
Theory Comput Syst (2011) 48: 803–839
DOI 10.1007/s00224-010-9270-y

Lower Bounds for Kernelizations
and Other Preprocessing Procedures

Yijia Chen · Jörg Flum · Moritz Müller

Published online: 26 May 2010
© Springer Science+Business Media, LLC 2010

Abstract We first present a method to rule out the existence of parameter non-
increasing polynomial kernelizations of parameterized problems under the hypothesis
P �= NP. This method is applicable, for example, to the problem SAT parameterized
by the number of variables of the input formula. Then we obtain further improve-
ments of corresponding results in (Bodlaender et al. in Lecture Notes in Computer
Science, vol. 5125, pp. 563–574, Springer, Berlin, 2008; Fortnow and Santhanam in
Proceedings of the 40th ACM Symposium on the Theory of Computing (STOC’08),
ACM, New York, pp. 133–142, 2008) by refining the central lemma of their proof
method, a lemma due to Fortnow and Santhanam. In particular, assuming that the
polynomial hierarchy does not collapse to its third level, we show that every parame-
terized problem with a “linear OR” and with NP-hard underlying classical problem
does not have polynomial self-reductions that assign to every instance x with parame-
ter k an instance y with |y| = kO(1) · |x|1−ε (here ε is any given real number greater
than zero). We give various applications of these results. On the structural side we
prove several results clarifying the relationship between the different notions of pre-

M. Müller wishes to thank the John Templeton Foundation for its support under Grant #13152, The
Myriad Aspects of Infinity.

Y. Chen (�)
Department of Computer Science and Engineering, Shanghai Jiaotong University, Dongchuan Road,
No. 800, 200240 Shanghai, China
e-mail: yijia.chen@cs.sjtu.edu.cn

J. Flum
Abteilung für mathematisches Logik, Albert-Ludwigs-Universität Freiburg, Eckerstr. 1, 79104
Freiburg, Germany
e-mail: joerg.flum@math.uni-freiburg.de

M. Müller
Centre de Recerca Matemàtica Barcelona, Science Building, Campus de Bellaterra, 08193 Bellaterra,
Spain
e-mail: mmoeller@crm.cat

mailto:yijia.chen@cs.sjtu.edu.cn
mailto:joerg.flum@math.uni-freiburg.de
mailto:mmoeller@crm.cat

804 Theory Comput Syst (2011) 48: 803–839

processing procedures, namely the various notions of kernelizations, self-reductions
and compressions.

Keywords Kernelization · Parameterized complexity · Lower bound

1 Introduction

Often, if a computationally hard problem must be solved in practice, one tries, in a
preprocessing step, to reduce the size of the input data. This approach has been widely
studied and applied in parameterized complexity and it is known as kernelization
there. We recall the basic concepts.

Parameterized complexity is a refinement of classical complexity theory, in which
one measures the complexity of an algorithm not only in terms of the total input
length, but also takes into account other aspects of the input codified in a natural
number, its parameter. Hence, a parameterized problem (Q,κ) consists of a classical
problem Q together with a function κ which assigns to every instance x of Q its
parameter κ(x) ∈ N.

Central to parameterized complexity theory is the notion of fixed-parameter
tractability. It relaxes the classical notion of tractability by allowing algorithms whose
running time can be exponential but only in terms of the parameter. This is based on
the idea to choose the parameter in such a way that it can be assumed to be small
for the instances one is interested in. To be precise, a problem (Q,κ) is said to be
fixed-parameter tractable if x ∈ Q can be decided by an fpt-algorithm, that is, an
algorithm whose running time is f (k) · p(n), where n denotes the length |x| of x,
k := κ(x), and where f is an arbitrary computable function and p a polynomial.

A kernelization K of a parameterized problem is a polynomial time algorithm
that computes for every instance x of the problem an equivalent instance K(x) of
a size bounded in terms of the parameter κ(x). This suggests a method for design-
ing fpt-algorithms: To decide a given instance x, we compute the kernel K(x) and
then decide if K(x) is a yes-instance by brute-force. The converse holds, too: Every
fixed-parameter tractable problem has a kernelization. The proof of this fact is easy;
however it gives only a “trivial” kernel with no algorithmic impact.

Besides efficient computability, an important quality of a good kernelization is
small kernel size. The notion of polynomial kernelization is an abstract model for
small kernel size. A kernelization K is polynomial if there is a polynomial p such
that for all instances x the size of K(x) is bounded by p(κ(x)).

Polynomial kernelizations are known for many parameterized problems (compare
the survey [16]). However, till recently, besides artificial problems, only few natural
problems were known to have no polynomial kernelizations (one being the model-
checking for monadic second-order logic on trees parameterized by the length of the
second-order formula). This has changed, since a general method to exclude polyno-
mial kernelizations has been developed (cf. [1, 7]). It is based on a lemma due to Fort-
now and Santhanam [7]: Recall that an OR for a classical problem Q is a polynomi-
ally time computable function that assigns to every finitely many instances x1, . . . , xt

of Q an instance y such that (y ∈ Q if and only if xi ∈ Q for some i ∈ {1, . . . , t}).

Theory Comput Syst (2011) 48: 803–839 805

In [7] it is shown that no NP-complete problem can have an OR with the additional
property that the length |y| of y is polynomially bounded in max1≤i≤t |xi | unless the
polynomial hierarchy collapses to its third level.

However there are natural parameterized problems (Q,κ) with NP-complete prob-
lem Q having an OR such that the parameter κ(y) of y is polynomially bounded in
max1≤i≤t |xi |. If such a problem would have a polynomial kernelization, then com-
posing it with such an OR would yield an OR with the additional property excluded
by the lemma of Fortnow and Santhanam. Various applications of this result were
given in [1, 7], in particular, in [7] it was shown that the problem SAT parameterized
by the number of propositional variables of the input formula has no polynomial ker-
nelizations (unless the polynomial hierarchy collapses to its third level). This settled
a question repeatedly posed in [6, p. 231], [12], and implicitly already in [9].

As already mentioned, concrete kernelizations yield algorithms for solving para-
meterized problems efficiently for small parameter values. Conceptually similar are
compression algorithms, even though the intention is slightly different. There the
question is whether one can efficiently compress every “long” instance x of a prob-
lem Q with “a short witness” to a shorter equivalent instance x′ of a problem Q′ (here
equivalent means that x ∈ Q if and only if x′ ∈ Q′). “Such compression enables to
succinctly store instances until a future setting will allow solving them, either via a
technological or algorithmic breakthrough or simply until enough time has elapsed”
(see [12]). Using this terminology Harnik and Naor [12] addressed questions similar
to that of the existence of an OR with the additional property mentioned above. By
suitably generalizing the notion of a kernelization of a parameterized problem to the
notion of a kernelization from some parameterized problem to another one, Fortnow
and Santhanam [7] introduce a framework which allows to deal with kernelizations
and compressions at the same time (in [7] a different terminology is used). Neverthe-
less we stick to the traditional notion of kernelization as we mainly address problems
of parameterized complexity.

We explain the contents of our paper. To the best of our knowledge all reason-
able kernelizations K for concrete parameterized problems (Q,κ) are parameter
non-increasing, that is, the parameter of the kernel of an instance x is less than or
equal to the parameter of x, more succinctly, κ(K(x)) ≤ κ(x). Moreover it is known
that every parameterized problem that has a kernelization already has a parameter
non-increasing kernelization. In Sect. 4 we present a result (Theorem 4.2) with a
quite simple proof showing that every parameterized problem with “parameter de-
creasing” self-reductions has no parameter non-increasing polynomial kernelizations.
This result only requires that P �= NP (instead of the assumption that the polynomial
hierarchy does not collapse to its third level). As an application we get that the prob-
lem SAT has no parameter non-increasing polynomial kernelization if P �= NP and
no parameter non-increasing subexponential kernelization if the exponential time hy-
pothesis (ETH) holds.

However, polynomial kernelizations, which are not parameter non-increasing are
not only interesting from a theoretical point of view but also for practical purposes:
such a polynomial kernelization for SAT would be sufficient for some significant ap-
plication in cryptography [12]. It is perfectly conceivable that a parameterized prob-
lem has a useful preprocessing procedure that decreases the size of the input consid-
erably at the cost of a slight increase of the (small) parameter. Such a slight increase

806 Theory Comput Syst (2011) 48: 803–839

may even be necessary: In Sect. 3.1 we prove that there exist parameterized problems
that have polynomial kernelizations but all of them ‘slightly’ increase the parameter.

In Sect. 5 we recall results of Bodlaender et al. [1] and of Fortnow and San-
thanam [7] relevant in our context and we give some new applications, in particular
to variants of the PATH problem. Then we refine the central lemma due to Fortnow
and Santhanam to obtain better lower bounds. Applied to the SAT problem we show
in Sect. 6:

If the polynomial hierarchy does not collapse to its third level, then for every
ε > 0 there is no polynomial time algorithm that for every instance α of SAT

with k variables computes an equivalent instance α′ with

|α′| ≤ kO(1) · |α|1−ε. (1)

This result is a particular instance of a general theorem that yields lower bounds
of the type in (1) for every parameterized problem “having a linear OR” (compare
Theorem 6.5 for the precise statement). Note that nothing is said about the number of
variables of the formula α′. Thus, even though (in the main text) we state our results
for parameterized problems, it addresses arbitrary problems, where the inputs have a
natural (not necessarily small) parameter.

In Sect. 7 for problems satisfying an apparently weaker condition, namely only
“having an OR for instances with constant parameter” we still get quite good lower
bounds; in case of SAT it would be:

|α′| ≤ kO(1) · |α|o(1). (2)

In the last section we compare the different notions of OR considered in this paper
and we also compare the notions of polynomial kernelizations and those of polyno-
mial reductions leading to the lower bounds in (1) and (2).

Finally we should mention that after recalling some definitions and fixing our
notation in Sect. 2, we consider and analyze some basic questions concerning ker-
nelizations in Sect. 3. In particular, we shall see that “most” parameterized problems
(more precisely, all problems in EXPT) have polynomial kernelizations if and only if
they are self-compressible.

2 Preliminaries

The set of natural numbers (that is, nonnegative integers) is denoted by N. For a
natural number n let [n] := {1, . . . , n}. By logn we mean �logn� if an integer is
expected. For n = 0 the term logn is undefined. We trust the reader’s common sense
to interpret such terms reasonably.

We identify problems (or languages) with subsets Q of {0,1}∗. Clearly, as done
mostly, we present concrete problems in a verbal, hence uncodified form or as a set
of strings over an arbitrary finite alphabet. We use both P and PTIME to denote the
class of problems Q such that x ∈ Q is solvable in polynomial time.

A reduction from a problem Q to a problem Q′ is a mapping R : {0,1}∗ → {0,1}∗
such that for all x ∈ {0,1}∗ we have (x ∈ Q ⇔ R(x) ∈ Q′). We write R : Q ≤p Q′
if R is a reduction from Q to Q′ computable in polynomial time, and Q ≤p Q′ if
there is a polynomial time reduction from Q to Q′.

Theory Comput Syst (2011) 48: 803–839 807

2.1 Parameterized Complexity

A parameterized problem is a pair (Q,κ) consisting of a classical problem Q ⊆
{0,1}∗ and a parameterization κ : {0,1}∗ → N, which is required to be polynomial
time computable even if the result is encoded in unary.

We introduce some parameterized problems, which will be used later, thereby
exemplifying our way to represent parameterized problems. We denote by p-SAT

the parameterized problem

p-SAT

Instance: A propositional formula α in conjunctive normal form.
Parameter: Number of variables of α.

Question: Is α satisfiable?

By p-PATH and p-CLIQUE we denote the problems:

p-PATH

Instance: A graph G and k ∈ N.
Parameter: k.

Question: Does G have a path of length k?

p-CLIQUE

Instance: A graph G and k ∈ N.
Parameter: k.

Question: Does G have a clique of cardinality k?

Similarly we define p-DOMINATING-SET. If C is a class of graphs, then p-PATH(C)
denotes the problem

p-PATH(C)
Instance: A graph G in C and k ∈ N.

Parameter: k.
Question: Does G have a path of length k?

We use similar notations for other problems.
We recall the definitions of the classes FPT, EXPT, EPT and SUBEPT. A pa-

rameterized problem (Q,κ) is fixed-parameter tractable (or, in FPT) if x ∈ Q is
solvable in time f (κ(x)) · |x|O(1) for some computable f : N → N. If f can be cho-
sen such that f (k) = 2kO(1)

, then (Q,κ) is in EXPT. If f can be chosen such that
f (k) = 2O(k), then (Q,κ) is in EPT. If f can be chosen such that f (k) = 2oeff(k),
then (Q,κ) is in SUBEPT.

Here oeff denotes the effective version of little oh: For computable functions
f,g : N → N we say that f is effectively little oh of g and write f = oeff(g) if there
is a computable, nondecreasing, and unbounded function ι : N → N such that for
sufficiently large k ∈ N

f (k) ≤ g(k)

ι(k)
.

As usual we often write f (k) = oeff(g(k)) instead of f = oeff(g).

808 Theory Comput Syst (2011) 48: 803–839

At some places in this paper, it will be convenient to consider preparameterized
problems; these are pairs (Q,κ), where again Q is a classical problem and κ is a
preparameterization, that is, an arbitrary function from {0,1}∗ to the set R≥0 of non-
negative real numbers.

3 Fundamentals of Kernelization

In this section we start by recalling the notion of kernelization and by introduc-
ing some refinements. Then we compare the different notions of kernelizations (in
Sect. 3.1), study the complexity of problems with such kernelizations (in Sect. 3.2)
and finally, we analyze the relationship between polynomial kernelizations and com-
pressions (in Sect. 3.3).

Definition 3.1 Let (Q,κ) be a parameterized problem and f : N → N be a function.
An f -kernelization for (Q,κ) is a polynomial time algorithm K that on input x ∈
{0,1}∗ outputs K(x) ∈ {0,1}∗ such that

(x ∈ Q ⇔ K(x) ∈ Q) and |K(x)| ≤ f (κ(x)).

In particular, K is a polynomial time reduction from Q to itself. If in addition for all
x ∈ {0,1}∗

κ(K(x)) ≤ κ(x),

then K is a parameter non-increasing f -kernelization. A (parameter non-
increasing) kernelization is a (parameter non-increasing) f -kernelization for some
computable function f : N → N.

We say that (Q,κ) has a linear, polynomial, subexponential, simply exponential,
and exponential kernelization if there is an f -kernelization for (Q,κ) with f (k) =
O(k), f (k) = kO(1), f (k) = 2oeff(k), f (k) = 2O(k), and f (k) = 2kO(1)

, respectively.

The following result is well-known:

Proposition 3.2 Let (Q,κ) be a parameterized problem with decidable Q. The fol-
lowing statements are equivalent.

(1) (Q,κ) is fixed-parameter tractable.
(2) (Q,κ) has a kernelization.
(3) (Q,κ) has a parameter non-increasing kernelization.

Furthermore, if f is computable and x ∈ Q is solvable in time f (κ(x)) · |x|O(1), then
(Q,κ) has a parameter non-increasing f -kernelization.

3.1 Comparing the Different Notions of Kernelizations

We are mainly interested in polynomial kernelizations. First we show that the notions
of polynomial kernelization and of parameter non-increasing polynomial kerneliza-
tion are distinct:

Theory Comput Syst (2011) 48: 803–839 809

Proposition 3.3 There is a parameterized problem (Q,κ) that has a polynomial ker-
nelization but no parameter non-increasing polynomial kernelization.

Proof Let Q be a classical problem that is not solvable in time 2O(|x|). We define
a parameterized problem (P, κ) with P ⊆ {0,1}∗ × {1}∗ and with κ((x,1k)) = k.
By 1k we denote the string consisting of k many 1s. For each k ∈ N we define the
k-projection P [k] := {x | (x,1k) ∈ P } of P by:

– If k = 2� + 1, then

P [k] := Q=�

(:= {
x ∈ Q

∣∣ |x| = �
})

.

Hence, all elements in P [k] have length �.
– If k = 2�, then

P [k] := {
x12� ∣∣ x ∈ Q=�

}
,

where x12�
is the concatenation of x with the string 12�

. Hence, all elements in
P [k] have length � + 2�.

Intuitively, an element in the 2�-projection is an element in the (2� + 1)-projection
padded with 2� many 1s. It is not hard to see that P has a linear kernelization (which
“on the even projections” increases the parameter).

We claim that P has no parameter non-increasing polynomial kernelization. As-
sume K is such a kernelization and c, d ∈ N such that

∣∣K((z,1m))
∣∣ ≤ d · mc.

We use K to solve x ∈ Q in time 2O(|x|): Let x be an instance of Q and let � := |x|.
We may assume that

d · (2�)c < 2�

(note that there are only finitely many x not satisfying this inequality). We compute
(in time 2O(�))

(u, k) := K
(
(x12�

,2�)
)
.

We know that k ≤ 2� and |u| ≤ d · (2�)c < 2�. If u does not have the length of the
strings in P [k], then (u, k) /∈ P and therefore x /∈ Q. In particular, this is the case if
k = 2� (as |u| < 2�). If u has the length of the strings in P [k] and hence k < 2�, then
it is easy to read off from u an instance y with |y| < |x| and (y ∈ Q ⇐⇒ x ∈ Q).
We then apply the same procedure to y. �

The survey [11] contains examples of natural problems whose currently best
known kernelizations are polynomial, simply exponential and exponential. We show
that all these different degrees of kernelizability are indeed different:

Proposition 3.4 The classes of parameterized problems with a linear, a polynomial,
a subexponential, a simply exponential, and an exponential kernelization are pairwise
different.

810 Theory Comput Syst (2011) 48: 803–839

The claim immediately follows from the following lemma.

Lemma 3.5 Let g : N → N be nondecreasing and unbounded and let f : N → N be
such that f (k) ≤ g(k−1) for all sufficiently large k. Then there is a Q ⊆ {0,1}∗ and a
preparameterization κ such that (Q,κ) has a g-kernelization but no f -kernelization.

If in addition g is increasing and time-constructible, then we can choose κ to be a
parameterization.

Proof Let g and f be as in the statement. We choose k0 such that f (k) ≤ g(k − 1)

for all k ≥ k0. We consider the “inverse function” ιg of g given by

ιg(m) := min{s ∈ N | g(s) ≥ m}.
Then for all n ∈ N

n ≤ g(ιg(n)) and if ιg(n) ≥ 1, then g(ιg(n) − 1) < n. (3)

Let Q be a problem not in PTIME and define the preparameterization κ by κ(x) :=
ιg(|x|). By the first inequality in (3) the identity is a g-kernelization of (Q,κ), even
a parameter non-increasing one.

Assume that there is an f -kernelization K of (Q,κ). As ιg is unbounded, we have
ιg(|x|) ≥ k0 for sufficiently long x ∈ {0,1}∗. Then

|K(x)| ≤ f (κ(x)) = f (ιg(|x|)) ≤ g(ιg(|x|) − 1) < |x|.
Thus applying K at most |x| times we get an equivalent instance of length at most
max0≤i<k0 f (i). Therefore, Q ∈ PTIME, a contradiction.

If g is increasing and time-constructible, then ιg is polynomial time computable
and hence κ is a parameterization. �

3.2 Complexity of Problems with Kernelizations

We know that a parameterized problem is fixed-parameter tractable if and only if it
has a kernelization (see Proposition 3.2). The next result shows that a parameterized
problem (Q,κ) in FPT \ EXPT with Q ∈ NP cannot have polynomial kernelizations.
We show a little bit more. Recall that EXP is the class of classical problems Q such
that x ∈ Q is solvable in deterministic time 2|x|O(1)

.

Proposition 3.6 Let f, t : N → N be computable, non-decreasing and let (Q,κ) be a
parameterized problem. If Q is decidable in time t and has an f -kernelization, then
(Q,κ) can be solved in time t (f (κ(x))) · |x|O(1).

In particular, if (Q,κ) has a polynomial kernelization and Q ∈ EXP, then
(Q,κ) ∈ EXPT.

Proof Let K be a f -kernelization of (Q,κ) and let A be an algorithm solving x ∈ Q

in time t (|x|). The algorithm that on x ∈ {0,1}∗ first computes K(x) and then applies
A to K(x) solves x ∈ Q in time |x|O(1) + t (|K(x)|) = |x|O(1) + t (f (κ(x))). �

Theory Comput Syst (2011) 48: 803–839 811

The model-checking of monadic second-order logic on the class of trees is in
EXP. The corresponding parameterized problem with the length of the formula as
parameter is in FPT but, by a result of [8], not in EXPT unless P = NP. Hence, by
the preceding proposition, it has no polynomial kernelization (unless P = NP).

In later sections, under some complexity-theoretic assumptions, we will present
various examples of natural problems that are in EPT and have no polynomial ker-
nelizations. Here we give a simple, artificial example that is provably without poly-
nomial kernelizations.

Example 3.7 Let Q be a classical problem not in PTIME but solvable in time
O(|x|log |x|). Let κ be the parameterization mapping x to (log |x|)2. Then (Q,κ) ∈
EPT, because 2κ(x) = |x|log |x|.

For the sake of contradiction assume that (Q,κ) has a polynomial kernelization K.
Then to decide if x ∈ Q it suffices to decide if K(x) ∈ Q. Since |K(x)| = (log |x|)O(1)

this can be done in time

|K(x)|log|K(x)| ≤ (log|x|)O(log log|x|) ≤ 2(log log|x|)O(1) ≤ |x|O(1).

Thus Q ∈ PTIME, a contradiction.

However, if we would allow kernelizations to have slightly superpolynomial run-
ning time, then every EPT problem would have subexponential kernelizations:

Proposition 3.8 Let (Q,κ) ∈ EPT and ι : N → N be a nondecreasing unbounded
and computable function.1 Then there is an algorithm K that for every instance x of
Q outputs an instance K(x) in time

|x|O(ι(κ(x)))

such that

(x ∈ Q ⇐⇒ K(x) ∈ Q) and |K(x)| = 2o(κ(x)).

To obtain this proposition we just refine the “standard” proof of the implication
(1) ⇒ (2) of Proposition 3.2 and show that every problem in EPT has arbitrarily small
exponential kernelizations, that is, for every ε ∈ R with ε > 0 there is a polynomial
kernelization with kernels of size ≤ O(1) + (1 + ε)κ(x), even more:

Lemma 3.9 Let (Q,κ) be a parameterized problem in EPT. There is an algorithm I

that takes as inputs an instance x of Q and � ∈ N and outputs an instance I(x, �) of
Q in time |x|O(�) such that

(x ∈ Q ⇐⇒ I(x, �) ∈ Q) and |I(x, �)| = 2O(κ(x))/�.

1To get a “slightly superpolynomial running time” we choose as ι an “extremely slowly” growing function.

812 Theory Comput Syst (2011) 48: 803–839

Proof We choose c ∈ N and an algorithm A solving x ∈ Q in time 2c·κ(x) · |x|O(1).
Furthermore we fix x+ ∈ Q and x− /∈ Q. (If Q is trivial, that is, Q = ∅ or Q =
{0,1}∗, we let I(x, �) always be the empty string.) Then the following is the desired
algorithm.

I(x, �) // x an instance of Q and � ∈ N.

(1) if |x| ≤ 2κ(x)/� then output x.
(2) else simulate A on x

// the running time is bounded by 2c·κ(x) · |x|O(1) ≤ |x|c·�+O(1).
(3) if A accepts x then output x+ else output x−.

�

Proof of Proposition 3.8 We choose a polynomial time computable ν : N → N with
ν ≤ ι and set K(x) := I(x, ν(κ(x))), where I is the algorithm of the preceding
lemma. �

3.3 Polynomial Kernelization and Compression

Most natural problems Q ∈ NP have a canonical representation of the form

x ∈ Q ⇐⇒ there is y ∈ {0,1}g(x) such that (x, y) ∈ Q0 (4)

for some polynomial time computable function g : {0,1}∗ → N (with the output rep-
resented in unary) and some Q0 ∈ PTIME. In [4] the problem (Q,g) has been called
the canonical parameterization of Q (more precisely, one should speak of the canon-
ical parameterization induced by the representation (4) of Q). Clearly (Q,g) is fixed-
parameter tractable, it is even in EPT. If (Q,κ) was a parameterized problem, then
(Q,g) is called the canonical reparameterization of (Q,κ).

The canonical reparameterization of p-SAT is p-SAT itself; the canonical repara-
meterizations of the problems p-PATH, p-CLIQUE and p-DOMINATING-SET are the
problems uni-PATH, uni-CLIQUE and uni-DOMINATING-SET,2 respectively, where
for all three cases, we have g((G,k)) = k · log |V |; hence in particular,

uni-PATH

Instance: A graph G = (V ,E) and k ∈ N.
Parameter: k · log |V |.

Question: Does G have a path of length k?

Many fixed-parameter tractable problems, namely all in EXPT and hence, in particu-
lar, p-PATH, have polynomial kernelizations if and only if their canonical reparame-
terizations have. This is shown by the following proposition.

Proposition 3.10 Let (Q,κ) ∈ EXPT and let (Q,g) be the canonical reparameteri-
zation of (Q,κ). Assume that g has the form

g(x) = κ(x) · logh(x) with h(x) = |x|O(1)

2We use the prefix uni to indicate that the parameter depends on the cardinality of the universe.

Theory Comput Syst (2011) 48: 803–839 813

and h(x) ≥ 2 for sufficiently large x. Then

(Q,κ) has a polynomial kernelization if and only if (Q,g) has a polynomial
kernelization.

Proof Clearly, every polynomial kernelization of (Q,κ) is a polynomial kerneliza-
tion of (Q,g). Conversely, let K be a polynomial kernelization of (Q,g). Choose
c, c′ ∈ N and an algorithm A solving x ∈ Q in time 2κ(x)c |x|c′

. We define a polyno-
mial kernelization K

′ for (Q,κ).
Fix x+ ∈ Q and x− /∈ Q. Let x ∈ {0,1}∗. If κ(x) < (log |x|)1/c , the algorithm A on

input x needs at most |x|c′+1 steps. In this case we let K
′(x) be x+ or x− according

to the answer of A. Otherwise κ(x)c ≥ log |x|. Then |K(x)| = (κ(x) · logh(x))O(1) =
(κ(x) · log |x|)O(1) = κ(x)O(1), so we can set K

′(x) := K(x). �

The reader familiar with [12] will realize that this result shows that any natural
parameterized problem (Q,κ) in EXPT with a canonical reparameterization of the
specified form has a polynomial kernelization if and only if the problem Q is self-
compressible.

4 Excluding Parameter Non-increasing Kernelizations

In this section we exemplify how self-reducibility can be used to rule out parameter
non-increasing polynomial kernelizations. This method is very simple and works
under the assumption that P �= NP. We use it to give three natural examples of prob-
lems that do not have parameter non-increasing polynomial kernelizations, the first
two being in EPT.

We will revisit these examples in Sect. 5. There we will see that these problems
do not even have polynomial kernelizations using the stronger assumption that the
polynomial hierarchy does not collapse to its third level.

The main result of this section is based on the following lemma.

Lemma 4.1 Let (Q,κ) be a parameterized problem and assume that the 0th slice
Q(0) := {x ∈ Q | κ(x) = 0} is in PTIME. If there is a polynomial (subexponential)
kernelization K such that for all x with κ(x) > 0

κ(K(x)) < κ(x), (5)

then Q ∈ PTIME ((Q,κ) ∈ SUBEPT).

Proof Let K be a kernelization satisfying (5). The following algorithm A decides Q

(using a polynomial time decision procedure B for Q(0)). Given an instance x of
Q, the algorithm A computes K(x),K(K(x)), . . .; by (5) after at most κ(x) steps we
obtain an instance y with κ(y) = 0; hence (x ∈ Q ⇐⇒ y ∈ Q(0)); now A simulates
B on y.

If K was a polynomial kernelization, say, |K(x)| ≤ κ(x)c , then, again by (5), all of
|K(K(x))|, |K(K(K(x)))|, . . . are bounded by κ(x)c . Recall that parameterizations

814 Theory Comput Syst (2011) 48: 803–839

are computable in polynomial time even if the result is encoded in unary. Hence
κ(x) = |x|O(1). It follows that A runs in polynomial time.

If K was a subexponential kernelization, choose c, d ∈ N and a computable, non-
decreasing and unbounded ι : N → N such that K(x) is computable in time |x|c and
|K(x)| ≤ 2d·κ(x)/ι(κ(x)). Then, by (5), the computation of y by the algorithm A needs
time at most

|x|c + 2c·d·κ(x)/ι(κ(x)) + 2c·d·(κ(x)−1)/ι(κ(x)−1) + · · · + 2c·d·1/ι(1). (6)

Write k := κ(x). Then

k∑

�=1

2c·d·�/ι(�) =
�√k�∑

�=1

2c·d·�/ι(�) +
k∑

�=�√k�+1

2c·d·�/ι(�)

≤ �√k� · 2c·d·�√k� + k · 2c·d·k/ι(�√k�).

Since the function k �→ ι(�√k�) is unbounded, the sum in (6) is bounded by |x|c +
2oeff(κ(x)); hence (Q,κ) ∈ SUBEPT. �

Theorem 4.2 Let (Q,κ) be a parameterized problem with Q(0) ∈ PTIME. Assume
that there is a polynomial reduction R from Q to itself which is parameter decreasing,
that is, for all x with κ(x) > 0

κ(R(x)) < κ(x).

– If (Q,κ) has a parameter non-increasing polynomial kernelization, then Q ∈
PTIME.

– If (Q,κ) has a parameter non-increasing subexponential kernelization, then
(Q,κ) ∈ SUBEPT.

Proof Let R be as in the statement and let K be a parameter non-increasing polyno-
mial (subexponential) kernelization of (Q,κ). Then the composition K ◦ R, that is,
the mapping x �→ K(R(x)), is a polynomial (subexponential) kernelization of (Q,κ)

satisfying (5); hence, by the previous lemma, we get Q ∈ PTIME (Q ∈ SUBEPT). �

We close this section with some applications.

Example 4.3 The parameterized problem p-SAT has a parameter-decreasing polyno-
mial reduction to itself.

Proof We define a parameter-decreasing polynomial reduction R from p-SAT to it-
self as follows: Let α be a CNF formula. If α has no variables, we set R(α) := α.
Otherwise let X be the first variable in α. We let R(α) be a formula in CNF equiva-
lent to

(
α

TRUE

X
∨ α

FALSE

X

)
,

Theory Comput Syst (2011) 48: 803–839 815

where, for example, α TRUE
X

is the formula obtained from α by replacing X by TRUE

everywhere. Clearly R(α) can be computed from α in polynomial time. �

Example 4.4 The parameterized problem

p-POINTED-PATH

Instance: A graph G = (V ,E), a vertex v ∈ V , and k ∈ N.
Parameter: k.

Question: Does G have a path of length k starting at v?

has a parameter-decreasing polynomial reduction to itself.

Proof The following is a parameter-decreasing polynomial self-reduction R for
p-POINTED-PATH: Let (G,v, k) be an instance of p-POINTED-PATH and assume
k ≥ 3. For any path P : v, v1(P), v2(P) of length 2 starting from v let GP be the
graph obtained from G by deleting the two vertices v, v1(P) (and all the edges inci-
dent with one of these vertices). Let H be the graph obtained from the disjoint union
of all the graphs GP (where P ranges over all paths of length 2 starting in v) by
adding a new vertex w and all edges {w,v2(P)}. Then H has a path of length (k − 1)

starting at w if and only if G has a path of length k starting at v. Hence we can set
R((G,v, k)) := (H,w,k − 1). �

Example 4.5 The parameterized problem

p-BIPARTITE-CLIQUE

Instance: A graph G = (V ,E) and k ∈ N.
Parameter: k.

Question: Does G have a subgraph isomorphic to the Kk,k?
Or equivalently, do there exist A,B ⊆ V such that |A| =
|B| = k and for every u ∈ A, v ∈ B we have {u,v} ∈ E?

has a parameter-decreasing polynomial reduction to itself.

Proof Let G = (V ,E) and k ∈ N and let e = {u,v} be an edge of G. We create the
following bipartite graph Ge: on the left it contains a copy (u′, �) for each neighbor
u′ of v in G with u′ �= u, and on the right it contains a copy (v′, r) for each neighbor
v′ of u in G with v′ �= v; we create an edge in Ge between (u′, �) and (v′, r) if and
only if there is an edge between u′ and v′ in G. Let G′ be the disjoint union of the
graphs Ge for e ∈ E. Then

G′ contains a subgraph isomorphic to Kk−1,k−1

⇐⇒ there is e ∈ E such that Ge contains a subgraph isomorphic to Kk−1,k−1

⇐⇒ there is e ∈ E such that G contains a subgraph isomorphic to Kk,k

including e

⇐⇒ G contains a subgraph isomorphic to Kk,k . �

It is open if p-BIPARTITE-CLIQUE is fixed-parameter tractable (the question is
posed e.g. in [6, p. 355]), thus at present it is not known if it has a kernelization at

816 Theory Comput Syst (2011) 48: 803–839

all. The construction in the above example shows that it unlikely has a parameter
non-increasing polynomial kernelization:

Corollary 4.6

(1) If P �= NP, then p-SAT, p-POINTED-PATH, and p-BIPARTITE-CLIQUE have no
parameter non-increasing polynomial kernelizations.

(2) If ETH3 holds, then p-SAT and p-POINTED-PATH have no parameter non-
increasing subexponential kernelizations.

Proof Part (1) is immediate by Theorem 4.2, as all three underlying problems are NP-
hard.4 Moreover, we know by this corollary that if one of the three problems has a pa-
rameter non-increasing subexponential kernelization, then it is in SUBEPT. However
then ETH would fail in the case of p-SAT by [13], in the case of p-POINTED-PATH

by [3]. �

5 Excluding Polynomial Kernelizations

As mentioned in the Introduction and Sect. 3.1, there are polynomial kernelizations
which are not parameter non-increasing. We cannot apply the technique of the previ-
ous section to rule out such kernelizations. Furthermore, many parameterized prob-
lems apparently do not have parameter-decreasing polynomial self-reductions, so that
again we cannot apply the main result of the previous section. We use the method
of [1, 7] to deal with these situations.

The following type of reductions that preserve polynomial kernels was introduced
in [7] (based on a notion of [12]) under the name “W -reductions.”

Definition 5.1 Let (Q,κ) and (Q′, κ ′) be parameterized problems. A polynomial
reduction from (Q,κ) to (Q′, κ ′) is a polynomial reduction R from Q to Q′ such
that

κ ′(R(x)) = κ(x)O(1).

We then write R : (Q,κ) ≤p (Q′, κ ′). Furthermore (Q,κ) ≤p (Q′, κ ′) means that
there is a polynomial reduction from (Q,κ) to (Q′, κ ′).

Example 5.2 uni-PATH ≤p p-SAT.

Proof Let (G, k) with G = (V ,E) be an instance of uni-PATH. We may assume that
V = {0,1, . . . , n − 1} and (by adding isolated points if necessary) that n is a power
of 2. We will assign to (G, k) a formula α in CNF containing variables Xs,i with
s ∈ [logn] and i ∈ [k] with the intended meaning “the sth bit of the ith vertex of a
path of length k is 1.” For i, j ∈ [k], i �= j , one has to express by a clause that the

3Recall that ETH, the exponential time hypothesis, is the statement that SAT is not decidable in time 2o(n) .
4In the case of p-BIPARTITE-CLIQUE, see [14].

Theory Comput Syst (2011) 48: 803–839 817

selected vertices as ith and j th point of the path are distinct and for i ∈ [k − 1] that
the ith and the (i + 1)th selected vertices are related by an edge. For example the
second one may be expressed by letting, for every i ∈ [k −1] and every u,v ∈ V with
{u,v} /∈ E,

∨

s∈[logn]
¬X

bit(s,u)
s,i ∨

∨

s∈[logn]
¬X

bit(s,v)
s,i+1 ,

be a clause of α, where bit(s, u) denotes the sth bit in the binary representation of u

of length logn and where X1 := X and X0 := ¬X for every variable X.
Then G has a path of length k if and only if α is satisfiable. As α has k · log |V |

variables, the mapping (G, k) �→ α is a polynomial reduction. �

Example 5.3 ([12]) p-SAT ≤p uni-DOMINATING-SET.

Polynomial reductions preserve polynomial kernelizations in the following sense:

Lemma 5.4 Let (Q,κ) and (Q′, κ ′) be parameterized problems with

(Q,κ) ≤p (Q′, κ ′) and Q′ ≤p Q.

If (Q′, κ ′) has a polynomial kernelization, then (Q,κ) has a polynomial kerneliza-
tion.

Note that Q′ ≤p Q is always satisfied for NP-complete problems Q and Q′.

Proof of Lemma 5.4 Let R : (Q,κ) ≤p (Q′, κ ′) and S : Q′ ≤p Q. Assume that K is
a polynomial kernelization for (Q′, κ ′). Then S ◦ K ◦R is a polynomial kernelization
for (Q,κ), as for all x ∈ {0,1}∗

|S(K(R(x)))| = |K(R(x))|O(1) = κ ′(R(x))O(1) = κ(x)O(1). �

In order to exclude polynomial kernelizations using the previous lemma one needs
a primal problem without a polynomial kernelization. A central ingredient needed to
obtain such problems was provided by Fortnow and Santhanam [7]. It is contained in
Theorem 5.6.

Definition 5.5 ([1]) Let Q,Q′ ⊆ {0,1}∗ be classical problems. A distillation from
Q in Q′ is a polynomial time algorithm D that receives as inputs finite sequences
x̄ = (x1, . . . , xt) with xi ∈ {0,1}∗ for i ∈ [t] and outputs a string D(x̄) ∈ {0,1}∗ such
that

(1) |D(x̄)| = (maxi∈[t] |xi |)O(1);
(2) D(x̄) ∈ Q′ if and only if for some i ∈ [t] : xi ∈ Q.

If Q′ = Q we speak of a self-distillation. We say that Q has a distillation if there is
a distillation from Q in Q′ for some Q′.

818 Theory Comput Syst (2011) 48: 803–839

“Self-distillations” without property (1) has been called ORω functions in [2].
Their importance for classical complexity has been studied in various papers (see [2]
and its references). Every NP-complete problem Q has an ORω function: Take a
polynomial time reduction of the problem {(x1, . . . , xt)

∣∣ t ∈ N and xi ∈ Q for some
i ∈ [t]} to Q. However:

Theorem 5.6 ([7]) If PH �= 	P
3 (that is, if the polynomial hierarchy PH does not

collapse to its third level), then no NP-hard problem has distillations.

Clearly each problem in PTIME has a self-distillation. However, we prove that NP-
problems with a self-distillation are not necessarily in PTIME (under some plausible
complexity assumption):

Proposition 5.7 If NE �= E, then there is a problem in NP \ P that has a self-
distillation.

By E and NE we denote the class of problems Q such that x ∈ Q is solvable
by a deterministic algorithm and a nondeterministic algorithm, respectively, in time
2O(|x|).

Proof of Proposition 5.7 Let Q0 ⊆ {0,1}∗ be a language in NE \ E. We assume that
each yes instance of Q0 starts with a 1, and can thus be viewed as a natural number
in binary. For n ∈ N let bin(n) denote its binary representation. We set

Q := {1n | bin(n) ∈ Q0}.
It is easy to see that Q ∈ NP \ P. Now let Q′ be the “OR-closure” of Q, that is

Q′ := {(x1, . . . , xm) | m ≥ 1 and xi ∈ Q for some i ∈ [m]}.
Again it is easy to see that Q′ ∈ NP \ P. We claim that Q′ has a self-distillation.

Let (x11, . . . , x1m1), . . . , (xt1, . . . , xtmt) be a sequence of instances of Q′. We can
assume that all xij are sequences of 1s (otherwise we simply ignore those which are
not). Let n be the maximal length of the xij . Then

{x11, . . . , x1m1, . . . , xt1, . . . , xtmt } = {y1, . . . , yq}
for some q ≤ n. Thus (y1, . . . , yq) has length O(n2). Clearly (y1, . . . , yq) is in Q′ if
and only if (xi1, . . . , ximi

) ∈ Q′ for some i ∈ [t]. �

To see how Theorem 5.6 (and the polynomial reductions) can be used to exclude
polynomial kernelizations we include applications from [1] and [7].

Corollary 5.8 ([1]) If PH �= 	P
3 , then p-PATH has no polynomial kernelizations.

Proof We assume that p-PATH has a polynomial kernelization K and show that then
the (classical) problem PATH has a self-distillation. In fact, let (G1, k1), . . . , (Gt , kt)

Theory Comput Syst (2011) 48: 803–839 819

be instances of PATH. Let k := 1 + 2 · maxi∈[t] ki . Let i ∈ [t]. By adding to Gi a path
of length k − ki − 1 with one endpoint connected to all vertices of Gi we obtain a
graph G′

i such that the instance (G′
i , k) of PATH is equivalent to (Gi, ki). Let G be

the disjoint union of all the graphs G′
i . Clearly, G has a path of length k if and only if

there exists an i ∈ [t] such that G′
i has a path of length k and hence, if and only if there

exists an i ∈ [t] such that Gi has a path of length ki . As |K((G, k))| is polynomially
bounded in k and hence in maxi∈[t] ‖(Gi, ki)‖, the mapping (G1, k1), . . . , (Gt , kt) �→
K((G, k)) is a self-distillation of PATH. Here, by ‖(G, k)‖ we denote the size of
(G, k), that is the length of a (reasonable) encoding of the instance (G, k). �

Corollary 5.9 ([7]) If PH �= 	P
3 , then p-SAT and uni-DOMINATING-SET have no

polynomial kernelizations.

Proof Assume PH �= 	P
3 . By the previous corollary we know that p-PATH has no

polynomial kernelization. Hence, as p-PATH ∈ EPT, its canonical reparameterization
uni-PATH has no polynomial kernelization by Proposition 3.10. The claims follow
from Examples 5.2 and 5.3 by Lemma 5.4. �

The proof of Corollary 5.8 consists of two parts. Let (G1, k1), . . . , (Gt , kt) and
(G, k) be as there. In the first part we show that O with O((G1, k1), . . . , (Gt , kt)) :=
(G, k) is an OR for p-PATH in the sense of the following definition.

Definition 5.10 Let (Q,κ) be a parameterized problem. An OR for (Q,κ) is a poly-
nomial time algorithm O that for every finite tuple x̄ = (x1, . . . , xt) of instances of Q

outputs an instance O(x̄) of Q such that

(1) κ(O(x̄)) = (maxi∈[t] |xi |)O(1);
(2) O(x̄) ∈ Q if and only if for some i ∈ [t]: xi ∈ Q.

The second part of the proof of Corollary 5.8 shows the following lemma (there
the argument is presented for (Q,κ) := p-PATH).

Lemma 5.11 Assume that (Q,κ) has an OR O and a polynomial kernelization K.
Then D with

D(x1, . . . , xt) := K(O(x1, . . . , xt))

is a self-distillation of Q.

Hence by Theorem 5.6:

Corollary 5.12 Assume that (Q,κ) has an OR O and that Q is NP-hard. If PH �=
	P

3 , then (Q,κ) has no polynomial kernelizations.

5.1 Some Further Applications

Perhaps the reader might object that the proof of Corollary 5.8 is algorithmically
not convincing, as the OR function used in the first part essentially yields the dis-
joint union of given graphs, while probably any reasonable algorithm for determining

820 Theory Comput Syst (2011) 48: 803–839

whether a graph has a path of a given length will first compute its connected com-
ponents and then check these components for such a path. Hence the question arises
whether the path problem for the class of connected graphs has polynomial kerneliza-
tions. Assuming PH �= 	P

3 , we deny this, we even show that the path problem for the
class PLAN-CONN of planar connected graphs has no polynomial kernelizations:

Proposition 5.13 If PH �= 	P
3 , then p-PATH(PLAN-CONN) has no polynomial

kernelizations.

To show this claim we show in a first step:

Lemma 5.14 If PH �= 	P
3 , then p-POINTED-PATH(PLAN-CONN) has no polyno-

mial kernelizations.

Proof We show that p-POINTED-PATH(PLAN-CONN) has an OR (then our claim
follows from Corollary 5.12). Let (G1, v1, k1) . . . , (Gt , vt , kt) be instances of the
problem. First let us assume that for every i ∈ [t], we take a drawing of Gi such
that vi lies on the boundary of its outer face.5 Let k := maxi∈[t] ki . By adding to
every Gi a path of length k − ki starting in vi and ending in a vertex v′

i we obtain
an equivalent instance (G′

i , v
′
i , k). Let G be the planar and connected graph obtained

from the disjoint union of the G′
is by adding a new vertex v and edges from v to all

v′
i . It is easy to verify that

G has a path of length k + 1 starting at v

⇐⇒ there exists an i ∈ [t] such that Gi has a path of length k starting at vi.

Hence we can set O((G1, v1, k1), . . . , (Gt , vt , kt)) := (G,v, k + 1). �

Remark 5.15 For the NP-complete problem p-POINTED-PATH introduced in Sect. 4,
obviously we have

p-POINTED-PATH(PLAN-CONN) ≤p p-POINTED-PATH.

Therefore, by Lemma 5.14 and Lemma 5.4, if PH �= 	P
3 , then p-POINTED-PATH has

no polynomial kernelizations.

Proof of Proposition 5.13 We show that there is a polynomial reduction from
p-POINTED-PATH(PLAN-CONN) to p-PATH(PLAN-CONN). Then our claim
follows from the previous lemma by Lemma 5.4.

Let (G,v, k) be an instance of p-POINTED-PATH(PLAN-CONN). Using the
connectedness of G one easily verifies:

if G contains a path of length 2k − 1,

then G contains a path of length k starting at v. (7)

5Note that we actually do not need to compute the drawing of Gi . It is only needed to show that the graph
G we construct is planar.

Theory Comput Syst (2011) 48: 803–839 821

We add to G in v a path P of length k − 1 of new vertices, thereby obtaining the
planar and connected graph G′. We show that

(G,v, k) ∈ p-POINTED-PATH(PLAN-CONN)

⇐⇒ (G′,2k − 1) ∈ p-PATH(PLAN-CONN).

Then (G,v, k) �→ (G′,2k − 1) is the desired reduction.
Assume first that G has a path of length k starting at v. Clearly, then G′ has a path

of length 2k − 1. Conversely, let P ′ be a path of length 2k − 1 in G′. If v is a vertex
of P ′, then the vertices of P ′ contained in G constitute a path of G of length at least
k starting at v. If v is not a vertex of P ′, then P ′ is a path in G and by (7) the graph
G contains a path of length k starting at v. �

We have already seen in Corollary 4.6 that p-BIPARTITE-CLIQUE has no parame-
ter non-increasing polynomial kernelizations assuming NP �= P. Now we show that
p-BIPARTITE-CLIQUE has an OR; thus, by its NP-hardness [14], it is unlikely that it
has polynomial kernelizations.

Proposition 5.16 If PH �= 	P
3 , then p-BIPARTITE-CLIQUE has no polynomial ker-

nelizations.

As a technical tool, we first show that there is a “parameter increasing” self-
reduction for p-BIPARTITE-CLIQUE.

Lemma 5.17 There is an algorithm A such that for every graph G and k ≤ k′ ∈ N,
the algorithm A computes in time polynomial in ‖G‖ + k′ a graph G′ such that

G has a subgraph isomorphic to Kk,k

⇐⇒ G′ has a subgraph isomorphic to Kk′,k′ .

Proof Let G, k, and k′ be as stated above. First we construct a bipartite graph Gb =
(Vb,Eb) with

Vb := V × {0,1},
Eb := {{(u,0), (v,1)} ∣∣ {u,v} ∈ E

}
.

It is easy to verify that

(G, k) ∈ p-BIPARTITE-CLIQUE ⇐⇒ (Gb, k) ∈ p-BIPARTITE-CLIQUE.

Now the desired graph G′ = (V ′,E′) is defined by

V ′ := Vb ∪̇ {
(p, i)

∣∣ k < p ≤ k′ and i ∈ {0,1}},
E′ := Eb ∪ {{(u, i), (p,1 − i)} ∣∣ u ∈ V , i ∈ {0,1}, and k < p ≤ k′}. �

822 Theory Comput Syst (2011) 48: 803–839

Proof of Proposition 5.16 We show that p-BIPARTITE-CLIQUE has an OR. Let
(G1, k1), . . . , (Gt , kt) be instances of p-BIPARTITE-CLIQUE. By Lemma 5.17, we
can assume that k1 = · · · = kt =: k. Moreover, let G be the disjoint union of all Gi .
Clearly

G has a subgraph isomorphic to Kk,k

⇐⇒ there exists an i ∈ [t] such that Gi has a subgraph isomorphic to Kki,ki
.

�

6 Strong Lower Bounds

In this section and the next one, by a careful analysis of the proof of Theorem 5.6 as
given in [7], we obtain improvements, which yield better lower bounds for kerneliza-
tions. In particular for the path problem we will show:

Theorem 6.1 Let ε > 0. If PH �= 	P
3 , then there is no polynomial reduction from

PATH to itself computing for each instance (G, k) of PATH an instance (G′, k′) with

‖G′‖ = kO(1) · ‖G‖1−ε.

We define:

Definition 6.2 Let ε > 0. A parameterized problem (Q,κ) has an ε self-reduction if
there is a polynomial reduction from Q to itself that assigns to every instance x of Q

an instance y with

|y| = κ(x)O(1) · |x|1−ε.

Note that it is not required that the parameter of y is bounded in terms of the parame-
ter of x.

Clearly, if (Q,κ) has a polynomial kernelization, then (Q,κ) has an ε self-
reduction for every ε > 0. The converse does not hold, as shown in Sect. 8.2. Now
we can rephrase Theorem 6.1 by saying that, if PH �= 	P

3 , then for every ε > 0 the
problem p-PATH has no ε self-reductions. This result will be a special instance of a
more general result stating similar lower bounds for problems with a linear OR.

Definition 6.3 Let (Q,κ) be a parameterized problem. A linear OR for (Q,κ) is a
polynomial time algorithm O that for every finite tuple x̄ = (x1, . . . , xt) of instances
of Q outputs an instance O(x̄) of Q such that

(1) |O(x̄)| = t · (maxi∈[t] |xi |)O(1);
(2) κ(O(x̄)) = (maxi∈[t] |xi |)O(1);
(3) O(x̄) ∈ Q if and only if for some i ∈ [t]: xi ∈ Q.

Hence a linear OR is an OR with the additional property (1).

Theory Comput Syst (2011) 48: 803–839 823

Examples 6.4 The parameterized problems p-PATH and p-POINTED-PATH(PLAN-
CONN) have a linear OR. In fact, the ORs defined in the proofs of Corollary 5.8 and
of Lemma 5.14 are linear ones.

Theorem 6.5 Let ε > 0. Let (Q,κ) be a parameterized problem with a linear OR
and with NP-hard Q. If PH �= 	P

3 , then the problem (Q,κ) has no ε self-reductions.

In particular, if PH �= 	P
3 , then the problems mentioned in Examples 6.4 do not

have ε self-reductions. This proves Theorem 6.1.

6.1 Some Further Applications

Before proving Theorem 6.5 in Sect. 6.2 we first give more applications.

Example 6.6 The parameterized problem p-SAT has a linear OR.

Proof We define a linear OR O. Let α1, . . . , αt be CNF formulas, say, αi a formula
with ni variables. We set

n := max
i∈[t] ni and m := max

i∈[t] |αi |.

We may assume that all αi have variables in {X1, . . . ,Xn} and that log t is a natural
number (if t is not a power of two we duplicate one of the formulas for an appropriate
number of times).

If t ≥ 2n, the algorithm O proves whether one of the αis is satisfiable (by systemat-
ically checking all assignments) and outputs a CNF formula O(α1, . . . , αt) satisfying
condition (3) of the preceding definition.

Assume t < 2n. We introduce log t new variables Y1, . . . , Ylog t . For i ∈ [t] we set

βi :=
∧

s∈[log t]
Y bit(s,i)

s

(recall that bit(s, i) denotes the sth bit in the binary representation of i and that X1 =
X and X0 = ¬X for every variable X).

We bring each (βi → αi) into conjunctive normal form: Assume αi = ∧
�

∨
�′ λ��′

with literals λ��′ , then (βi → αi) is equivalent to

γi :=
∧

�

(
∨

s∈[log t]
Y 1−bit(s,i)

s ∨
∨

�′
λ��′

)

.

We let γ be the CNF formula γ := ∧
i∈[t] γi . We set O(α1, . . . , αt) := γ .

Clearly O is computable in polynomial time. Furthermore, by construction the
formula O(α1, . . . , αt) is equivalent to

∧
i∈[t](βi → αi). Because any assignment to

Y1, . . . , Ylog t satisfies exactly one of the βis, the formula O(α1, . . . , αt) is satisfiable
if and only if there is an i ∈ [t] such that αi is satisfiable; hence condition (3) of
Definition 6.3 is satisfied. Furthermore, O also satisfies the conditions (1) and (2).

824 Theory Comput Syst (2011) 48: 803–839

For (2) note that γ has n + log t variables. By our assumption on t , we have n +
log t ≤ 2n ≤ 2m. For (1) note that each γi has length O(m · (m + log t)) and hence,
O(α1, . . . , αt) has length O(m3). �

Example 6.7 The parameterized problem

p-CYCLE

Instance: A graph G and k ∈ N.
Parameter: k.

Question: Does G have a cycle of length k?

has a linear OR. This example is due to Martin Grohe [10].
If (G1, k1), . . . , (Gt , kt) are instances of p-CYCLE with the same parameter, k1 =

· · · = kt =: k, then for the disjoint union G of the Gis we have (G, k) ∈ p-CYCLE if
and only if (Gi, ki) ∈ p-CYCLE for some i ∈ [t]. With the following observations we
will reduce the general case to the case of instances with the same parameter.

So let (G1, k1), . . . , (Gt , kt) be instances of p-CYCLE. We set p := maxi∈[t] |Vi |,
where Vi is the vertex set of Gi , and k := maxi∈[t] ki . For i ∈ [t] and v ∈ Vi we let
Gi(v) be the graph obtained from Gi by replacing the vertex v by a path Pi(v) of
length p + k − ki of new vertices and by replacing edges of Gi of the form {v,w}
by two edges, namely by edges incident with w and one of the endpoints of the path
Pi(v). Clearly,

Gi(v) has a cycle of length p + k ⇐⇒ Gi has a cycle through v of length ki .

Hence, we can set O((G1, k1), . . . , (Gt , kt)) := (G,p + k), where G denotes the
disjoint union of the graphs Gi(v) for all i ∈ [t] and v ∈ Vi .

Example 6.8 The parameterized problem uni-CLIQUE has a linear OR.

Proof Let (G1, k1), . . . , (Gt , kt) be instances of uni-CLIQUE. Of course, we can as-
sume that ki ≤ |Vi |, where Vi is the set of vertices of Gi . Let k := maxi∈[t] ki . By
adding a clique of k − ki new vertices to Gi and connecting all new vertices to
all old vertices in Vi we can pass to an instance (G′

i , k) equivalent to (Gi, ki). Let
m := maxi∈[t] |V ′

i | (≤ 2 · maxi∈[t] |Vi |).
If t ≥ 2m, by exhaustive search the algorithm O checks whether one of the G′

is has
a clique of size k; if this is the case O outputs (Gi, ki) for such a G′

i and otherwise it
outputs, say, (G1, k1).

Assume that t < 2m. We set O((G1, k1), . . . , (Gt , kt)) := (G, k), where G denotes
the disjoint union of the graphs G′

i . Clearly, O is computable in polynomial time
and condition (3) is satisfied. For condition (1) note that we have for the set V of
vertices of G the inequality |V | ≤ t · m. The parameter of O((G1, k1), . . . , (Gt , kt))

is k · log |V | ≤ k · log(t · m) ≤ k · (m + logm) = O(m2). �

Example 6.9 The parameterized problem uni-DOMINATING-SET has a linear OR.

Proof Let (G1, k1), . . . , (Gt , kt) be instances of uni-DOMINATING-SET. Let k :=
maxi∈[t] ki . By adding k − ki isolated vertices, we can pass to equivalent instances

Theory Comput Syst (2011) 48: 803–839 825

(G′
1, k), . . . , (G′

t , k). Let G′
i = (V ′

i ,E
′
i). We may assume that t > k and that the vertex

sets V ′
i are pairwise disjoint.

If t ≥ 2m, where m := maxi∈[t] |V ′
i |, the algorithm O checks by exhaustive search

whether one of the G′
is has a dominating set of size k; if so O outputs (Gi, ki) for

such a G′
i and otherwise it outputs (G1, k1).

Assume that t < 2m. For i ∈ [t] and j ∈ [0, k] := {0,1, . . . , k} let V ′
i (j) be a copy

of V ′
i , say,

V ′
i (j) := {(v, j) | v ∈ V ′

i }.
Let G = (V ,E) be the graph with vertex set

V :=
⋃

s∈[log t]
{s(−), s(0), s(1)} ∪

⋃

i∈[t],j∈[0,k]
V ′

i (j).

The edge set E contains

− edges that make {s(−), s(0), s(1)} a clique for s ∈ [log t];
− for s ∈ [log t] and i ∈ [t] edges from s(1) to all vertices in V ′

i (0) if bit(s, i) = 0
and edges from s(0) to all vertices in V ′

i (0) if bit(s, i) = 1;
− for i, i′ ∈ [t], v ∈ V ′

i , w ∈ V ′
i′ , and j, j ′ ∈ [0, k] the edge {(v, j), (w, j ′)} if

• i �= i′ and j = j ′ > 0 or
• i = i′ and {v,w} ∈ Ei or
• i = i′, j �= j ′ and v = w.

We claim that

(G, k + log t) ∈ uni-DOMINATING-SET

⇐⇒ there is an i ∈ [t]: (G′
i , k) ∈ uni-DOMINATING-SET. (8)

For the backward direction assume for i ∈ [t] that {v1, . . . , vk} is a dominating set in
G′

i . Then

{(v1,1), . . . , (vk, k)} ∪ {s(bit(s, i)) | s ∈ [log t]}
is a dominating set of G.

For the forward direction let X be a dominating set of G of size k + log t . For
s ∈ [log t] in order to dominate the point s(−) we see that at least one point of the
clique {s(−), s(0), s(1)} has to be contained in X.

Clearly, as k < t , there is an i0 ∈ [t] such that

X ∩
⋃

j∈[0,k]
V ′

i0
(j) = ∅.

For j ∈ [k] (in particular j �= 0), in order to dominate the elements of V ′
i0
(j), the set X

must contain an element of the form (vj , j) with vj ∈ V ′
ij

for some ij �= i0. Moreover,
as X only contains k + log t elements, the vertex vj (and hence ij) are uniquely
determined by j . Then it is not hard to see that the set {vj | j ∈ [k] and ij = i1} is a
dominating set in G′

i1
. This finishes the proof of the equivalence (8).

826 Theory Comput Syst (2011) 48: 803–839

We set O((G1, k1), . . . , (Gt , kt)) := (G, k). That O also satisfies condition (2) of
a linear OR is shown as in the case of uni-CLIQUE. �

Example 6.10 The problem alpha-LCS has a linear OR. Here alpha-LCS denotes
the canonical parameterization of the longest common subsequence problem:

alpha-LCS
Instance: An alphabet 	, strings X1, . . . ,X� ∈ 	∗, and m ∈ N.

Parameter: m · log |	|.
Question: Is there a common subsequence of X1, . . . ,X� of length

m?

Proof Let (1,X11, . . . ,X1�1,m1) . . . (t ,Xt1, . . . ,Xt�t ,mt) be instances of alpha-
LCS. We can assume that �1 = · · · = �t = � (by repeating a sequence if necessary)
and that m1 = · · · = mt = m (by adding c

m−mi

i to each Xij for some new letter ci).
Moreover we can assume that the alphabets 	i are disjoint. Now we consider the �

strings over 	1 ∪ · · · ∪ 	t

X11X21 · · ·Xt1, X12X22 · · ·Xt2, . . . X1�X2� · · ·Xt�

and the string Xt1X(t−1)1 · · ·X11.
One easily verifies that these (�+1) strings have a common subsequence of length

m if and only if for some i ∈ [t] the strings Xi1, . . . ,Xi�i
have one (for the forward

direction note that a common subsequence of X11X21 · · ·Xt1 and Xt1X(t−1)1 · · ·X11

is a sequence over 	i for some i ∈ [t]). Now, if t ≥ maxi∈[t] |	i |m we determine
the value of O by exhaustive search and otherwise, we use the set of strings just
constructed. �

Even though we could add further examples of parameterized problems with a lin-
ear OR, there are also many problems where we do not know whether they have a lin-
ear OR. We just mention one example, the problem uni-RED/BLUE-NONBLOCKER,
the canonical reparameterization of the problem p-RED/BLUE-NONBLOCKER.

6.2 Proof of Theorem 6.5

It will be convenient to reformulate Theorem 6.5. For this purpose we need some
further notions.

Definition 6.11 A function f : N → R≥0 is pseudo-linear if there is some c ∈ N and
some ε ∈ R with ε > 0 such that for all t ∈ N

f (t) ≤ c · t1−ε.

The property that we need of pseudo-linear functions is contained in the following
lemma. It is easy to prove.

Theory Comput Syst (2011) 48: 803–839 827

Lemma 6.12 Let ε > 0 and f : N → R≥0 be a pseudo-linear function. Then for
every c ∈ N there exists a d ∈ N such that for sufficiently large n we have

f (nd) · nc + 1 ≤ nd.

Remark 6.13 It is worthwhile to note that a weak converse of the previous lemma
holds: Let f satisfy the conclusion of Lemma 6.12. Then there is some ε > 0 such
that f (t) < t1−ε for infinitely many t .

To see this write f (t) = tg(t) for some g. Then for c = 1 there are d,n0 ∈ N

such that nd·g(nd) < nd−1 for all n ≥ n0. Thus g(t) < 1 − 1/d , i.e. f (t) ≤ t1−1/d , for
t = nd

0 , (n0 + 1)d , (n0 + 2)d ,

For a parameterized problem (Q,κ), a constant c ∈ N, and a function f : N →
R≥0 consider the preparameterized problem

(Q,κc × f)

Instance: x ∈ {0,1}∗.
Parameter: κ(x)c · f (|x|).

Question: x ∈ Q?

Theorem 6.5 follows from:

Lemma 6.14 Let c ∈ N and f : N → R≥0 be pseudo-linear. Let (Q,κ) be a parame-
terized problem with a linear OR and with NP-hard Q. If PH �= 	P

3 , then (Q,κc ×f)

has no linear kernelizations.

We prove this lemma by generalizing Theorem 5.6.

Definition 6.15 Let Q,Q′ ⊆ {0,1}∗ be classical problems and let f : N → R≥0 be
a function. An f -distillation from Q in Q′ is a polynomial time algorithm D that
receives as inputs finite sequences x̄ = (x1, . . . , xt) with xi ∈ {0,1}∗ for i ∈ [t] and
outputs a string D(x̄) ∈ {0,1}∗ such that

(1) |D(x̄)| = f (t) · (maxi∈[t] |xi |)O(1);
(2) D(x̄) ∈ Q′ if and only if for some i ∈ [t] : xi ∈ Q.

We say that Q has an f -distillation if there is an f -distillation from Q in Q′ for
some problem Q′.

Lemma 6.16 Let f : N → R≥0 be pseudo-linear. If PH �= 	P
3 , then no NP-hard

problem has f -distillations.

Proof Let f : N → R≥0 be pseudo-linear and Q ⊆ {0,1}∗ be NP-hard. Assume that
D is an f -distillation from Q in some problem Q′. We choose a constant c ∈ N such
that

|D(x̄)| ≤ f (t) ·
(

max
i∈[t] |xi |

)c

(9)

for all t ∈ N and all sequences x̄ of t instances of Q.

828 Theory Comput Syst (2011) 48: 803–839

Let Q := {0,1}∗ \ Q be the complement of Q and similarly Q′ the complement
of Q′. Clearly Q is coNP-hard. We show that Q ∈ NP/poly and hence, coNP ⊆ NP/

poly. This yields our claim, as then PH = 	P
3 by a result of Yap [17, Theorem 2].

Note that for all x̄ = (x1, . . . , xt) we have

D(x̄) ∈ Q′ ⇐⇒ for all i ∈ [t] : xi ∈ Q. (10)

To prove Q ∈ NP/poly it suffices to show that for sufficiently large n ∈ N there is
a t = nO(1) and a set S of strings with ‖S‖ := ∑

x∈S |x| = nO(1) such that for all
x ∈ {0,1}n

x ∈ Q ⇐⇒ ∃x1, . . . , xt ∈ {0,1}n : (x ∈ {x1, . . . , xt } and D(x1, . . . , xt) ∈ S). (11)

In other words, S can be viewed as a polynomial size advice string for instances of
length n. As we will see, the elements of S are strings in Q′, more precisely, we will
choose D-values “with many preimages.”

For every m ∈ N, we have |{0,1}≤m| ≤ 2m+1, in particular,

|{0,1}≤f (m)·nc | ≤ 2f (m)·nc+1. (12)

As f is pseudo-linear, by Lemma 6.12 there is a constant d ∈ N such that for all
sufficiently large n ∈ N

f (nd) · nc + 1

nd
≤ 1. (13)

For n ≥ 1 we set

t := nd.

Then (12) and (13) imply for Y := Q′ ∩ {0,1}≤f (t)·nc
that

|Y |1/t ≤ 2. (14)

Recall that Q=n := Q ∩ {0,1}n. By (9) we can define a function g : (Q=n)
t → Y by

g(x̄) := D(x̄).

We construct the advice string S inductively. First we let X0 := Q=n. Choose y0 ∈ Y

such that

g−1(y0) := {
x̄ ∈ Xt

0 | g(x̄) = y0
}

contains at least |X0|t /|Y | many tuples. Let string(g−1(y0)) be the set components
of tuples in g−1(y0), that is,

string(g−1(y0)) := {
x ∈ X0 | there exists some (x1, . . . , xt) ∈ g−1(y0)

such that x ∈ {x1, . . . , xt }
}
.

Theory Comput Syst (2011) 48: 803–839 829

It follows that g−1(y0) ⊆ (string(g−1(y0)))
t and hence

|string(g−1(y0))| ≥ |g−1(y0)|1/t ≥
(|X0|t

|Y |
)1/t

≥ |X0|
2

,

the last inequality holding by (14). If X0 �= string(g−1(y0)), then let X1 := X0 \
string(g−1(y0)). Now, we view g as a function of X1 to Y and, by the same argument
as above, we choose y1 ∈ Y such that |string(g−1(y1))| ≥ |X1|/2. We iterate this
process until we reach the first � ∈ N with X� = string(g−1(y�)). We let

S := {y0, . . . , y�}.
Then S ⊆ Y ⊆ Q′ and |S| = � ≤ log |X0| ≤ n and thus ‖S‖ ≤ n · f (t) · nc ≤ nd+1 (by
(13)). Hence ‖S‖ is polynomially bounded in n.

We show the equivalence (11). Let x ∈ {0,1}n. If x ∈ Q, by our construction of S,
there is a tuple x̄ containing x as a component such that g(x̄) = D(x̄) ∈ S.

Conversely, assume x /∈ Q. Then for every x̄ := (x1, . . . , xt) with x1, . . . , xt ∈
{0,1}n and x ∈ {x1, . . . , xt }, we have, by (10), that D(x̄) /∈ Q′ and hence D(x̄) /∈
S ⊆ Q′. �

Proof of Lemma 6.14 Let c ∈ N and f be pseudo-linear, say f (t) = O(t1−ε). As-
sume that (Q,κ) is a parameterized problem with a linear OR O and NP-hard Q.
Assume 	P

3 �= PH. For the sake of contradiction assume that (Q,κc ×f) has a linear
kernelization K. By Lemma 6.16 it suffices to show that Q has an f -distillation D.

We define D on finite sequences x̄ = (x1, . . . , xt) by

D(x̄) := K(O(x̄)).

It is clear that

D(x̄) ∈ Q ⇐⇒ for some i ∈ [t] : xi ∈ Q.

Write n := maxi∈[t] |xi |. Then, because K is a linear kernelization for (Q,κc × f),

|D(x̄)| = O(κ(O(x̄))c · f (|O(x̄)|)) = nO(1) · |O(x̄)|1−ε,

where the second equality follows from Definition 6.3(2). Now, by Definition 6.3(1)
we know |O(x̄)| = t · nO(1). Hence |D(x̄)| = t1−ε · nO(1) and therefore D is a f -
distillation from Q in itself. �

7 Lower Bounds for Problems with an OR for Instances with Constant
Parameter

Recall that a hole in a graph is an induced cycle of length at least four. While the
problems whether a graph contains a hole and whether it contains an even hole are
solvable in polynomial time, it is not known whether there is such an algorithm de-
ciding if a graph has an odd hole. Recently problems concerning holes have received

830 Theory Comput Syst (2011) 48: 803–839

much attention as they are related to the Strong Perfect Graph Theorem [5] (“A graph
is perfect if it contains neither an odd hole nor the complement of an odd hole”). We
consider the parameterized problem (see [3])

p-ODD-HOLE≤
Instance: A graph G and k ∈ N.

Parameter: k.
Question: Does G have a hole of odd length at most k?

Let (G1, k1), . . . , (Gt , kt) be instances of p-ODD-HOLE≤. If k1 = · · · = kt =: k, then
for the disjoint union G of the Gis we have (G, k) ∈ p-ODD-HOLE≤ if and only if
(Gi, ki) ∈ p-ODD-HOLE≤ for some i ∈ [t]. However, it is not clear how to define
such an instance (G, k) if k1, . . . , kt are distinct, more precisely, we do not know
whether p-ODD-HOLE≤ has an OR. The following concept is tailored for such situ-
ations.

Definition 7.1 Let (Q,κ) be a parameterized problem and let λ be a further parame-
terization. An OR for λ-constant instances of (Q,κ) is a polynomial time algorithm O

that for every finite tuple x̄ = (x1, . . . , xt) of instances of Q with λ(x1) = · · · = λ(xt)

outputs an instance O(x̄) of Q such that

(1) κ(O(x̄)) = (maxi∈[t] |xi |)O(1);
(2) O(x̄) ∈ Q if and only if for some i ∈ [t]: xi ∈ Q.

Examples 7.2 The instances of the following problems are pairs (G, k), where G is a
graph and k ∈ N. We let λ always be the function with λ(G,k) := k. In all examples
we get the claimed OR for λ-constant instances by setting O((G1, k), . . . , (Gt , k)) :=
(G, k), where the graph G is the disjoint union of the Gis. In all cases we do not know
whether the corresponding problem has an OR.

(a) The problem p-ODD-HOLE≤ has an OR for λ-constant instances.
(b) The problems uni-CHORDLESS-PATH and uni-CHORDLESS-CYCLE have an OR

for λ-constant instances. Here, for example,

uni-CHORDLESS-CYCLE

Instance: A graph G = (V ,E) and k ∈ N.
Parameter: k · log |V |.

Question: Does G have a chordless cycle of length k?

Note that in the last example λ(G,k) = k is not the parameter of (G, k) as in-
stance of uni-CHORDLESS-CYCLE.

For problems with an OR for constant instances we get a slightly weaker result
than that in Theorem 6.5 for problems with a linear OR. To state the result we first
define:

Definition 7.3 Let (Q,κ) be a parameterized problem. A subexponential self-
reduction of (Q,κ) is a polynomial reduction from Q to itself that assigns to every

Theory Comput Syst (2011) 48: 803–839 831

instance x of Q an instance y with

|y| = κ(x)O(1) · |x|o(1).

Clearly if (Q,κ) has a subexponential self-reduction, then it has an ε self-
reduction for every ε > 0.

Theorem 7.4 Let (Q,κ) be a parameterized problem with NP-hard Q. Furthermore
assume that (Q,κ) has an OR for λ-constant instances, where λ is a further para-
meterization. If PH �= 	P

3 , then (Q,κ) has no subexponential self-reductions.

This improves the corresponding result of [1] in the following respects:

− it assumes Q to be only NP-hard instead of NP-complete;
− it assumes a weaker notion of OR (the OR used in [1] is ours for λ = κ);
− it excludes subexponential self-reductions instead of polynomial kernelizations.

In particular, we can apply Theorem 7.4 to the problems in Examples 7.2 (b). It
is not known whether p-HOLE≤ is in FPT. If not, then it would not have polynomial
kernelizations. At the moment we cannot apply Theorem 7.4 to rule out polynomial
kernelizations, as to the best of knowledge it is not known whether the underlying
problem is NP-hard. To get a further application of the theorem we need the following
lemma whose proof is simple and similar to that of Lemma 5.4.

Lemma 7.5 Let (Q,κ) and (Q′, κ ′) be parameterized problems.with

(Q,κ) ≤p (Q′, κ ′) and Q′ ≤p Q.

If (Q′, κ ′) has a subexponential self-reduction, then (Q,κ) has a subexponential self-
reduction.

Example 7.6 If PH �= 	P
3 , then p-PATH(PLAN-CONN) has no subexponential self-

reductions.

Proof We know that the problem p-POINTED-PATH(PLAN-CONN) has an OR and
hence no subexponential self-reduction. In the proof of Proposition 5.13 we showed
that there is a polynomial reduction from the problem p-POINTED-PATH(PLAN-
CONN) to p-PATH(PLAN-CONN). Hence, the claim follows from the previous
lemma. �

7.1 Proof of Theorem 7.4

Recall the reparameterization (Q,κc × f) of (Q,κ) for c ∈ N and f : N → R≥0.
Clearly (Q,κc × f) has a polynomial kernelization if and only if (Q,κ × f), the
problem for c = 1, has one.

For the purposes of the proof of Theorem 7.4 we call a function f : N → R≥0 good
if f (t) = to(1) (that is, if we can write f (t) = t1/h(t) for some function h : N → R≥0
with limt→∞ h(t) = ∞).

The statement of this theorem can be equivalently formulated as:

832 Theory Comput Syst (2011) 48: 803–839

Lemma 7.7 Let (Q,κ) be a parameterized problem with NP-hard Q. Furthermore
assume that (Q,κ) has an OR for λ-constant instances, where λ is a further para-
meterization. If PH �= 	P

3 , then, for every good f : N → R≥0 the problem (Q,κ × f)

has no polynomial kernelizations.

Proof Assume PH �= 	P
3 . Furthermore, we choose for (Q,κ) an OR O for λ-constant

instances.
Let f : N → R≥0 be good. One easily sees that there is a good increasing function

f ′ : N → R≥0 of the form

f ′(t) = 2log t/ι(log t) (15)

with a nondecreasing and unbounded function ι : N → R≥0 such that f (t) ≤ f ′(t)
for all (sufficiently large) t .

For the sake of contradiction assume also that (Q,κ × f) has a polynomial ker-
nelization. Of course, then (Q,κ ×f ′) has a polynomial kernelization K. Now let Q′
be the “OR-closure” of Q, that is

Q′ := {
(x1, . . . , xm)

∣∣ m ≥ 1 and xi ∈ Q for some i ∈ [m]}.
Let x1, . . . , xt be instances of Q. We let n := maxi∈[t] |xi | and � := maxi∈[t] λ(xi).

Then � = nO(1). For j ≤ � let

yj := K(O(x̄j)),

where x̄j stands for the subsequence of x1, . . . , xt consisting of the instances with
λ-value j .

We show that for some good function f1 and all j ≤ �

|yj | = f1(t) · nO(1). (16)

In fact, as K is a polynomial kernelization of (Q,κ × f ′), we know

|yj | = |K(O(x̄j))| = (κ(O(x̄j)) · f ′(|O(x̄j)|))O(1) = nO(1) · f ′(|O(x̄)|)O(1),

where the last equality holds by Definition 7.1 (1). We show that f ′(|O(x̄)|) =
f ′(t)d · nd for some d ∈ N. Then we get (16) for f1(t) := f ′(t)d . As f ′ is good,
so is f1.

As O is polynomial time computable, we know |O(x̄j)| ≤ tc ·nc for some constant
c ∈ N. Since f ′ is increasing, it is enough to show

f ′(tc · nc) ≤ (f ′(t) · n)2c.

By (15)

f ′(tc · nc) = 2
c·log t+c·logn

ι(c·log t+c·logn) .

We distinguish two cases.

Theory Comput Syst (2011) 48: 803–839 833

– If t ≥ n, then, as ι is nondecreasing, we get

f ′(tc · nc) ≤ 2
2c·log t
ι(log t) = f ′(t)2c.

– If t < n, then

f ′(tc · nc) ≤ 22c·logn = n2c.

This finishes the proof of (16).
Now we claim that

D(x1, . . . , xt) := (y1, . . . , y�)

defines an f1-distillation from Q to Q′ (cf. Definition 6.15). As f1 is good and hence,
pseudo-linear, this contradicts Lemma 6.16. Obviously the condition (2) in Defini-
tion 6.15 is satisfied. To see (1), we observe that

|(y1, . . . , y�)| ≤ � · f1(t) · nO(1) (by (16)),

= f1(t) · nO(1) (by � = nO(1)).

Altogether D is an f1-distillation from Q and Q′. �

8 Concluding Remarks

8.1 Comparing the Different Notions of OR

From Theorem 5.6, Corollary 5.12, and Theorem 6.5 we know:

Proposition 8.1 Assume that PH �= 	P
3 . Then:

(1) No NP-complete problem has a self-distillation.
(2) No parameterized problem (Q,κ) with polynomial kernelization and with NP-

complete Q has an OR.
(3) No parameterized problem (Q,κ) with polynomial kernelization and with NP-

complete Q has a linear OR.

We do not know whether one of the three conclusions holds under weaker assump-
tions, say, under P �= NP. In this context it might be interesting to be aware of:

Proposition 8.2 The conclusions (1), (2), and (3) of Proposition 8.1 are mutually
equivalent.

Proof The implication (2) ⇒ (3) is trivial. For (3) ⇒ (1) assume, by contradiction,
that Q is NP-complete and has a self-distillation D. Define κ(x) := |x|. Then x �→ x

is a polynomial kernelization of (Q,κ) and D is a linear OR of (Q,κ), the desired
contradiction to (3).

834 Theory Comput Syst (2011) 48: 803–839

For the implication (1) ⇒ (2) assume that (Q,κ) with NP-complete Q has a poly-
nomial kernelization K and an OR O. Then K ◦ O is a self-distillation, as

K(O(x̄)) = κ(O(x̄))O(1) =
(

max
i

|xi |
)O(1)

. �

The next result shows in particular that every parameterized problem (Q,κ) with
polynomial kernelization and NP-complete Q already has no OR if it has no linear
OR. For example, the parameterized vertex cover problem p-VC has no linear OR if
and only if it has no OR.

Proposition 8.3 Assume that (Q,κ) and (Q′, κ ′) are parameterized problems with
NP-complete Q and Q′ and that (Q′, κ ′) has a polynomial kernelization. If (Q,κ)

has no linear OR, then (Q′, κ ′) has no OR.

Proof Let R : Q ≤p Q′ and S : Q′ ≤p Q be polynomial reductions and K a polyno-
mial kernelization of (Q′, κ ′) and assume that O is an OR of Q′, then

x1, . . . , xt �→ S(K(O(R(x1), . . . ,R(xt))))

is a linear OR of (Q,κ). �

8.2 Comparing the Different Notions of Self-reduction

Clearly, every parameterized problem with a polynomial kernelization has a subexpo-
nential self-reduction, and every parameterized problem with a subexponential self-
reduction has an ε self-reduction for every ε > 0. The following two propositions
establish that these inclusions are proper.

Proposition 8.4 There exists a fixed-parameter tractable parameterized problem that
has ε self-reductions for all ε > 0 but does not have subexponential self-reductions.

Proposition 8.5 There exists a fixed-parameter tractable problem that has subexpo-
nential self-reductions but does not have polynomial kernelizations.

Proof of Proposition 8.4 Let Q ⊆ N be a classical problem such that every x ∈ Q is a
power of 2 with an odd exponent and is written in unary. We define the parameterized
problem p-Q by

p-Q
Instance: m,k ∈ N in unary with logk ≥ logm

log logm
.

Parameter: k.
Question: Is (logm) · (logk) ∈ Q?

It suffices to show

(1) If Q is decidable, then p-Q is fixed-parameter tractable.
(2) For every ε > 0 the problem p-Q has an ε self-reduction.

Theory Comput Syst (2011) 48: 803–839 835

(3) If Q /∈ E, then p-Q has no subexponential reductions.

(1) As for yes-instances (m, k) of p-Q, we have log k ≥ logm/ log logm, the problem
p-Q has a kernelization and hence is fixed-parameter tractable by Proposition 3.2.

(2) Let t ∈ N. We show that there is an 1/d self-reduction of p-Q for d := 2t .
Let (m, k) be an instance of p-Q. We can assume that m = 22u

and k = 22v
(oth-

erwise, (m, k) is a no-instance of p-Q).
We set

m′ := 22u−t

(= (22u

)1/d) and k′ := 22v+t

(= (22v

)d).

Clearly, (m, k) ∈ p-Q if and only if (m′, k′) ∈ p-Q. Moreover, |m′| = |m|1/d and
|k′| = |k|d and hence, |(m′, k′)| = O(kd · m1/d). Altogether, (m, k) �→ (m′, k′) is an
1/d self-reduction of p-Q.

(3) We assume that p-Q has a subexponential self-reduction (m, k) �→ (m′, k′). Then

|(m′, k′)| = kc · (m + k)o(1) = kc · mo(1)

for some c ∈ N. We can assume that c is a power of 2. We show that Q ∈ E.
Let x be an instance of Q with x ≥ d ≥ 24c2

, where d ∈ N will be fixed later. We
assume that x is an odd power of 2 (otherwise, x /∈ Q). We set

u :=
√

2c2 · x and v := u

2c2
.

Then, u and v are powers of 2 (note that v = √
x/2c2) and u · v = x. Moreover, v ≥

u/ logu by our assumption x ≥ 24c2
. Hence, (2u,2v) ∈ p-Q if and only if x ∈ Q. We

apply the subexponential self-reduction to (2u,2v) obtaining an equivalent instance
(m′, k′) of p-Q with

m′, k′ ≤ 2v·c · (2u)o(1) = 2v·c+u·o(1).

If d has been chosen big enough, we have

x′ := (logm′) · (log k′) ≤ (v · c)2 + v · u · o(1) + u2 · o(1)

≤ (u/2c)2 + u2 · o(1) < u2/2c2 = uv = x.

Thus, x′ < x. If k′ < m′/ logm′, then (m′, k′) /∈ p-Q and hence, x /∈ Q. Other-
wise, (x′ ∈ Q ⇐⇒ x ∈ Q). We continue this way and obtain equivalent instances
x′′, x′′′, . . . of Q till we get an instance ≤ d , which is decided directly. Altogether, we
have a single exponential decision procedure for Q. �

Proof of Proposition 8.5 Let Q ⊆ N be a classical problem such that every x ∈ Q is
represented in unary and has the form

x = 22t

(17)

for some t ∈ N. We define the parameterized problem p-EXP(Q) by

836 Theory Comput Syst (2011) 48: 803–839

p-EXP(Q)

Instance: m,k ∈ N in unary with k ≥ log logm.
Parameter: k.

Question: Is mk ∈ Q?

It is sufficient to show

(1) If Q is decidable, then p-EXP(Q) is fixed-parameter tractable.
(2) The problem p-EXP(Q) has a subexponential self-reduction.
(3) If Q /∈ PTIME, then p-EXP(Q) has no polynomial kernelizations.

(1) As for yes-instances (m, k) of p-EXP(Q), we have k ≥ log logm, the problem
p-EXP(Q) has a kernelization and hence is fixed-parameter tractable by Proposi-
tion 3.2.

(2) Let (m, k) be an instance of p-EXP(Q). By (17), we can assume that m = 22t
for

some t ∈ N (otherwise, (m, k) is a no-instance of p-EXP(Q)). Then

(m, k) ∈ p-EXP(Q) ⇐⇒ 2k·2t ∈ Q ⇐⇒ (2, k · 2t) ∈ p-EXP(Q).

Therefore the mapping (m, k) �→ (2, k · logm) is the desired reduction.

(3) We assume that K is a polynomial kernelization of p-EXP(Q) and show that
Q ∈ PTIME.

Let x = 22t
be an instance of Q. We let t ′ be the minimum power of 2 with t ′ ≥ t .

Thus, 2t ≥ t ′ ≥ t . Clearly

x ∈ Q ⇐⇒ (22t /t ′ , t ′) ∈ p-EXP(Q).

Furthermore we set (m, k) := K(22t /t ′ , t ′). We know that

|(m, k)| = t ′O(1) = tO(1)

and that x ∈ Q if and only if mk ∈ Q. As

mk = tO(tO(1)) = 2tO(1)

we see that this is strictly smaller than x if x is sufficiently large. �

8.3 Comparing ε Self-reductions and Kernelizations

We showed (Theorem 6.5) that a refinement of the method used in [1, 7] to exclude
polynomial kernelizations, actually works to exclude ε self-reductions. Although this
gives some interest to the concept of ε self-reduction, the question remains how nat-
ural this concept is. In this last section we want to present results clarifying how close
the concepts of polynomial kernelization and of ε self-reductions are.

Note that ε self-reductions are allowed to increase the parameter arbitrarily. By a
straightforward argument we shall see in Proposition 8.6 that a parameterized prob-
lem has an ε self-reduction which does not increase the parameter if and only if it has

Theory Comput Syst (2011) 48: 803–839 837

a parameter non-increasing polynomial kernelization. We then look what happens if
we allow some ‘moderate’ increase in the parameter. Different renderings of what
‘moderate’ means, allow to iterate ε self-reductions to yield polynomial or subexpo-
nential kernelizations.

Given � ∈ N and a function f whose range is included in its domain, let f � denote
the function given by f �(a) := f ◦ f ◦ · · · ◦ f

︸ ︷︷ ︸
� times

(a).

Proposition 8.6 Let 0 < ε < 1 and let (Q,κ) be a parameterized problem. Then
(Q,κ) has a parameter non-increasing polynomial kernelization if and only if it has
parameter non-increasing ε self-reduction R.

Sketch of proof The forward direction is trivial. Conversely, let R be an ε self-
reduction of (Q,κ) such that κ ◦ R ≤ κ . Choose c ∈ N such that |R(x)| ≤ κ(x)c ·
|x|(1−ε) for all x ∈ 	∗. A straightforward induction shows

|R�(x)| ≤ κ(x)c·
∑

0≤i≤�−1(1−ε)i · |x|(1−ε)� , (18)

for all � ≥ 1 and x ∈ 	∗. Furthermore, a simple computation shows that for m :=
(log log |x|)/ε we get

|x|(1−ε)m ≤ 2. (19)

Using
∑∞

i=0(1 − ε)i = 1/ε, the inequalities (18) and (19) imply

|Rm(x)| ≤ κ(x)c/ε · 2 ≤ κ(x)O(1).

By (18) we get |R�(x)| ≤ κ(x)c/ε · |x| ≤ |x|O(1) for all � ≥ 1 (recall κ(x) ≤ |x|O(1)),
and hence Rm can be computed in polynomial time. Thus Rm is a parameter non-
increasing polynomial kernelization of (Q,κ). �

Definition 8.7 A function f : N → N is moderate (strongly moderate) if and only if
it is nondecreasing and f �(k) ≤ kO(�) (respectively f �(k) ≤ kO(1)) for all k, � ∈ N

with k/� sufficiently large.

E.g. linear functions are moderate. On the other hand, a “slightly polynomial”
function k �→ �k1+ε� for a constant ε > 0 is not moderate. Clearly, the identity is
strongly moderate, but k �→ �k · (1 + ε)� for ε > 0 is not. We give further examples.

Examples 8.8 (a) The function given by f (k) := �k · logk� is moderate.

Proof It is enough to show f �(k) ≤ k� · (log k)� for all k, � ∈ N with k/� ≥ 2. Induc-
tively

f �+1(k) ≤ f �(k) · logf �(k) ≤ k�(logk)� · log(k�(log k)�)

= k�(log k)� · (� log k + � log logk) (20)

838 Theory Comput Syst (2011) 48: 803–839

Now, logk + log logk ≤ 2 logk, so k/2 · (logk + log logk) ≤ k log k. But if k/� ≥ 2,
i.e. � ≤ k/2, we get (� logk + � log logk) ≤ k logk. Hence by (20) we get f �+1(k) ≤
k�+1(log k)�+1 as we want. �

(b) The function given by f (k) := �k · k
√

k� is strongly moderate.

Proof An easy induction shows f �(k) ≤ k(1+1/k)� for all �, k ∈ N. If k/� ≥ 1, i.e.
k ≥ �, this is at most k(1+1/k)k = kO(1). �

Proposition 8.9 Let 0 < ε < 1 and let (Q,κ) be a parameterized problem in EXPT
with an ε self-reduction R. Then

(1) if κ ◦ R ≤ f ◦ κ for some strongly moderate f , then (Q,κ) has a polynomial
kernelization;

(2) if κ ◦ R ≤ f ◦ κ for some moderate f , then (Q,κ) has a subexponential kernel-
ization; more specifically, it has a kO(log k)-kernelization.

We omit the proof as it consists mainly in tedious computations along the line of
argument for Proposition 8.6. For details see the third author’s PhD thesis [15].

Acknowledgements The third author wants to thank Mike Fellows, Danny Hermelin, Mihai Prunescu
and Frances Rosamond for helpful discussions.

References

1. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial
kernels. In: Proceedings of the 35th International Colloquium on Automata, Languages and Program-
ming (ICALP’08, Track A). Lecture Notes in Computer Science, vol. 5125, pp. 563–574. Springer,
Berlin (2008)

2. Chang, R., Kadin, Y.: On computing boolean connectives of characteristic functions. Math. Syst.
Theory 28, 173–198 (1995)

3. Chen, Y., Flum, J.: On parameterized path and chordless path problems. In: Proceedings of the 22nd
IEEE Conference on Computational Complexity (CCC’07), pp. 250–263 (2007)

4. Chen, Y., Flum, J.: Subexponential time and fixed-parameter tractability: exploiting the miniaturiza-
tion mapping. J. Log. Comput. 19(1), 89–122 (2009)

5. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann.
Math. 164, 51–229 (2006)

6. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
7. Fortnow, L., Santhanam: Infeasibility of instance compression and succinct PCPs for NP. In: Proceed-

ings of the 40th ACM Symposium on the Theory of Computing (STOC’08), pp. 133–142. ACM, New
York (2008). Full version available at: http://lance.fortnow.com/papers/. Accessed 23 May 2010

8. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revisited. Ann.
Pure Appl. Log. 130, 3–31 (2004)

9. Grandjean, E., Kleine-Büning, H.: SAT-problems and reductions with respect to the number of vari-
ables. J. Log. Comput. 7(4), 457–471 (1997)

10. Grohe, M.: Private communication (2008)
11. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM SIGACT News

38(1) (2007)
12. Harnik, D., Naor, M.: On the compressibility of NP instances and cryptographic applications. In:

Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06),
pp. 719–728 (2006). Full version appears as TR06-022 in ECCC Reports 2006, available at http://
eccc.hpi-web.de/year/2006/. Accessed 23 May 2010

http://lance.fortnow.com/papers/
http://eccc.hpi-web.de/year/2006/
http://eccc.hpi-web.de/year/2006/

Theory Comput Syst (2011) 48: 803–839 839

13. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Com-
put. Syst. Sci. 63, 512–530 (2001)

14. Johnson, D.: Announcements, updates, and greatest hits. J. Algorithms 8(3), 438–448 (1987)
15. Müller, M.: Parameterized randomization. PhD thesis, Albert-Ludwigs-Universität Freiburg i.Br.

URN: urn:nbn:de:bsz:25-opus-64017. Available at http://www.freidok.uni-freiburg.de/volltexte/
6401/ (2009). Accessed 23 May 2010

16. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, London (2006)
17. Yap, C.K.: Some consequences of non-uniform conditions on uniform classes. Theor. Comput. Sci.

26, 287–300 (1983)

http://www.freidok.uni-freiburg.de/volltexte/6401/
http://www.freidok.uni-freiburg.de/volltexte/6401/

	Lower Bounds for Kernelizations and Other Preprocessing Procedures
	Abstract
	Introduction
	Preliminaries
	Parameterized Complexity

	Fundamentals of Kernelization
	Comparing the Different Notions of Kernelizations
	Complexity of Problems with Kernelizations
	Polynomial Kernelization and Compression

	Excluding Parameter Non-increasing Kernelizations
	Excluding Polynomial Kernelizations
	Some Further Applications

	Strong Lower Bounds
	Some Further Applications
	Proof of Theorem 6.5

	Lower Bounds for Problems with an OR for Instances with Constant Parameter
	Proof of Theorem 7.4

	Concluding Remarks
	Comparing the Different Notions of OR
	Comparing the Different Notions of Self-reduction
	Comparing epsilon Self-reductions and Kernelizations

	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

