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Abstract We investigate the effect of linear independence in the strategies of con-
gestion games on the convergence time of best improvement sequences and on
the pure Price of Anarchy. In particular, we consider symmetric congestion games
on extension-parallel networks, an interesting class of networks with linearly inde-
pendent paths, and establish two remarkable properties previously known only for
parallel-link games. We show that for arbitrary (non-negative and non-decreasing)
latency functions, any best improvement sequence reaches a pure Nash equilibrium
in at most as many steps as the number of players, and that for latency functions in
class D, the pure Price of Anarchy is at most p(D), i.e. it is bounded by the Price
of Anarchy for non-atomic congestion games. As a by-product of our analysis, we
obtain that for symmetric network congestion games with latency functions in class
D, the Price of Stability is at most p (D).

Keywords Network congestion games - Best response dynamics - Price of anarchy -
Price of stability
1 Introduction

Congestion games provide a natural model for non-cooperative resource allocation in
large-scale communication networks and have been the subject of intensive research
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in algorithmic game theory. In a congestion game, a finite set of non-cooperative
players, each controlling an unsplittable unit of load, compete over a finite set of
resources. All players using a resource experience a latency (or cost) given by a non-
negative and non-decreasing function of the resource’s load (or congestion). Among
a given set of resource subsets (or strategies), each player selects one selfishly trying
to minimize her individual cost, that is the sum of the latencies on the resources in the
chosen strategy. A natural solution concept is that of a pure Nash equilibrium, a con-
figuration where no player can decrease her individual cost by unilaterally changing
her strategy.

The prevailing questions in recent work on congestion games have to do with
quantifying the inefficiency due to the players’ selfish behaviour (see e.g. [4, 6, 7, 9,
10, 17, 22, 23]), and bounding the convergence time to pure Nash equilibria if the
players select their strategies in a selfish and decentralized fashion (see e.g. [1, 8, 14,
21]). In this work, we investigate the effect of linear independence in the strategies of
congestion games on the convergence time of best improvement sequences and on the
inefficiency of pure Nash equilibria. In particular, we consider symmetric congestion
games on extension-parallel networks, an interesting class of networks whose paths
are linearly independent in the sense that every path contains an edge not included
in any other path. For this class of congestion games, which comprises a natural and
non-trivial generalization of the extensively studied class of parallel-link games (see
e.g. [7, 14, 17, 21-23]), we provide best possible answers to both research questions
above.

1.1 Convergence Time to Pure Nash Equilibria

In a seminal paper, Rosenthal [26] proved that the pure Nash equilibria of congestion
games correspond to the local optima of a natural potential function. Hence Rosen-
thal established that every congestion game admits at least one pure Nash equilibrium
reached in a natural way when players iteratively make best improvement moves,
i.e. adopt strategies that minimize their individual cost given the strategies of other
players. Nevertheless, this may take an exponential number of steps, since comput-
ing a pure Nash equilibrium is PLS-complete for non-symmetric network congestion
games as shown by Fabrikant et al. [15]. In fact, the proof of Fabrikant et al. estab-
lishes the existence of instances where any sequence of players’ best improvement
moves is exponentially long. Even for symmetric network congestion games, where
a pure Nash equilibrium can be found efficiently by a min-cost flow computation
[15], Ackermann et al. [1] presented a class of instances where any best improve-
ment sequence is exponentially long.

A natural approach to circumvent the strong negative results of [1, 15] is to resort
to approximate pure Nash equilibria, where no player can significantly improve her
individual cost by unilaterally changing her strategy. Chien and Sinclair [8] consid-
ered symmetric congestion games with a weak restriction on latency functions and
proved that several natural families of best improvement sequences converge to an
approximate equilibrium in polynomial time.

An orthogonal approach is to identify interesting classes of congestion games for
which best improvement sequences reach a pure Nash equilibrium in a polynomial
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number of steps. For instance, it is well known that for symmetric singleton conges-
tion games (aka parallel-link games) with non-negative and non-decreasing latency
functions, any best improvement sequence reaches a pure Nash equilibrium in at most
n steps, where n denotes the number of players. Ieong et al. [21] proved that even
for non-symmetric singleton games with non-monotonic latencies, best improvement
sequences reach a pure Nash equilibrium in a polynomial number of steps. Subse-
quently, Ackermann et al. [1] generalized this result to matroid congestion games,
where the strategy space of each player consists of the bases of a matroid over the
set of resources. Furthermore, Ackermann et al. proved that the matroid property on
the players’ strategy spaces is necessary for guaranteeing polynomial convergence of
best improvement sequences if one does not take into account the global structure of
the game.

Contribution The negative results of [1, 15] leave open the possibility that some
particular classes of symmetric network congestion games can guarantee fast con-
vergence of best improvement sequences to pure Nash equilibria. In Sect. 3, we
prove that for symmetric congestion games on extension-parallel networks with ar-
bitrary (non-negative and non-decreasing) latency functions, any best improvement
sequence reaches a pure Nash equilibrium in at most n steps! (Theorem 1). In par-
ticular, we show that in any best improvement sequence, every player moves at most
once (Lemma 1). This result is best possible, since there are instances where reaching
a pure Nash equilibrium requires that every player moves at least once. To the best
of our knowledge, symmetric congestion games on extension-parallel networks is the
only non-trivial generalization of parallel-link games for which such a strong bound
on the convergence time of best improvement sequences is known.

1.2 Inefficiency of Pure Nash Equilibria

Having reached a pure Nash equilibrium, selfish players enjoy a minimum individual
cost given the strategies of other players. However, the public benefit is usually mea-
sured by the fotal cost incurred by all players. Since a pure Nash equilibrium does
not need to minimize the total cost, one seeks to quantify the inefficiency due to the
players’ non-cooperative and selfish behaviour. The Price of Anarchy, introduced by
Koutsoupias and Papadimitriou [22], and the Price of Stability, introduced by An-
shelevich et al. [5], are the prevailing measures of the performance degradation due
to the players’ non-cooperative and selfish behaviour. The (pure) Price of Anarchy
(PoA) (resp. Price of Stability, PoS) is the worst-case (resp. best-case) ratio of the
total cost of a (pure) Nash equilibrium to the optimal total cost.

I'we highlight that matroid games and games on extension-parallel networks have a different combinatorial
structure and may have quite different properties. For example, a network consisting of two parallel-link
networks connected in series is not extension-parallel, while the corresponding network congestion game
is a symmetric matroid game. For another example, Milchtaich [25, Example 4] proved that weighted
congestion games on extension-parallel networks may not admit a pure Nash equilibrium. On the other
hand, Ackermann et al. [2, Theorem 2] proved that every weighted matroid congestion game admits at
least one pure Nash equilibrium.
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Many recent contributions have provided strong upper and lower bounds on the
pure Price of Anarchy for several classes of congestion games, mostly congestion
games with affine and polynomial latency functions and congestion games on paral-
lel links.2 Liicking et al. [23] and Suri et al. [29] were the first to consider the PoA of
atomic congestion games for the objective of total cost. For (symmetric) parallel-link
games with linear latency functions, Liicking ef al. proved that the PoA is 4/3. For
non-symmetric singleton games with linear latency functions, Suri et al. proved that
the PoA is at most 5/2, which was later shown to be tight [7]. For parallel-link games
with polynomial latency functions of degree d, Gairing et al. [17] proved the PoA
is at most d + 1. Awerbuch et al. [6] and Christodoulou and Koutsoupias [9] proved
independently that the PoA of congestion games is 5/2 for affine latency functions
and d®@ for polynomial latency functions of degree d. Subsequently, Aland ef al.
[4] obtained exact bounds on the PoA of congestion games with polynomial latency
functions. In the non-atomic setting, where the number of players is infinite and each
player controls an infinitesimal amount of load, Roughgarden [27] proved that the
PoA is independent of the strategy space and equal to p (D), where p depends on the

class of latency functions D only (e.g. p is equal to 4/3 for affine and % for

quadratic functions). Subsequently, Correa ef al. [11] introduced B(D) =1 — ﬁ
and gave a simple proof of the same bound. Recently Fotakis [16] and independently
Caragiannis et al. [7, Theorem 23] proved that the PoA of (atomic) parallel-link
games with latency functions in class D is at most p(D), i.e. it is bounded by the
PoA of non-atomic congestion games with arbitrary strategies.

There is no difference between the Price of Anarchy and the Price of Stability for
non-atomic congestion games, since the Nash equilibrium in the non-atomic setting
is essentially unique (under mild assumptions on the latency functions, see e.g. [28]).
In the atomic setting, Christodoulou and Koutsoupias [10] proved that the PoS of
congestion games with affine latencies lies between 1 ++/3/3 and 1.6. Subsequently,
Caragiannis et al. [7, Theorem 6] proved that the PoS of affine congestion games
is 1 4 +/3/3, and that for non-symmetric singleton games with latency functions in
class D, the PoS is at most p (D).

Contribution Despite the considerable interest in the PoA and the PoS of conges-
tion games, it remains open whether some better upper bounds close to p are possible
for symmetric games on simple networks other than parallel links (e.g. extension-
parallel networks, series-parallel networks), or strong lower bounds similar to the
lower bounds of [4, 6, 9, 10] also apply to them. As a first step in this direction, we
prove in Sect. 4 that the PoA of symmetric congestion games on extension-parallel
networks with latency functions in class D is at most p(D) (Theorem 3). On the
negative side, we show that this result cannot be further generalized to series-parallel
networks. In particular, we present an example of a 3-player symmetric game on
a simple series-parallel network with linear latencies for which the PoA is 15/11,

2Here we cite only the most relevant results on the pure PoA for the objective of total cost. For a survey
on the PoA of congestion games for the objective of total cost and the objective of maximum cost, see e.g.
[18].
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greater than the value of p for linear latencies. To the best of our knowledge, sym-
metric games on extension-parallel networks is the only non-trivial generalization of
parallel-link games for which such a strong bound on the pure Price of Anarchy is
known.

To establish the upper bound of p(D) on the PoA of symmetric games on
extension-parallel networks, we show two properties of symmetric games that may
be of independent interest. In particular, we prove that (i) for symmetric games on
general networks with latencies in class D, the total cost of any configuration min-
imizing Rosenthal’s potential function is at most p(D) times the optimal total cost
(Lemmas 2 and 3, see also [5, Theorem 3.4]), and that (ii) for symmetric games on
extension-parallel networks, every pure Nash equilibrium is a global minimum of
Rosenthal’s potential function (Lemma 4, also implicit in the work of Holzman and
Law-Yone [19, Theorem 6.1]).

The first property implies an upper bound of p(D) on the PoS of symmetric net-
work congestion games with latency functions in class D (Theorem 2), which was
also obtained by Anshelevich et al. [5, Theorem 3.4].3 For instance, this implies that
the PoS of symmetric network games with affine latencies is at most 4/3, i.e. better
than the bound of 1 4+ +/3/3 known for general congestion games.

1.3 Related Work on Congestion Games with Linearly Independent Strategies

There has been a significant volume of previous work investigating the impact of lin-
early independent strategies on properties of congestion games. In [19], Holzman and
Law-Yone proved that a strategy space admits a strong equilibrium* for any selection
of (non-negative and non-decreasing) latency functions if and only if it does not con-
tain a so-called bad configuration, which is defined as a triplet of strategies s, 52, 53
such that s1 includes some resource e not belonging to 53, s> includes some resource
e7 not belonging to s, and s3 includes both resources e; and e;. Furthermore, they
proved that in a strategy space without a bad configuration, every strategy s contains
a resource not included in any other strategy that is not a superset of s. Holzman and
Law-Yone showed that for symmetric congestion games without a bad configuration,
every pure Nash equilibrium is a strong equilibrium. Subsequently, Holzman and
Law-Yone [20] proved that the class of symmetric congestion games on extension-
parallel networks is the network equivalent of symmetric congestion games without
a bad configuration.

Milchtaich [24] was the first to consider networks with linearly independent paths
(under this name). Milchtaich proved that an undirected network has linearly indepen-
dent paths if and only if it is extension-parallel, and if and only if it does not contain
a triplet of paths comprising a bad configuration. Moreover, Milchtaich showed that
networks with linearly independent paths is the only class of networks where for any
selection of non-negative and increasing (resp. non-decreasing) latency functions, all
equilibria in the non-atomic setting are Pareto (resp. weakly Pareto) efficient.

3We note that our proof was obtained independently and is different from that of [5, Theorem 3.4].

4The notion of strong equilibrium was introduced by Aumann in late 50’s. A configuration is a strong
equilibrium if no coalition of players can deviate in a way profitable for all its members.
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Recently Epstein et al. [12, 13] considered fair connection games> and congestion
games on extension-parallel networks. In [13], Epstein et al. proved that fair con-
nection games on extension-parallel networks admit a strong equilibrium. In [12],
Epstein et al. showed that extension-parallel networks is the only class of networks
where for any selection of (non-negative and non-decreasing) latency functions, every
pure Nash equilibrium minimizes the maximum players’ cost.

2 Model and Preliminaries

For any integer k > 1, we denote [k] = {1, ..., k}. For a vector x = (x1, ..., x,),
we denote x_; = (X1,...,Xi—1,Xi41,...,%,) and (x_;,x[) = (x1,...,x_1,%],
XitlseensXn).

2.1 Congestion Games

A congestion game is a tuple ['(N, E, (X;)ien, (de)ecE), Where N denotes the set
of players, E denotes the set of resources, %; C 2% \ {#J} denotes the strategy space
of each player i, and d, : N — R is a non-negative and non-decreasing latency
function associated with each resource e. A congestion game is symmetric if all play-
ers have a common strategy space. In the following, we let n denote the number of
players.

A configuration is a vector o = (071, ..., 0y) consisting of a strategy o; € X; for
each player i. For every resource e, we let o, = |{i € N : e € 0;}| denote the con-
gestion induced on e by o. The individual cost of player i in the configuration o is
ci(o)y=>_ eco; de(0¢). A configuration o is a pure Nash equilibrium if no player can
improve her individual cost by unilaterally changing her strategy. Formally, o is a
Nash equilibrium if for every player i and every strategy s; € ;, ¢;(0) < ¢;(0—i, $;).

Rosenthal [26] introduced the potential function

¢<o)=2fjde<i>,

ecE i=1

and proved that when a player i switches from her current strategy o; to a new strategy
s; € Xj, the difference in the potential value equals the difference in the individual
cost of player i, i.e.

D(o_i,5i) — P(o) =ci(o_, i) —ci(0)

Thus Rosenthal established that congestion games (even with non-monotonic latency
functions) admit a pure Nash equilibrium, and that the pure Nash equilibria of a con-
gestion game correspond to the local minima of the potential function ®. For sym-
metric network congestion games with arbitrary (non-negative and non-decreasing)

SIn fair connection games, each player has a source and a sink, and connects them by selecting a path in
the underlying network. The edge costs are shared equally among the players using them. Anshelevich et
al. [5, Theorem 2.1] observed that fair connection games fall into the class of congestion games as defined
by Rosenthal [26]. Hence fair connection games admit a potential function and have at least one pure Nash
equilibrium.
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latency functions, Fabrikant ef al. [15, Theorem 2] proved that the global minimum
of the potential function ®, and thus a pure Nash equilibrium, can be computed in
polynomial time by a min-cost flow computation.

In this work, we focus on symmetric network congestion games, where the players’
strategies are determined by a directed network G (V, E) with a distinguished source
s and sink ¢ (aka a s — ¢ network). The network edges play the role of resources
and the common strategy space of the players is the set of (simple) s — ¢ paths in G,
denoted P. For any s — ¢ path p and any pair of vertices vy, v on p, we let p[vy, v2]
denote the segment of p between vertices vy and vy (p[v1, v2] is empty if v| appears
after vo on p). For consistency with the definition of strategies as resource subsets,
we usually regard paths as sets of edges.

2.2 Flows and Configurations

Let G(V, E) be a directed network with source s and sink . A s — ¢ flow f is a vector
(fe)ece € RY that satisfies the flow conservation at all vertices other than s and ¢.
The volume of f is the total flow leaving s. A flow f is acyclic if there is no directed
cycle in G with positive flow on all its edges. For a flow f and a path p € P, we let
f;?mn = mineep{fe}-

Given a configuration o of a symmetric network congestion game I", we refer to
the congestion vector (o,).cg as the s — ¢ flow induced by o. We say that a flow f
is feasible if there is a configuration inducing congestion f, on every edge e. Hence
any configuration of I" corresponds to a feasible flow, while a feasible flow may be
induced by many different configurations. Moreover, every integer acyclic s — ¢ flow
of volume 7 corresponds to (possibly many) configurations of I, and thus is feasible.
We say that a configuration is acyclic if the corresponding feasible flow is acyclic. In
the following, we slightly abuse the notation by letting the same symbol denote both
a configuration and the feasible flow induced by it.

2.3 Best Improvement Sequences

A strategy s; € X; is a best response of player i to a configuration ¢ (or equivalently
to o_;) if for every strategy s; € X;, ¢;(0_;, ;) < ci(0_;, s;). If the current strategy
o; of player i is not a best response to the current configuration o, a best response
of i to o is called a best improvement of player i. We consider best improvement
sequences, where in each step, a player i whose strategy o; is not a best response
to the current configuration o switches to her best improvement. The existence of
the potential function ® implies that any best improvement sequence converges to a
pure Nash equilibrium in a finite number of steps. In the first part of this work, we
are interested in bounding the maximum length of best improvement sequences for
symmetric congestion games on extension-parallel networks.

2.4 Social Cost, Price of Anarchy, and Price of Stability

In the second part of this work, we are interested in quantifying the inefficiency of
pure Nash equilibria for symmetric congestion games on extension-parallel networks
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and on general networks. We evaluate configurations using the objective of total cost.
The total cost C (o) of a configuration o is the sum of players’ individual costs in o,
ie.

n

Co)=) ci(0) =Y  0cde(0c)

i=1 ecE

The optimal configuration, denoted o, minimizes the total cost among all configura-
tions in P".

The pure Price of Anarchy (PoA) of a congestion game I is the maximum ratio
C(0)/C(o) over all pure Nash equilibria o of I'. The pure Price of Stability (PoS)
of I is the minimum ratio C(o)/C (0) over all pure Nash equilibria o of I'. In other
words, the pure PoA (resp. PoS) is equal to C(0)/C(0), where o is I'"’s pure Nash
equilibrium of maximum (resp. minimum) total cost. Hence the pure PoA (resp. PoS)
of T" is bounded from above by a number « if all pure Nash equilibria (resp. some
pure Nash equilibrium) of I have (resp. has) total cost at most « times the optimal
total cost.

We use the quantities p (D) and B(D) introduced in [11, 27] respectively, to bound
the PoS of symmetric network congestion games and the PoA of symmetric games
on extension-parallel networks. For a non-negative and non-decreasing function
d(x), let p(d) = supx>y>0,d,x$j,, and let B(d) = sup,~,~¢ Y@ —-dy)

2y20 yd(y)+(x—y)d(x) N xzy> xd(x)
For a non-empty class of non-negative and non-decreasing functions D, let p(D) =
supyep p(d), and let B(D) = sup,p B(d). We note that (1 — B(MD)~! = p(D).

2.5 Extension-Parallel Networks

Let G{(Vi, E1) and G,(V>, E) be two networks with source s; € V| and s, € V»
and sink #; € V| and 1, € V; respectively, and let G'(V; U V,, E1 U E3) be the union
network of G| and G. The parallel composition of G| and G, results ina s — ¢
network obtained from G’ by identifying s; and s, to the source s and identifying 7;
and 1, to the sink ¢. The series composition of G| and G, results in a s — ¢ network
obtained from G’ by letting s; be the source s, letting , be the sink ¢, and identifying
t; with s5.

A directed s — f network is series-parallel if it consists of either a single edge (s, t)
or two series-parallel networks composed either in series or in parallel. A directed
s — t network is extension-parallel if it consists of either: (i) a single edge (s, 1),
(i1) a single edge and an extension-parallel network composed in series, or (iii) two
extension-parallel networks composed in parallel. Every extension-parallel network
is series-parallel. The converse is true only if in every series composition, at least one
component is a single edge.

The following proposition gives a useful property of series-parallel (and thus
of extension-parallel) networks. For completeness, we prove the proposition in the
Appendix, Sect. A.1.

Proposition 1 Let G(V, E) be a series-parallel s — t network, and let u, w be two
vertices connected by two internally disjoint paths p and p'. Then every s — t path
having an edge in common with p contains both u and w and does not intersect p’
at any vertex other than u and w.
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A s —t network has linearly independent paths if every s — t path contains at least
one edge not belonging to any other s — ¢ path.% Milchtaich [24, Proposition 5] proved
that an undirected s — ¢ network has linearly independent paths if and only if it is
extension-parallel. Therefore, every (directed) extension-parallel network has linearly
independent paths (see also [20, Theorem 1]). Furthermore, [24, Propositions 3 and 5]
imply that a (directed) series-parallel network has linearly independent paths if and
only if it is extension-parallel.

The following proposition gives a useful property of extension-parallel networks
(for a proof, see [24, Proposition 4]).

Proposition 2 (Milchtaich) Let G be an extension-parallel s — t network. Then for
every pair of s — t paths p and p’ in G, and every vertex v common to both paths,
p and p' share either the segment between s and v or the segment between v and t.

Proposition 2 implies that for any two paths p and p’ of an extension-parallel
network, the segments p \ p’ and p’ \ p where p and p’ deviate from each other are
two internally disjoint paths with common endpoints.

The following proposition gives an interesting property of networks with linearly
independent paths (and thus of extension-parallel networks).

Proposition 3 Let " be a symmetric congestion game on a s — t network G with
linearly independent paths, let f be any configuration of I, and let T be any (simple)
path of G with ff,“i“ > 0. Then there exists a player i whose strategy in f includes 7.
Proof We first consider the case where 7 is a s — ¢ path. Since G is a s — t network
with linearly independent paths, there exists an edge e €  not belonging to any other
s — t path. Let i be any player whose strategy in f includes e (such a player exists
because f, > 0). Then the strategy of playeri in f is & (since e would not be included
in f; otherwise).

If r is not a s — ¢ path, let # and w be the endpoints of 7. Since f corresponds to

as —1 flow with £ > 0, there is a s — u path 7 with £ > 0 (7 is empty if u

is s) and a w — ¢ path 7, with f;;i“ > 0 (o is empty if w is ¢). Then p = (7ry, 7, 72)
is a s — ¢ path with f;,“i“ > 0. As shown before, there is a player i whose strategy in
f is p, which includes 7. O

Every configuration of a symmetric congestion game on a series-parallel (and thus
on an extension-parallel) network corresponds to a (feasible) acyclic flow of vol-
ume n. Proposition 3 implies that for every symmetric congestion game I'" on an
extension-parallel s — ¢ network, any acyclic s — ¢ flow of volume n corresponds to a
unique configuration of I (uniqueness is up to players’ permutation). Therefore, for
symmetric congestion games on extension-parallel networks, there is a correspon-
dence between configurations and feasible acyclic flows.

6The name is motivated by the fact that in such a network, it is not possible to express any path as the
symmetric difference of some other paths [24, Proposition 6].
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3 Convergence Time to Pure Nash Equilibria

In this section, we prove that for symmetric congestion games on extension-parallel
networks, any best improvement sequence reaches a pure Nash equilibrium in at most
n steps. The proof is based on the following lemma establishing that in any best
improvement sequence, every player moves at most once.

Lemma 1 Let I' be a symmetric congestion game on an extension-parallel network,
let o be the current configuration, and let i be a player switching from her current
strategy o; to her best improvement o/ . Then for every player j whose current strategy
o is a best response to o, 0 remains a best response of j to the new configuration
o' =(0_i,0)).

Proof For sake of contradiction, we assume that there is a player j whose current
strategy o is a best response to ¢ but not to o’. Let a]’. be the best response of
jtoo’, and let p =o; \o]f and p' = o]’. \ o; be the segments where o; and aj/.
deviate from each other. Due to the extension-parallel structure of the network (see
also Proposition 2), p and p’ are internally disjoint paths with common endpoints,
denoted # and w (¢ may be s and w may be ¢).

Since p and p’ are edge-disjoint paths and player j improves her individual cost
in ¢’ by switching from p to p’,

D de(0)) > Y deo,+1) (1)

eEp eep’

Using the inequality above and the hypothesis that o] is a best improvement of
player i to o, and exploiting the extension-parallel structure of the network, we es-
tablish that if player j prefers 0]’. to o; in the new configuration ¢’, then o is not a
best response of j to o. In particular, we show that player j can also improve her indi-
vidual costin o by switching from an appropriate segment of o to the corresponding
segment of o/. The precise structure of these segments depends on the subgraph de-
fined by o}, rrj/., o;, and rrl./ , and dictates the different cases considered in the proof
(see also Fig. 1). In all cases, we obtain a contradiction to the hypothesis that o is a
best response of j to o.

The technical part of the proof proceeds by case analysis. At a high level, we
distinguish between two cases depending on whether o] contains both « and w, in
which case al.’[u, w] can serve as an alternative to p, or not.

Case I: u, w € o/ We first consider the case where o/ contains « and w. We further
distinguish between two subcases depending on whether p and o/ are edge-disjoint
or not.

Case la: p N o/ = We start with the case where p and o are edge-disjoint. We
first consider the case where o/[u, w]\ p’ does not contain any edges of o; (see e.g.
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(b) ()
Oz,
P ' o;
u:"l P bw
(d) - N ~r\ ' (e) 4
(N4
; o o-, ‘\ “ p g,
M.,' 'y Py “hw M_ l/V
u' p w' u p' w

Fig. 1 The different cases considered in the proof of Lemma 1. In each case, the solid black path labeled
p represents the best response of player j in o between vertices u and w, the solid grey path labeled o;
represents the strategy of player i in o, and the dotted grey path labeled al.’ represents the best response
of player i to o. We assume that the best response of player j changes from p to the dotted black path
labeled p” when player i switches from o; to (ri/, and establish a contradiction in all cases

Fig. 1a). Then,

cost of player i on p’\ o/ in o

Yodeo,+1)= Y deloe+ D+ Y. de(o)+ Y. de(oe+ 1)
eep’ eep/Noj ec(p'Noi)\o ec(p\o\o]
> Y de(oo+ 1)+ Y. de(oe+1)
eep'Noj eco/[u,w]\p’
cost of player i on o/ [u, w]\ p" in &
= ) de(@e+1) @
eeo][u,w]

For the first inequality, we use that when player i switches from o; to al.’: (i) the
congestion of any edge e in o] does not decrease (i.e. Ve € o/, 0, > 0,), (ii) the
congestion of any edge e decreases by at most 1 (i.e. Ve, o, > o, — 1), and (iii) the
congestion of any edge e not in o; or o] does not change (i.e. Ve € 0; Uo/ , o, = 0,).
For the second inequality, we observe that the marked terms on the left-hand side
is the individual cost of player i on p’\ o/ in o (i.e. when the configuration of the
remaining players is o_;) and that the marked term on the right-hand side is the
individual cost of player i on o/[u, w]\ p’ in o (recall that we consider the case
where o/[u, w] \ p’ does not contain any edges of o;). Since ¢/ is a best response of
player i to o_;, the former cost is no less than the latter.

Using (2), we conclude that player j can improve her individual cost in o by
changing her path between u and w from p to o/[u, w], which contradicts the hy-
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pothesis that o; is a best response of player j to 0. Formally,

D de(0e) =D de(0)) > Y de(o)+1) = Z d,(o, + 1)

eep ecp eep’ ee ,w]
The first inequality holds because p N o/ = . Therefore, for all e € p, o, > o, since
the congestion of any edge not in o/ does not increase when player i switches from
o; to oi’. The second inequality is (1), and the third inequality is (2).

If o/[u, w] \ p’ contains some edges of o;, we show that due to the extension-
parallel structure of the network, the congestion of the edges in p and p’ does not
change when player i switches from o; to o] (see Fig. 1b). This contradicts the hy-
pothesis that the best response of player j changes fromo; to o J/ when player i moves
from o; to o/.

We first show that the congestion of the edges of p does not change when player
i switches from o; to /. Since u and w are connected by two internally disjoint
paths p and o*i’[u, w], and since o; and ol.’[u, w] have some edges in common, by
Proposition 1, o; contains u and w and does not have any edges in common with p.
Hence the congestion of the edges of p is the same in both o and o”.

Next we show that the congestion of the edges of p’ does not change when player i
switches from o; to o]. Let 7 = o/[u, w]\ p’ and " = p’\ o/[u, w] be the segments
where ai/ [u, w] and p’ deviate from each other. Since # No; # @, = and 7’ are
non-empty. Thus they are internally disjoint path segments with common endpoints,
denoted 1’ and w’. Their first endpoint 1" appears no sooner than u and their last
endpoint w’ appears no later than w on o/ and p’. Since o; has some edges in common
with 7, by Proposition 1, o; contains ' and w’ and does not intersect 7’ at any
vertex other than u” and w’. Moreover, since all three paths p’, o/[u, w] and o;[u, w]
contain " and w’, and since o/[u, w] and o;[u, w] deviate from p’ between u’ and
w’, by Proposition 2, the three paths share their # — u’ and w’ — w segments (see also
Fig. 1b). Therefore, if ol.’ [u, w] and o;[u, w] deviate from each other, this happens
between u’ and w’. Consequently, the corresponding path segments o/ [u’, w’] and
o;[u’, w'] do not contain any edges of p’. Thus the congestion of the edges of p’ does
not change when player i switches from o; to o;.

Case Ib: p N o/ # ) We proceed with the case where p and o are not edge-disjoint.
Then, by Proposition 1, o] does not have any edges in common with p’ and does
not intersect p’ at any vertex other than u and w. We first consider the case where
o/[u, w]\ p does not contain any edges of o; (see e.g. Fig. 1c). Then,

D de(o)+ ) deloe)

eepna; eep\o/

> de(o})

ecp

> Zde(a;Jr 1)

ecp’
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> Y do)+ Y, de(oo+1)

eep'No; eep’\o;

> Y do))

= HURT)

= Y deo)+ Y. de(oe+1) 3

eepna/ eco/[u,w]\p

The first inequality holds because the congestion of any edge not in o/ does not
increase when player i switches from o; to o/ (i.e. Ve € o/, 0, > 0,). The second
inequality is (1). The third inequality holds because when player i switches from o;
to crl.’: (i) the congestion of any edge decreases by at most 1 (i.e. Ve, 0, > 0, — 1), and
(i) the congestion of any edge not in o; does not decrease (i.e. Ve € 0; , o, > o). For
the fourth inequality, we observe that the left-hand side is equal to the individual cost
of player i on p’ in o (i.e. when the configuration of the remaining players is o_;),
and that the right-hand side is equal to the cost of player i on o;[u, w] in 0. Since o/
is a best response of player i to o_;, the former cost is not less than the latter. The
equality holds because o/[u, w]\ p does not contain any edges of o; and thus the
congestion of every edge in o/[u, w]\ p increases by 1 when player i switches from
o; too/ (i.e. Ve € o/[u,w]\ p, 0, =0, + 1). Thus (3) implies that

Y de(o)> Y de(oe+ 1)

eep\o] eco][u,w]\p

Therefore, player j can improve her individual cost in o by switching from p \ o/ to
o/[u, w]\ p. This contradicts the hypothesis that o is a best response of player j too.

The case where o[u, w] \ p contains some edges of o; (see e.g. Fig. 1d) is sym-
metric to the subcase of Ia where o/[u, w]\ p’ contains some edge of ;. Applying
the same arguments to the paths ai’ [u, w], o;[u, w] and p (instead of p’ in the sub-
case of Ia), we show that the congestion of the edges in p and p’ does not change
when player i switches from o; to o/. This contradicts the hypothesis that the best
response of player j changes from o to o) when player i moves from o; to o/. For
completeness, we include the details in the Appendix, Sect. A.2.

Case II: Either u ¢ o/ or w ¢ 6/ We proceed with the case where o/ does not contain
at least one of u and w. Then, by Proposition 1, o/ does have any edges in common
with both p and p’.

If o; too does not contain at least one of # and w, then o; does not have any edges
in common with both p and p’. Therefore, the congestion of the edges in p and p’
does not change when player i switches from o; to o/. This contradicts the hypothesis
that the best response of player j changes from o; to o J’ when player i moves from
oi to 0.

Hence we restrict our attention to the case where o; contains both u and w. Let
o/ \ 0; and o; \ o] be the segments where o; and o/ deviate from each other. Since
al./ does not contain either # or w (or both) and o; contains both u# and w, oi/ \ 0;
and o; \ o] are non-empty. By Proposition 2, ¢/ \ 0; and o; \ o/ are (non-empty)
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internally disjoint path segments with common endpoints, denoted " and w’. Their
first endpoint u” appears no later than u and their last endpoint w’ appears no sooner
than w on o; and o] (see e.g. Fig. le). Furthermore, either u is different from u’ or
w is different from w’ (or both). By Proposition 2 and since o; deviates from at least
one of p and p’ between u and w, there is a unique path o;[u’, u] between u’ and
u and a unique path o;[w, w’'] between w and w’. Let z = o;[u’, u] U o;[w, w']. We
highlight that both o;[u’, u] and o;[w, w'] are included in strategies o; and O’;. In
particular, o;[u’, w'] = z U p. Using the previous observations, we obtain that: A

D de0)) =) de(0) + Y de(0))

eco;u,w'] eez eep
> de(0e) + ) delo,+ 1)
e€z ecp’
> de(o)+ Y deo)+ Y deloe+1)
(3= eep’'No; eep’\o;
> > doe+1) )

eco/[u',w']

The first inequality holds because the edges of p are not included in o/, and the
congestion of any edge not in o] does not increase when player i moves from o; to o/
(i.e. Ve € o/, 0, > 0). The second inequality follows from (1). The third inequality
holds because when player i switches from o; to o/: (i) the congestion of any edge
decreases by at most 1 (i.e. Ve, o, > 0, — 1), and (ii) the congestion of any edge not
in o; does not decrease (i.e. Ve € 0; , 0, > 0,). For the fourth inequality, we observe
that the left-hand side is equal to the individual cost of player i on o;[u’,u] U p’ U
oi[w, w'] in o (i.e. when the configuration of the remaining players is o_;), and that
the right-hand side is equal to the individual cost of player i on o/[u’, w'] in o (recall
that o/ [u’, w'] and o;[u’, w'] are edge disjoint). Since o/ is a best response of player
i to o_;, the former cost is not less than the latter.

Thus (4) implies that player j can decrease her individual cost in o by switching
from o;[u’, w'] to o/[u’, w']. This contradicts the hypothesis that o; is a best response
of player j to o. Since we have reached a contradiction in all different cases, this
concludes the proof of the lemma. g

By Lemma 1, once a player finds herself on her best response strategy, she will
not have an incentive to deviate as long as the remaining players switch to their best
improvement strategies. Hence we obtain the main result of this section:

Theorem 1 For any n-player symmetric congestion game on an extension-parallel
network, every best improvement sequence reaches a pure Nash equilibrium in at
most n steps.
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4 Bounding the Inefficiency of Pure Nash Equilibria

We proceed to establish an upper bound of p(D) on the PoS of symmetric network
congestion games and on the PoA of symmetric games on extension parallel net-
works. We start with a technical property of the configurations of symmetric network
congestion games that minimize the potential function ® (cf. Lemma 2). Based on
this property and on the definition of 8(D), we prove that for symmetric network
games, the total cost of any global minimum of & is at most (1 — BMD) ' =p(D)
times the optimal total cost (cf. Lemma 3). Since a global minimum of ® is also a
local minimum, and thus a pure Nash equilibrium, we obtain that the PoS of symmet-
ric network congestion games with latency functions in class D is at most p(D) (cf.
Theorem 2). Furthermore, we show that for symmetric games on extension-parallel
networks, every pure Nash equilibria is a global minimum of the potential function
® (cf. Lemma 4). Therefore, for symmetric congestion games on extension-parallel
networks with latency functions in class D, the PoA is at most p (D) (cf. Theorem 3).

Lemma 2 Let I" be a symmetric network congestion game, and let G(V, E) be the
underlying s — t network. An acyclic configuration f of I' minimizes the potential
function ® if and only if for every configuration g of T,

Afe)= Y (fe—gde(fo) = Y (8e— fode(fe+1) <0 (5)

e:fe>ge e fe<ge

Proof For the if-part, we observe that for all configurations f, g,

Je 8e
DNH-D@= D Y d— Y Y. dl)

e fe>gei=ge+1 e fe<gei=fe+1
< Y (fe—8de(f) = Y (8 — fode(fe+ 1) =A(f.8)
e fe>ge e fe<ge

Therefore, if for all configurations g of I', A(f, g) <0, then ®(f) < ®(g) for all
configurations g, and f is a global minimum of the potential function ®.

For the converse, let f be an acyclic configuration that minimizes ®, and let g
be any acyclic configuration of I'. The assumption that g is acyclic can be made
without loss of generality, since any configuration g’ can be turned into an acyclic
configuration g with g, < g/, for all e € E, which implies that A(f, g’) < A(f, g).
In the following, we assume that the configurations f and g are not identical, and
consider the corresponding feasible s — ¢ flows.

Let G(V, E) be the network of the flow g — f. Inparticular, for each edge (u, w) €
E, E contains a forward edge (u, w) with flow gww) — fuw) i 8uww) > fuw)
a backward edge (w, u) with flow fu w) — w,w) if w,w) < fw,w), and no edge
between u and w if f(, w) = g(,w)- For a (directed) cycle C in é, let

CT={(u,w)€E:(u,w)eCand gu.u) > fu.w}
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be the set of edges of the original network G corresponding to the forward edges of
C, let

C ={uw,w) e E:(w,u) € Cand gu,uw) < fu,w}

be the set of edges of the original network G (with their directions as in E) corre-
sponding to the backward edges of C, and let

costf(C) = Z do(fo+1)— Z de(fe)

eeCt ecC™

be the cost (with respect to f) of cycle C. Next we establish the following two claims,
which directly imply lemma: (i) if f is acyclic and a global minimum of the potential
function @, then for every acyclic configuration g, the network G of the flow g—f
does not contain any cycles C with costy(C) < 0, and (ii) if every cycle C in the
network G of the flow g — f hascosty(C) >0, then A(f, g) <0.

We first establish claim (ii). Since f and g are acyclic s — ¢ flows of the same
volume, a flow decomposition of g — f yields only cycles and no paths of G. Let
{Cq, ..., Cx} be the set of (directed, simple) cycles of G produced by the standard
flow decomposition of g — f (see e.g. the algorithm in [3, Theorem 3.5]), and let s;
be the amount of flow carried by each cycle C; in the decomposition of g — f. Since
g and f are acyclic s — t flows, every cycle C; contains at least one forward and at
least one backward edge (i.e. both Cf and C; are non-empty).

By the properties of the standard flow decomposition, | J; elk] Cl.+ ={ecE:g. >
fe} (.e. the union of Ci+ ’s corresponds to the set of forward edges of é), and
Uie[k] C; ={e€ E:g, < fe} (ie. the union of C; ’s corresponds to the set of back-

ward edges of é). Moreover, for every forward edge (4, w) € E Zi:(u’w)ecfr s =

8w, w) — f(u,w), and for every backward edge (w, u) € E, Zi:(u,w)eCi_ si = fauw) —
&(u,w)- Therefore,

Alf.g)= D (fe—gde(fo)— Y (8 — fo)de(fe+1)

e fe>ge e:fe<ge
k
=Y si (Z de(fo) = ) de(fe+ 1))
i=l  CeeCy eeCl
=—costf(C;)
k
=—) sicosts(Ci) (6)

i=1

Hence, if G does not contain any (simple) cycles of negative cost (with respect to f),
then A(f, g) <0. This concludes the proof of claim (ii).

We proceed to establish claim (i), namely that if f is a global minimum of the
potential function @, then G does not contain any cycles of negative cost (with respect
to f). For sake of contradiction, we assume that there is a (directed) cycle C in G
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with cost s (C) < 0. Given the flow f and the cycle C, we constructa s — ¢ flow f’ of
volume 7 by increasing the flow by one unit on the edges of C*, decreasing the flow
by one unit on the edges of C~, and keeping the same flow on the remaining edges.
By construction, the potential value of f" is ®(f’) = ®(f) + cost(C) < ®(f),
because costs(C) < 0. Since f and g are feasible acyclic s — ¢ flows, [ isas —1
flow of volume 7. In case where f’ is not acyclic (and thus not feasible), we cancel
the flow along all cycles in f’, and obtain a feasible acyclic s — ¢ flow f”. Since this
modification does not increase the amount of flow on any edge of the network, we
have that f)’ < fJ for all e € E, and that ®(f”) < ®(f’). Therefore, there exists a
configuration of I' of potential value less than & ( f), which contradicts the hypothesis
that f is a global minimum of ®. This concludes the proof of claim (i), and the proof
of the lemma. O

The following lemma bounds the total cost of configurations (of symmetric net-
work games) that minimize the potential function @ in terms of the optimal total cost.
The proof follows from the definition of p (D) and Lemma 2.

Lemma 3 Let I" be a symmetric network congestion game with latency functions in
class D, let f be an acyclic configuration of T’ that minimizes the potential function
@, and let o be the optimal configuration. Then, C(f) < p(D)C(0).

Proof Let G(V, E) be the network underlying the definition of I". For every edge e
with f, > o,
Jede(fe) = 0ede(fo) + (fe — 0e)de(fe)
< 0ede(0e) + B(D) fede(fe) + (fe — 0e)de(fe) @)

For the inequality, we use that 0. (d.(f,) — de(0¢)) < B(D) fed.(f.), which follows
from the definition of 8(D), since f, > 0, and d.(x) € D.
On the other hand, for every edge e with f, < o,

Jede(fe) = 0ede(00) — 0ede(0e) + fede(fe)
< 0ede(0e) — (00 — fo)de(fe +1) (8)

The inequality follows from d.(f.) <d.(f. + 1) and d.(f, + 1) < d.(0.), because
the latency functions are non-decreasing and f, + 1 < o, (recall that o, and f, are
integral).

Using (7), (8), and Lemma 2, we obtain that:

C(f)<CO+BMD) Y fede(fe)

e:fe>0,

= A(f,0) <0, by Lemma 2

+ Y (fe—0o)de(f) = Y (0c— fo)de(fe+1)

e:fe>0, e: fe<0e

= C(o) +B(D)C(f).
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which implies that C(f) < (1 — B(D))~'C(0) = p(D)C (o). For the first inequality,
we apply (7) to every edge e with f, > 0, and (8) to every edge e with f, < 0,. For
the last inequality, since f is an acyclic configuration that minimizes the potential
function ® and o is a configuration of I', Lemma 2 implies that A(f, 0) <O0. O

Every symmetric network congestion game admits an acyclic configuration that
minimizes the potential function ®. Since the global minimum of ® is also a local
minimum, and thus a pure Nash equilibrium, Lemma 3 implies that every symmetric
network game with latencies in class D admits a pure Nash equilibrium of total cost
at most p(D) times the optimal total cost.

Theorem 2 For any symmetric network congestion game with latency functions in
class D, the PoS is at most p(D).

For symmetric games on extension-parallel networks, configurations are acyclic
and every pure Nash equilibrium is a global minimum of the potential function ®
(cf. Lemma 4). Therefore, by Lemma 3, for symmetric games on extension-parallel
networks with latency functions in class D, the total cost of any pure Nash equilib-
rium is at most p (D) times the optimal total cost.

Theorem 3 For symmetric congestion games on extension-parallel networks with
latency functions in class D, the PoA is at most p (D).

To conclude the proof of Theorem 3, we have to show that:

Lemma 4 Every pure Nash equilibrium of a symmetric congestion game on an
extension-parallel network is a global minimum of the potential function .

Proof’ Let T’ be a symmetric congestion game on an extension-parallel network
G(V,E), and let f be any pure Nash equilibrium of I". We show that for every con-
figuration g of I', A(f, g) <0. Then by Lemma 2 (if-part), f is a global minimum
of the potential function ®. To establish that A(f, g) <0, we consider the network
G(V, E) of the flow g — f, and show that if f is a pure Nash equilibrium, the cost
(with respect to f) of any (directed) simple cycle in G is non-negative (i.e. this cor-
responds to claim (i) in the proof of Lemma 2, only-if-part, claim (ii) holds with the
same proof).

In the following, we use the same notation as in the proof of Lemma 2. We recall
that A(f,g) = — Zle si costr(C;) (see (6)), where {C1, ..., Ci} is the set of (di-
rected, simple) cycles produced by the standard flow decomposition of g — f, and s;
is the amount of flow carried by each cycle C; in the decomposition of f — g (recall
that f, g are acyclic, as configurations of a symmetric game on an extension-parallel

TLemma 4 is implicit in the work of Holzman and Law-Yone (see [19, Theorem 6.1]). However, the proof
of Theorem 6.1 is omitted from [19]. Hence, for sake of completeness and because our framework is
different from that of [19], we give a complete proof of Lemma 4 using techniques different from those in
[19].
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network). Therefore to establish that A(f, g) <0, it suffices to prove that for every
(simple) cycle C; in the decomposition of g — f, cost ¢ (C;) > 0.

In fact, we prove that for every simple cycle C of G, cost¢(C) > 0, which by the
discussion above, implies the lemma. The crux of the proof is to show that due to
extension-parallel structure of the network, every simple cycle C of G contains two
vertices u, w such that CT and C~ are two internally disjoint # — w paths in the
original network G (cf. Proposition 4). Then the claim follows from the hypothesis
that f is a pure Nash equilibrium. More precisely, since C~ consists of backward
edges only, f, > 0 for all e € C~. Hence by Proposition 3, there is a player i whose
strategy in f includes C~. Therefore, ), - de(fe) < ,co+ de(fe+ 1), since oth-
erwise player i could switch from C~ to C* between u and w and improve her
individual cost, which contradicts the hypothesis that f is a pure Nash equilibrium.
Consequently, for every simple cycle C of G, cost £(C)=0.

To conclude the proof of the lemma, we have to show that the forward and the
backward part of every cycle C in G correspond to two internally paths in the
extension-parallel network G.

Proposition 4 Let G be any extension-parallel s — t network, let f, g be any acyclic
s —t flows, let G be the network of the flow g — f, and let C be any simple cycle
of G. Then there exist vertices u, w on C such that C* and C~ are two internally
disjoint u — w paths in G.

Proof We first establish a property of G required in the proof of Proposition 4.

Proposition 5 Let G be any extension-parallel s — t network, let f, g be any acyclic
s — t flows, and let G be the network of the flow g — f. Then any (simple) s — t path
in G consists of forward edges only, and any (simple) t — s path in G consists of
backward edges only.

Proof We prove only the first part, namely that any (simple) s — ¢ path in G consists
of forward edges only. The second part concerning ¢ — s paths follows by applying
the first part to the flow f — g.

The proof is by induction on the extension-parallel structure of the network. The
proposition holds if the network consists of a single edge (s, 7). We inductively as-
sume that the proposition holds for any extension-parallel network with less edges
than G.

If G is the parallel composition of two extension-parallel s — ¢ networks G| and
G, since g (resp. f) is an acyclic s — ¢ flow, it can be decomposed into an acyclic
s —t flow g! (resp. f!) going through G, and an acyclic s — ¢ flow g2 (resp. f2)
going through G. More precisely, g! (resp. f!) is defined on G only and is equal
to g, (resp. f.) on every edge e of G;. Similarly, g2 (resp. f 2)is defined on G5 only
and is equal to ge (resp fe) on every edge e of G). Let G1 (resp. G2) be the network
of the flow g' — f! (resp. g — f?). Then G is the parallel composition of G and
G», and any s — t path in G goes through either G or G2 The proposition follows
from the induction hypothesis stating that s — ¢ paths in G and G, consist of forward
edges only.
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If G is the series composition of an edge (s, s1) and an extension-parallel s; — ¢
network G, we assume that g 5,) > f(s,5) (i.€. that (s, s1) is a forward edge in G),
since G does not contain any s — ¢ path otherwise. Let g' (resp. f!) be the flow
obtained from g (resp. f) by ignoring the (flow on) edge (s,s1). Then g! (resp. f1)
is an acyclic s1 —t flow on G With ge =8 (resp. f = f,) on every edge e¢ of G.
Let G be the network of the flow g —rL Gi is the series composition of the forward
edge (s, s1) and G1 Thus any s — ¢ path in G begins with the forward edge (s, s1)
and continues with a s; — ¢ path in G1. The proposition follows from the induction
hypothesis stating that s — ¢ paths in G consist of forward edges only. Exactly the
same argument applies when G is the series composition of an extension-parallel
s — t1 network G an edge (71,1). O

We proceed to establish Proposition 4, namely that for every simple cycle C of

, there are vertices u, w on C such that C* and C~ are two internally disjoint
u — w paths in G. The proof is by induction on the extension-parallel structure of the
network. If the network consists of a single edge (s, t), the proposition holds trivially
because G does not contain any cycles. We inductively assume that the proposition
holds for any extension-parallel network with less edges than G.

If G is the series composition of an edge (s, s1) and an extension-parallel s; — ¢
network G1, no cycle of G contains s. Thus the vertex s and the edge (s, s1) can be
ignored. Let g! (resp. f!) be the acyclic flow obtained from g (resp. f ) by ignoring
the (flow on) edge (s, sl) and let G1 be the network of the flow g - f. . Then
every simple cycle C of G is also a simple cycle of G (and vice versa), and the
proposition follows from the induction hypothesis. The same argument applies when
G is the series composition of an extension-parallel s — #; network G and an edge
(t1,1).

If G is the parallel composition of two extension-parallel s — ¢ networks G and
G, since g (resp. f) is an acyclic s — ¢ flow, it can be decomposed into an acyclic
s —t flow g! (resp. f!) going through G, and an acyclic s — ¢ flow g2 (resp. f2)
going through G, deﬁned as in the proof of Proposition 5. Let G (resp. G») be the
network of the flow g! — f! (resp. g> — 2. Then G is the parallel composmon
of G1 and G,. Therefore every s1mp1e cycle C of G either lies entirely inside G
(or Gz) or consists of an s — ¢ path pT in el (resp. G») followed by a t — s path
p~ in G (resp. G1). In the former case, the proposition follows from the induction
hypothesis. In the latter case, by Proposition 5, the s — ¢ path p™ consists of forward
edges only and the ¢ — s path p~ consists of backward edges only. Hence C* = p™
and C~ ={(u,w) € E : (w,u) € p~}, and C™ and C~ are two internally disjoint
s —t paths in G. 0

This concludes the proof of Lemma 4. g

Remark The PoA may be greater than p(D) even for series-parallel networks with
linear latencies. For example, let us consider the 3-player game in Fig. 2. Since the
latency functions are linear, p = 4/3. In the optimal configuration o, every edge has
congestion 1 and the total cost is C(0) = 11 (e.g. an optimal configuration is ob-
tained by assigning the first player to the upper path (eq, e3, e5), the second player

@ Springer



Theory Comput Syst (2010) 47: 113-136 133

Fig.2 A symmetric congestion X X X
game on a series-parallel
network with linear latency 3 S t
functions and PoA greater 1 '
ayers
than 4/3 play
Sx

to the middle path (e3, e4, €6), and the third player to the lower path (e7)). On the
other hand, there is a pure Nash equilibrium f where the first player is assigned to
(e1, e3, e¢), the second player to (ey, es, e5), and the third player to (e>, e3, e5). Each
player incurs an individual cost of 5 and does not have an incentive to deviate to e7.
The total costis C(f) = 15 and the PoA is 15/11 > 4/3. In addition, we observe that
f is not a global minimum of the potential function ® (this follows from Lemma 3 as
well). In fact, ®(f) = 12, while the optimal configuration has ®(0) = 11 and is the
global minimum of & (and thus a pure Nash equilibrium). Although Proposition 4
holds for the more general class of series-parallel networks, Lemma 4 fails in this
example because Proposition 3 does not hold for series-parallel networks (and for the
network in Fig. 2 in particular).

5 Conclusions

In this work, we considered symmetric congestion games on extension-parallel net-
works, an interesting and non-trivial generalization of parallel-link games, and es-
tablished two remarkable properties previously known only for parallel-link games.
In particular, we proved that for arbitrary (non-negative and non-decreasing) latency
functions, any best improvement sequence reaches a pure Nash equilibrium in at most
n steps, and that for latency functions in class D, the PoA is at most p (D). Moreover,
our analysis implies that for symmetric network games with latency functions in class
D, the PoS is at most p (D).

An interesting direction for further research is to investigate whether similar prop-
erties hold for more general classes of symmetric network congestion games. For
instance, it would be quite interesting to establish a polynomial upper bound on
the length of (certain) best improvement sequences for symmetric games on series-
parallel networks. Lemma 1 may be a good starting point in this direction, since the
analysis of several of the cases considered in the proof also applies to series-parallel
networks. As for the inefficiency of Nash equilibria, it would be interesting to estab-
lish matching upper and lower bounds on the pure Price of Anarchy for symmetric
congestion games on series-parallel networks and on general networks, especially if
these bounds turn up to be considerably better than the known bounds for general
congestion games (see e.g. [4, 6, 9]).
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Appendix
A.1 The Proof of Proposition 1

We first recall that a s — ¢ network is series-parallel if and only if it does not contain
a f-network with terminals of degree 2 (see Fig. 3a) as a topological minor (see e.g.
[24, Proposition 1].)

We observe that the proposition is trivial if ¥ = s and w = ¢. Hence, we assume
that u # 5. The case where u = s and w # ¢ follows by symmetry.

Let m be a s — ¢ path sharing some edges with p. We first argue by contradiction
that = does not intersect p’ at any vertex other than u and w. Let us assume that
intersects p’ at some vertex other than u and w. Since 7 has some edges in common
with p, there is a segment of 7 connecting a vertex of p — {u, w} to a vertex of
p’ — {u, w} (or connecting a vertex of p’ — {u, w} to a vertex of p — {u, w} depending
on whether m first goes through an edge of p and then intersects p’ — {u, w} or the
other way around). The endpoints of this segment of 7= belong to (p U p’) — {u, w}.
Thus the endpoints of this segment of 7 together with p and p’ form a -network
with terminals u and w, a contradiction. Consequently 7 does not intersect p’ except
possibly at # and w.

We then prove that 7 contains both # and w. To reach a contradiction, we assume
that = does not contain u. Let 7w’ be a path connecting s to u, and let s’, s” # u, be the
last common vertex of 7w and 7’ before u (s’ exists because 7 and 7’ have a common
source and 7 does not contain u). Let also u’, u’ # u, be the first common vertex of
7 and p after u (u” exists because 7 intersects p and 7 does not contain u). Then,
the vertices s’, u, u’, and w along with 7’ (the segment from s’ to u), p (the segment
from u to u” and the segment from u’ to w), p’ (the segment from u to w), and 7 (the
segment from s’ to u”) form the §-network of Fig. 3b, which is a topological minor
of G. This contradicts the hypothesis that G is series-parallel network. If 7 contains
u but not w, w is different from ¢. Then the proposition follows from the previous
argument by symmetry (see also Fig. 3c).

A.2 Proof of Lemma 1: Case Ib, o/ N p # @ and (o/[u, w] p) No; #0

We first show that the congestion of the edges of p’ does not change when player i
moves from o; to o/. We recall that by Proposition 1, o/ does not have any edges in

p )4
s t s’ 4 u u' w u w' p w t'
'\/’ 4 \rj
T T

@) (b) ©

Fig. 3 (a) The 0-network whose absence characterizes series-parallel s — t networks. (b) and (c) If a path
7 has some edges in common with p (here p and 7 share the segment (u’, w) in (b) and the segment
(u, w’) in (¢)) and avoids either u or w, it forms (together with p, p’, and their extension to the source in
(b) and to the sink in (c)) a network that includes the #-network as a topological minor, and thus it is not
series-parallel
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common with p’ and does not intersect p’ at any vertex other than u and w. In ad-
dition, since # and w are connected by two internally disjoint paths p” and o/[u, w],
and since 0; and o7/ [u, w] have some edges in common, by Proposition 1, o; also con-
tains u and w and does not have any edges in common with p’. Hence the congestion
of the edges of p’ is the same in both ¢ and ¢’.

Next we prove that the congestion of the edges of p does not change when player
i moves from o; to ¢/. Let 7 = o/[u, w] \ p and 7" = p \ ¢/[u, w] be the segments
where al.’[u, w] and p deviate from each other. Since 7 No; # @, w and 7’ are non-
empty. Thus 7z and 7’ are internally disjoint path segments with common endpoints,
denoted v’ and w’. Their first endpoint u’ appears no sooner than u and their last
endpoint w’ appears no later than w on ¢/ and p. Since o; has some edges in common
with 7, by Proposition 1, o; contains u” and w’ and does not intersect " at any vertex
other than u’ and w’. Furthermore, since all three paths p, oi/ [u, w] and o;[u, w]
contain " and w’, and since ¢/[u, w] and o;[u, w] deviate from p between u’ and
w’, by Proposition 2, the three paths share their # — 1’ and w’ — w segments (see also
Fig. 1d). Therefore, if ‘71/ [u, w] and o;[u, w] deviate from each other, this happens
between u" and w’. Consequently, the corresponding path segments o;/[u’, w'] and
o;[u’, w'] do not contain any edges of p. Thus the congestion of the edges of p does
not change when player i switches from o; to o;.
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