the degree of vi ):

qi =
∏

vj ∈�(vi)

(
1 − pj

yij

xi

)

≤
∏

vj ∈�(vi)

(
1 − yij ln(� + 1)

)

≤
(

1 −
∑

vj ∈�(vi)
yij ln(� + 1)

δi + 1

)δi+1

≤
(

1 − ln(� + 1)

δi + 1

)δi+1

≤ e− ln(�+1)

= 1

� + 1
.

Algorithm 1 Selecting the Dominating Set

1: pi := min
{
1, xi · ln(� + 1)

}

2: x′
i :=

{
1 with probability pi

0 otherwise
3: ∀vj ∈ �(vi) : y′

ij := yij · x′
i/xi

4: send x′
i , y

′
ij for vj ∈ �(vi) to all neighbors

5: if
∑

vj ∈�(vi)
yji < 1 then

6: x′
i := 1; y′

ii := 1
7: fi
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The expected number of nodes which are added to the dominating set in Line 6 there-
fore is at most n/(� + 1). Note that since every node can cover at most �+ 1 nodes,
every capacitated dominating set has size at least n/(� + 1). The expected approxi-
mation ratio of the computed solution therefore is α ln(� + 1) + 1 as claimed.

To conclude the proof, let us now consider the capacity violation caused by Line 6.
Assume that a node vi has to cover itself in Line 6. If vi has already set x′

i = 1 but
has not covered itself before coming to Line 6, it might already exhaust its capacity.
Setting y′

ii = 1 in Line 6 can therefore cause an additional additive capacity violation
of 1. �

Having selected the nodes for the capacitated dominating set, it remains to convert
the fractional assignment of nodes to dominators into an integer assignment. We first
consider the problem of rounding the assignments in a non-distributed fashion and
then show how to obtain a distributed algorithm.

W.l.o.g., we can assume that nodes are covered exactly once, i.e., we can assume
that Inequality (1) holds with equality, because, if for some vi ,

∑
vj ∈�(vi)

y′
ji > 1,

we can decrease the values of the variables y′
ji in order to obtain equality. Let

D = {vi |x′
i = 1} be the nodes selected as dominators. Consider the following directed

acyclic graph H . Graph H has |D|+n+ 2 nodes, a node pi for every vi ∈ D, a node
qi for every vi ∈ V , and two nodes s and t . There is an arc from s to every node pi ,
there is an arc from a node pi to qj if there is an edge between vi and vj in G, and
there is an arc between every node qi and t .

The problem of assigning nodes to dominators can be considered as a maximal
(s, t)-flow problem on H in which the flow capacities of arcs from s to pi are cap(vi)

(or ρcap(vi) + β if we allow a (ρ,β)-violation of the capacity constraints) and the
flow capacities of all other arcs are 1. The fractional assignments y′

ij induce the fol-
lowing flow on H . The flow on an arc from pi to qj is y′

ij and consequently, the flow
from s to a node pi is

∑
vj ∈�(vi)

y′
ij and the flow from nodes qi to t is 1.

The fractional flow induced by the fractional assignment given by the variables
y′
ij can be converted into an integer flow step-by-step using the following simple

algorithm. Let us call an arc with a fractional flow, a fractional arc. Note that the total
flow at each node of H is an integer (the total flow is n at s and t and 0 at all inner
nodes). Therefore, every fractional arc of H must lie on a cycle consisting only of
fractional arcs. Consider such a cycle C = (a1, . . . , at ) of fractional arcs. Let ai be the
arc of C whose flow is closest to an integer value and let ξi be the difference between
the flow of ai and this integer value. We can traverse the cycle C and depending on
the direction in which we traverse an arc aj add +ξi or −ξi to the flow of aj such that
the total flow at every node remains the same and such that the flow of ai is rounded
to an integer. Note that by the choice of arc ai and because the flow capacities of
all arcs are integers, we do not violate any of the capacities when adapting the flow
values like that. The described method eventually constructs an integer flow because
in each step, the number of fractional arcs of H is reduced by at least one.

The above rounding scheme is inherently centralized and when trying to imple-
ment it using a distributed algorithm, we face two main problems. First, in k rounds,
nodes can only detect cycles of length at most 2k. Second, even if all fractional cycles
were short, in order to have enough parallelism, a large number of cycles needs to be
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handled simultaneously. Unfortunately, the only solution for the first problem is to
only look at short cycles and to round fractional arcs which do not lie on short cycles
by some other method. The second problem can be solved by again using the net-
work decomposition algorithm from [26] described at the beginning of this section.
The details of the distributed rounding mechanism for node assignments are defined
by Algorithm 2. The algorithm executes the decomposition algorithm A(p,R) K

times on a graph GO(logn). We use the following notation. Denote the set of nodes
which is selected in execution h by Sh and let C

(h)
i , i = 1, . . . ,C(Sh) be the clusters

induced by Sh. Further let 

(h)
i be the leader of cluster C

(h)
i . For a cluster C, define

H [C] to be the subgraph of H induced by s, t , and all nodes pi and qi correspond-
ing to nodes vi ∈ C. Finally, Algorithm 2 uses two constants c and d which we will
specify later.

Lemma 4.9 When applied to an α-approximation of LPCapDS with integer vari-
ables xi and (ρ,β)-violated capacities, Algorithm 2 computes a 3α-approximation
of ILPCapDS with capacity violation (ρ,β + 1) in time O(log3 n) w.h.p.

Proof When choosing p = 1/2 and R = log2(n+ 1), we have p(1 −pR)n ≥ 1/(2e).
The number K of executions of A(p,R) is chosen such that every node v ∈ V is in a

Algorithm 2 Assigning Nodes to Dominators
1: p := 1/2; R := log2(n + 1); K := 2e · c · lnn

2: K executions of A(p,R) on Gd lnn

3: for h := 1 to K do
4: for all clusters C

(h)
i do

5: for all nodes u ∈ C
(h)
i do

6: for all nodes v : dG(u, v) ≤ d lnn
2 do

7: Add v to C
(h)
i

8: od
9: od

10: 

(h)
i collects induced subgraph of C

(h)
i

11: remove all fractional cycles in H [C(h)
i ]

12: od
13: od
14: for all (vi, vj ) ∈ E do
15: if y′

ij �∈ {0,1} then
16: y′

ij := 0
17: fi
18: od
19: for all vi ∈ V do
20: if

∑
vj ∈�(vi)

y′
ji < 1 then

21: x′
i := 1; y′

ii := 1
22: fi
23: od
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cluster of Gd lnn at least once w.h.p. when choosing c ≥ 1:

P
[∃v ∈ V : ∀h ∈ [K] : v �∈ Sh

]

≤ n · (1 − p(1 − pR)n
)K

≤
(

1 − 1

2e

)2e·c·lnn

<
1

nc
.

Let us therefore assume that every node v ∈ V is in at least one cluster of Gd lnn. In
Lines 5–9, for each node v in a cluster C

(h)
i , all nodes at distance ≤ d ln(n)/2 from

v (the (d ln(n)/2)-ball of v) is added to cluster C
(h)
i . Because the distance between

nodes of different clusters of Sh are at distance more than d lnn in G, two clusters
C

(h)
i and C

(h)
j remain disjoint even after adding all (d ln(n)/2)-balls. This means that

every (d ln(n)/2)-ball of G is completely contained in some cluster C
(h)
i .

In Line 11, the rounding algorithm which we described for the non-distributed case
is applied to subgraphs H [C(h)

i ] of H induced by clusters C
(h)
i . Because every ball

of radius d ln(n)/2 of G is contained in some cluster, every cycle of length d ln(n) of
G is also completely contained in some cluster. Therefore, also every cycle of length
d ln(n) of H is completely contained in some H [C(h)

i ]. After applying the rounding
step in Line 11 for all clusters (for all i and h), H does not contain fractional cycles
of length at most d ln(n) any more.

It is well-known that the number of edges of every graph G with n nodes and girth
g (smallest cycle has length g) is upper bounded by n1+τ/g for some constant τ . Let
Vf be the set of nodes which are still covered by fractional edges after Line 13 and
let D be the initial dominating set. The number of remaining fractional edges ef (H)

of H after Line 13 is at most

ef (H) ≤ (1 + |D| + |Vf |)1+ τ
d lnn . (9)

Because every node in Vf is covered by at least 2 fractional edges, we also have

ef (H) ≥ 2 · |Vf |. (10)

Combining (9) and (10) gives |Vf | ≤ 2|D| if we choose d = τ(ln 3 + o(1)). Note that
the nodes which are added to the dominating set in Line 21 are exactly the nodes
in Vf . The size of the dominating set is therefore increased by at most a factor of 3.
The only possible additional capacity constraint violation of Algorithm 2 is caused
when a node vi has to cover itself in Line 21.

We have therefore proven the claimed approximation ratio and capacity con-
straint violation and it remains to show that the time complexity of Algorithm 2 is
O(log3 n). The number of rounds needed to compute the K executions of A(p,R)

is O(Rd lnn) = O(log2 n) when done in parallel and O(KRd lnn) = O(log3 n) when
done sequentially. Lines 3–13 have to be done sequentially for h = 1, . . . ,K . How-
ever for a particular h, all clusters can be handled concurrently. The time to add the
(d ln(n)/2)-balls to the clusters, to collect the topology of each cluster, and to do
the local computation at the cluster leaders is O(Rd lnn) = O(log2 n). The total time
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complexity for Lines 3–13 therefore becomes O(K log2 n) = O(log3 n). The rest of
the algorithm can be computed in a constant number of rounds. �

Combining Theorem 4.7 and Lemmas 4.8 and 4.9, we obtain the main theorem of
this section.

Theorem 4.10 There is a distributed capacitated dominating set algorithm with ex-
pected approximation ratio O(log�) and time complexity O(log3n + logn/ε) w.h.p.
if we allow (1 + ε,2)-violated capacity constraints.

Message Size: Our distributed capacitated dominating set algorithm makes fre-
quent use of the assumption that we can pack as much information as we like in
every message. Many of the computations such as computing a network decomposi-
tion of a graph Gk , however, can be implemented with messages of size only O(logn)

if we allow the time complexity to grow by a polylogarithmic factor [26]. However
there are parts of the algorithm for which we do not know how to implement them
with small messages in polylogarithmic time. In particular, this is true for solving the
local LPs in the LPCapDS approximation algorithm and for removing short fractional
cycles of H in the second rounding step. Whether a result similar to the one given by
Theorem 4.10 can be achieved with messages of polylogarithmic size is an interesting
open problem.

Alternative Rounding: For ε � 1/ log2 n, the main contribution to the time com-
plexity of our CapMDS algorithm comes from the rounding of the assignments. If we
allow to violate the capacity constraints by a multiplicative constant factor, it is pos-
sible to compute integer assignments in O(1) rounds by using the following simple
method. Each node vj chooses a dominator vi according to the distribution given by
the values of yij and requests to be covered by vi . Each dominator vi accepts γ such
requests for a suitable constant γ . If vi does not accept the dominating request from
a node vj , vj joins the capacitated dominating set and covers itself. It can be shown
that when choosing γ large enough, the number of nodes added to the dominating set
is proportional to the number of nodes already in the dominating set w.h.p.

5 Unit Disk and Bounded Independence Graphs

5.1 Lower Bounds

In the non-uniform case, the CapMDS problem remains non-local even in geometric
graphs such as the unit disk graphs or general BIGs. The reason is that by appropri-
ately adjusting capacities, the example in Fig. 2 can be drawn as a BIG.

Theorem 5.1 There are bounded independence graphs G with non-uniform capac-
ities, such that in k communication rounds, every (possibly randomized) distributed
algorithm for the minimum capacitated dominating set problem on G has approxi-
mation ratios at least �(n/k2) and �(�/k).
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Proof Consider the example in Fig. 2, but collapse every cluster to a clique. Arrange
these cliques in such a way that bridge-nodes cover all nodes in their neighboring
cliques. Every node in a clique has capacity 1, whereas the capacity of bridge-nodes
remains m + 1. The remainder of the proof is then analogous to the proof of Theo-
rem 4.1. �

5.2 Upper Bounds for the Uniform Case

We have seen that for general graphs, even for uniform capacities, it is impossible to
compute a non-trivial approximation for CapMDS in time substantially less than the
diameter of the network without violating the capacity constraints. We now show that
the situation is different for geometric network graphs G by presenting an efficient
distributed algorithm which computes a constant approximation for CapMDS with
uniform capacities without violating capacities if G is a BIG.

In the following we assume that cap(v) = cap for all v ∈ V . Our algorithm (Al-
gorithm 3) for computing a small capacitated dominating set on BIGs consists of
two phases. In the first phase, a maximal independent set (MIS) S of G is computed.
S induces a partition of the nodes of G into clusters Ci of radius 1 as follows. We
construct a cluster Ci for every node vi ∈ S. Every node v ∈ V \ S is added to an
arbitrary cluster Ci of an adjacent node vi ∈ S. In the second phase, for each cluster
Ci , a capacitated dominating set of size O(|Ci |/cap) is computed. The details of the
computation are defined in Algorithm 3 which returns a set of pairs (u,C) consisting
of a node u of the dominating set and the set of nodes C assigned to u. In Line 2 and
11, Algorithm 3 calls a function cluster(S,V ) which computes the clustering induced
by a MIS S. We assume that the clusters (ui,Ci) returned by cluster(S,V ) are sorted
according to non-decreasing cluster size |Ci |.

Theorem 5.2 Let G be a graph of bounded independence. Algorithm 3 computes
an O(1)-approximation of the minimum capacitated dominating set problem in time
O(TMIS), where TMIS denotes the time to compute a maximal independent set on G.

Proof Assume that G is f -independence bounded for some function f (r). We show
that Algorithm 3 computes a capacitated dominating set D of size

|D| ≤ |S| + n · f (1)/cap. (11)

It is well known that a MIS S is an f (1)-approximation of the minimum domi-
nating set problem without capacity constraints. For an optimal dominating set D∗,
every node u ∈ S can be assigned to an adjacent node v ∈ D∗ and by the definitions
of a MIS and f -independence boundedness, at most f (1) nodes u ∈ S are assigned
to every node v ∈ D∗. Because in a capacitated dominating set D, every node v ∈ D

can dominate at most cap(v) = cap nodes, Inequality (11) implies that the set D is a
2f (1)-approximation for CapMDS.

To prove Inequality (11), we show that the set C of every recursive call of
CapDS(u,C) in Lines 20 and 30 of Algorithm 3 contains at most

|C| ≥ cap

f (1)
(12)
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Algorithm 3 Dominating Set of Cluster Ci

1: S := MIS(V )

2: {(ui,Ci)} := cluster(S,V )

3: return
⋃

ui∈S CapDS(ui,Ci)

4:

5: function CapDS(v,Cv)

6: begin
7: if |Cv| ≤ cap then
8: return {(v,Cv)}
9: else

10: Sv := MIS(Cv \ {v})
11: {(ui,Ci)} := cluster(Sv,Cv)

12: t := |{(ui,Ci)}|
13: if t ≤ 2 then
14: A ⊂ Ct \ {ut } s.t. |Cv \ Ct ∪ A| = �cap/2�
15: if t = 1 then
16: C0 := A ∪ {v}
17: else
18: C0 := C1 ∪ A ∪ {v}
19: fi
20: return CapDS(v,C0) ∪ CapDS(ut ,Ct )

21: fi
22: Ct+1 := C1 ∪ {v}; ut+1 := v; i := 2
23: while |Ct+1| + |Ci | ≤ cap do
24: Ct+1 := Ct+1 ∪ Ci ; i := i + 1
25: od
26: if |Ct+1| < cap/t then
27: A ⊂ Ci \ {ui} s.t. |A| = �cap/t� − |Ct+1|
28: Ci := Ci \ A; Ct+1 := Ct+1 ∪ A

29: fi
30: return

⋃t+1
j=i CapDS(uj ,Cj )

31: fi
32: end

nodes. This means that every node u ∈ D \ S covers at least cap/f (1) nodes, which
implies Inequality (11).

Consider an execution of the function CapDS. Because G is f -independence
bounded, we have t ≤ f (1). First consider the case t ≤ 2. Because Cv > cap (oth-
erwise there is no recursive call), sets C0 and Ct in the recursive calls in Line 20
contain at least �cap/2� elements. Note that we can assume that f (1) ≥ 2 because
otherwise G would be a complete graph. Inequality (12) is thus satisfied if t ≤ 2.

If t ≥ 3, Inequality (12) holds for j = t + 1 because set Ct+1 is constructed such
that |Ct+1| ≥ �cap/t�. For i ≤ j ≤ t where i is the index for which the while loop
condition in Line 23 is violated, we first consider the case where the condition in
the if statements in Line 26 is not satisfied. Recall that we assume |Cj | ≤ |Cj+1| for
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all j . For the sake of contradiction, assume that |Cj | < cap/t for j ≥ i. We then have

j∑

h=1

|Ch| < j · cap

t
< t · cap

t
< cap.

This is a contradiction to the assumption that the while loop condition in Line 23
is violated for j = i. We therefore know that Inequality (12) is satisfied for all j if
the if-condition in Line 26 is not true. If the condition in Line 26 is satisfied, In-
equality (12) holds for j > i by using the same argument and it remains to prove
that it also holds for j = i in this case. By combining the while-condition of Line
23 and the if-condition of Line 26, we obtain |Ci | > cap − cap/t − |A|. Before
adding |A|, the set Ct+1 contains at least the two nodes v and u1. We therefore have
|A| ≤ �cap/t� − 2 < cap/t and thus |Ci | > cap/t if t ≥ 3, which concludes the proof
of Inequality (12), and hence the approximation ratio.

For the time complexity, note that all computations in function CapDS(v,Cv) are
within v’s 1-neighborhood. MIS nodes ui ∈ S can learn all edges between their neigh-
bors in one round and then compute CapDS(v,Cv) locally without communicating.

�

Computing a MIS: As discussed in detail in Sect. 2, the time TMIS required to
compute a maximal independent set depends on the underlying network graph model,
as well as on the amount of information available to the nodes. The following is a brief
summary.

• For general graphs, a MIS can be computed in expected TMIS ∈ O(logn) rounds
by using messages of size O(logn) [1, 27].

• In unit disk graphs and general BIGs, there is a distributed algorithm that computes
a MIS in time TMIS∈ O(log∗n) [19, 31].

• In unit disk graphs, if every node knows its own coordinates, then TMIS ∈ O(1).

In combination with Theorem 5.2, these bounds imply the required running time
of our algorithm to compute a constant approximation to the capacitated dominating
set problem in BIGs.

Message Size: As described above, Algorithm 3 requires sending messages of size
O(� logn) (a neighbor v of a node u ∈ S has to send a list of its at most � neigh-
bors to u). It is straightforward to implement the algorithm in time O(TMIS logn) by
using messages of size only O(logn) if the recursion depth of CapDS(v,Cv) can be
bounded by O(logn) and if we use a MIS algorithm which only requires messages
of size O(logn). This is possible by making the following simple adjustment. If the
largest cluster Ct contains more than 2|Cv|/3 elements, we can move |Cv|/3 of its
elements to the cluster of v. This reduces the number of nodes in each recursive call
by at least a factor of 2/3.
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Table 1 Best known upper bounds (UB) and lower bounds (LB) in both general graphs (GG) and unit disk
graphs/bounded independence graphs (BIG). For general graphs, the table gives the fastest known algo-
rithm to compute a polylogarithmic approximation to MDS/CapMDS. For UDG/BIGs, the fastest known
algorithm for a constant approximation is given. All results given without citation have been developed in
this paper

GG–UB GG–LB UDG–UB UDG–LB

MDS O(logn) [20] �(

√
logn

logn logn
) [18] O(log∗ n) [19, 31] �(log∗ n) [24]

CapMDS No local �̃(
√

n), �̃(�) No local �̃(
√

n), �̃(�)

non-uniform algorithm algorithm

CapMDS No local �̃(
√

n), �̃(�) O(log∗ n) �(log∗ n) [24]

uniform algorithm

CapMDS O(log3 n + logn
ε ) �( 1

ε

√
logn

logn logn
)

(1 + ε,2)-viol.

6 Summary and Conclusions

In this work, we have derived the first distributed approximation results on the ca-
pacitated dominating set problem, which naturally arises in numerous distributed ap-
plication and networking scenarios.

It is interesting to compare our results with the best known results for the basic
MDS problem, without capacity constraints. Table 1 summarizes the best known up-
per and lower bounds for MDS as well as for the different versions of CapMDS that
we have studied in this paper. Our results show that even in simple geometric net-
work graphs, the problem with non-uniform capacities is inherently non-local. That
is—like 2-coloring a ring, or constructing an MST, for instance—CapMDS belongs
to a class of distributed computing problems for which every distributed algorithm
requires a running time that corresponds to the network diameter in the worst-case.
Interestingly, if capacities are allowed to be violated by a factor of 1+ε, for an ε > 0,
the problem becomes much more local even in general graphs. The relaxed version of
CapMDS belongs to the same class of distributed problems as MDS as well as prob-
lems like maximum matching or minimum vertex cover [18, 20]. For these problems,
a logarithmic or polylogarithmic time complexity is both necessary and sufficient for
achieving a polylogarithmic approximation ratio. In future work, it will be interesting
to narrow the gap between upper and lower bounds and—more generally—to devise
local approximation algorithms for other important network coordination problems.
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