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Abstract We define a weighted monadic second order logic for unranked trees and
the concept of weighted unranked tree automata, and we investigate the expressive
power of these two concepts. We show that weighted tree automata and a syntactically
restricted weighted MSO-logic have the same expressive power in case the semiring
is commutative or in case we deal only with ranked trees, but, surprisingly, not in
general. This demonstrates a crucial difference between the theories of ranked trees
and unranked trees in the weighted case.

Keywords Weighted logics · Formal power series · Unranked tree automata ·
Weighted tree automata

1 Introduction

The investigations of formal languages, automata, and logic on ranked and unranked
trees started in the 60s of the previous century. For the ranked part, this is already a
well-established research area, cf., e.g. [10, 22, 23] for survey books on these topics.
To the unranked part, much attention has been payed recently [7, 8, 28] (also cf.
Chap. 8 of [10]) which is mainly due to the development of the modern document
language XML and the fact that (fully structured) XML-documents can be formalized
as unranked trees.

One of the fundamental results in the theory of tree automata is the fact that a tree
language is recognizable if and only if it is definable by a sentence of monadic second
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order (MSO) logic (for the ranked case cf. [11, 42], for the unranked case cf. [28, 34,
35]). This characterization generalizes the corresponding theorem for the string case
[9, 19].

In MSO-logic for unranked trees one can pose qualitative questions like whether,
in a given bibliography database (formalized as an unranked tree), there is an en-
try which misses optional information of a certain kind, or whether there is a paper
with three authors. As extension of this scenario, it is a natural problem for databases
to pose quantitative queries to documents. For instance, one might ask how many
entries miss optional information. Or, as another example: given the different efforts
(measured as natural numbers) for completing a book-entry and an article-entry,
respectively; then one might want to know the weighted sum which shows the whole
effort to complete all book- and all article-entries in the database. Such quanti-
ties we call weights.

In this paper we present a weighted logic which is suitable for the formulation
of such quantitative queries for unranked trees (weighted MSO-logic). This logic
was heavily inspired by and goes back to the weighted MSO-logic presented in
[12–14] for strings; the latter has been extended to infinite strings [15], finite and
infinite strings with discounting [15], ranked trees [16], infinite trees [36], trace lan-
guages [32], picture languages [20], and texts and nested words [30, 31]. In all these
approaches the weights are computed in some semiring which has shown to be the ap-
propriate algebraic structure for coping with different weight scenarios in a uniform
way [4, 17, 18, 25, 27, 37, 40].

As an automata-theoretic counterpart of our weighted MSO-logic, we will intro-
duce weighted tree automata over unranked trees (for short: wta) where the weights
are taken from a semiring S. These generalize bottom-up finite tree automata over
unranked trees [7, 8, 28, 29, 34, 41] by adding weights. More precisely, in a wta M ,
with each pair consisting of a state q ∈ Q and an input symbol σ , a weighted finite
automaton Aq,σ is associated which recognizes a formal power series over S and Q;
then, for every w ∈ Q∗, the value (||Aq,σ ||,w) ∈ S is the weight of the state transi-
tion (w,q) at input symbol σ , where ||Aq,σ || denotes the behavior of Aq,σ . Clearly,
bottom-up finite tree automata over unranked trees can be reobtained from our model
by choosing the Boolean semiring for S. We note that also weighted tree automata
over ranked trees [2, 3, 5, 21, 26] are special wta: only those unranked trees which
obey the given ranks of symbols are considered.

For the comparison of MSO-logic and wta, we describe both, the behavior of wta
and the semantics of sentences of our weighted MSO-logic by unranked tree series,
i.e., by functions associating to each unranked tree a value in S.

The main results of this paper involve the syntactically restricted MSO-logic as
it has been defined in [14] for words. It was shown for any semiring that weighted
automata over words have precisely the same expressive power as the syntactically
restricted MSO-logic [14]. This lifts up to ranked trees and, in case the semiring is
commutative, also to unranked trees. Surprisingly, the equivalence does not extend
to the case of unranked trees and non-commutative semirings. This demonstrates
a crucial difference between the theories of ranked trees and unranked trees in the
weighted case.
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More precisely, we show the following results:

(1) Let r be an unranked tree series which is definable in (syntactically) restricted
MSO-logic. Then r is recognizable (cf. Theorem 6.5).

(2) Let r be recognizable, then r is MSO-definable. Moreover, if S is commutative,
then r is definable in syntactically restricted existential MSO-logic (cf. Theorem
6.9).

(3) There is a recognizable unranked tree series which is not definable in syntacti-
cally restricted MSO-logic (cf. Theorem 6.10).

(4) Let r be a ranked tree series. Then r is recognizable if and only if r is definable
by ranked syntactically restricted existential MSO-logic (cf. Theorem 7.2).

We prove our results by direct automata-theoretic constructions along the lines
of [13, 14] by generalizing from the case of ranked trees [16] to that of unranked
trees. Previous alternative arguments using encoding of unranked trees as ranked
trees turned out to be more complicated. We note that, in contrast to [13, 16] and
in accordance with [14], our results employ a purely syntactically defined subclass of
weighted MSO-logic. Moreover, the semirings occurring here need not be commuta-
tive. The latter fact implies that we need a linear ordering on the nodes of unranked
trees in order to evaluate products which occur in the run semantics of a wta and in
the interpretation of universal quantifications in a correct manner. This issue needs
some care in handling. The construction of an MSO-sentence for the simulation of a
wta is slightly more complicated than in the ranked case, because here a wta employs
in its transitions weighted string automata over states, and the latter also have to be
modelled.

We also expose an extended example where we define a bibliography database
with bibtex entries and show how quantitative queries of the form mentioned above
can be formulated in syntactically restricted MSO-logic.

We note that in [38], an MSO-logic for unranked trees with Presburger constraints
on the children of nodes was presented; the satisfiability of this logic was shown
to be undecidable. Recently, [39] presented a modal fixpoint logic with Presburger
constraints which becomes decidable. It would be interesting to compare and possibly
combine these approaches with the present one formulated for arbitrary semirings of
numerical weights.

In order to avoid repeating over and over again the attribute “unranked”, we make
the convention that the unranked case is the standard case for trees, tree automata,
and tree series. Whenever we mean the ranked case, we will state this explicitly.

2 Preliminaries

2.1 Basic Notions and Trees

Let N and N+ be the sets {0,1,2, . . .} and {1,2, . . .}, respectively.
Let � be an alphabet, i.e., a finite nonempty set. The set of �-trees, denoted by

U� , is the smallest subset U of (� ∪ {(, )} ∪ {, })∗ such that if σ ∈ � and ξ1, . . . , ξk ∈
U with k ≥ 0, then σ(ξ1, . . . , ξk) ∈ U . In case k = 0, we identify σ( ) with σ ; thus
� ⊆ U� . Any subset of U� is called a (�-)tree language.
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We define the set of positions in a �-tree by means of the mapping pos : U� →
P (N∗+) inductively on the argument ξ ∈ U� as follows: if ξ = σ(ξ1, . . . , ξk) where
σ ∈ �, k ≥ 0 and ξ1, . . . , ξk ∈ U� , then pos(ξ) = {ε} ∪ {iv |1 ≤ i ≤ k, v ∈ pos(ξi)}.
Sometimes we will also write i · v for iv.

For every ξ ∈ U� and w ∈ pos(ξ), the label of ξ at w, denoted by ξ(w) ∈ �,
and the rank at w, denoted by rkξ (w), are defined inductively as follows: if ξ =
σ(ξ1, . . . , ξk) for some σ ∈ � with k ≥ 0 and ξ1, . . . , ξk ∈ U� , then ξ(ε) = σ and
rkξ (ε) = k, and if 1 ≤ i ≤ k and w = iv, then ξ(w) = ξi(v) and rkξ (w) = rkξi

(v).
Later on, when we define the behavior of a weighted tree automaton on an input

tree ξ , we will need a linear ordering on the set pos(ξ). For this we choose here the
depth-first left-to-right traversal over ξ which, at a position w ∈ pos(ξ), visits the
subtrees one by one from left to right, and then it deals with w itself. We denote this
linear ordering by 	ξ .

In this paper, � will always denote an arbitrary alphabet unless specified oth-
erwise.

2.2 Semirings, Formal Power Series, and Weighted Finite Automata

Here we recall the basic notions on semirings, formal power series, and weighted
finite automata on strings. We refer the reader for more information to [18, 27, 37].

A semiring is a structure (S,+, ·,0,1) (often abbreviated by S) where (S,+,0) is
a commutative monoid, (S, ·,1) is a monoid, multiplication distributes over addition
from both sides, and 0 · s = s · 0 = 0 for every s ∈ S. For A,B ⊆ S, we say that A

and B commute elementwise, if a · b = b · a for all a ∈ A and b ∈ B . A semiring is
commutative if · is commutative.

In this paper, S will always denote an arbitrary semiring unless specified oth-
erwise.

Let Z be an arbitrary set. A (formal) power series over S and Z is a mapping
r : Z → S. For z ∈ Z, the value r(z) is here, as usual, denoted as (r, z). The set
Z \ r−1(0) is called the support of r and denoted by supp(r). The set of all power
series over S and Z is denoted by S〈〈Z〉〉. Let L ⊆ Z. Then the characteristic series
1L ∈ S〈〈Z〉〉 of L is defined for every z ∈ Z by (1L, z) = 1 if z ∈ L, and (1L, z) = 0
otherwise. Observe that if S = B, the mapping L �→ 1L provides a bijection between
languages and characteristic series.

We define the operations sum and Hadamard-product on S〈〈Z〉〉 as follows: for
r1, r2 ∈ S〈〈Z〉〉 and z ∈ Z we let (r1 + r2, z) = (r1, z) + (r2, z) and (r1 
 r2, z) =
(r1, z) · (r2, z). Let s ∈ S and r ∈ S〈〈Z〉〉. Then r · s ∈ S〈〈Z〉〉 is defined by (r · s, z) =
(r, z) · s for every z ∈ Z.

Let � be an alphabet. Then we call an element r ∈ S〈〈U�〉〉 a tree series.
Let � be an alphabet. As usual, a weighted finite string automaton (for short: wsa)

over S and � is a quadruple A = (P,λ,μ, ν) such that P is a finite set (of states),
μ : P × � × P → S is a mapping (called transition weight function), and λ, ν : P →
S are functions (called initial weight function and final weight function, respectively).
A run (through A) is a sequence r = (p0, a1,p1)(p1, a2,p2) . . . (pn−1, an,pn) where
pi ∈ P and ai ∈ � with 0 ≤ i ≤ n, and we say that r is a run from p0 to pn with label
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w = a1 . . . an; the set of all such runs is denoted by Pp0,pn(w). The weight of r is
the product wt(r) = ∏n

i=1 μ(pi−1, ai,pi). Note that r = ε if n = 0, and wt(ε) =
1 because, as usual, in S products over empty index sets are defined to be 1. The
behavior of A (or: power series recognized by A) is the power series ||A|| ∈ S〈〈�∗〉〉
such that for every w ∈ �∗ we have

(||A||,w) =
∑

p,p′∈P

λ(p) · μ(p,w,p′) · ν(p′)

where μ(p,w,p′) =∑r∈Pp,p′ (w) wt(r). A power series r ∈ S〈〈�∗〉〉 is recognizable

over S and � if there is a wsa A over S and � such that r = ||A||.

3 Weighted Tree Automata

In this section we extend the concept of (nondeterministic) bottom-up finite tree
automata on trees [7] (also cf. [28, 29, 34]) by weights taken from some semiring
(S,+, ·,0,1). The classical concept of tree automata is obtained by letting S = B.

A weighted tree automaton (for short: wta) over S is a quadruple M =
(Q,�,A,γ ) where Q is a finite set (of states), � is an alphabet (of input sym-
bols), A = (Aq,σ | q ∈ Q,σ ∈ �) is a family of wsa over S and Q, and γ : Q → S

is a mapping (root weight function). A wta M is deterministic if for every σ ∈ � and
q1 . . . qk ∈ Q∗ there is at most one q ∈ Q such that (||Aq,σ ||, q1 . . . qk) �= 0.

Now we define the run semantics of a wta M . Given a tree ξ ∈ U� , any function
κ : pos(ξ) → Q is called a run of M on ξ , and we define the weight of κ by

wtM(κ) =
∏

w∈pos(ξ)

(
||Aκ(w),ξ(w)||, κ(w1) . . . κ(w rkξ (w))

)
;

in the product we follow the linear ordering 	ξ . Note that, if S is commutative, then
one can choose any linear ordering and obtain the same result for wtM(κ). Clearly, if
M is deterministic, then for every ξ ∈ U� there is at most one run κ on ξ such that
wtM(κ) �= 0. We let RM(ξ) be the set of all runs of M on ξ .

The tree series accepted by M over S is the tree series rM ∈ S〈〈U�〉〉 defined by

(rM, ξ) =
∑

κ∈RM(ξ)

wtM(κ) · γ (κ(ε))

for every ξ ∈ U� . A tree series r ∈ S〈〈U�〉〉 is recognizable over S if there is a wta M

over S such that r = rM . We will denote the class of all recognizable tree series over
S and � by Rec(S,�).

Example 3.1 Let � = {α,β} and Trop be the (“tropical”) semiring (N ∪ {∞}, min,
+, ∞, 0) where the sum and the product operations are min and +, resp., extended to
N ∪ {∞} in the obvious way. Now we consider the tree series #αα ∈ Trop〈〈U�〉〉 such
that (#αα, ξ) is the number of positions w ∈ pos(ξ) for which the first and second
descendant of w are labeled by α, i.e., ξ(w · 1) = ξ(w · 2) = α.
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As preparation we define Q = {qα, qβ} and the two power series ∞̃ and r over
Trop and Q by letting (∞̃,w) = ∞ and

(r,w) =
{

1 if w ∈ {qα}2Q∗

0 otherwise

for every w ∈ Q∗. Clearly, r and ∞̃ are recognizable over Trop and Q.
Now we construct the wta M = (Q,�,A,γ ) over Trop with γ (qα) = γ (qβ) = 0.

Moreover, for every qa ∈ Q and b ∈ � we choose a wsa Aqa,b over Trop and Q

such that ||Aqa,b|| = r if a = b, and ||Aqa,b|| = ∞̃ otherwise. It is clear that for every
ξ ∈ U� there is exactly one run κξ : pos(ξ) → Q such that wtM(κξ ) �= ∞: for every
position w of ξ we have that κξ (w) = qξ(w). Then wtM(κξ ) = #αα(ξ), showing that
rM = #αα . E.g., for the tree ξ = α(α(α,β),α(α,α,β),β) we have

position w in ξ ε 1 11 12 2 21 22 23 3
(||Aqξ(w),ξ(w)||, qξ(w1), . . . , qξ(w rkξ (w))) 1 0 0 0 1 0 0 0 0

Hence (rM, ξ) = minκ∈RM(ξ){wtM(κ) + γ (κ(ε))} = wtM(κξ ) = 2.

The unweighted case can be obtained as follows. A tree language L ⊆ U� is recog-
nizable if there is a wta M over the Boolean semiring B = ({0,1},∨,∧,0,1) with dis-
junction ∨ and conjunction ∧, such that L = supp(rM). Using the bijection between
tree languages and characteristic series, it is easy to see that this notion coincides
with the usual definition of recognizability for tree languages. In fact, nondetermin-
istic (and deterministic) bottom-up tree automata on trees in the sense of [7, 34] are
precisely the wta (and deterministic wta, respectively) over B. Subsequently, we will
often use the fact that the class of recognizable tree languages is closed under inter-
section and complement, cf. Theorem H of [7] (also cf. Theorem 8.3.8 of [10]). In
Theorem B of [7] (also cf. Theorem 8.2.8 of [10]) it is proved by using the well-
known power set construction that every recognizable tree language is recognizable
by a deterministic wta over B. Using this property, it is easy to see that for every
recognizable tree language L, the series 1L ∈ S〈〈U�〉〉 is recognizable.

Next we note basic properties of the classes of recognizable step functions and
recognizable tree series. A tree series r ∈ S〈〈U�〉〉 is a recognizable step function
if there are an n ≥ 1, coefficients s1, . . . , sn ∈ S, and recognizable tree languages
L1, . . . ,Ln ⊆ U� such that r =∑n

i=1 1Li
· si . Equivalently, r assumes only finitely

many values, and for each s ∈ S the language r−1(s) is recognizable. In fact, we can
choose L1, . . . ,Ln as above such that they form a partition of U� . The proofs of the
following properties are completely analogous to the ranked case [16].

Proposition 3.2 Let r1, r2 ∈ S〈〈U�〉〉 and s ∈ S.

1. The constant tree series s̃ ∈ S〈〈U�〉〉 which maps every tree to s, is recognizable.
2. If r1 and r2 are recognizable, then r1 + r2 and r1 · s are recognizable.
3. Let S1, S2 ⊆ S be two subsemirings such that S1 and S2 commute elementwise. Let

r1 and r2 be recognizable over S1 and S2, respectively. Then r1 
r2 is recognizable
over S.
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4. If r1 and r2 are recognizable step functions, then r1 + r2, r1 
 r2, and r1 · s are
recognizable step functions.

5. Every recognizable step function is a recognizable tree series.
6. Let S′ be another semiring, ϕ : S → S′ a semiring morphism, and r ∈ Rec(S,�).

Then the tree series ϕ(S) = ϕ ◦ r : U� → S′ with (ϕ(r), ξ) = ϕ((r, ξ)) for every
ξ ∈ U� is recognizable.

We note that, as in the ranked case, the class of recognizable tree series is closed
under relabelings. For this, let � and � be two alphabets and τ : � → P (�) be a
mapping. This mapping is extended to a mapping τ ′ : U� → P (U�) by defining in-
ductively τ ′(σ (ξ1, . . . , ξk)) = {β(ζ1, . . . , ζk) |β ∈ τ(σ ), ζ1 ∈ τ ′(ξ1), . . . , ζk ∈ τ ′(ξk)}
for every σ ∈ �, k ≥ 0, and ξ1, . . . , ξk ∈ U� . Note that the set (τ ′)−1(ζ ) is finite
for every ζ ∈ U�. Next we extend τ ′ to a mapping τ ′′ : S〈〈U�〉〉 → S〈〈U�〉〉, called
relabeling, by defining (τ ′′(r), ζ ) =∑ξ∈U�,ζ∈τ ′(ξ)(r, ξ) for every r ∈ S〈〈U�〉〉 and
ζ ∈ U�. In the sequel we will drop the primes from τ ′ and τ ′′. The proof of the next
lemma is again completely analogous to the ranked case (cf. Lemma 3.4 of [16]).

Lemma 3.3 Let r ∈ S〈〈U�〉〉 and τ : � → P (�) be a relabeling. If r is recognizable,
then τ(r) is recognizable.

4 Weighted MSO-Logic

In this section, we will introduce our weighted MSO-logic for trees. The set
MSO(S,�) of all formulas of weighted MSO-logic over S and � on trees is defined
to be the smallest set F such that:

1. F contains all the atomic formulas s, labelσ (x), desc(x, y), (x ≤ y), (x 	 y), and
(x ∈ X) and the negations ¬labelσ (x), ¬desc(x, y), ¬(x ≤ y), ¬(x 	 y), and
¬(x ∈ X), and

2. if ϕ and ψ are in F , then also ϕ ∨ ψ , ϕ ∧ ψ , ∃x.ϕ, ∀x.ϕ, ∃X.ϕ, ∀X.ϕ are in F ,

where s ∈ S, σ ∈ �, x, y are first order variables, and X is a second order variable.
We denote by MSO−(S,�) the fragment of all MSO(S,�)-formulas not containing
formulas of the form s with s ∈ S as subformulas.

In order to define the semantics of formulas with free variables, we extend the
alphabet � in the usual way. If V is a finite set of first and second order variables,
we denote the alphabet � × {0,1}V by �V . A �V -tree ξ is valid if for every first
order variable x ∈ V , ξ contains precisely one position assigning 1 to x. The subset
of U�V containing all valid trees is denoted by Uv

�V
; clearly, the tree language Uv

�V
is recognizable. We put �ϕ = �Free(ϕ).

In the sequel we will identify a valid �V -tree ξ with the corresponding pair (ζ, ρ)

where ζ ∈ U� and ρ is a (V , ζ )-assignment; such an assignment maps first order
variables in V to elements of pos(ζ ) and second order variables in V to subsets of
pos(ζ ).

Let ξ be an arbitrary �V -tree, x be a first order variable, and w ∈ pos(ξ). Then
ξ [x → w] is the �V ∪{x}-labeled tree obtained from ξ which assigns 1 to x at posi-
tion w, and 0 elsewhere. Similarly, if X is a second order variable and I ⊆ pos(ξ),



30 Theory Comput Syst (2011) 48: 23–47

then ξ [X → I ] is the �V ∪{X}-tree obtained from ξ which assigns 1 to X precisely
at the positions in I . If here ξ = (ζ, ρ), we also write ξ [x → w] = (ζ, ρ[x → w])
and ξ [X → I ] = (ζ, ρ[X → I ]). The following is analogous to the corresponding
definition for the case of strings in [12, 13].

Definition 4.1 Let ϕ ∈ MSO(S,�) and V be a finite set of variables containing
Free(ϕ). The semantics of ϕ is the formal tree series [[ϕ]]V ∈ S〈〈U�V 〉〉 defined as
follows. If ξ ∈ U�V is not valid, then we put ([[ϕ]]V , ξ) = 0. Otherwise, we define
([[ϕ]]V , ξ) ∈ S inductively as follows where (ζ, ρ) corresponds to ξ .

([[s]]V , ξ) = s

([[labelσ (x)]]V , ξ) =
{

1 if ζ(ρ(x)) = σ

0 otherwise

([[desc(x, y)]]V , ξ) =
{

1 if there is an i such that ρ(y) = ρ(x) · i
0 otherwise

([[x ≤ y]]V , ξ) =
⎧
⎨

⎩

1 if ρ(x) = ρ(y) = ε or if there are w ∈ pos(ξ) and i, j ≥ 1
such that ρ(x) = w · i, ρ(y) = w · j, and i ≤ j

0 otherwise

([[x 	 y]]V , ξ) =
{

1 if ρ(x) 	ξ ρ(y)

0 otherwise

([[x ∈ X]]V , ξ) =
{

1 if ρ(x) ∈ ρ(X)

0 otherwise

([[¬ϕ]]V , ξ) =
{

1 if ([[ϕ]]V , ξ) = 0
0 if ([[ϕ]]V , ξ) = 1

if ϕ is of the form labelσ (x), desc(x, y), (x ≤ y), (x 	 y), or (x ∈ X)

([[ϕ ∨ ψ]]V , ξ) = ([[ϕ]]V , ξ) + ([[ψ]]V , ξ)

([[ϕ ∧ ψ]]V , ξ) = ([[ϕ]]V , ξ) · ([[ψ]]V , ξ)

([[∃x.ϕ]]V , ξ) =
∑

w∈pos(ξ)

([[ϕ]]V ∪{x}, ξ [x → w])

([[∀x.ϕ]]V , ξ) =
∏

w∈pos(ξ)

([[ϕ]]V ∪{x}, ξ [x → w])

([[∃X.ϕ]]V , ξ) =
∑

I⊆pos(ξ)

([[ϕ]]V ∪{X}, ξ [X → I ])

([[∀X.ϕ]]V , ξ) =
∏

I⊆pos(ξ)

([[ϕ]]V ∪{X}, ξ [X → I ])

where in the product over pos(ξ) we follow the depth-first left-to-right traversal 	ξ

over pos(ξ); moreover, for the product over subsets I of pos(ξ), we employ the lexi-
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cographic linear order on the set {0,1}pos(ξ) of pos(ξ)-sequences of 0’s and 1’s where
the sequences are ordered according to 	ξ .

We write [[ϕ]] rather than [[ϕ]]Free(ϕ). Let Z ⊆ MSO(S,�). A tree series r ∈
S〈〈U�〉〉 is called Z-definable if there is a sentence ϕ ∈ Z such that r = [[ϕ]].

We note that, whereas in classical logic both disjunction and conjunction distribute
over each other, in general semirings only multiplication distributes over addition,
and hence in our weighted logic only conjunction distributes over disjunction. This
phenomenon is well known already in many-valued logics, e.g., restrictions of the
Łukasiewicz logic.

As in the string case (Proposition 3.3 of [13]) and the ranked tree case (Lemma
4.7 of [16]) we note that the semantics [[ϕ]]V for every V containing Free(ϕ) are
consistent, which follows by a standard induction on the structure of ϕ.

Lemma 4.2 Let ϕ ∈ MSO(S,�) and V a finite set of variables containing Free(ϕ).
Then, for every (ζ, ρ) ∈ Uv

�V
, we have that ([[ϕ]]V , (ζ, ρ)) = ([[ϕ]], (ζ, ρ|Free(ϕ))). In

particular, [[ϕ]] is recognizable iff [[ϕ]]V is recognizable, and [[ϕ]] is a recognizable
step function iff [[ϕ]]V is a recognizable step function.

Now we recall how the classical equivalence result between MSO-definable and
recognizable tree languages [28, 34, 35] can be formulated in the present context.
Let ϕ ∈ MSO−(B,�). The tree language defined by ϕ, denoted by L(ϕ), is the set
supp([[ϕ]]). We call a tree language L ⊆ Uv

�V
definable if there is an MSO−(B,�)-

formula ϕ with Free(ϕ) ⊆ V such that L = L(ϕ). Using the bijection between tree
languages and characteristic series, it is easy to see that this notion coincides with the
usual definition of definability for tree languages. Then a tree language L ⊆ U� is
recognizable iff L is definable by a sentence over �.

5 Unambiguous Formulas

Here we introduce unambiguous formulas for trees; for this we follow the lines of
[14]. As motivation, consider ϕ,ψ ∈ MSO(N,�) over the semiring N of natural
numbers and suppose that [[ϕ]] and [[ψ]] both assume only values 0 or 1. Then
[[ϕ ∨ ψ]] may assume value 2, and [[∃x.ϕ]] may assume arbitrarily high numbers as
value. Next we introduce a subclass of formulas for which this phenomenon cannot
occur.

Definition 5.1 ([13], Definition 5.1) The class of unambiguous formulas in
MSO(S,�) is defined inductively as follows:

1. Every atomic formula of the form labelσ (x), desc(x, y), (x ≤ y), (x 	 y), or
(x ∈ X), and their negations are unambiguous.

2. If ϕ, ψ are unambiguous, then ϕ ∧ ψ , ∀x.ϕ, and ∀X.ϕ are unambiguous.
3. If ϕ, ψ are unambiguous and supp([[ϕ]]) ∩ supp([[ψ]]) = ∅, then ϕ ∨ ψ is unam-

biguous.
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4. Let ϕ be unambiguous and V = Free(ϕ). If for every ξ ∈ U�V there is at most one
position w ∈ pos(ξ) such that ([[ϕ]]V ∪{x}, ξ [x → w]) �= 0, then ∃x.ϕ is unambigu-
ous.

5. Let ϕ be unambiguous and V = Free(ϕ). If for every ξ ∈ U�V there is at most one
set I ⊆ pos(ξ) such that ([[ϕ]]V ∪{X}, ξ [X → I ]) �= 0, then ∃X.ϕ is unambiguous.

Proposition 5.2 ([13], Proposition 5.2) Let ϕ ∈ MSO(S,�) be unambiguous. Then,
viewing ϕ as an MSO−(B,�)-formula defining the tree language L(ϕ), it holds that
[[ϕ]] = 1L(ϕ). In particular, [[ϕ]] is a recognizable step function.

Proof We proceed by structural induction similar to [13]. We note that, if ϕ =
(x 	 y), then L(ϕ) is a recognizable tree language by our choice of the linear or-
der 	ξ . �

Next we note that there is a purely syntactic definition of formulas ϕ+ and ϕ− in
MSO−(S,�) for any ϕ ∈ MSO−(S,�) with the following properties:

• the formulas ϕ+ and ϕ− are unambiguous,
• L(ϕ+) = L(ϕ) and L(ϕ−) = L(¬ϕ), and
• [[ϕ+]] = 1L(ϕ) and [[ϕ−]] = 1L(¬ϕ).

For this we can proceed completely analogously to Definition 4.3 of [14] using the
atomic formula x 	 y for first order quantifications. Extending [16], this includes the
case of formulas containing set quantifiers for which we extend the depth-first left-
to-right ordering on pos(ξ) to the lexicographic linear order on the set {0,1}pos(ξ) of
subsets of pos(ξ).

Moreover, for any ϕ,ψ ∈ MSO−(S,�), we define the formulas ϕ
+→ ψ and

ϕ
+↔ ψ in MSO−(S,�) as follows: ϕ

+→ ψ = ϕ− ∨ (ϕ+ ∧ ψ+) and ϕ
+↔ ψ =

(ϕ+ ∧ ψ+) ∨ (ϕ− ∧ ψ−). Using this, we define a formula to be syntactically un-

ambiguous if it is of the form ϕ+, ϕ−, ϕ
+→ ψ or ϕ

+↔ ψ for ϕ,ψ ∈ MSO−(S,�).
Clearly, each syntactically unambiguous formula is unambiguous.

Proposition 5.3 For each classical MSO-sentence ϕ, we can effectively construct a
syntactically unambiguous MSO(S,�)-sentence ϕ′ defining the same language, i.e.,
[[ϕ′]] = 1L(ϕ).

Proof Using also conjunctions and universal quantifications, transform ϕ into an
equivalent MSO-sentence ψ in which negation is only applied to atomic formulas.
Then put ϕ′ = ψ+. �

In the next example and also later (in the proof of Theorem 6.9) we will use the
following macro. For ϕ ∈ MSO−(S,�) and ψ ∈ MSO(S,�) let ϕ → ψ = ϕ− ∨
(ϕ+ ∧ ψ). Then for each ξ ∈ U� we have that

([[ϕ → ψ]], ξ) =
{

([[ψ]], ξ) if ξ ∈ L(ϕ)

1 otherwise.
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Example 5.4 We will show that the series #αα of Example 3.1 is MSO(Trop,�)-
definable. For this we construct the MSO(Trop,�)-formula

count = ∀x.∀y1.∀y2.
((

firstChild(x, y1)∧next(y1, y2)∧labelα(y1)∧labelα(y2)
)→ 1

)

where we use the macros:

firstChild(x, y) = desc(x, y) ∧ ∀z.(desc(x, z)
+→ y ≤ z)

next(y1, y2) = (y1 ≤ y2) ∧ ¬(y2 ≤ y1) ∧ ∀z.
(
y1 ≤ z

+→ (z ≤ y1 ∨ y2 ≤ z)
)
.

Clearly, the implication in count can only yield the semiring-1, i.e., the natural num-
ber 0, or the semiring-constant 1, which is the natural number 1. Since universal
quantification is interpreted in Trop as the summation of natural numbers, it is easy
to see that [[count]] = #αα .

Finally we give a characterization of recognizable step functions. For this we
define the collection of almost unambiguous formulas in MSO(S,�), denoted by
auMSO(S,�), to be the smallest subset of MSO(S,�) containing all constants
s (s ∈ S) and all syntactically unambiguous formulas and which is closed under
disjunction and conjunction. We call two formulas ϕ,ψ ∈ MSO(S,�) equivalent
if [[ϕ]] = [[ψ]]. Since in S multiplication distributes over addition, one can check
that each almost unambiguous formula ψ is equivalent to a formula ψ ′ of the form
ψ ′ =∨n

j=1(ψ
+
j ∧ sj ) for some n ∈ N, sj ∈ S, and ψj ∈ MSO−(S,�) (j = 1, . . . , n).

Proposition 5.5 For each ψ ∈ auMSO(S,�), the series [[ψ]] is a recognizable step
function. Conversely, each recognizable step function r ∈ S〈〈U�〉〉 is auMSO(S,�)-
definable.

Proof The first part is a consequence of the description of ψ noted before, Lemma
4.2 and Proposition 3.2. For the converse, let r =∑n

i=1 1Li
· si . Since each language

Li (i = 1, . . . , n) is recognizable, it is definable by an MSO−(B,�)-sentence ϕi .
Now we consider ϕi as an MSO−(S,�)-sentence. Then ψ =∨n

i=1 ϕ+
i ∧ si is almost

unambiguous and defines r . �

6 Syntactically Restricted Weighted MSO-Logic

In this section we present our syntactically defined weighted MSO-logic and show
our first main result.

For an arbitrary formula ϕ ∈ MSO(S,�), let val(ϕ) denote the set containing all
values of S occurring in ϕ. Now we define the syntactically restricted MSO(S,�)-
formulas as in [14].

Definition 6.1 A formula ϕ ∈ MSO(S,�) is called syntactically restricted, if it sat-
isfies the following conditions:
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1. Whenever ϕ contains a conjunction ψ ∧ ψ ′ as subformula but not in the scope of
a universal first order quantifier, then val(ψ) and val(ψ ′) commute elementwise.

2. Whenever ϕ contains ∀X.ψ as a subformula, then ψ is a syntactically unambigu-
ous formula.

3. Whenever ϕ contains ∀x.ψ as a subformula, then ψ is almost unambiguous.

We let srMSO(S,�) denote the set of all syntactically restricted formulas of
MSO(S,�).

Here condition (1) requires us to be able to check for s, s′ ∈ S whether s · s′ =
s′ · s. We assume this basic ability to be given in syntax checks of formulas from
MSO(S,�). Note that for ψ,ψ ′ ∈ MSO(S,�), val(ψ) and val(ψ ′) trivially com-
mute elementwise, if S is commutative (which was the general assumption of [16])
or if ψ or ψ ′ is in MSO−(S,�), thus in particular, if ψ or ψ ′ is unambiguous. Hence
for each MSO(S,�)-formula ϕ it can be easily checked effectively whether ϕ is
syntactically restricted or not.

A formula ϕ ∈ MSO(S,�) is existential, if it is of the form ϕ = ∃X1. . . .∃Xn.ψ

where ψ does not contain any set quantifier. The set of all syntactically restricted and
existential formulas of MSO(S,�) is denoted srEMSO(S,�).

The first three main results of our paper are summarized in the following theorem;
it will be proved in Sects. 6.1 and 6.2.

Theorem 6.2 Let S be any semiring and � an alphabet. Let r ∈ S〈〈U�〉〉 be a tree
series. The following implications hold.

1. If r is srMSO(S,�)-definable, then r is recognizable.
2. If r is recognizable, then r is MSO-definable.
3. If S is commutative and r is recognizable, then r is srEMSO(S,�)-definable.

We note that our proofs will be effective. That is, given a syntactically restricted
sentence ϕ of MSO(S,�), we can construct a wta M with rM = [[ϕ]] (provided the
operations of S are given effectively). For the converse, given M , we will explicitly
describe a sentence ϕ ∈ srEMSO(S,�) with [[ϕ]] = rM .

Slightly extending [16], we call an MSO(S,�)-formula ϕ restricted, if

1. Whenever ϕ contains a conjunction ψ ∧ ψ ′ as subformula but not in the scope of
a universal first order quantifier, then val(ψ) and val(ψ ′) commute elementwise.

2. Whenever ϕ contains ∀X.ψ as a subformula, then ψ is an unambiguous formula.
3. Whenever ϕ contains ∀x.ψ as a subformula, then [[ψ]] is a recognizable step func-

tion.

Note that in particular conditions (2) and (3) are not purely syntactic, but use
the semantics of formulas. By Proposition 5.5 clearly each syntactically restricted
formula ϕ ∈ MSO(S,�) is restricted. Vice versa, by Propositions 5.5 and 5.3 each
restricted formula is equivalent to a syntactically restricted formula.
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6.1 Definable Series are Recognizable

As in the string case [13, 14] and that of ranked trees [16], we prove this implication
by induction on the structure of the formula. For any formula ϕ ∈ MSO(S,�), we let
Sϕ = Sval(ϕ), the subsemiring of S generated by all constants occurring in ϕ.

Lemma 6.3 Let ϕ,ψ ∈ MSO(S,�).

1. Let ϕ be atomic or the negation of an atomic formula. Then [[ϕ]] is a recognizable
step function.

2. If [[ϕ]] and [[ψ]] are recognizable tree series, then [[ϕ ∨ ψ]] is recognizable.
3. Assume that val(ϕ) and val(ψ) commute elementwise and that [[ϕ]] ∈ Rec(Sϕ,�ϕ)

and [[ψ]] ∈ Rec(Sψ,�ψ). Then [[ϕ ∧ ψ]] is recognizable.
4. If [[ϕ]] is recognizable, then [[∃x.ϕ]] and [[∃X.ϕ]] are recognizable.
5. If ϕ is unambiguous, then [[∀X.ϕ]] is a recognizable step function.

Proof 1. If ϕ = s where s ∈ S, then [[ϕ]] = 1U� · s is a recognizable step function.
For the other cases apply Proposition 5.2.

2. and 3. Let V = Free(ϕ)∪Free(ψ). By Definition 4.1, [[ϕ ∨ψ]] = [[ϕ]]V +[[ψ]]V
and [[ϕ ∧ ψ]] = [[ϕ]]V 
 [[ψ]]V . Now we can apply Proposition 3.2 and Lemma 4.2.

4. Analogous to the corresponding result for ranked trees (compare [16]), using
Lemma 3.3.

5. Since ϕ is unambiguous, so is ∀X.ϕ, and we can apply Proposition 5.2. �

For the proof that recognizability is preserved under universal first order quantifi-
cation, we use the proof technique of [13, 14].

Lemma 6.4 Let ϕ ∈ MSO(S,�) such that [[ϕ]] is a recognizable step function. Then
[[∀x.ϕ]] is recognizable.

Proof Let W = Free(ϕ) ∪ {x} and V = Free(∀x.ϕ) = W \ {x}. By Proposition 4.2,
[[ϕ]]W = ∑n

j=1 1Lj
· sj for some n ≥ 0, sj ∈ S, and recognizable tree languages

L1, . . . ,Ln ⊆ U�W . We can assume that the sets L1, . . . ,Ln form a partition of U�W .
Let �̃ = � × {1, . . . , n}. A tree ξ ∈ U�̃V corresponds to the tuple (ζ, ν) where

ζ ∈ U�V is obtained from ξ by dropping the second component from the label of
every node, and ν : pos(ξ) → {1, . . . , n} is defined by ν(w) = j if ξ(w) = (σ, j, f )

for some σ ∈ � and f ∈ {0,1}V . Vice versa, every such tuple (ζ, ν) corresponds to a
tree ξ ∈ U�̃V . Hence we can assume that elements of U�̃V have the form (ζ, ν). Then
let

L̃ = {(ζ, ν) ∈ U�̃V | ∀w ∈ pos(ζ ),1 ≤ j ≤ n : if ν(w) = j, then ζ [x → w] ∈ Lj }.

Note that for every ζ ∈ U�V there is a unique ν such that (ζ, ν) ∈ L̃, because the Lj ’s
form a partition of U�W . Next we claim that L̃ is a recognizable tree language.

Let j ∈ {1, . . . , n}. Since Lj ⊆ U�W is a recognizable tree language, Lj is defin-
able by a sentence ψj over �W . By a standard procedure, we can find a formula ψ ′

j

over � with Free(ψ ′
j ) ⊆ W which defines Lj .
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Now we can follow the argument in the proof of Lemma 5.4 of [14] to obtain a
sentence defining the language L̃, proving our claim.

By Theorem 3.1 of [29] (also cf. [33]) there is a wta M̃ = (Q̃, �̃V , Ã, F̃ ) over
B such that L(M̃) = L̃. We can assume that M̃ is deterministic. Now we define the
wta M = (Q̃, �̃V ,A,γ ) over S by constructing, for every q ∈ Q̃ and (σ, l, f ) ∈ �̃V ,
a wsa Aq,(σ,l,f ) over S and Q̃ such that for every m ≥ 0 and q1, . . . , qm ∈ Q̃,

(||Aq,(σ,l,f )||, q1 . . . qm) =
{

sl if (||Ãq,(σ,l,f )||, q1, . . . , qm) = 1

0 otherwise.

It is obvious how to construct such a Aq,(σ,l,f ). Moreover, for every q ∈ Q̃, we define
γ (q) = 1 if q ∈ F̃ , and 0 otherwise. Clearly, M is also deterministic. Thus, for every
(ζ, ν) ∈ U�̃V , we have that

(rM, (ζ, ν)) =
{∏

w∈pos(ζ ) sν(w) if (ζ, ν) ∈ L̃

0 otherwise.

Now we define the deterministic relabeling τ : S〈〈U�̃V 〉〉 → S〈〈U�V 〉〉 by
τ((σ, ν, f )) = (σ,f ) for every (σ, ν, f ) ∈ �̃V . Then for ζ ∈ U�V let ν : pos(ζ ) →
{1, . . . , n} is the unique mapping such that (ζ, ν) ∈ L̃. Observing the form of [[ϕ]], we
have:

(τ (rM), ζ ) =
∑

(ζ,θ)∈τ−1(ζ )

(rM, (ζ, θ)) = (rM, (ζ, ν)) =
∏

w∈pos(ζ )

sν(w)

=
∏

w∈pos(ζ )

([[ϕ]], ζ [x → w]) = ([[∀x.ϕ]], ζ ).

Hence τ(rM) = [[∀x.ϕ]] and thus, by Lemma 3.3, [[∀x.ϕ]] is recognizable. �

Theorem 6.5 Let ϕ ∈ MSO(S,�) be restricted. Then [[ϕ]] ∈ Rec(S,�).

Proof We claim that [[ϕ]] ∈ Rec(Sϕ,�ϕ) for any formula ϕ ∈ MSO(S,�), which im-
plies the result. Our claim follows by induction over the structure of ϕ from Lemmas
6.3 and 6.4, applied to suitable subsemirings of S. �

Corollary 6.6 Let S be a computable semiring. There is an effective procedure which
produces, for a given srMSO(S,�)-formula ϕ, a wta M such that [[ϕ]] = rM .

Proof We can construct M by following the proof of Proposition 5.5 and Theo-
rem 6.5. �

6.2 Recognizable Series are Definable

In this section we will construct for each wta M an MSO-sentence θM such that rM =
[[θM ]]. Moreover, if S is commutative, then we can even take θM to be a syntactically
restricted existential MSO-sentence.
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When proving that for every wta M = (Q,�,A,γ ) the tree series rM is definable,
we will have to specify the behavior of the wsa Aq,σ on an input tree ξ by means of
a formula. In order to do this succinctly, we make the following assumptions for the
rest of this section. Each wsa Aq,σ is described by the tuple (Pq,σ , λq,σ ,μq,σ , νq,σ ).
We assume that the state sets of two different wsa are disjoint. Moreover, we denote
the union of all the state sets Pq,σ , initial weight mappings λq,σ , transition functions
μq,σ , and final weight mappings νq,σ by PA, λA, μA, and νA, respectively. More-
over, Q and PA are disjoint. Given a triple α of elements, we denote by αi its i-th
component (1 ≤ i ≤ 3).

Definition 6.7 Let M = (Q,�,A,γ ) be a wta and ξ ∈ U� .

• The set of all Q-transitions (of M) is the set BM =⋃q∈Q,σ∈� Pq,σ × Q × Pq,σ .
• An extended run on ξ is a triple (q, s, t) where q ∈ Q, s : pos(ξ) \ {ε} → BM , and

t : posleaf(ξ) → PA where posleaf(ξ) are the positions of ξ which are leaves.
• An extended run (q, s, t) on ξ is valid if for every w ∈ pos(ξ) the following con-

ditions hold:

1. for every i with 1 ≤ i ≤ rkξ (w), we have that s(wi)1, s(wi)3 ∈ Pq,ξ(w) if w = ε,
and s(wi)1, s(wi)3 ∈ Ps(w)2,ξ(w) otherwise,

2. for every i with 1 ≤ i ≤ rkξ (w) − 1 we have that s(wi)3 = s(w(i + 1))1, and
3. if w ∈ posleaf(ξ) and w = ε (i.e., ξ ∈ �), then t (w) ∈ Pq,ξ(ε) and if w ∈

posleaf(ξ) and w �= ε, then t (w) ∈ Ps(w)2,ξ(w).

• The set of all valid extended runs on ξ is denoted by Re
M(ξ).

• For every valid extended run (q, s, t) on ξ we define its weight wt(q, s, t) ∈ S by

wt(q, s, t) =
∏

w∈pos(ξ)

wt(q, s, t)w

where in the product we follow the depth-first left-to-right traversal over pos(ξ);
and for every w ∈ pos(ξ) \ posleaf(ξ) we let

wt(q, s, t)w = λA(s(w1)1) · μA(s(w1)) · · · · · μA(s(w rkξ (w))) · νA(s(w rkξ (w))3);
if w ∈ posleaf(ξ), we let wt(q, s, t)w = λA(t (w)) · νA(t (w)).

Clearly, for every ξ ∈ U� , we can express the weight of a run κ ∈ RM(ξ) also
in terms of the weights of extended runs. For this we define the mapping projξ :
Re

M(ξ) → RM(ξ) for every (q, s, t) ∈ Re
M(ξ) and w ∈ pos(ξ) by

projξ ((q, s, t))(w) =
{

q if w = ε

s(w)2 otherwise.

Observation 6.8 Let M = (Q,�,A,γ ) be a wta. Then for every run κ ∈ RM(ξ) we
have that

wtM(κ) =
∑

(q,s,t)∈proj−1
ξ (κ)

wt(q, s, t).
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Proof This follows directly from the definition of wtM(κ), applying the distributivity
law (which preserves the order of the factors) and putting all the individual runs of
the wsa at positions of ξ together to a single extended run on ξ . �

Theorem 6.9 Let r ∈ S〈〈U�〉〉 be recognizable. Then r is MSO-definable. Moreover,
if S is commutative, then r is srEMSO(S,�)-definable.

Proof Let r be recognized by some wta M = (Q,�,A,γ ) over S. As preparation
for the proof of both statements, we will first describe valid extended runs on trees in
U� by means of an srMSO(S,�)-formula validM .

Subsequently we will use second order variables Xq (q ∈ Q), Yt (t ∈ BM ), and
Zp (p ∈ PA). We choose arbitrary but fixed enumerations Q = {q1, . . . , qn}, BM =
{t1, . . . , tm}, and PA = {p1, . . . , pl}. In finite conjunctions (and disjunctions) over the
index sets Q, BM , and PA we follow the ordering induced by these enumerations.

Recall the macros next(x, y) and firstChild(x, y) from Example 5.4. Moreover, let

• root(x) = ∀y.¬(desc(y, x)) and ¬root(x) = ∃y.desc(y, x),
• leaf(x) = ∀y.¬desc(x, y) and ¬leaf(x) = ∃y.firstChild(x, y), and

• lastChild(x, y) = desc(x, y) ∧ ∀z.(desc(x, z)
+→ z ≤ y).

The extended run formula is the formula runM ∈ MSO−(�) which checks whether
the given structure corresponds to an extended run. Formally,

runM = ∀x.
(
runM,1(x) ∧ runM,2(x) ∧ runM,3(x)

)

where

runM,1(x) = root(x)
+→
( ∨

q∈Q

(

(x ∈ Xq) ∧
∧

q ′∈Q,

q ′ �=q

¬(x ∈ Xq)

)

∧
∧

t∈BM

¬(x ∈ Yt )

)

runM,2(x) = ¬root(x)
+→
( ∨

t∈BM

(

(x ∈ Yt ) ∧
∧

t ′∈BM,
t ′ �=t

¬(x ∈ Yt ′)

)

∧
∧

q∈Q

¬(x ∈ Xq)

)

runM,3(x) =
(

leaf(x)
+→
∨

p∈PA

(

(x ∈ Zp) ∧
∧

p′∈PA,

p′ �=p

¬(x ∈ Zp′)

))

∧
(( ∨

p∈PA

(x ∈ Zp)

)
+→ leaf(x)

)

.

Next we define the formula validM which has all the valid extended runs as models.
We set

validM =
(

runM ∧ validM,1 ∧ validM,2 ∧ validM,3

)+
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where validM,i describes Property (i) of the definition of valid extended runs. For-
mally,

validM,1 = ∀x.
∧

σ∈�

∧

q∈Q

∧

(p,q,p′)∈BM

(
labelσ (x) ∧ ((x ∈ Xq) ∨ (x ∈ Y(p,q,p′)))

)

+→ inY (x, q, σ )

where inY (x, q, σ ) = ∀y. desc(x, y)
+→∨

p1,p2∈Pq,σ ,

q ′∈Q

(y ∈ Y(p1,q
′,p2))

validM,2 = ∀x.∀y. next(x, y)

+→
( ∧

(p,q,p′)∈BM

(x ∈ Y(p,q,p′))
+→

∨

(p′′,q ′,p)∈BM,

p′=p′′

(y ∈ Y(p′′,q ′,p))

)

validM,3 = ∀x.
∧

σ∈�

∧

q∈Q

∧

(p,q,p′)∈BM

(
leaf(x) ∧ labelσ (x) ∧ ((x ∈ Xq)

∨ (x ∈ Y(p,q,p′)))
+→

∨

p∈Pq,σ

(x ∈ Zp)
)
.

Now we prove the first statement of the theorem. Intuitively, we describe the
weight of a valid extended run by means of the formula ϕM . According to the de-
finition, the outermost universal quantification over x performs a depth-first left-to-
right traversal over the input tree ξ , thereby touching the positions of ξ in the linear
ordering 	ξ . When a leaf w ∈ pos(ξ) with label σ and state p ∈ PA is next, the inter-
pretation of the formula accumulates the product λA(p) · νA(p). When a non-leaf w

is next, it accumulates the initial weight λA(p) if the valid extended run on ξ at w1 is
the state (p, q,p′) for some q,p′; moreover, using another universal quantification,
the descendants of w are traversed one by one from left to right, and at each descen-
dant the value μA(p,q,p′) is appended to the current product; at the last child of w,
additionally the value νA(p′) is taken into the product as its last factor. Finally, at the
root of ξ , the root weight is accumulated. Recall the definition of the macro ϕ → ψ

given before Example 5.4

ϕM = validM ∧ ∀x.

[(

leaf(x) →
∧

p∈PA

(
(x ∈ Zp) → λA(p) · νA(p)

)
)

∧
(

¬leaf(x) → ∀y.
∧

(p,q,p′)∈BM

([
(firstChild(x, y) ∧ (y ∈ Y(p,q,p′))) → λA(p)

]

∧ [(desc(x, y) ∧ (y ∈ Y(p,q,p′))) → μA(p,q,p′)
]

∧ [(lastChild(x, y) ∧ (y ∈ Y(p,q,p′))) → νA(p′)
])
)

∧
(

root(x) →
∨

q∈Q

((x ∈ Xq) ∧ γ (q))

)]

.
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Due to the nested universal quantification, the formula ϕM is not syntactically re-
stricted. Finally, let

θM = ∃Xq1 . . . .∃Xqn.∃Yt1 . . . .∃Ytm.∃Zp1 . . . .∃Zpl
. ϕM.

Then, by Observation 6.8 and the analysis of the weights of valid extended runs,
we obtain rM = [[θM ]].

Now let us prove the second statement of the theorem and assume that S is com-
mutative. Then we replace in θM the formula ϕM by the formula ϕ∗

M and obtain the
formula θ∗

M .

ϕ∗
M = validM ∧ ∀y.

[
(
leaf(y) →

∧

p∈PA

((y ∈ Zp) → λA(p) · νA(p))
)

∧
( ∧

(p,q,p′)∈BM

([
(∃x.firstChild(x, y) ∧ (y ∈ Y(p,q,p′))) → λA(p)

]

∧ [(y ∈ Y(p,q,p′)) → μA(p,q,p′)
]

∧ [(∃x.lastChild(x, y) ∧ (y ∈ Y(p,q,p′))) → νA(p′)
])
)

∧
(

root(y) →
∨

q∈Q

((y ∈ Xq) ∧ γA(q))

)]

.

Now it can be easily checked that θ∗
M is syntactically restricted. Since S is com-

mutative, we obtain that [[θ∗
M ]] = rM . �

Finally we show that the conditions in Theorem 6.9(2) on the commutation of
elements cannot be dropped.

Theorem 6.10 There is a semiring S and a recognizable tree series r ∈ S〈〈U�〉〉
which is not srMSO(�,S)-definable.

Proof We consider the semiring S of finite formal languages S = (Fin({a, b}∗),
∪,◦,∅, {ε}) where Fin({a, b}∗) comprises all finite subsets of {a, b}∗ and ◦ is the
usual (non-commutative) concatenation of formal languages; we will identify a sin-
gleton {w} ∈ P ({a, b}∗) with its element w. Let � = {σ } and flat ∈ S〈〈U�〉〉 be the
tree series such that for every ξ ∈ U� we have that

(flat, ξ) =
⎧
⎨

⎩

anbn if ξ = σ(σ, . . . , σ
︸ ︷︷ ︸

n

) for some n ≥ 1

∅ otherwise.

Now consider the wta M = (Q,�,A,γ ) over S where Q = {q0, q1}, γ (q0) = ∅,
and γ (q1) = {ε}. Moreover, for every q ∈ Q we need a wsa Aq,σ such that for every



Theory Comput Syst (2011) 48: 23–47 41

w ∈ Q∗ we have

(||Aq0,σ ||,w) =
{

a if w = ε

∅ otherwise

and

(||Aq1,σ ||,w) =
{

bn if w = qn
0 and n ≥ 1

∅ otherwise.

It is clear that such two wsa exist, and in fact, rM = flat.
We prove that flat �∈ srMSO(�,S) by contradiction. Assume that ϕ is a sentence

in srMSO(�,S) such that [[ϕ]] = flat. We translate the scenario on trees into one on
words. For this we transform the tree ξ = σ(σ, . . . , σ

︸ ︷︷ ︸
n

) into the word ξ ′ = σ . . . σ︸ ︷︷ ︸
n

σ ,

and the sentence ϕ into a sentence ϕ′ of the syntactically restricted weighted MSO
on words (as defined in [14]) such that ([[ϕ]], ξ) = ([[ϕ′]], ξ ′). The sentence ϕ′ is
obtained from ϕ by replacing

• x 	 y by: x ≤ y,
• x ≤ y by: ((x = y) ∧ max(y)) ∨ (∃z.(x ≤ y) ∧ (y ≤ z) ∧ ¬(z ≤ y))+,
• desc(x, y) by: max(x) ∧ ¬(x ≤ y)

where max(y) is the macro ∀z.z ≤ y. Since ϕ is syntactically restricted, so is ϕ′.
By Theorem 4.7 of [14], the power series [[ϕ′]] is recognizable by a wsa A over

S and �. That is, for the input word σn+1 the wsa A computes the semiring value
anbn, for every n ≥ 1. But this will lead to a contradiction using a pumping argument
as follows.

We choose n = |P | · l + 1 where P is the set of states of A and l is the maximal
length of a word which occurs as weight in the initial-final weight function or the
transitions of A. Due to S and the fact that ([[ϕ′]], σ n+1) = anbn, there is at least one
path of A with label σn+1 and weight anbn. This path is longer than |P |, thus it uses
a state at least twice. Now consider an input word σk+n+1 where k is the length of
the identified cycle. Since (||A||, σ k+n+1) = ak+nbk+n, the cycle must have a weight
�= ε, and an easy analysis of its weight yields a contradiction. �

7 The Ranked Case

In this section we derive from the results of the previous sections the fact that every
ranked tree series r over an arbitrary semiring is recognizable if and only if it is de-
finable by a ranked srEMSO(S,�)-sentence. For this we first introduce recognizable
ranked trees series and ranked srEMSO(S,�)-logic.

A ranked alphabet is a tuple (�, rk) such that � is an alphabet and the mapping
rk : � → N associates with every symbol σ a natural number, called the rank of σ .
Then �(k) = {σ ∈ � | rk(σ ) = k} (k ∈ N). A ranked �-tree over (�, rk) is a �-tree
ξ such that rk(ξ(w)) = rkξ (w) for every w ∈ pos(ξ). We denote the set of ranked
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�-trees by T� ; clearly, T� ⊆ U� . Thus, in a �-tree ξ (in contrast to ranked trees)
there can be different positions w,w′ ∈ pos(ξ) which are labeled by the same symbol
(i.e., ξ(w) = ξ(w′)), but the ranks of w and w′ are different (i.e., rkξ (w) �= rkξ (w

′)).
A weighted ranked tree automaton over S (for short: ranked wta) is a tuple N =

(Q,�,μ,γ ) where Q is a finite nonempty set (of states), � is the ranked alphabet
(of input symbols), μ = (μk | k ∈ N) is a family of transition mappings μk : �(k) →
SQk×Q, and γ : Q → S (the root weight function).

A run of N on ξ ∈ T� is a mapping κ : pos(ξ) → Q. Then the weight wtN(κ) ∈ S

of κ is defined by

wtN(κ) =
∏

w∈pos(ξ)

μk(σ )κ(w1)...κ(wk),κ(w)

where, in the product, we follow the linear ordering 	ξ . The set of all runs of N on
ξ is denoted by RN(ξ). The run semantics of N is the tree series rN ∈ S〈〈T�〉〉 such
that for every ξ ∈ T�

(rN , ξ) =
∑

κ∈RN(ξ)

wt(κ) · γ (κ(ε)).

The next lemma shows an obvious relationship between ranked wta and wta re-
stricted to ranked trees. For a ranked wta (Q,�,μ,γ ) we call � its input alphabet;
similarly for wta.

Lemma 7.1

1. For every ranked wta N with ranked input alphabet � there is a wta M such that
(rM)|T� = rN and (rM)|(U�\T�) = 0̃.

2. For every wta M with input alphabet � there is a ranked wta N such that
(rM)|T� = rN .

Proof For the first statement let N = (Q,�,μ,γ ) be a ranked wta. For every q ∈ Q,
k ≥ 0, and σ ∈ �(k) we define the power series rq,σ ∈ S〈〈Q∗〉〉 by letting (rq,σ , �q) =
μk(σ )�q,q if �q ∈ Qk , and 0 otherwise. Clearly, there is a wsa Aq,σ such that rq,σ =
||Aq,σ ||. Then the wta M = (Q,�,A,γ ) satisfies statement 1.

The construction for the second statement is, roughly speaking, the reverse of that
one for the first statement. �

The ranked weighted MSO-logic is the same as the weighted MSO-logic, but we
drop the atomic formulas of the form desc(x, y) and (x ≤ y), and we add the atomic
formulas edgei (x, y) where 1 ≤ i ≤ max� and max� = max{k | �(k) �= ∅}. Note that
we keep the atomic formula (x 	 y) because they are needed in the disambiguation
ϕ+ of a formula ϕ.

Theorem 7.2 Let � be a ranked alphabet, S be an arbitrary semiring, and r ∈
S〈〈T�〉〉. Then r is recognizable if and only if r is definable by a syntactically re-
stricted ranked weighted MSO-sentence.
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This result follows immediately from Lemmas 7.3 and 7.4 given below. First we
show:

Lemma 7.3 Let � be a ranked alphabet and ϕ be a syntactically restricted ranked
weighted MSO-sentence. Then [[ϕ]] ∈ S〈〈T�〉〉 is recognizable.

Proof Given ϕ, we can construct the weighted MSO-sentence ψ by replacing in ϕ

every atomic formula edgei (x, y) by the macro:

⎛

⎝∃y1. . . .∃yi .firstChild(x, y1) ∧
∧

1≤j≤i−1

next(yj , yj+1) ∧ (yi = y)

⎞

⎠

+
.

Then ψ is syntactically restricted and clearly, [[ϕ]] = [[ψ]]|T� . By Theorem 6.5 there
is a wta M such that rM = [[ψ]]. By Lemma 7.1(2) there is a ranked wta N such that
rN = (rM)|T� . Hence [[ϕ]] = rN . �

Lemma 7.4 Let � be a ranked alphabet and r ∈ S〈〈T�〉〉 be recognizable. Then r is
definable by a syntactically restricted ranked weighted MSO-sentence.

Proof Let N = (Q,�,μ,γ ) be a ranked wta. The set of all transitions at �-symbols
is the set BN = {(�q,σ, q) | m ≥ 0, �q ∈ Qm,σ ∈ �(m), q ∈ Q}. Choose an unambigu-
ous run-formula ψ with free variables Yt where t ∈ BN (e.g., as in Definition 5.10
of [16]) such that for every ξ ∈ T� , there is a bijection between the set RN(ξ) and
the set of those assignments (ξ, ρ) which satisfy ψ . Then we define the weighted
MSO-sentence

ϕ = ψ ∧ ∀y.

( ∧

(�q,σ,q)∈BN�q∈Qm,m≥0

[
(y ∈ Y(�q,σ,q)) → μm(σ)�q,q

]

∧
[
root(y) →

∨

(�q,σ,q)∈BN

(y ∈ Y(�q,σ,q)) ∧ γ (q)
])

.

Then ϕ is syntactically restricted and rN = [[ϕ]]. �

8 An XML Example

In this section we show how formulas of weighted MSO-logic can be used to specify
quantitative queries in XML-oriented databases. In fact, every formula used here will
be syntactically restricted. For this purpose, let us assume that we want to maintain
our private database in which we have stored all the bibtex entries which are relevant
for our work. The syntax of such a database bibliography can be easily expressed
by the following document type definition (DTD) [1, 6, 24] (here we only show a
fragment):
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<!DOCTYPE biblography [
<!ELEMENT bibliography (entry)*>
<!ELEMENT entry ((key)+,article|book)>
<!ELEMENT key (#PCDATA)>
<!ELEMENT article (mandatory,(empty|optional)>
<!ELEMENT mandatory (author*,title,journal,year)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
...
<!ELEMENT empty EMPTY>
<!ELEMENT optional (volume,pages)>
...

]>

In the DTD the comma, vertical bar, and star represent the sequence, alternative,
resp. iteration of syntactic constructs; at (#PCDATA) an arbitrary text is allowed.
This DTD specifies a set of XML-documents, in particular, a set of databases with
bibtex entries; note that an entry can have any number of keys.

An example of such a database is partially shown in Fig. 1 as an unranked tree.
It has three entries; the leftmost entry contains the mandatory pieces of information
only (incomplete entry), the rightmost one contains the mandatory and the optional
pieces of information (complete entry). Now let us assume that we would like to
complete our database in the sense of adding the optional pieces of information to
every incomplete article entry. However, before doing so, we would like to estimate
the effort for this maintenance, i.e., count the number of incomplete bibtex entries.
For this purpose we can use the following formula of weighted MSO-logic:

how-many-incomplete?= ∃x. labelarticle(x) ∧ incomplete(x)

incomplete(x) = ∃y.
(
desc(x, y) ∧ labelempty(y)

)
.

If we interpret our formula how-many-incomplete? on the tree of Fig. 1
where the middle entry is assumed to be incomplete, then we obtain the value 2
(assuming that we use the usual semiring of natural numbers).

To show another use of weighted MSO-logic, let us now assume that the document
type definition as shown above is extended as follows:

Fig. 1 An example of an XML-database
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<!ELEMENT book (mandatory-b,(empty-b|optional-b)>
<!ELEMENT mandatory-b (author*,title,publisher,year)>
<!ELEMENT empty-b EMPTY>
<!ELEMENT optional-b (volume,edition,summary)>
<!ELEMENT summary (#PCDATA)>

In the part optional-b a short summary of the book should occur. Now let
us again try to estimate the effort for completing bibtex entries. Clearly, to write a
summary of a book takes much more effort than just to add the optional informa-
tion pieces of an article. So let us describe the corresponding efforts by k and m

(time units), respectively, for some natural numbers k and m. Then the estimation
of the total effort is computed by the following syntactically restricted sentence in
MSO(N,�):

how-much-effort? = ∃x.
(
labelbook(x) ∧ incomplete(x) ∧ k

)

∨ (labelarticle(x) ∧ incomplete(x) ∧ m
)
.

If, e.g., our database contains 20 incomplete book entries and 500 incomplete ar-
ticle entries, then the interpretation of how-much-effort? on the corresponding
tree would yield the effort 20 · k + 500 · m (time units).

As a final example, we would like to count the number of article-entries with
k authors where k is any natural number. This can be achieved by interpreting the
following sentence of srMSO(N,�):

number-k-authored? = ∃x. labelmandatory(x) ∧ has-k-authors(x)

has-k-authors(x)

= ∃y1. . . .∃yk.firstChild(x, y1) ∧∧1≤i≤k−1(labelauthor(yi) ∧ next(yi, yi+1))

∧ labelauthor(yk) ∧ (∀z.next(yk, z)
+→ labeltitle(z)

)
.

9 Discussion and Open Problems

In [14], the authors considered also several classes of syntactically defined sentences
properly containing the class of syntactically restricted sentences, and they showed
that their expressive power is still captured by weighted finite automata provided that
the semiring satisfies suitable local finiteness conditions. We note that these results
for words also transfer almost verbatim to the present setting of unranked trees, with
analogous proofs.

From our results the following open problems arise:
1. Find an extension of the syntactically restricted MSO(�,S)-logic which is still

syntactically definable and expressively equivalent to the class of wta.
2. Find a subclass of wta which is expressively equivalent to the syntactically

restricted MSO(S,�)-logic.
3. Are there crucially different results if we replace our depth-first left-to-right

order on trees by another linear order?
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