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Abstract The FEEDBACK VERTEX SET problem on unweighted, undirected graphs
is considered. Improving upon a result by Burrage et al. (Proceedings 2nd Interna-
tional Workshop on Parameterized and Exact Computation, pp. 192–202, 2006), we
show that this problem has a kernel with O(k3) vertices, i.e., there is a polynomial
time algorithm, that given a graph G and an integer k, finds a graph G′ with O(k3)

vertices and integer k′ ≤ k, such that G has a feedback vertex set of size at most k,
if and only if G′ has a feedback vertex set of size at most k′. Moreover, the algo-
rithm can be made constructive: if the reduced instance G′ has a feedback vertex set
of size k′, then we can easily transform a minimum size feedback vertex set of G′
into a minimum size feedback vertex set of G. This kernelization algorithm can be
used as the first step of an FPT algorithm for FEEDBACK VERTEX SET, but also as a
preprocessing heuristic for FEEDBACK VERTEX SET.

We also show that the related LOOP CUTSET problem also has a kernel of cubic
size. The kernelization algorithms are experimentally evaluated, and we report on
these experiments.

Keywords Graphs · Algorithms · Kernelization algorithms · Preprocessing · Data
reduction · Feedback vertex set · Loop cutset · Polynomial kernels · Fixed parameter
tractability

1 Introduction

The FEEDBACK VERTEX SET problem is a classic and fundamental graph problem,
with several applications. See e.g., [18] for an overview paper on this and related
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problems. It is one of the problems that was proved to be NP-complete in Karp’s sem-
inal paper from 1972 [27]. In this paper, we consider the undirected and unweighted
case of the problem. I.e., we are given an undirected graph G = (V ,E), and an inte-
ger k, and ask if there is a set of vertices S with |S| ≤ k, such that each cycle of G

contains at least one vertex from S. To facilitate the description of the algorithms, we
allow G to have parallel edges and self loops.

A common approach to solving NP-hard problems in practical settings is to apply
preprocessing or data reduction. Before applying some time consuming algorithm
(e.g., based on integer linear programming techniques or branch and bound), first,
a procedure is called that tries to transform the input to an equivalent and possibly
smaller input. In this paper, we look to such preprocessing methods with techniques
from the theory of fixed parameter tractability: we show that in polynomial time, an
equivalent instance can be obtained whose size is only cubic in the parameter k, i.e.,
the requested upper bound on the size of the feedback vertex set. Such algorithms are
called kernelization algorithms.

The theory of fixed parameter tractability was pioneered by Downey and Fellows
to study the complexity of combinatorial problems where one part of the input, the
parameter is assumed to be small. See [17, 31] for more information on this the-
ory. A parameterized problem with input I and parameter k is said to be fixed pa-
rameter tractable (i.e., in FPT), if there is an algorithm that solves the problem in
p(|I |, k) · f (k) time, where p is a polynomial and f an arbitrary function. Another
possible manner of characterizing the class FPT is by means of kernelization algo-
rithms. A kernelization algorithm takes an input-parameter pair, and transforms it to
an equivalent input-parameter pair (called the kernel), such that for the latter, the size
of the input is a function of the (possibly new) parameter, and the new parameter is
at most the old parameter. The kernelization algorithm is supposed to run in time that
is both polynomial in the size of the input and the value of the parameter. If we have
a kernelization, then we can run any algorithm on the kernel, and obtain an algorithm
that uses O(p(n, k) + f (k)) time, p a polynomial and f some function. The reverse
also holds: if a parameterized problem belongs to FPT, then it has a kernelization al-
gorithm. An excellent overview on kernelization was made by Guo and Niedermeier
[25]. See e.g., [12, 30] for a kernel of size 2k for VERTEX COVER, [1, 2] for a lin-
ear kernel for DOMINATING SET on planar graphs, and [23] for a linear kernel for
CLUSTER EDITING.

In a certain sense, kernelization is the common technique of preprocessing with
in addition a mathematical guarantee on the quality of the preprocessing (the size of
the input that remains after the preprocessing.) In this sense, kernelization is for pre-
processing what approximation algorithms are for heuristics (i.e., an approximation
algorithm can be seen as a heuristic with a guarantee for the quality).

As the time to solve the problem after kernelization would usually be exponential
in the size of the kernel, we aim for kernels of small size: preferably polynomial in
the parameter. Recently, a new technique has been developed that shows that several
problems do not have a kernel of polynomial size, unless coNP ⊆ NP/poly [10], e.g.,
LONGEST CYCLE.

FEEDBACK VERTEX SET is one of the problems known to be fixed parameter
tractable. The problem was first shown to be in FPT by Downey and Fellows [16].
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In a series of papers, faster FPT algorithms were obtained [4, 6, 15, 17, 24, 26, 33,
34]. The currently best known bounds (concentrating on the function of k), are a
probabilistic algorithm that finds with high probability the feedback vertex set of size
at most k, if existing, and uses O(4kkn) time [4], and a deterministic algorithm that
uses O(10.567kp(n)) time (p a polynomial) [15] (see also [24].) An exact algorithm
for FEEDBACK VERTEX SET with a running time of O(1.8899n) was recently found
by Razgon [35]. This was improved to O(1.7548n) time by Fomin et al. [19].

It was long open whether there existed a kernel or a kernel of size polynomial
in k for the FEEDBACK VERTEX SET problem. This open problem was resolved in
2006 by Burrage et al. [11], who showed that the FEEDBACK VERTEX SET problem
has a kernel of polynomial size, namely one with O(k11) vertices. In this paper, we
improve on the size of this kernel, and show that FEEDBACK VERTEX SET has a
kernel with O(k3) vertices. The kernelization algorithm uses the 2-approximation
algorithm for FEEDBACK VERTEX SET of [3] or [5] as a first step, and then uses a
set of relatively simple reduction rules. A combinatorial proof shows that if no rule
can be applied, then the graph has O(k3) vertices, where k is the parameter in the
reduced instance. It can be expected that these rules can also be of use for practical
preprocessing for the undirected Feedback Vertex Set problem, and our experiments
confirm this.

Very recently, Thomassé [37] has further improved on the size of the kernel, show-
ing a kernelization to O(k2) vertices.

Some of the techniques in this paper were taken from, or inspired by techniques
from [11].

A problem, related to FEEDBACK VERTEX SET is the LOOP CUTSET problem. In
the LOOP CUTSET problem, we are given a directed acyclic graph G = (V ,A), and
an integer k, and ask if there is a set of vertices S ⊆ V of size at most k, such that if
we remove all arcs whose tail is in S, and then drop direction of edges, we obtain a
forest. A loop cutset in a directed acyclic graph is always a feedback vertex set in the
undirected graph obtained by dropping direction of edges, and many techniques for
the FEEDBACK VERTEX SET problem carry over to the LOOP CUTSET problem. The
main motivation for the LOOP CUTSET problem is in the algorithm of Pearl [32] for
computing inference in probabilistic networks. We will show that the LOOP CUTSET

problem also has a cubic kernel.
The technique we employ could be termed kernelization by reduction: we obtain

the bound on the kernel for LOOP CUTSET by combinatorially reducing it to a variant
of FEEDBACK VERTEX SET, namely BLACKOUT FEEDBACK VERTEX SET, then
kernelizing this BLACKOUT FEEDBACK VERTEX SET instance, and then translating
the obtained reduced instance back to an instance of LOOP CUTSET. Apart from the
result itself, the employed technique is interesting, as this is one of the first times that
problem transformation techniques are used to transform kernelization algorithms for
one problem to kernelization algorithms for another problem.

This paper is organized as follows. Some preliminary definitions and results are
given in Sect. 2. In Sect. 3, we give our main result: the kernelization algorithm and
its analysis. In addition, we give a constructive version and discuss which of the
reduction are necessary to obtain a cubic kernel. Some variants on the algorithm are
discussed in Sect. 4. In Sect. 5, we discuss the kernelization algorithm for the LOOP
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CUTSET problem. We report on computational experiments with the kernelization
algorithm and variants in Sect. 6. Some final remarks are made in Sect. 7.

2 Preliminaries

Throughout this paper, graphs are undirected, and can have parallel edges and self-
loops. A graph is a pair (V ,E), with V the set of vertices, and E the multiset of edges.
Each edge is an unordered pair (of possibly equal) vertices. Here, {v,w} represents
the same pair as {w,v}. A self-loop is an edge of the form {v, v}. A pair of vertices
{v,w} is called a double edge in a graph G = (V ,E) if E contains at least two edges
of the form {v,w}. A pair {v,w} is a non-edge, if there is no edge of the form {v,w}
in E, and it is a non-double pair, if there is at most one edge of the form {v,w} in E.

A cycle is a sequence of alternating vertices and edges v0, e1, v1, e1, v2, . . . , vr−1,
er , vr , such that v0 = vr , for each i, 1 ≤ i ≤ r , ei = {vi−1, vi}, and for all i, i′, 1 ≤
i < i′ ≤ r , vi �= vi′ and ei = ei′ . I.e., we assume that cycles are simple. The length
of a cycle is the number of edges on it. Note that if there are at least two parallel
edges between vertices v and w, then we have a cycle of length two using v and w;
otherwise there is no such cycle. Cycles are often also only denoted by sequences of
successive vertices.

For a subset of the vertices W ⊆ V , the subgraph of graph G = (V ,E), induced
by W is the graph G[W ] = (W, {e ∈ E | e ⊆ W }). A graph G is a forest, if it does not
contain a cycle.

Paths are defined similarly as cycles, but now we do not require that v0 = vr . v0
and vr are the endpoints of a path v0, e1, v1, e1, v2, . . . , vr−1, er , vr . v1, . . . , vr−1 are
the internal vertices of the path. A graph G = (V ,E) is connected, if there is a path
between each pair of vertices in V . A tree is a forest that is connected. Two paths are
said to be vertex disjoint, if all their internal vertices are different. (I.e., we allow that
vertex disjoint paths share endpoints.)

A set of vertices W ⊆ V is a feedback vertex set in G = (V ,E), if G[V − W ] is a
forest, i.e., for each cycle in G, there is at least one vertex on the cycle that belongs
to W .

The following trivial observation is regularly used in this paper.

Proposition 1 Suppose there are at least two parallel edges {v,w} in G. Let W be a
feedback vertex set in G. Then v ∈ W or w ∈ W .

3 A Kernelization Algorithm for FEEDBACK VERTEX SET

In this section, we give the main kernelization algorithm for FEEDBACK VERTEX

SET. We assume that we have as input a graph G = (V ,E), and an integer k. The
algorithm either returns no, in which case we are sure that G has no feedback vertex
set of size at most k, or a pair (G′, k′), such that G has a feedback vertex set of
size at most k if and only if G′ has a feedback vertex set of size k′, where k′ ≤ k.
Alternatively, instead of returning no, the algorithm could return Kk+3, a clique with
k + 3 vertices, as this graph has no feedback vertex set of size at most k.
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The algorithm runs in time polynomial in |V | + |E| and in k. The number of
vertices and edges in G′ is bounded by O(k3). It is also possible to give a constructive
version, i.e., one where we can turn a minimum size feedback vertex set of G′ of size
at most k′ into a minimum size feedback vertex set of G in polynomial time. This
will be discussed in Sect. 3.5.

3.1 Structure of the Algorithm

The algorithm has two phases: an initialization phase, and an improvement and re-
duction phase. During the algorithm, we maintain a graph G, initially the input graph,
and an integer k. During both phases, we may be able to determine that the graph has
no feedback vertex set of value k, and return no. In the improvement and reduction
phase, the value of k may decrease. When this happens, we restart the initialization
phase, but now with the smaller number k and the modified graph.

During the algorithm, two sets of vertices play a special role. We call these sets A

and B . A will invariantly be a feedback vertex set of G.
The improvement and reduction phase follows methodology that is typical for

kernelization algorithms. We have a collection of rules, and we try to apply these
rules until no rule is possible anymore. Rules can do one or both of the following two
things:

• The rule reduces the instance: the instance is transformed to an equivalent, smaller
instance. In our case, we remove some vertices or edges, and possibly decrease k.

• The rule gains structural insight. In our case, we have one such rule, the Improve-
ment Rule. This rule adds some edges between vertices in A∪B , possibly placing
a vertex in B . In this case, we obtain a larger instance. The addition of these edges
can possibly enable some reduction rules. In particular, an application of an Im-
provement rule brings us closer to a possible application of a Reduction rule. As
these rules can happen a bounded number of times, and cannot be reversed by re-
duction rules, the algorithm terminates and still uses polynomial time. (For details,
see the later discussion.)

When no rule can be applied, the resulting instance has O(k3) vertices and O(k3)

edges. A detailed counting argument is needed to show this, see Sect. 3.4.

3.2 Initialization Phase

We assume that we are given a graph G = (V ,E), and an integer k.
If k = 0, then we return yes if G is a forest, and no otherwise. So, suppose k ≥ 1.
The first step of the kernelization algorithm is to run the approximation algorithm

of Bafna et al. [3] or that of Becker and Geiger [5]. These algorithms have a per-
formance ratio of 2. Suppose this approximation algorithm returns a feedback vertex
set A of G. If |A| > 2k, then from the performance ratio it follows that there is no
feedback vertex set of size at most k, and we return no.

Otherwise, we continue with the next step, and also initialize the set B as B =
{w ∈ V − A | ∃v ∈ A : there are at least two edges {v,w} ∈ E}. I.e., if there is a
double edge between a vertex v ∈ A and a vertex w �∈ A, then w is added to B .
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Invariantly, B will be the set of vertices in V − A that have a double edge to a vertex
in A.

Initializing the set B can be done easily in O(|V | + |E|) time using bucket sort.

3.3 Improvement and Reduction Rules

In this section, we give a number of improvement and reduction rules. Improvement
rules add double edges to G; reduction rules remove edges and or vertices from G.

Each of the rules transforms the pair (G, k). We say that a rule is safe, if, whenever
it transforms (G, k) to (G′, k′), we have that G has a feedback vertex set of size k,
if and only if G′ has a feedback vertex set of size k′. In addition, we require that A

is invariantly a feedback vertex set in the graph. We will show that each of the given
rules is safe. For several rules, their safeness uses the following simple principle,
earlier also used in [11].

Proposition 2 Let G = (V ,E), and v ∈ V , such that there is at least one feedback
vertex set W in G of minimum size with v ∈ W . Then a rule that removes v and its
incident edges from G, and decreases k by one is safe.

Proof Safeness follows from the fact that for each W ′ ⊆ V − {v}, W ′ is a minimum
feedback vertex set in G[V − {v}], if and only if W ′ ∪ {v} is a minimum feedback
vertex set in G. �

In our description below, we assume always that we restart the initialization phase,
whenever k is decreased by one. This just simplifies some counting arguments (in
particular, it ensures that |A| ≤ 2k); it is also possible to give a variant without such
restarts.

3.3.1 Simple Rules

Each of the following rules makes a simple change to the graph. Many are taken from
[11]. Safeness is easy to see, or follows directly from Proposition 2.

Rule 1 Islet Rule
If v is an isolated vertex, i.e., there is no edge incident to v, then remove v from G.

Rule 2 Twig Rule
If v has degree one, then remove v and its incident edge from G.

Rule 3 Triple Edge Rule
If there are three or more parallel edges of the form {v,w}, then remove all but two
of these edges.

As a result of the Triple Edge rule, we have either 0, 1, or 2 edges between each
pair of vertices when this rule cannot be applied.
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Fig. 1 Example of the
Improvement rule

Rule 4 Degree Two Rule
Suppose v has degree two. Let the edges, incident to v be {v,w} and {v, x}. Remove
v, its incident edges, and add an edge {w,x} to G. If {w,x} becomes a double edge,
then if w ∈ A, x �∈ A∪B , then add x to B , and if x ∈ A, w �∈ A∪B , then add w to B .

Note that the Degree Two rule can create a parallel edge or a self-loop.

Rule 5 Self-loop Rule
Suppose there is a self-loop {v, v}. Then remove v, all edges incident with v, and
decrease k by one. Restart the initialization phase with the new graph and new value
of k.

3.3.2 Improvement

An important rule is the Improvement rule. It is inspired by the improvement rule
used in [7, 8, 14] in the context of algorithms to compute the treewidth of graphs. An
example is given in Fig. 1.

Rule 6 Improvement Rule
Suppose v ∈ A, w ∈ V , v �= w. Suppose there is no double edge between v and w,
and that there are at least k + 2 vertex disjoint paths from v to w in G. Then add two
edges {v,w} to G. If w /∈ A ∪ B , then put w in B .

For a given pair of vertices, v,w ∈ V , one can compute in polynomial time the
maximum number of vertex disjoint paths from v to w, using standard flow tech-
niques. Nagamochi and Ibaraki [29] gave an algorithm that uses O(k2n) time for
checking if there are k vertex disjoint paths between a given pair of vertices v, w. See
also [36, Chapt. 9].

Lemma 3 Suppose there are at least k + 2 vertex disjoint paths from v to w in G.
Then in each feedback vertex set of size S at most k, we have that v ∈ S or w ∈ S.

Proof Suppose S is a feedback vertex set of size at most k with v,w �∈ S. There are at
least two paths from v to w that do not contain a vertex in S. These form, with v and
w a cycle that does not intersect S, so S is not a feedback vertex set, contradiction. �

Corollary 4 The Improvement rule is safe.
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Fig. 2 Example of the Flower
rule. All vertices may have
neighbors outside the flower

3.3.3 Flower

Another important rule is the following. We first give the rule, and then comment on
its particular form. An example is given in Fig. 2.

Rule 7 Flower Rule
Let v ∈ A. Suppose there is a collection of at least k + 1 cycles in G, such that

• Each cycle in the collection uses v.
• No pair of cycles in the collection shares a vertex, different from v.

Then remove v and all its incident edges from G, and decrease k by one. Restart the
initialization phase with the new graph and new value of k.

This rule looks for a set of cycles that are vertex disjoint, except that they intersect
in the vertex v.

Suppose we want to verify whether the Flower rule can be applied for vertex
v ∈ A. We can do this using generalized perfect matchings. Let b : V → N be a
function. A generalized perfect matching with respect to b in G = (V ,E) is a set of
edges F ⊆ E, such that each v ∈ V is incident to exactly b(v) edges in F . Let G∗

v be
the graph, obtained by adding a triangle to each vertex �= v, i.e., for each w �= v, we
add two new vertices w1 and w2, and three edges {w,w1}, {w1,w2}, and {w2,w}.

As the existence of generalized perfect matchings in a graph can be checked in
polynomial time, see e.g., [20, Chapt. 7.1], the following lemma shows that we can
determine in polynomial time if the Flower rule can be applied.

Lemma 5 Let G = (V ,E) be a graph, k ∈ N and v ∈ A ⊆ V . The following three
statements are equivalent.

1. Vertex v ∈ V can be removed by an application of the Flower rule.
2. There is a function b : V → N, with for all w �= v, b(w) ∈ {0,2}, and b(v) =

2k + 2, such that G has a generalized perfect matching with respect to b.
3. There is a generalized perfect matching with respect to b′ in G∗

v , with for all
w �= v, w ∈ V : b′(w) = 2, b′(w1) = b′(w2) = 1, and b′(v) = 2k + 2.

Proof (1) → (2) Take a flower with exactly k + 1 cycles that intersect precisely in v.
Let F be the set of edges that belong to the cycles in the flower. Each vertex w �= v

either belongs to one cycle and thus is incident to two edges in F , or does not belong
to a cycle, and hence is incident to 0 edges in F . On each cycle, v is incident to two
vertices, and this gives 2k + 2 different edges incident to v in F .
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(2) → (1) Suppose we have such a generalized perfect matching F ⊆ E. Each of
the 2k + 2 edges in F incident to v is the start of a path with edges in F that must
visit v (each other vertex on this path is incident to exactly 2 edges in F ). Each of
these paths uses two edges in F , incident to v, and thus we have k + 1 cycles through
v that do not share vertices different from v.

(2) → (3) Suppose we have a generalized perfect matching F ⊆ E with respect
to b, with for all w �= v, b(w) ∈ {0,2}, and b(v) = 2k + 2. Now, let F ′ be the set
of edges in G∗, obtained by taking the edges in F , and then, for each w �= v, if
b(w) = 0, adding the edges {w,w1} and {w,w2}, and if b(w) = 2, adding the edge
{w1,w2} to F ′. F ′ now is the required generalized perfect matching with respect
to b′.

(3) → (2) Suppose we have such a generalized perfect matching F ′ with respect
to b′ in G∗. Let F = F ′ ∩ E. F is the required generalized perfect matching with
respect to b: consider a w ∈ V , w �= v. If {w1,w2} ∈ F ′, then {w,w1} �∈ F ′, and
{w,w2} �∈ F ′, hence two edges in E ∩ F ′ are incident to w. If {w1,w2} �∈ F ′, then
{w,w1} ∈ F ′ and {w,w2} ∈ F ′, and no edges in E ∩ F ′ are incident to w. As v is
incident to the same edges in G as in G∗, v is incident to 2k + 2 edges in F . �

A more precise estimate of the running time can be made as follows. The algorithm
to find a generalized perfect matching first transforms the instance of GENERALIZED

PERFECT MATCHING to an instance of PERFECT MATCHING. Each vertex v ∈ V is
replaced by b(v) vertices, and each edge {v,w} ∈ E is replaced by b(v) · b(w) edges.
See e.g., [20, Chap. 7.1]; the transformation is due to Tutte [39]. Now, we can observe
that if we apply this transformation to G∗

v , then the resulting graph still has O(n)

vertices and O(m) edges. Thus, determining whether the flower rule can be applied
for one vertex v ∈ A costs as much as the fastest perfect matching algorithm on a
simple undirected graph with O(n) vertices and O(m) edges. See e.g., [36, Chap. 24].

We can e.g., use the algorithm by Goldberg and Karzanov, that uses O(n0.5m logn
n2

m
)

time [22].
We now argue safeness of the rule.

Lemma 6 Let v ∈ A. Suppose there is a collection of at least k + 1 cycles in G no
two different cycles in the collection share another vertex except v. Then v belongs to
each feedback vertex set S in G of size at most k.

Proof Consider a feedback vertex set S in G with v �∈ S. Then, each cycle in the
collection contains a vertex in S, and these are all different vertices, so |S| ≥ k +1. �

Corollary 7 The Flower rule is safe.

Proof This follows directly from Lemma 6 and Proposition 2. �

A simple special case of the Flower rule is the following.

Rule 8 Large Double Degree Rule
Suppose v ∈ V , such that there are at least k+1 vertices w with {v,w} a double edge.
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Fig. 3 Example of the First
Abdication rule: v governs the
piece to which it has one edge

Then remove v and its incident edges, and decrease k by one. Restart the initialization
phase with the new graph and new value of k.

Safeness of the Large Double Degree rule follows directly from the safeness of
the Flower rule.

3.3.4 Abdication

To describe the two abdication rules, we introduce some additional terminology. This
terminology will also be used in the counting phase.

A piece is a connected component of G[V − A − B]. Let X be the set of vertices
of a piece. The border of this piece is the set of vertices in A ∪ B that is adjacent to
a vertex in X. A vertex v in the border of a piece governs the piece if it has a double
edge to each other vertex w �= v in the border of the piece.

Rule 9 First Abdication Rule
Suppose v ∈ A ∪ B governs a piece with vertex set X. If there is exactly one edge

with one endpoint v and one endpoint in X, (i.e., one edge of the form {v,w} with
w ∈ X), then remove this edge {v,w} with w ∈ X from G.

See Fig. 3 for an example. As a result of the First Abdication rule, v will no
longer belong to the border of the piece.

Lemma 8 The First Abdication rule is safe.

Proof Let v, w, X be as in the First Abdication rule. Let G′ be the graph obtained
by removing the edge {v,w}.

We claim that for each set S ⊆ V , S is a feedback vertex set in G if and only if
S is a feedback vertex set in G′. If S is a feedback vertex set in G, then, as G′ is
a subgraph of G, S is also a feedback vertex set in G′. Conversely, suppose S is a
feedback vertex set in G′. Each cycle in G that is not a cycle in G′ uses the edge
{v,w}. Hence, if v ∈ S, S is also a feedback vertex set in G. Suppose v �∈ S. As v

governs the piece X, all vertices in the border of the piece except v must belong to S.
Each cycle that uses the edge {v,w} uses besides v one other border vertex of the
piece (as v has only one edge to the piece, and the vertex set of a piece induces a
tree), and thus contains a vertex in S. So, again S is a feedback vertex set.

As removing the edge {v,w} does not change the collection of feedback vertex
sets, the rule is safe. �
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Fig. 4 Example of the Second
Abdication rule: w governs the
piece to which it has at least two
edges

Rule 10 Second Abdication Rule
Suppose v ∈ A ∪ B governs a piece with vertex set X. If there are at least two edges
with one endpoint v and one endpoint in X, then remove v and all its incident vertices
from G, and decrease k by one. Restart the initialization phase with the new graph
and new value of k.

An example is given in Fig. 4.

Lemma 9 Suppose v ∈ A∪B governs a piece with vertex set X. Suppose there are at
least two edges with one endpoint v and one endpoint in X. Then there is a minimum
size feedback vertex set in G that contains v.

Proof Consider a minimum size feedback vertex set S with v �∈ S. As v governs the
piece, all other border vertices of the piece must belong to S. Let w1, w2 be two
neighbors of v in the piece. The path in X from w1 to w2 together with v forms a
cycle, so there is at least one vertex in X that belongs to S, say x. Consider the set
S − {x} ∪ {v}. This is again a feedback vertex set: any cycle that contains x must
contain a vertex of the border of X and hence a vertex in S − {x} ∪ {v}. As |S| =
|S − {x} ∪ {v}|, there is a feedback vertex set of minimum size that contains v. �

From Proposition 2 and Lemma 9, we directly conclude the following.

Corollary 10 The Second Abdication rule is safe.

Consider a piece with vertex set X and border set Y , such that for each pair of
disjoint vertices in Y , there is a double edge. Consider what happens when we apply
the abdication rules to this piece. Each vertex in Y governs the piece. If v ∈ Y has
one edge to the piece, this edge will be removed, and v no longer is in the border
of X. If v ∈ Y has two or more edges to the piece, then v itself is removed. Thus,
after all the vertices in Y have been handled, the border of X will be empty. A piece
with an empty border is a connected component of G that is a tree: it is a subgraph
of G[V −A] and hence does not have a cycle. Now, repeated application of the Twig
rule, and then an application of the Islet rule will remove all vertices in the piece.

Above, we have seen that the given rules remove each piece for which there is a
double edge between each pair of disjoint vertices in its border. A direct consequence
of this is the following lemma.
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Lemma 11 Suppose none of the Rules 1–10 can be applied to G. Suppose Y ⊆ V

is the border of a piece in G. Then there are two disjoint vertices v,w ∈ Y such that
{v,w} is not a double edge.

It is straightforward to see that we can check in polynomial time whether an abdi-
cation rule is possible for given G, A, B .

3.4 Size of the Kernel

As we will show below, Rules 1–10 will transform G to a kernel with O(k3) vertices,
in case G has a feedback vertex set of size at most k.

A graph G = (V ,E), with sets A, B , and integer k is called a reduced instance, if
none of the Rules 1–10 is applicable anymore.

We start with a number of lemmas.

Lemma 12 In a reduced instance, there are at most 2k vertices in A and at most 2k2

vertices in B .

Proof We start with a set A of size at most 2k. During the algorithm, we recompute
A whenever k is changed.

Each vertex in B has at least one neighbor in A to which it has a double edge, but
no vertex in A has more than k neighbors to which it has a double edge, otherwise
the Large Double Degree rule can be applied. So the result follows. �

We construct an auxiliary graph, which we call the B-piece graph. In the B-piece
graph, there are two types of vertices: each vertex in B is a vertex in the B-piece
graph, and for each piece, there is a vertex representing the piece in the B-piece
graph. The B-piece graph is bipartite, with an edge between a vertex v ∈ B and a
vertex x representing a piece, if B is in the border of the piece.

Lemma 13 The B-piece graph is a forest.

Proof Suppose we have a cycle c in the B-piece graph. We transform this to a cycle
in G, as follows. Consider a vertex v that represents a piece with vertex set X, and
suppose it is incident to w1 and w2 in the cycle c. Thus, there is a path, using only
vertices in X from w1 to w2. Replace w in c by this path. Doing this for each vertex
that represents a piece in c gives a cycle c′ in G. Note that there is no vertex in A

on c′. Thus, A is not a feedback vertex set in G, contradiction. �

Lemma 14 Let v ∈ B be in the border of a piece with vertex set X. Then there is
exactly one edge from v to a vertex in X.

Proof By definition of border, there is at least one such edge. Suppose there are at
least two edges from v to X, so to vertices w1 and w2. Consider the following cycle:
start at v, go to w1, then take the path using vertices in X to w2, and then close the
cycle at v. This is a cycle that does not use a vertex in A. Hence, A is not a feedback
vertex set, contradiction. �
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Lemma 15 Suppose we have a reduced instance. There are at most 8k3 + 9k2 + k

pieces.

Proof We associate each piece to a non-double pair in its border. I.e., for each piece
in the reduced instance, there are two border vertices v,w ∈ A ∪ B , such that {v,w}
is not a double edge; we select one such pair and associate the piece with this pair. We
now count the number of pieces that can thus be associated with the different types
of pairs.

Case I: Non-double pairs {v,w} with v ∈ A, w ∈ A. If k + 2 or more pieces are
associated with a pair {v,w}, v,w ∈ A, then by the Improvement rule, {v,w} would
be a double edge. So, at most k + 1 pairs are associated with the pair, and hence we
have at most 1

2 |A|(|A| − 1) · (k + 1) ≤ k · (2k − 1) · (k + 1) pieces associated with
pairs of this type.

Case II: Non-double pairs {v,w}, with v ∈ A, w ∈ B . This case needs the most
detailed counting argument. We consider two subcases.

Case IIa: Non-double pairs {v,w}, with v ∈ A, w ∈ B , to which at most one piece
is associated. Clearly, the number of pieces associated to these edges is at most
|A| · |B| ≤ 2k · 2k2 = 4k3.

Case IIb: Non-double pairs {v,w}, with v ∈ A, w ∈ B , to which at least two pieces
are associated. Consider a vertex v ∈ A. Let Xv = {w ∈ B | at least two pieces
are associated to the non-double pair {v,w}}. For each w ∈ Xv , consider the cycle,
that starts in v, moves to w through one of the pieces associated to {v,w}, and then
moves back to w through another piece associated to {v,w}. This is a cycle, and
for w,w′ ∈ Xv , w �= w′, the cycle of w only intersects the cycle of w′ in v. So, if
|Xv| ≥ k + 1, we have a collection of at least k + 1 cycles that move through v, and
pairwise have {v} as intersection. Thus, the Flower rule would apply to v. As we
have a reduced instance, we can assume that |Xv| ≤ k.

So, for a fixed v ∈ A, at most k pairs {v,w}, w ∈ B , have at least two pieces
associated to it. Thus, in total at most |A| · k ≤ 2k2 such pairs have at least two pieces
associated to it. The same argument as in Case I shows that each of these pairs has at
most k + 1 pieces associated to it, and this gives a maximum of 2k2 · (k + 1) pieces
for this case.

Case III: Non-double pairs {v,w}, with v ∈ B , w ∈ B . If we associate two pieces
to one such pair {v,w}, then these pieces and v, w form a cycle in the B-piece graph,
which contradicts Lemma 13. So, to each such pair, we associate at most one piece.
Moreover, if a piece is associated to such a pair, it has at least two neighbors in the
B-piece graph. As the B-piece graph is a forest, and there are at most 2|A| · k ≤ 4k2

vertices in B , the number of pieces adjacent to two vertices in B can be at most 4k2,
and hence also at most 4k2 pieces can be associated to pairs of this type.

The total number of pieces in the reduced instance is the sum of the number of
pieces over the possible cases: k · (2k − 1) · (k + 1) + 4k3 + 2k2 · (k + 1) + 4k2 =
8k3 + 7k2 − k. �
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We now count the number of vertices and edges in the pieces. We partition the
vertices that belong to a piece into two sets. C is the set of vertices in a piece (i.e.,
in V − (A ∪ B)), that are adjacent to a vertex in A ∪ B . D is the set of vertices in a
piece that are adjacent to vertices in C ∪ D only, i.e., D = V − (A ∪ B ∪ C). We first
estimate the size of C; a simple argument then shows a bound on |D|.

For each v ∈ A ∪ B , let Cv = {w ∈ C | {v,w} ∈ E}. I.e., Cv are the vertices in
pieces, adjacent to v. The sets Cv are partitioned into two sets, Cv,1, and Cv,≥2. Cv,1

is the set of the vertices w ∈ Cv , such that w is the only vertex in its piece that is
adjacent to v. Cv,≥2 = Cv − Cv,1 is the set of vertices w ∈ Cv , such that the piece of
w has at least one other vertex, also adjacent to v.

We give a number of different lemmas that give bounds on the size of these sets.
In each case, we assume we have a reduced instance.

Lemma 16 Let v ∈ A. |Cv,1| ≤ 3k2 + 3k − 1.

Proof Consider a vertex w ∈ Cv,1, and the piece containing w. As v does not govern
this piece (otherwise the First Abdication rule would be applicable), there is a vertex
x ∈ (A ∪ B) − {v}, in the border of the piece for which the pair {v, x} is not a double
edge. For each w ∈ Cv,1, we associate w with such a vertex x in the border of the
piece of w with x �= v and {v, x} is not a double edge. (If there is a choice for different
vertices x in the border of a piece, one of these is chosen arbitrarily.)

No vertex x ∈ A ∪ B has more than k + 1 vertices associated to it in this way.
Suppose x has k + 2 or more vertices in Cv,1 associated to it. For each vertex w in
Cv,1, associated to x, we take the path, starting at v, and moving through the piece
containing w to x. As each of these paths uses a different piece, we have k + 2 vertex
disjoint paths from v to x, and hence the Improvement rule will add the double edge
{v, x}. However, if {v, x} is a double edge, no vertices in Cv,1 will be associated to
x, contradiction.

There are at most k vertices in A ∪ B that have two or more vertices associated to
it. Suppose we have at least k + 1 vertices in A ∪ B that have two or more vertices
associated with it. For each vertex x in A∪B that has two or more vertices associated
with it, we build a cycle as follows. Suppose X1, X2 are pieces containing vertices
associated to x. Start at v, move through X1 to x, move from x through X2 to v.
As all pieces used by these cycles are different, these cycles only intersect at v, and
thus the Flower rule applies. This contradicts the assumption that we have a reduced
instance.

Now we can count the number of vertices in Cv,1, or, equivalently, the total over
all x ∈ A ∪ B − {v} of the number of vertices associated to x. There are at most
|A| + |B| − 1 vertices to which one vertex is associated. There are at most k vertices
in A ∪ B − {v} to which two or more vertices are associated, and to each, at most
k + 1 vertices are associated. This gives a total of at most 2k + 2k2 − 1 + k(k + 1) =
3k2 + 3k − 1. �

Lemma 17 Let v ∈ A. |Cv,≥2| ≤ k2 + 3k + 3.
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Proof Suppose v ∈ A, and |Cv,≥2| > k2 + 3k + 3. We will show that the instance
is not reduced, thus arriving at a contradiction. In particular, we will show that the
Flower rule can be applied. To do so, a collection of cycles C is built. Initially, C = ∅.

A region is a maximal connected set of vertices in pieces (i.e., a subset of V −
(A ∪ B), that does not contain any vertex on a cycle in C . A region is filled, if it
contains at least two vertices in Cv,≥2.

If we have a filled region Y , we build a cycle through v that is vertex disjoint
with any cycle already in C in the following way. Start at v, then go to an arbitrary
neighbor of v in the region. Suppose our path so far p is at vertex w. If w is adjacent
to v, and is not the second vertex on the path. Then, we close the cycle by going back
from w to v. Suppose now w is not adjacent to v, or is the second vertex on the path.
For each neighbor x of w, except a neighbor of w that belongs to the path constructed
so far, we define a number nx . nx is the number of vertices z in Cv for which there is
a path from x to z that use only vertices in the region Y and that uses no vertex on p.
(In particular, this means the path belongs to the subtree, obtained by removing the
vertices on p from Y .) If there is a neighbor x of w with nx = 1, x not on p, then
select such a neighbor x as next vertex on the path p; set w = x. Otherwise, select
any neighbor x of w with nx ≥ 2, x not on p. It is not hard to see, that selecting
vertices in this way gives a cycle through the region. As the region does not contain
vertices on existing cycles in C , we invariantly have a set of cycles that only intersect
at v.

After a cycle has been added, the set of regions and filled regions is changed. We
consider the number of vertices in Cv,≥2, that belonged to a filled region, before the
addition of a cycle to C , but do no longer belong to a filled region after this addition.
We claim that this number is at most k + 2. Clearly, the first vertex after v and the
last vertex before closing the cycle at v are of this type. Suppose we go from w to x

while building the cycle. Suppose y is a neighbor of w that is not used by the path
that we are constructing. The new region formed by that path that contains y contains
ny vertices in Cv . Thus, if ny ≥ 2, this new region is filled. If ny = 0, then no vertices
in Cv are in this new region. So, the interesting case is when ny = 1. By the algorithm
we followed, we go to another neighbor x of w with nx = 1. We claim that w has
at most k + 1 neighbors y with ny = 1. Suppose w has at least k + 2 neighbors y

with ny = 1. Then we can build a collection of k + 2 vertex disjoint paths from w

to x, each going from w to a neighbor y of w with ny = 1, and then following the
path through the region to v. Thus, by the Improvement rule, w would have been
added to B , which contradicts the assumption that w belongs to a piece. Thus, at this
point, there are at most k vertices that play the role of y. Each amounts to one vertex
in Cv that belonged to a filled region before the addition of the cycle, and belongs
to a region with only one vertex in Cv after the addition. During the construction of
the cycle, there is only one point where this can happen: after we selected an x with
nx = 1, all unvisited neighbors of the vertex on the path will have nz = 0. So, by the
addition of a cycle, two vertices in Cv,≥2 belong to a cycle, and at most k vertices
belong to a region with only one vertex in Cv,≥2.

So, we can prove with induction that if there are at least 2 + � · (k + 2) vertices
in filled regions, we can build � cycles in regions, vertex disjoint from cycles already
in C . (The base case � = 0 is trivial.)
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When we start the construction, each piece containing vertices in Cv,≥2 is a filled
region, and hence the procedure constructs � cycles, when |Cv,≥2| ≥ 2 + � · (k + 2).
As we assumed that |Cv,≥2| ≥ k2 + 3k + 4 = 2 + (k + 1)(k + 2), we can construct a
collection of k + 1 cycles through v that intersect only at v. Thus, the Flower rule is
applicable, which contradicts the assumption that we have a reduced instance. �

Lemma 18
∑

v∈B |Cv| ≤ 8k3 + 11k2 + k − 1.

Proof By Lemma 13, if v ∈ B , then Cv,≥2 = ∅. So, for all v ∈ B , Cv = Cv,1.
Suppose w ∈ Cv,1, v ∈ B . There is an edge from the piece, containing w to v in

the B-piece graph. As w is the only vertex in this piece with an edge to v, we can
associate this edge to w. In this way, each vertex in

⋃
v∈B Cv has at least one edge

from the B-piece graph associated to it, and hence |⋃v∈B Cv| is at most the number
of edges of the B-piece graph. As the B-piece graph is a forest (Lemma 13), the
number of edges in this graph is smaller than the number of vertices, which equals
|B| plus the number of pieces. By Lemmas 12 and 15, the result follows. �

Lemma 19 |D| ≤ |C| − 1.

Proof Consider the graph G[C ∪D], the subgraph of G, induced by C ∪D. As A is a
feedback vertex set, this subgraph is a forest. Each vertex in D has the same degree in
G[C ∪ D] as it has in G, by definition of D. So, in a reduced instance, each vertex in
D has degree at least three in G and in G[C ∪ D]. The number of vertices of degree
at least three in a forest is less than the number of leaves in the forest, and each leaf
in G[C ∪ D] must belong to C, hence |D| < |C|. �

Theorem 20 In a reduced instance with k ≥ 1, there are at most 32k3 +48k2 +8k−3
vertices and at most 44k3 + 64k2 + 12k − 4 edges.

Proof We use the results, shown above. We have |A| ≤ 2k, |B| ≤ 2k2. For each v ∈
A, |Cv| = |Cv,1| + |Cv,≥2| ≤ 4k2 + 6k + 1. Thus, |C| ≤ ∑

v∈A |Cv| + ∑
v∈B |Cv| ≤

8k3 + 12k2 + 2k + 8k3 + 11k2 + k − 1 = 16k2 + 23k2 + 3k − 1, and hence |D| ≤
16k3 +23k2 +3k−3. We conclude that |V | = |A|+|B|+|C|+|D| ≤ 32k3 +48k2 +
8k − 3.

As G[V − A] is a forest, there are at most |V − A| − 1 ≤ 32k3 + 48k2 + 8k − 4
edges with no endpoint in A. Now, we only need to count the edges with at least one
endpoint in A. There are at most |A| · (|A|+1) ≤ 4k2 +2k edges with both endpoints
in A and at most 2|A| · |B| ≤ 4k3 edges with one endpoint in A and one endpoint in B .
(Note that we must take the possibility of parallel edges into account.) By definition,
there are no edges between vertices in A and vertices in D. If there is an edge {v,w},
v ∈ A, w ∈ C, then w ∈ Cv , and there is no edge parallel to this one (otherwise
w ∈ B), so the number of edges in A × C equals

∑
v∈A |Cv| ≤ 8k3 + 12k2 + 2k. The

bound now follows. �

The counting here was done in a very rough way, where we aimed at a shorter
proof at the cost of a higher constant factor for the number of vertices and number of
edges. Improvements to the factors of 32 and 44 probably will not be hard to obtain.
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Theorem 21 A reduced instance can be obtained in polynomial time.

Proof From the preceding discussion, we can conclude that given G, A, B , we can
verify in polynomial time if a rule can be applied. The number of times we apply a
rule or a restart is also polynomially bounded. The number of restarts is bounded by
the initial value of k, as for each restart, k is decreased by one. We need to check for
the Improvement rule only at the beginning of the algorithm, or right after a restart:
the other rules cannot enable an improvement. As there are O(k|V |) pairs where we
check for a possible improvement, the total time for checking and performing all
possibilities for the Improvement rule is polynomial. All other rules either cause a
restart, or delete at least one edge from G, so take overall polynomial time. �

In Sect. 4, we give some variants of the rules. These allow for a polynomial time
algorithm with a better asymptotic running time; see 4.6.

For experimental evaluation of our implementation of the algorithm, see Sect. 6.

3.5 A Constructive Version

It is not hard to transform the algorithm to a constructive one. Suppose the kerneliza-
tion algorithm transforms the pair (G, k) to a pair (G′, k′). The constructive algorithm
would ensure that when we have a minimum size feedback vertex set of G′ of size at
most k′, then we can obtain (in polynomial time) a minimum size feedback vertex set
of G. We need to modify the reduction rules as follows.

In the Degree Two rule, if we contract a vertex v of degree two to a neighbor w,
we give the new vertex the name of w. We keep a set S, which initially is empty.
Each vertex, removed by the Self-loop rule, Flower rule, Second Abdication rule,
or Large Double Degree rule is placed in S.

Now, for any minimum size feedback vertex set W in G′ with |W | ≤ k′, S ∪ W is
a minimum size feedback vertex set in G.

3.6 A Reduced Instance with �(k3) Vertices

We have shown that a reduced instance contains O(k3) vertices. We will now show
that this bound is asymptotically tight.

Consider a graph family Gi defined as follows. For example, see G3 in Fig. 5.
Start with a cycle of i vertices, which we call the center. Connected to that are i

widgets. A widget consists of a double pair (two vertices with a double edge), and
i frobs. A frob consists of i vertices, each connected to both vertices of the double
pair and to one of the vertices of the center: a widget has a frob to every vertex in the
center.

The graph Gi has i3 + 3i vertices and has a feedback vertex set of size 2i: e.g. all
vertices in the center and one vertex from each double pair. If k > 2i, then Gi is a
reduced instance. Thus, there is a reduced instance with �(k3) vertices. Notice that,
though asymptotically tight, this construction gives a reduced instance with ‘only’
1
8k3 + 3

4k2 + 3k + 4 vertices, which is still far from the bound shown in Lemma18.
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Fig. 5 G3, a reduced instance
if k > 6. In general, Gk is a
reduced instance with �(k3)

vertices

3.7 Justification of the Rules

We will now show that all rules (except Self-loop and Large Double Degree) are, in
a sense, required: if you leave one rule out, but do not change the remainder of the
algorithm, the size of a reduced instance is no longer bounded in k.

The results of this section show that if for an implementation of a data reduction or
kernelization algorithm for feedback vertex set, all rules are necessary if we want to
guarantee that the reduced instances have size O(k3). In a practical setting, one will
want to try some rules earlier and more often than other rules, giving preference to
rules that often can be applied and cost not too much time to test. However, the other
rules need to be used also when we want to keep the size guarantee on the resulting
instances.

To start with one of the exceptions, the Self-loop rule is not actually required.
A vertex with a self-loop is part of any feedback vertex set, and therefore the 2-
approximation algorithm must select it. This directly gives a bound of 2k on the
number of nodes with a self-loop in a reduced instance. We include this rule because
it is simple and cheap.

Next we show that each of the simple rules is required. Without the Islet rule, a
reduced instance can contain an unbounded amount of isolated vertices; without the
Twig rule, a reduced instance can contain an unbounded amount of pendant edges;
without the Degree Two rule, a reduced instance can contain a path of unbounded
length. While the Triple Edge rule is not required for the vertex bound, it is of course
required for the edge bound.

The Flower rule is required: consider an arbitrarily large wheel graph, with an
extra vertex connected to three of the outer vertices; see Fig. 6a. Note that the center
of the wheel is a flower if the number of spokes is at least 2k + 2, but that none of the
other rules apply if k ≥ 2. (Without the extra outside vertex, the (second) Abdication
rule would delete the center vertex, but in this graph there is no abdication.)
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Fig. 6 Arbitrarily large reduced instances if (a): the Flower rule is not used, or (b): the Abdication rules
are not used

As has been noted, the Large Double Degree rule is just a special case of the
Flower rule and is therefore not required.

The Improvement rule is required: consider K3,i . For any i ≥ 3 and k ≥ 1, only
the Improvement rule applies.

The Abdication rules are required: consider again K3,i . With i ≥ k + 2, the Im-
provement rule adds double edges between each of the vertices in the partite set of
three (see Fig. 6b). But after that, Abdication is the only rule that applies when k ≥ 1.

If the 2-approximation returns a feedback vertex set of more than 2k vertices, we
conclude there is none of at most k vertices, and can therefore return no. Doing this is
actually required: consider an arbitrarily large grid graph. The Degree Two rule will
bypass the four corners, but with k ≥ 3, no other rule applies.

4 Variants

In this section, we describe a few alternatives to the kernelization algorithm described
in Sect. 3.

4.1 Without Restarts

To speed up, we can refrain from doing restarts after k has been decreased. The size
of the kernel may become somewhat larger, and is a function of both the initial as the
final value of k. One could also choose to only do a restart when |A| > ck, for some
c ≥ 2.

4.2 Without an Initial Value of k

It is also possible to run the algorithm while we do not have an initial value of k

as input. In such a way, the algorithm could be used as a preprocessing heuristic.
We first start with setting k to the size of the feedback vertex set A, returned by the
approximation algorithm of Bafna et al. [3] or the algorithm of Becker and Geiger [5].
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4.3 With a Different Algorithm to Find the Initial Feedback Vertex Set

Of course, we could use another approximation algorithm or heuristic for the feed-
back vertex set problem in the initialization phase. If we use, instead of, or in addition
to, the algorithm of Bafna et al. [3] or Becker and Geiger [5] some other algorithms
that finds close to optimal feedback vertex sets, and this algorithm finds a feedback
vertex set that is smaller, then the guaranteed bound on the size of the kernel is also
smaller. For instance, we could try to improve upon a solution found by the algo-
rithms of [3, 5] with a local search algorithm.

4.4 Strongly Forced Vertices

The approximation algorithms of Bafna et al. [3] and of Becker and Geiger [5] also
can solve weighted versions of the feedback vertex set problem. This can also be of
help for preprocessing and kernelization of the unweighted problem.

Lemma 22 Let v ∈ V . Suppose an approximation algorithm for WEIGHTED FEED-
BACK VERTEX SET with performance ratio 2 returns a solution of weight at least
2k + 1 on the weighted instance of G, obtained by setting the weight of v to 2k + 1,
and the weight of all other vertices to 1. Then v belongs to any feedback vertex set in
G with at most k vertices.

The correctness of this lemma is trivial. It directly implies the correctness of the
following rule.

Rule 11 Strongly Forced Vertex Rule
Let v ∈ V . Build the following weighted instance of the problem. Set the weight of
v to 2k + 1, and the weight of all other vertices to 1. If the algorithm of [3] or [5]
returns a feedback vertex set of weight at least 2k + 1, then remove v and its incident
vertices from G, decrease k by one, and restart with the initialization phase.

The Strongly Forced Vertex rule could be used instead of (or, in addition to) the
Flower rule. We would run this check for each v ∈ A. It still gives an O(k3) bound
on the kernel size, but with a slightly higher constant. Namely, if there are at least
2k + 1 cycles that are vertex disjoint except that they may share v, then any feedback
vertex set that does not use v has size at least 2k + 1, so the rule will remove v. I.e.,
we find a flower with 2k + 1, instead of k + 1 cycles (as in the Flower rule.)

4.5 Strongly Forced Pairs

In a similar way, we have a new rule that is a counter part to the Improvement rule.

Lemma 23 Let v,w ∈ V . Suppose an approximation algorithm for WEIGHTED

FEEDBACK VERTEX SET with performance ratio 2 returns a solution of weight at
least 2k + 1 on the weighted instance of G, obtained by setting the weights of v and
of w to 2k + 1, and the weight of all other vertices to 1. If W is a feedback vertex set
in G of size at most k, then v ∈ W or w ∈ W .
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This lemma, whose correctness is again trivial, implies the correctness of the fol-
lowing rule.

Rule 12 Strongly Forced Pair Rule
Let v,w ∈ V , v �= w. Build the following weighted instance of the problem. Set the
weight of v to 2k + 1, and the weight of all other vertices to 1. If the algorithm of
[3] or [5] returns a feedback vertex set of weight at least 2k + 1, then add two edges
{v,w} to G, and if v ∈ A and w �∈ A ∪ B , then add w to B; if w ∈ A and v �∈ A ∪ B ,
then add v to B .

We can use this as an additional rule, as a heuristic for stronger preprocessing, or
we can replace the Improvement rule by this rule. In the latter case, a similar proof
as in Sect. 3.4 can be used to show that we obtain a kernel of size O(k3), although
the constant factor is somewhat larger.

4.6 Time Analysis

Using the Strongly Forced Vertex rule and the Strongly Forced Pair rule instead
of the Flower rule and the Improvement rule still yields a kernel of size O(k3).
The constant hidden in the O is somewhat larger, but the asymptotic running time is
smaller. Write |V | = n, and |E| = m.

If G = (V ,E) has a feedback vertex set X of size at most k, then m ≤ (k + 1)n:
the forest G[V − X] has at most n − 1 edges, and each other edge has one endpoint
in X. So, we start with checking if m ≤ (k + 1)n, if not, we reject. Thus, we may
assume that m = O(kn).

As 2-approximation algorithm for obtaining the initial set A and carrying out the
Strongly Forced Vertex rule and the Strongly Forced Pair rule, we use the algo-
rithm of Becker and Geiger [5], which runs in O(m+n logn) time. We maintain both
the adjacency list and the adjacency matrix data structure for the graph; in the latter,
we store for each pair the number of edges between the vertices. By keeping these
numbers at most two, we automatically carry out the Triple Edge rule.

We perform the rules in the following order. After each of the at most k

starts/restarts, we find A, and then carry out for each v ∈ A, and each w ∈ V the
Strongly Forced Pair rule. We maintain the number of double edges, incident to
a vertex, and as soon as this number is at least k + 1 for some vertex, we carry
out the Large Double Degree rule, and restart. If we added double edges to G,
then possibly we enabled new strongly forced pairs, so we check all pairs v ∈ A,
w ∈ V again. Possibly, we have to do O(k2) rounds, each doing a check for a
strongly forced pair for O(kn) pairs of vertices. Each such check costs O(m+n logn)

time. The total time for all Strongly Forced Pair rule checks thus is bounded by
O(k4(m + n logn)) = O(k4 · n · max{k, logn}). After this, we do the checks for the
Strongly Forced Vertex rule for each v ∈ A, and all the other rules. Note that these
cannot enable a Strongly Forced Pair rule, unless a restart is caused. The time for
the other rules is dominated by the time for the Strongly Forced Pair rules, and thus
the total time of the kernelization algorithm is bounded by O(k4 · n · max{k, logn}).
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Theorem 24 A kernel for FEEDBACK VERTEX SET with O(k3) vertices and edges
can be obtained in O(k4 · n · max{k, logn}) time.

5 Loop Cutset

In this section we will look at the LOOP CUTSET problem. We are given a directed
acyclic graph G = (V ,A). A loop is a cycle in the underlying undirected graph (i.e.,
in a loop we are allowed to follow arcs against their direction.) A loop cutset is a set
of vertices S ⊆ V , such that the graph obtained by removing all arcs whose tail is in
S has no loops. (In other words, a vertex v on a loop cuts the loop if at least one of
its arcs points away from it.) The LOOP CUTSET problem is to find a minimum size
loop cutset in a given directed acyclic graph.

This problem is clearly strongly related to FEEDBACK VERTEX SET, as can also
be seen from the fact that many techniques carry over from one problem to the other
(see e.g. [4, 5].) The LOOP CUTSET problem is well studied, in particular by re-
searchers on probabilistic (or Bayesian) networks, as the algorithm of Pearl [32]
for the INFERENCE problem on probabilistic networks uses a loop cutset, and uses
time exponential in the size of the loop cutset, but linear in the number of ver-
tices/variables.

We will now show that our algorithm can be adapted to work on the following
parameterized version of the LOOP CUTSET problem.

Loop Cutset
Instance: A directed acyclic graph G = (V ,A).
Parameter: A positive integer k.
Question: Is there a set U ⊆ V of at most k vertices such that each loop of G

passes though some vertex of U which is not a sink on that loop?

The algorithm proceeds as follows. First, we transform the LOOP CUTSET in-
stance into an instance for the BLACKOUT FEEDBACK VERTEX SET problem. Next,
we transform this instance into an O(k3) kernel using an adapted version of the al-
gorithm from Sect. 3. The resulting reduced instance is then transformed back into a
LOOP CUTSET instance, yielding a kernel for LOOP CUTSET. These three steps are
described in the following subsections.

5.1 Transform to Blackout-FVS

The main steps of the kernelization algorithm will be done on an instance of FEED-
BACK VERTEX SET where in addition some vertices are blacked out. A vertex that is
blacked out is not allowed to be part of the solution set. Vertices that are not blacked
out are called allowed. We now formally define the parameterized BLACKOUT FEED-
BACK VERTEX SET problem.
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Fig. 7 Example of the transformation from Loop Cutset to Blackout Feedback Vertex Set

Blackout Feedback Vertex Set
Instance: An undirected graph G = (V ,E) and a set Z ⊆ V of blacked out

vertices.
Parameter: A positive integer k.
Question: Is there a set U ⊆ V \ Z of at most k vertices such that each cycle

of G passes though some vertex of U?

We now give the standard transformation from LOOP CUTSET to BLACKOUT

FEEDBACK VERTEX SET, that was used amongst others in [3, 4]. Given a di-
rected acyclic graph G = (V ,A), we split every vertex v ∈ V into two vertices,
called vin and vout, and add an edge {vin, vout}. For each arc (v,w) ∈ A, we take
an edge {vout,win}. To complete the transformation, we blackout all in vertices, i.e.,
Z = {vin | v ∈ V }.

See Fig. 7 for an example. Notice in particular that

• the loop A C D can be cut using A and indeed the corresponding cycle
Aout Cin Dout Ain can be cut using Aout .

• the loop A D B can not be cut using A (it is a sink on that loop) and indeed the
corresponding cycle Ain Dout Din Bout cannot be cut using a vertex corresponding
to A: Ain has been blacked out and Aout is not even on the cycle.

So, yes-instances are mapped to yes-instances, and no-instances to no-instances.
This transformation doubles the number of vertices and the number of edges becomes
n larger than the number of arcs. Conveniently, the transformation does not affect the
parameter: a size k loop cutset in the original graph corresponds directly to a size k

feedback vertex set.

5.2 Kernelization for Blackout Feedback Vertex Set

We have turned the instance for LOOP CUTSET into one for BLACKOUT FEEDBACK

VERTEX SET. We now give a modification of our algorithm from Sect. 3 to obtain a
kernel for BLACKOUT FEEDBACK VERTEX SET with O(k3) vertices.

First of all, the 2-approximation algorithms can also work on the weighted feed-
back vertex set problem, where vertices have weights and we ask for a mini-
mum weight solution instead of a minimum cardinality one. We can use this to 2-
approximate the BLACKOUT FEEDBACK VERTEX SET problem as well, by giving



Theory Comput Syst (2010) 46: 566–597 589

the allowed vertices weight 1 and the blacked out vertices weight 2n+1: as the set of
all weight 1 vertices is a feedback vertex set, no optimal solution or 2-approximation
will ever select a blacked out vertex of weight 2n + 1.

5.2.1 The Rules

We leave the Islet, Twig and Triple edge rules unchanged: they are still safe when
we have blacked out vertices. However, the original Degree Two rule is no longer
safe in the presence of blacked out vertices. We use the following modified version.

Rule 13 Blackout Degree Two Rule
Suppose v is a vertex with exactly two neighbors x and y. If v is blacked out, or if
v is allowed and at least one of x and y is also allowed, then remove v and add the
edge {x, y}.

Lemma 25 The Blackout Degree Two rule is safe.

Proof Consider two cases for this rule. First, if v is blacked out, v just acts as a
conduit for cycles while we cannot use it to break any; we can safely bypass such
vertices. Secondly, if v is allowed, any cycle that is broken by v will also be broken if
we take an allowed neighbor of v instead of v. This implies that if v has an allowed
neighbor, there exists an optimal solution that does not use v. In that case, we can
bypass it. �

I.e., we can bypass all vertices of degree two, except those that are allowed and
have two blacked out neighbors. We leave the remaining degree-two vertices in the
graph. In Sect. 5.2.2 we show that there can be only O(k3) of such vertices in a
reduced instance.

If a blacked out vertex has a self-loop, then clearly the instance has no solution at
all (this vertex must be chosen, but at the same time it cannot). The Self-loop rule is
therefore extended with the condition that if the vertex with the self-loop is blacked
out, we conclude no immediately. Likewise, we modify the Flower rule: if it can be
applied to a vertex v ∈ Z, then we directly conclude no, instead of removing v.

In similar spirit, we add the following rule.

Rule 14 Blackout Double Edge (new)
Suppose v is an allowed vertex that has a double edge to a blacked out vertex. Then
remove v, all edges incident to v and decrease k by one. If there is a double edge be-
tween two blacked out vertices, then conclude no, otherwise restart the initialization
phase.

Lemma 26 The Blackout Double Edge rule is safe.

Proof A double edge to a blacked out vertex is essentially a self-loop. A double edge
between two blacked out vertices is a cycle that cannot be broken. �

We add one more new rule.
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Rule 15 Blacked Out Adjacent Vertices (new)
Suppose there is a single edge {v,w} and suppose that v and w are both blacked out.
Then contract {v,w}: delete v, w and {v,w}, and insert a new vertex with edges to
all of v and w’s old neighbors. (If v or w had a double edge, apply the Blackout
Double Edge rule first.)

This has the effect of contracting all blacked out vertices that are adjacent to each
other, and means that a reduced instance cannot have neighboring blacked out ver-
tices.

The rest of the rules are carried over unchanged. Regarding their safeness, consider
the following lemma.

Lemma 27 All vertices in A ∪ B are allowed.

Proof Vertices in A are allowed, because A is a feedback vertex set selected by the
2-approximation. Recall that B is the set of vertices with a double edge to a vertex
in A. By the Blackout Double Edge rule, a blacked out vertex cannot have a double
edge. Therefore, all vertices in B are also allowed. �

Since all vertices in A and B are allowed, the original proofs (e.g. of Lemma 9,
about the safeness of the Second Abdication rule) can be used without changes.

5.2.2 Size of the Kernel

We will now show that this is a kernelization for BLACKOUT FEEDBACK VERTEX

SET, again with size O(k3). The proof goes along the same lines as before, but we
need to bound the number of degree-two vertices.

The only degree-two vertices remaining in a reduced instance are allowed vertices
whose two neighbors are blacked out: those are the only ones that the Blackout De-
gree Two rule does not delete. We make a distinction between those in A and those
not in A.

The first kind is bounded by the size of A, which is O(k). This leaves the vertices
not in A, which we will bound with the aid of the following lemma.

Lemma 28 Suppose x and y are blacked out vertices. Let U be the set of degree-two
vertices whose two neighbors are x and y. Then there is at most one vertex v ∈ U

with v /∈ A.

Proof Assume to the contrary that there are two vertices u1, u2 ∈ U \ A. Then
x,u1, y,u2 is an unbroken cycle, which contradicts that A is a feedback vertex set. �

Now consider a reduced instance G. Let G′ be the graph obtained by bypassing all
degree-two vertices that remain in G. The same proof as in Sect. 3.4 shows that G′ has
O(k3) vertices and edges. We have already bounded the degree-two vertices in A, and
will now bound the other degree two vertices by associating each degree-two vertex in
G−A with an edge in G′, namely the edge created to bypass it. By Lemma 28, there
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can be at most one vertex associated to an edge in this way, bounding the number of
degree two vertices by O(k3).

Theorem 29 In a reduced instance, there are O(k3) vertices and O(k3) edges.

5.3 Transforming Back to LOOP CUTSET

As a final step, to obtain a kernelization algorithm for LOOP CUTSET, we need to
transform the instance of BLACKOUT FEEDBACK VERTEX SET back to the original
problem LOOP CUTSET. Conveniently, the kernelization algorithm for BLACKOUT

FEEDBACK VERTEX SET contracts all connected components of forbidden vertices.
In this way, all neighbors of a forbidden vertex are allowed. This makes the transfor-
mation particularly easy.

First we consider an edge between allowed vertices. In the BLACKOUT FEED-
BACK VERTEX SET instance, either vertex breaks all cycles through this edge. If we
were to simply turn the edge into an arc in either direction, we would risk making its
target a sink on some loop. To prevent this, we introduce a new vertex and replace
the original edge with two arcs going toward the new vertex. It is safe to introduce
this middle vertex: it is a sink on any loop it is contained in and thus, it will not be
included in any minimal solution. This part of the transformation adds at most m

vertices and arcs.
Next we consider edges between a blacked out vertex v and an allowed vertex w.

Each such edge {v,w} is replaced by an arc (w,v) from the allowed vertex to the
blacked out vertex. As has already been noted, there are no edges between blacked
out vertices. This means that if a vertex v is blacked out, after the transformation all
its arcs will be incoming. Therefore, v will be a sink on any cycle that contains v and
v will not be included in any minimal solution. Conversely, if a vertex w is allowed,
all its arcs will be outgoing and w will not be a sink on any cycle. This part of the
transformation does not increase the size of the instance.

This concludes the kernelization for LOOP CUTSET. Combining the two trans-
formations and the kernelization of BLACKOUT FEEDBACK VERTEX SET gives the
following result.

Theorem 30 A kernel for LOOP CUTSET with O(k3) vertices and O(k3) edges can
be obtained in polynomial time.

It is not hard to turn the result into a constructive one. A minimum size loop cutset
for the kernel can be transformed to a minimum size loop cutset for the original
instance, as follows. Suppose we have a minimum size loop cutset S for the kernel.
By the optimality of S, each vertex in S has outgoing edges, and thus is allowed
in the corresponding kernel of BLACKOUT FEEDBACK VERTEX SET. This gives us
a minimum size feedback vertex set S′ without blacked out vertices in the kernel of
BLACKOUT FEEDBACK VERTEX SET. As in Sect. 3.5, we obtain from S′ a minimum
size feedback vertex set S′′ without blacked out vertices in the original instance of
BLACKOUT FEEDBACK VERTEX SET. Now, S′′′ = {v ∈ V | vout ∈ S′′} is a minimum
size loop cutset in the original graph G.
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6 Experimental Evaluation

In this section we report on the results of our experiments with an implementation of
the algorithm. Additional experiments and a more extensive treatment are available
in Van Dijk’s master thesis [40].

We have implemented our algorithm in C++, using LEDA (the Library of Efficient
Data Types and Algorithms [28]) for the graph data structure and the computations
of maximum flows and matchings. Our experiments were carried out on a 2.8 GHz
Pentium 4 running Windows 2000. All times reported are CPU-time, as measured by
LEDA’s timer functionality.

6.1 Some Implementation Issues

The overall structure of the algorithm is to keep trying all rules until none are applica-
ble. The rules change the graph, so the application of one rule can enable another. Our
implementation does not track this explicitly, but instead surrounds the rule checks
with a while-loop: while the graph keeps changing, we try the rules. (There are some
small exceptions that are easy to do; for example, we explicitly check whether the
Twig rule enables itself or the Islet rule.)

The order in which to check for the different rules makes a significant difference.
The improvement rule adds double edges to the graph. If we try Improvement on all
pairs of vertices but do not simultaneously also check for other rules, then the graph
might get very dense: once we start adding more and more edges to the graph, it gets
more and more likely that there is improvement between vertices. But checking for
improvement will also become more and more expensive, and although such a dense
graph is likely to be full of flowers, checking for that will be extra expensive as well.

We therefore interleave checking for improvement and flowers. For each vertex
v in the graph we do the following. Start by checking for improvement between v

and each other vertex, but if v gets to have k + 1 double edges, the Large Double
Degree rule deletes it immediately and we continue with the next vertex. If this does
not happen, we check whether v is a flower.

6.2 Runtime of the Kernelization

In this section, we look at the actual runtime of the implementation of our algorithm.
We have done several experiments with random graphs, which we present first.

Figure 8 shows the results of running our kernelization on random graphs with
twice as many edges as vertices. (Results for other amounts of edges are similar,
even when the number of edges grows quadratically instead of linearly.) We have run
the kernelization on 10,000 random graphs for every n ∈ [20..500] with k = 20, and
measured the amount of time spent in the different rules. This shows some interesting
behavior.

First of all, notice that the algorithm is not expensive at all, using approximately
40 seconds for the 10,000 graphs at the most expensive point (n ≈ 150).

The most striking observation to notice in the graph, however, is that the runtime
actually decreases significantly in the interval n = 150 to 180, and that at n = 500,
the runtime still has not exceeded that of n = 150.
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Fig. 8 Breakdown of the time spent in the different rules, on 10,000 random graphs with m = 2n and
k = 20

The reason for this can actually be seen in the graph. Recall the algorithm starts
out by finding a 2-approximate solution. If the size of this solution is larger than 2k

(40, in this case), the algorithm immediately concludes no, forgoing the other rules.
This is a quick early-out on graphs that, in a certain sense, ‘clearly’ do not have a
feedback vertex set of at most k vertices.

In this experiment, this early-out did not happen in more than 1% of the graphs
if the number of vertices was less than 138 vertices; on the other hand, it happened
on at least 99% of the graphs with more than 200 vertices. In between, there is a
smooth transition of the fraction of graphs on which the early-out happens. It is this
proportion of graphs that is ‘easy’ that causes the drop in runtime. (Note that the 2-
approximation itself also spends more time around n = 150: this is because several
of the rules can cause a restart, in which case the 2-approximation is run more than
once.)

The point at which this cutoff occurs changes with k, of course, which can be
seen in Fig. 9. There is not much more difference between the different values of k,
however: until their respective cutoffs, all four curves are almost the same, and after
the cutoff, they all fall back to the same curve of running the 2-approximation once.1

Finally, note the jumps in runtime at power-of-two input sizes: this is due to im-
plementation details (at several points, hashmaps are used extensively).

6.3 Solving the Kernel Versus Solving the Original

After one has run the kernelization routine, one does not have an answer to your
original problem yet: there still is the need to solve the problem on the kernel. Hope-
fully, the time spent on kernelization is (much) less than the time gained as we need

1The 2-approximation can be modified to do an even-earlier out because we know any feedback vertex set
larger than 2k will lead to the same conclusion: no. We did not implement this, though.
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Fig. 9 Runtime on 250 random graphs with m = 2n, for k ∈ {10,20,30,40}

to solve the problem on a smaller instance. Having analyzed the efficiency of our
kernelization, we will now look at its effectiveness.

To this end, we have implemented a randomized algorithm for FEEDBACK VER-
TEX SET [4]. This algorithm computes the optimum value with high probability; the
probability of failure can be made arbitrarily small. We will compare the runtime of
the algorithm on the original instance with the runtime of our kernelization added to
the runtime of the algorithm of [4] on the resulting kernel. The algorithm by [4] uses
time exponential in k, but polynomial in n.

We do not explicitly look at the fixed parameter version of the problem here; in-
stead we use the size of the 2-approximation as k: as has been noted, this is safe and
makes our kernelization a preprocessing heuristic.

In Table 1 we show the results of running this comparison on a few graphs that
have been used as a benchmark for treewidth algorithms, see e.g. [21, 38]. We indicate
the number of nodes n and edges m before and after kernelization, and the (safe)
parameter k with which the kernelization was run. The kernelization algorithm never
used more than half a second. On some instances, we did not let the algorithm of
[4] finish (this would, in one case, have taken years), but instead let it run for 1000
iterations and then extrapolated the time taken on those, to the required amount of
iterations. Runtimes that we have not explicitly measured, but extrapolated in this
way are indicated with a ∗.

Depending on whether the kernelization does anything to the graph, it can achieve
a very significant speedup. On the above graphs, the kernelization was effective. If,
on the other hand, the kernelization does not do much to the graph, its runtime is still
negligible in comparison to the runtime of the algorithm of [4]: it never really hurts
to use it.
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Table 1 Results of the FEEDBACK VERTEX SET kernelization algorithm for selected graphs

Name Solve original Kernelize + solve

n m Runtime k n m Runtime

Oesoca-42 42 72 137 seconds 5 9 19 4.6 seconds

Alarm 37 65 122 minutes 8 12 25 11.5 seconds

Pathfinder 109 211 3 weeks ∗ 12 17 53 22.3 minutes

Barley 48 126 28 years ∗ 16 41 117 20 years ∗

7 Discussion

In this paper, we showed that the FEEDBACK VERTEX SET problem on undirected
graphs and the LOOP CUTSET problem have kernels of size O(k3); the kernelization
algorithm takes time polynomial in n and in k. We expect that the bound given in
Sect. 4.6, for the running time of the algorithm can be improved with further analysis.
We also expect that a modification of the techniques can lead to a kernel for the case
where vertices have integer weights with the parameter k an upper bound on the sum
of the weights of the vertices in the vertex set.

Several recent developments on fixed parameter algorithms for FEEDBACK VER-
TEX SET are the following. Very recently, Thomassé [37] has shown a quadratic
kernel. Penninkx and Bodlaender [9] showed that FEEDBACK VERTEX SET has a
linear kernel when the input graph is planar. Chen et al. [13] gave an FPT algorithm
for DIRECTED FEEDBACK VERTEX SET and FEEDBACK ARC SET, solving a long
standing open problem. Here we look for a minimum size set of vertices or arcs in a
directed graph G, such that each cycle in G contains a vertex or arc in the set.

We end the paper with mentioning some open problems.

• As has been mentioned, Thomassé [37] has shown a kernel for FEEDBACK VER-
TEX SET of size O(k2). Is an even better result possible, that is, is there a kernel
of size o(k2)? See e.g. the discussion in [11]. Would the techniques from [9] be of
help to obtain provably smaller kernels in the non-planar case?

• Are there polynomial size kernels for the DIRECTED FEEDBACK VERTEX SET

and FEEDBACK ARC SET problems? Here, we may hope that the recent results
of Chen et al. [13] are of help, but we expect this problem to be very hard, as the
membership of DIRECTED FEEDBACK VERTEX SET and FEEDBACK ARC SET

has been open for a long time till its resolution in [13].
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