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Abstract We present a deterministic Logspace procedure, which, given a bipartite
planar graph on n vertices, assigns O(logn) bits long weights to its edges so that
the minimum weight perfect matching in the graph becomes unique. The Isola-
tion Lemma as described in Mulmuley et al. (Combinatorica 7(1):105–131, 1987)
achieves the same for general graphs using randomness, whereas we can do it deter-
ministically when restricted to bipartite planar graphs. As a consequence, we reduce
both decision and construction versions of the perfect matching problem in bipartite
planar graphs to testing whether a matrix is singular, under the promise that its de-
terminant is 0 or 1, thus obtaining a highly parallel SPL algorithm for both decision
and construction versions of the bipartite perfect matching problem. This improves
the earlier known bounds of non-uniform SPL by Allender et al. (J. Comput. Syst.
Sci. 59(2):164–181, 1999) and NC2 by Miller and Naor (SIAM J. Comput. 24:1002–
1017, 1995), and by Mahajan and Varadarajan (Proceedings of the Thirty-Second
Annual ACM Symposium on Theory of Computing (STOC), pp. 351–357, 2000). It
also rekindles the hope of obtaining a deterministic parallel algorithm for construct-
ing a perfect matching in non-bipartite planar graphs, which has been open for a long
time. Further we try to find the lower bound on the number of bits needed for de-

This work was done while the second author was visiting Chennai Mathematical Institute.

S. Datta
Chennai Mathematical Institute, Chennai, India
e-mail: sdatta@cmi.ac.in

R. Kulkarni (�)
University of Chicago, Chicago, USA
e-mail: raghav@cs.uchicago.edu

S. Roy
IBM Research Laboratory, New Delhi, India
e-mail: sambuddha@in.ibm.com

mailto:sdatta@cmi.ac.in
mailto:raghav@cs.uchicago.edu
mailto:sambuddha@in.ibm.com


738 Theory Comput Syst (2010) 47: 737–757

terministically isolating a perfect matching. We show that our particular method for
isolation will require �(logn) bits. Our techniques are elementary.

Keywords Isolation lemma · Deterministic isolation · Perfect matching · Planar
graphs · NC

1 Introduction

The Matching Problem is one of the most well-studied in the field of parallel com-
plexity. Attempts to solve this problem have led to the development of a variety of
combinatorial, algebraic and probabilistic tools which have found applications even
outside the field of parallel complexity. Since the problem is still open, researchers
linger around it in search of new techniques, if not to solve it in its whole generality,
then at least under various natural restrictions. In this paper, we will focus on the
deterministic complexity of the Matching Problem under its planar restrictions.

1.1 The Matching Problem

Definition 1.1 A matching in an undirected graph is a set of vertex disjoint edges.

Such a collection of edges is called “independent” and the vertices which are end
points of an edge in the matching are called “matched”. See [14] for an excellent
survey on matchings.

A computational question one can ask here is, given a graph, to find a matching of
the maximum cardinality.

Definition 1.2 A perfect matching in a graph is a matching in which every vertex is
matched.

One may ask various computational questions about perfect matchings in graphs. We
will consider the following three questions:

Question 1 (Decision) Is there a perfect matching in a given graph?
Question 2 (Search) Construct a perfect matching in a graph, if it exists.
Question 3 (Uniqueness Testing or UPM) Does a given graph have exactly one per-

fect matching?

There are polynomial time algorithms for the above graph matching problems and
historically people have been interested in studying the parallel complexity of all the
three questions above. The UPM question for bipartite graphs is deterministically par-
allelizable, i.e., it lies in the complexity class NC [13]. (See any standard complexity
text for a formal definition, say [20]). Intuitively, NC is the complexity class consist-
ing of problems having a parallel algorithm which runs in polylogarithmic time using
polynomially many processors which have access to a common memory.

It is the class consisting of so called “well parallelizable” problems. NC is inside
P-problems having a sequential polynomial time algorithm. Whether the Matching
Problem is deterministically parallelizable remains a major open question in parallel
complexity.
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Open Problem 1.3 Is Matching in NC?

The best we know till now is that Matching is in Randomized NC. See for exam-
ple, [12, 18]. Several restrictions of the matching problem are known to be in NC, for
example, bipartite planar graphs [15, 17], graphs with polynomially bounded num-
ber of perfect matchings [8] etc. Whether the search version reduces to the decision
version in parallel settings has also not been answered yet.

1.2 The (Randomized) Isolation Lemma

Lemma 1.4 [18] Let [m] be the set {1,2, . . . ,m} and F be a family of subsets of [m].
If one assigns weights to each element of [m] uniformly and independently at random
from 1 to 2m, then with high (> 1

2 ) probability, the minimum weight subset of F will
be unique. (Weight of a subset is the sum of the weights of the elements in it.)

Using the Isolation Lemma, [18] obtained a simple Randomized NC algorithm for
finding a perfect matching in arbitrary graphs.

1.3 Matching in non-uniform SPL

Building on the Isolating Lemma, Allender et al. [3] proved a non-uniform bound
for matching problem which allows us to replace the randomization by a polynomial
length advice string. Hence, we know that matching is parallelizable with a polyno-
mial length advice.

Definition 1.5 SPL is a promise class that is characterized by the problem of check-
ing whether a matrix is singular under the promise that its determinant is either 0
or 1.

SPL is inside ⊕L and inside ⊕pL for all p. While UL (unambiguous Logspace) is
inside SPL. With current knowledge, NL (nondeterministic Logspace) is believed to
be incomparable with SPL. Both NL and SPL are known to lie inside NC2.

Definition 1.6 An integer valued function is said to be in GapL/poly if for every
positive integer n there exists an advice string An such that:

• length of An is polynomially bounded in n

• once An is given, the value of the function on any input of size n can be computed
in GapL.

Definition 1.7 A language L is in non-uniform SPL, if its characteristic function χL

is in GapL/poly.

Theorem 1.8 [3] Matching is in non-uniform SPL.

Reference [3] also showed that under a plausible assumption of secure pseudoran-
dom generators, Matching is in SPL.
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1.4 Matchings in Planar Graphs and Deterministic Isolation

The situation for planar graphs is interesting because of the fact that counting the
number of perfect matchings in planar graph is in NC [10, 19] whereas constructing
one perfect matching is not yet known to be parallelizable. However, for bipartite
planar graphs, people have found NC algorithms [15, 17].

The Isolation Lemma crucially uses randomness in order to isolate a minimum
weight set in an arbitrary set system. It is conceivable, however, to exploit some
additional structure in the set system to eliminate this randomness. Indeed, recently
[5] building upon a technique from [2] were able to isolate a directed path in a planar
graph by assigning small deterministic weights to the edges. The lemma that sits at
the heart of that result says that there is a simple deterministic way to assign weights
so that each directed cycle (in a grid graph) gets a non-zero weight. This is shown to
imply that if two paths get the same weight neither of them is a min-weight path.

The authors of [12] observe that reachability in directed graphs reduces to bipartite
perfect matching. [6] observe that directed planar reachability reduces to planar bi-
partite perfect matching. [5] find an isolating weighting scheme for paths in directed
planar graphs. Motivated by their result we explore the possibility of such an isolation
for perfect matchings in planar graphs. Given the facts from [12] and [6] it is natural
to ask whether the weighting scheme from [5] generalizes for bipartite planar perfect
matchings and we prove exactly the same in this paper.

Our attempt is to assign weights so that the alternating sum is non-zero for each
alternating cycle—here alternating sum is the signed sum of weights where the
sign is opposite for successive edges. Since alternating cycles result from the super-
imposition of two matchings, we are able to isolate a min-weight matching.

Therefore, we are able to devise an NC algorithm for bipartite planar graphs
which is conceptually simple, different from the other known algorithms and tightens
its complexity to the smaller class SPL. The search problem for matching in non-
bipartite planar graphs still remains open even though the corresponding decision
and counting versions are known to be in NC. Our algorithm rekindles the hope for
solving general planar matching in NC by generalizing our weighting scheme from
bipartite planar graphs to non-bipartite planar graphs.

In the context of our weighting scheme and that of [5], one natural question is
what is the minimum size of the weights. We show that any weighting that follows
our method must use �(logn) bit long weights. The same holds for weighting scheme
from [5].

1.5 Organization

In Sect. 2 we describe the basic definitions and facts used in this paper. In Sect. 3 we
prove our main result that there exists a Logspace procedure which assigns O(logn)

bit weights to the edges of a bipartite planar graph so that the minimum weight perfect
matching becomes unique. Section 4 considers further restrictions and their complex-
ities. The motivation for this section is to identify a natural subclass of planar graphs
in which matching problems are as easy as Logspace. Indeed, we show that UPM
question for outerplanar graphs is solvable in Logspace. Section 5 discusses the pos-
sibility of generalizing our result in various directions. It also contains the lower
bound on the size of the weights obtained using our weighting scheme.
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2 Preliminaries

Here we describe the technical tools that we need in the rest of the paper. Refer to any
standard text (e.g. [20]) for definitions of the complexity classes ⊕L, ⊕pL, NL, UL,
NC2. For graph-theoretic concepts, for instance, planar graph, outerplanar graph,
spanning trees, adjacency matrix, Laplacian matrix of a graph, we refer the reader to
any standard text in graph theory (e.g. [7]).

2.1 Definitions and Facts

We will view an n × n grid as a graph simply by putting the nodes at the grid points
and letting the grid edges act as the edges of the graph.

Definition 2.1 Grid graphs are simply subgraphs of an n × n grid for some n. See
Fig. 1 for an example.

Definition 2.2 (Block) We call each unit square of the grid a block, i.e., block is
simply the subgraph of grid corresponding to a cycle of length 4.

Definition 2.3 We call a graph an almost grid graph if it consists of a grid graph and
possibly some additional diagonal edges which all lie in some single row of the grid.
Moreover all the diagonal edges are parallel to each other. See Fig. 2.

In this paper we will consider weighted grid graphs where each edge is assigned a
rational weight.

Definition 2.4 (Signs of Edges and Blocks of the Grid)

Fig. 1 A grid graph

Fig. 2 An almost grid graph
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(1) Given a grid, assign a “+” sign to all the vertical edges and a “−” sign to all the
horizontal edges.

(2) Assign a sign of (−1)i+j to the block in the ith row and j th column (adjacent
blocks get opposite signs).

Definition 2.5 (Circulation of a Block) Given a weighted grid graph G, the circula-
tion of a block B(denoted circ(B)) in G is the signed sum of weights of the edges of
it: circ(B) = ∑

e∈B sign(e)weight(e).

Definition 2.6 (Circulation of a Cycle) Given a weighted grid graph G and a cycle
C = (e0, e1, . . . , e2k−1) in it, where e0 is, say, the leftmost topmost vertical edge of
C; we define the circulation of a cycle C as circ(C) = ∑2k−1

i=0 (−1)iweight(ei).

The following lemma plays a crucial role in constructing non-vanishing circula-
tions in grid graphs as will be described in the next section.

Lemma 2.7 (The Block Decomposition of Circulations) The circulation of a cycle
C in a grid graph G is equal to the signed sum of the circulations of the blocks of the
grid which lie in the interior of C, in absolute value:

|circ(C)| =
∣
∣
∣
∣

∑

B∈interior(C)

sign(B)circ(B)

∣
∣
∣
∣

Proof Consider the summation on the right hand side. The weight of any edge in
the interior of C will get canceled in the summation because that edge will occur
in exactly two blocks which are adjacent and hence with opposite signs. Now what
remains are the boundary edges. Call two boundary edges adjacent if they appear
consecutively on the cycle C. �

Claim 2.8 Adjacent boundary edges get opposite signs in the summation on the right
hand side above.

Proof We have to consider two cases, either the adjacent boundary edges lie on adja-
cent blocks, in which case since adjacent blocks have opposite signs, these edges will
also get opposite signs as they are both vertical or horizontal edges. See Fig. 3. In the
other case, when adjacent boundary edges do not lie on adjacent blocks, there are two
subcases. In first subcase, they lie on two different blocks which are diagonally next
to each other. In this case, both blocks will have the same sign but since one edge is
vertical and the other is horizontal, the effective sign of the edges will be opposite.
In the second subcase when the two adjacent boundary edges lie on the same block
the claim is trivial. See Fig. 3. Hence, the adjacent boundary edges will get opposite
sign in the summation. This completes the proof that the right hand side summation
is precisely +circ(C) or −circ(C). �

We will also have occasion to employ the following lemma and we record it here:
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Fig. 3 Signs and weights of the blocks and the edges of a grid

Lemma 2.9 (Temperley’s Bijection) The spanning trees of a planar graph are in one
to one correspondence with perfect matchings in a bipartite planar graph. Moreover
the correspondence is weight preserving.

This bijection was first observed by Temperley around 1967. Recently [11] have
found a Generalized Temperley Bijection which gives a one-to-one weight preserving
mapping between directed rooted spanning trees or arborescences in a directed planar
graph and perfect matchings in an associated bipartite planar graph.

2.2 Planar Matching and Grid Graphs

Grid graphs have turned out to be useful for solving the reachability question in di-
rected planar graphs, cf. [1, 5]. Motivated by this fact we explore the possibility of
reducing planar matching problem to that of grid graphs. Non-bipartiteness becomes
an obstacle here which leaves us with the following observations:

Lemma 2.10 One can convert, in Logspace, any bipartite planar graph into a grid
graph such that the perfect matchings remain in one-to-one correspondence.

Proof This is described in [6]. It follows closely the procedure for embedding a pla-
nar graph into a grid, described by [1]. �

Though non-bipartiteness is an issue, we can get rid of it to a certain extent, though
as expected, not completely.

Lemma 2.11 Any planar graph, not necessarily bipartite, can be converted, in
Logspace, to an almost grid graph while maintaining the one to one correspondence
between the perfect matchings.

Proof This procedure is analogous to the previous one except that we can observe
that the edges which are causing non bipartiteness can be elongated into a long path
and placed in a grid so that only in a single row one needs to use a diagonal edge.
Follow the procedure of [2]. All non-tree edges can be made to intersect a row in
below all the tree edges. One can accommodate non-bipartiteness using this row. �
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3 Bipartite Planar Perfect Matching in SPL

In this section, we will give a simple algorithm for finding a perfect matching in bi-
partite planar graphs, also improving over its complexity by putting it in SPL. Earlier
the best known bound was NC2. See for example [15, 17] and of non-uniform SPL
from [3]. At the core of our algorithm, lies a procedure to deterministically assign
the small (logarithmic bit long) weights to the edges of a bipartite planar graph, so
that the minimum weight perfect matching becomes unique. A simple observation
about non-vanishing circulations in bipartite planar graphs makes it possible to iso-
late a perfect matching in the graph, which can be further extracted out using an SPL
query.

3.1 Non-Vanishing Circulations in Grid Graphs

We are interested in assigning the small weights to the edges of a grid so that any
cycle in it will have non-zero circulation. This weighting scheme is at the heart of the
isolation of perfect matchings in grid graphs. The procedure runs in Logspace.

The key observation that our weighting scheme uses is the following: It suffices to
assign the weights such that

(1) Circulation of every block is non-zero.
(2) Circulations of adjacent blocks are opposite in sign.

Weighting Scheme.

(1) Weight of any vertical edge is zero.
(2) Weight of ith (from left) horizontal edge in j th (from bottom) horizontal row is

(−1)i+j (i + j − 1).

Lemma 3.1 One can assign, in Logspace, small (O(logn) bits) weights to the edges
of a grid so that circulation of any cycle becomes non-zero. (One weighting scheme
which guarantees non-zero circulation for every cycle in the grid is shown in Fig. 3.)

Proof We assign all vertical edges weight 0 and horizontal edges are assigned
weights as shown in Fig. 3 and defined explicitly by the formula in above weight-
ing scheme. The weighting scheme makes sure that the circulation of any block is
either +1 or −1. Moreover, the circulation of a block is positive if and only if its sign
is positive. Now, using the Block Decomposition of Circulations (Lemma 2.7), we
have that the circulation of any cycle, in absolute value, is precisely the number of
blocks in the interior of it, and hence is never zero. �

3.2 Non-Vanishing Circulations: A Direct Method

The procedure of achieving non-vanishing circulations for all cycles in bipartite pla-
nar graphs can be made more abstract. One does not need to convert the bipartite
planar graph into a grid graph. Instead, it suffices to add spurious edges to it so as
to make it an Eulerian bipartite planar graph. The block decomposition of circula-
tion holds in any Eulerian bipartite planar graph and one can describe an alternate
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procedure for coming up with the weighting scheme that achieve non-vanishing cir-
culations. This abstract procedure is analogous to the procedure for assigning Pffafian
orientation to planar graphs [10]. This gives a hope of generalizing our method for
any Pffafian graph which we leave as an open possibility. As we will see in later sec-
tion, non-vanishing circulations for bipartite planar graphs would imply the weighting
scheme used by [5] to prove planar reachability is in Unambiguous Logspace. This
means that if one generalizes our method for K3,3-free bipartite graphs then it would
also prove the reachability in K3,3-free graphs is in UL. Keeping these implications
in mind, we try to abstract out our procedure without explicitly having to go through
grid graphs.
Step 1: The procedure to transform a bipartite planar graph into an Eulerian bipar-
tite planar graph:
Perform an Euler traversal on a spanning tree in the dual graph. While performing
the traversal, suppose (u, v) is the edge in the original graph through which you enter
from one face to another. Make sure that when you leave the first face, all the vertices
in the face, except for the end points u and v of the edge through which you go to the
next face, are of even degree. To guarantee this one can do the following:

• Step 1a Start with one end point say u of the edge (u, v) through which we go
to the next face. Visit all the vertices of the face in a cyclic ordering, every time
connect an odd degree vertex to the next vertex by a spurious edge.

• Step 1b If the next vertex is also of odd degree then go to its next vertex and connect
both these vertices to the next vertex of even degree in the order or to v whichever
comes first. If the next vertex is of even degree then we have pushed the oddness
one step further.

• Step 1c Continue the same procedure till we either remove all the oddness from the
face or push the oddness eventually to v.

• Step 1d In the process, the graph might become a multi-graph, i.e., between two
nodes we may have multiple edges, but this can be taken care of by replacing every
multi-edge by a path of length 3. The bipartiteness is preserved in the process.
Moreover at the moment when you leave a face through and edge (u, v) all the
vertices, except possibly u and v, of the previous faces visited will be of even
degree. Eventually when the Euler traversal on the dual tree returns to the root
through an edge (u, v), all but possibly u and v have odd degree. If both u and v

have odd degree then add a path of length 3 between u and v.

Step 2: Fix the signs for faces and the edges:
After Step 1, the graph has become Eulerian, and hence the dual graph is bipartite.

• Step 2a Assign alternating signs to adjacent faces: Form a bipartition of the dual,
and fix all the faces in one bipartition to have + sign and the others to have − sign.
Any two adjacent faces will have opposite signs. Here, faces will act as blocks.

• Step 2b Assign alternating signs to adjacent edges of every face: Consider an aux-
iliary graph obtained from the bipartite planar graph as follows: Every new vertex
corresponds to an edge in the graph. Join two new vertices by a new edge iff the
corresponding edges in the original graph are adjacent along some face. (Reader
may confuse this auxiliary graph with Line Graph but one can easily see that the
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auxiliary graph constructed is planar whereas the Line Graph would not be pla-
nar if we have a vertex of degree 6.) Now since both the original graph and its
dual are bipartite, the auxiliary graph will also be bipartite and hence edges in the
two bipartitions get opposite signs ensuring that around every face the signs are
alternating.

Step 3: Assign small weights to the edges to get non-vanishing circulation:
Now make another Euler traversal on the dual tree everytime assigning the weight
to the dual tree edge through which you traverse to the next face so that the circula-
tion of the face you leave is exactly same as the sign of the face. All non-tree edges
will be assigned zero weight. It is easy to see that all the weights assigned are small
(O(logn) bits).

The Decomposition of Circulations Again, we claim that the circulation of a cycle
will decompose into signed sum of circulations of the faces in the interior of it. Signs
of face are defined by the above procedure. Note that adjacent faces get opposite
signs. To make sense of the definition of circulation of a face, note that the above
procedure assigns signs to the edges of the graph so that adjacent edges of a face
get opposite signs. Circulation of a face is defined as the signed sum of the weights
of its edges. It is easy to see that for any cycle in the graph, if we take the signed
sum of circulations of the faces in the interior of it, then the weight of every edge
in the interior gets counted once positive and once negative. Thus, only non-zero
contribution comes from the boundary edges. We leave it to the reader to check that
the boundary edges contribute exactly the circulation of the cycle. The idea is the
following. Consider two consecutive edges say e1 and e2 of a cycle and consider the
signs s1 and s2 of these edges assigned by the above procedure, and let f1 and f2 be
the faces in the interior of the cycle which contain e1 and e2 respectively (possibly
f1 = f2). If s1 = s2 then signs of f1 and f2 must be opposite. If s1 and s2 are opposite
then signs of f1 and f2 must be the same. The crucial property used is that signs of
the edges are such that along any face the signs of adjacent edges are opposite. Thus,
suppose e1 and e2 share an endpoint v and s1 = s2, then number of edges in the
interior of the cycle which are also incident on v must be odd. Thus the faces f1 and
f2 must have opposite signs. The other case is symmetric.

The weights assigned by the above procedure are such that the circulation of a
face is +1 if the face has positive sign otherwise it the circulation is −1. Thus, for
any cycle, the circulation is precisely the number of faces in the interior of the cycle.

3.3 Deterministic Isolation

The non-vanishing circulations immediately give us the isolation for the perfect
matchings.

Lemma 3.2 Isolation If all the cycles in a bipartite graph have non-zero circulations,
then the minimum weight perfect matching in it is unique.

Proof If not, then we have two minimum weight perfect matchings M1 and M2 which
will contain some alternating cycles, and each such cycle is of even length. Consider
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any one such cycle. Since the circulation of an even cycle is nonzero either the part of
it which is in M1 is lighter or the part of it which is in M2 is lighter, in either case, we
can form another perfect matching which is lighter than the minimum weight perfect
matching, which is a contradiction. �

Thus we have a deterministic way of isolating a perfect matching in bipartite pla-
nar graphs, and it is easy to check that the procedure of assigning the weights to the
edges works in deterministic Logspace.

3.4 Extracting the Unique Matching

Once we have isolated a perfect matching, one can extract it out easily as follows:

• Step 1: Construct an n × n matrix M associated with a planar graph on n vertices
as follows: Find a Pfaffian orientation [10] of the planar graph and put the (i, j)th
entry of the matrix M to be xw(i,j) where x is a variable and w(i,j) is the weight of
the edge (i, j) which is directed from i to j in the Pfaffian orientation. If the edge
is directed from j to i then put −xw(i,j) as (i, j)th entry of the matrix.

• Step 2: If t is the weight of the minimum weight perfect matching, then the co-
efficient of x2t in determinant of M will be the number of perfect matchings of
weight t. Now, as shown in [16, 20] this coefficient can be written as a determinant
of another matrix.

• Step 3: Now start querying from i = −n2 to +n2 whether the coefficient of x2i is
zero or not and the first time you find that it is nonzero; stop. The first nonzero value
will occur when i = t and it will be 1 since the minimum weight perfect matching
is unique. Hence, during the process, every time we have a promise that if the
determinant is nonzero, it is 1. This procedure gives the weight of the minimum
weight perfect matching.

• Step 4: Now once we know the procedure to find the weight of the minimum
weight perfect matching, then one can find out which edges are in the matching
by simply deleting the edge and again finding the weight of the minimum weight
perfect matching in the remaining graph. If the edge is in the isolated minimum
weight perfect matching then after its deletion the weight of the new minimum
weight perfect matching will increase. Otherwise we can conclude that the edge is
not in the isolated minimum weight perfect matching. Note that the isolation holds
even after deleting an edge from the graph.

Theorem 3.3 Bipartite Planar Perfect Matching is in SPL.

Proof The Logspace procedure in Lemma 3.1 assigns the small weights to the edges
of the graph so that the minimum weight perfect matching is unique and the above
procedure extracts it out in LSPL = SPL. �

We obtain the following corollaries.

Corollary 3.4 UPM in bipartite planar graphs is in SPL.
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Proof (Earlier bound for this was ⊕L by [6].) To check whether the graph has unique
perfect matching, one can construct one perfect matching and check that after remov-
ing any edge of it there is no other perfect matching. �

Corollary 3.5 Minimum weight perfect matching in planar graphs with polynomially
bounded weights is computable in SPL.

Proof One can first scale the polynomially bounded weights by some large multi-
plicative factor, say n4 and then perturb them using the weighting scheme described
above so that some minimum weight matching with original weights remains mini-
mum weight matching with new weights and is unique. Then extraction can be done
in SPL. �

Corollary 3.6 Minimum weight spanning tree in planar graphs is computable in SPL
if the weights are polynomially bounded. (The same is true for directed rooted span-
ning trees (arborescences) in planar graphs due to Generalized Temperley’s bijection
shown in [11].)

Proof This follows from Temperley’s bijection and Generalized Temperley’s bijec-
tion in [11]. �

Note that, deciding whether a planar graph has a spanning tree is known to be
in Logspace whereas deciding whether a directed planar graph has an arborescence
rooted at a particular node is inside UL as it reduces to checking directed reachabil-
ity from the root to all other nodes. The minimum weight arborescence question is
interesting in the context of matching as structures similar to blossoms come as a nat-
ural obstacle while trying to parallelize. It is interesting to note that the Generalized
Temperley bijection helps us to avoid these blossoms in case of the minimum weight
spanning arborescence for directed planar graphs.

4 Complexity of Further Restrictions and Very Specialized Cases

In this section we consider several restricted class of graphs and study the complex-
ity of perfect matching questions there. We study decision version, search version as
well as UPM (is there a unique perfect matching?) version of the perfect matching
questions. The motivation is to identify natural subclasses of graphs for which this
complexity is close to Logspace and to get an intuition about whether the complex-
ity of (bipartite) planar matching is likely to be significantly lower than our upper
bound of SPL. For instance, is bipartite planar perfect matching in Logspace? Table 1
summarizes all the results that we have.

Restricting the family of planar graphs, yields better upper bounds for Matching
questions. Notably, we prove that:

Corollary 4.1 (of Theorem 3.3) Perfect matching in outerplanar graphs is in SPL.
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Table 1 Very specialized restrictions

Restriction Decision Search UPM

General Planar NC P NC

New NC P NC

Biparite Planar NC NC ⊕L

New SPL SPL SPL

Outerplanar NC P NC

New LogCFL ∩ SPL SPL L

Series Parallel Graphs NC P NC

New LogCFL P LogCFL⊕L

√
logn Width Layered Graphs P P P

New NL P NL⊕L

Proof If we have an outerplanar (1-page) graph on n vertices with vertices labeled
from 1 to n along the spine, then observe that the edges between two odd labeled
vertices cannot be part of any perfect matching. This is because the number of vertices
below that edge is odd. Similarly edges between two even labeled vertices cannot
participate in any perfect matching. Hence, by removing such edges we can make the
graph bipartite and then we can apply the previous theorem. �

Definition 4.2 Given a graph G the Laplacian matrix of G denoted by L(G) is de-
fined as D − A where D is the diagonal matrix of degrees of vertices in G and A is
the adjacency matrix of G.

We use the lemma below in order to prove the theorem that follows it.

Lemma 4.3 The parity of the number of perfect matchings in an outerplanar graph
can be computed in Logspace.

Notice that parity refers to the function that maps even integers to 0 and odd inte-
gers to 1.

Proof It is not hard to observe that the parity of the determinant of the adjacency
matrix of a graph is the same as the parity of number of perfect matchings in it.
Finding the parity of the adjacency matrix of an outerplanar graph can be reduced to
finding the parity of the number of spanning trees in an auxiliary planar graph which
is constructed by adding a new vertex and connecting it to all the odd degree vertices
of the original graph. The new graph has all the vertices of even degree. Hence the
adjacency matrix of the new graph is the same as its Laplacian modulo 2. Now the
minor obtained by removing the row and the column corresponding to the new vertex,
is precisely the adjacency matrix of the original outerplanar graph modulo 2. Also the
determinant (mod 2) of this minor is precisely the parity of the spanning trees in new
graph. As shown in [4], the parity of spanning trees modulo 2 in planar graphs can be
computed in Logspace. Hence, the parity of the determinant of the adjacency matrix
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of an outerplanar graph can be obtained in Logspace which in turn gives the parity of
the number of perfect matchings in it. �

Theorem 4.4 UPM in outerplanar graphs is in Logspace.

Proof If the perfect matching in an outerplanar graph is unique, one can obtain one
perfect matching in Logspace. For every edge, one just needs to compute the parity
(whether the number is odd or even) of the number of perfect matchings in the graph
with that particular edge removed. If this parity is 0 (number is even) then do not
include this edge in the perfect matching, otherwise do. Now we just need to verify
that the perfect matching thus constructed is unique. As seen in Corollary 4.1 we can
assume that the outerplanar graph is bipartite. Given a bipartite graph and a perfect
matching one can construct an auxiliary directed graph as follows: if u to w is a
matching edge and v to w is a non-matching edge, then draw a directed edge from u

to v. It turns out that the auxiliary graph has a directed cycle if and only if the perfect
matching in the original graph was not unique. It is also easy to see that if you start
with a bipartite outerplanar graph and a perfect matching in it then the corresponding
auxiliary directed graph will be outerplanar. Finally, since the reachability in directed
outerplanar graphs is in Logspace [1], we have that UPM in outerplanar graphs is in
Logspace. �

Outerplanar graphs are known to have constant tree-width. It is easy to observe
the following theorem about constant-tree-width graphs.

Lemma 4.5 Deciding whether a constant-tree-width graph has a perfect matching
is in LogCFL.

Proof Firstly, one can obtain a tree decomposition of constant width of such graphs
in LogCFL, see [9]. Once we have a tree decomposition, we make an Euler traversal
on the tree everytime guessing the edges of the matching within the constant size bag
corresponding the node of the tree. We store our guess on a stack and verify it while
we return to the node through the Euler traversal. �

The construction version, though, for constant-tree-width graphs is not known to
be in NC. However, we can note that UPM version is parallelizable.

Corollary 4.6 UPM in constant-tree-width graphs is in LogCFL⊕L.

Proof First by finding out the parity of the determinant of the adjacency matrix of
the graph one can obtain a perfect matching. Then one can verify the uniqueness by
checking that after removing any matching edge, the graph does not have any perfect
matching. Note that LogCFL is closed under complement. �

Corollary 4.7 Decision version of perfect matching question in series parallel
graphs is in LogCFL.

Proof Series parallel graphs have tree width 2. �
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Lemma 4.8 Decision version of perfect matching in a layered graph with each layer
of

√
logn size and the edges present only between two consecutive layers; is in NL.

Proof One can guess a perfect matching layer by layer as a bit vector of logarithmic
length one for each edge in the layer indicating the status picked or not picked in
matching and verify it along the way. �

Corollary 4.9 UPM question in such graphs is in NL⊕L.

Proof Once one gets a perfect matching in ⊕L, we can check the uniqueness of the
perfect matching by checking for every edge whether there is a perfect matching in
the graph containing that edge and there is no perfect matching after removing that
edge. Since NL is closed under complement the effective complexity is NL⊕L. �

Corollary 4.10 Perfect-Matching-Decision for subgraphs of
√

logn width grid with
possibly diagonal edge in each square is in NL. Moreover the corresponding UPM
question is in NL⊕L.

Proof Such a graph is a layered graph with each layer of
√

logn width and the edges
are only between two consecutive layers, hence by the previous theorem the result
follows. �

5 Possibility of Generalization

We saw in Sect. 3.3 that a perfect matching in bipartite planar graphs can be isolated
by assigning small weights to the edges. In this section we discuss the possibility of
generalizing this result in two orthogonal directions. For non-bipartite planar graphs
and for bipartite but non-planar graphs. The motivation is to isolate a perfect matching
in a graph by having non-zero circulation on it.

5.1 Is Non-Vanishing Circulation Possible for Arbitrary Graphs?

It is not clear whether the method of non-vanishing circulations can be generalized
for arbitrary graphs. Even the existence of a weighting scheme that can achieve non-
vanishing circulations using small weights is not known. Asking for non-vanishing
circulations is stronger than asking for isolating a perfect matching. It is still open
whether one can isolate a perfect matching in non-bipartite planar graphs.

Open Problem 5.1 Does there exist a weighting scheme with small weights which
achieves non-vanishing circulations for all even cycles in a planar graph?

Open Problem 5.2 Does there exist a weighting scheme with small weights which
achieves non-vanishing circulations for all cycles in bipartite graphs?
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5.2 Non-Bipartite Planar Matching

Though non-bipartiteness is an issue, we can get rid of it to a certain extent. Although
as expected, not completely.

Lemma 5.3 Perfect Matching problem in general planar graphs reduces to that of
almost grid graphs.

Now it suffices to get a non-vanishing circulations in almost grid graphs to solve
planar matching question. Unfortunately we don’t yet know any way of achieving
this though we have some observations which might be helpful.

Lemma 5.4 One can have non-zero circulations for all the even cycles in the graph
in Fig. 4. (The graph is simply one row of the grid with diagonals.)

Proof Observe that any even cycle in such a graph will either fall in the grid or will
fall in the grid formed by horizontal edge together with diagonal edges. Now, its easy
to assign the weights as shown in Fig. 4 so that all the horizontal edges get weight 0
while vertical and diagonal edges get weights so that any cycle in vertical or diagonal
grid has non-vanishing circulation. �

Lemma 5.5 One can have a non-zero circulation for an almost grid graph which has
the bottom row as the only non-bipartite row.

Proof Use two co-ordinates for the weights. In the first co-ordinate, the grid edges
except for the last row will get the same weighting as the case of grid graphs except
that the vertical edges become horizontal and the horizontal edges become vertical.
Edges of the last row of the grid get weight zero in the first co-ordinate. In the second
co-ordinate, the last row gets the weights as given in previous lemma. Grid edges
in the second co-ordinate get weight according to grid weights with vertical edges
becoming horizontal. Now, for any cycle that does not use the diagonal edges, the
circulation is non-vanishing because the cycle will totally fall into the grid and the
second co-ordinate will be non-vanishing. Any even cycle that stays only within last
row will also get nonzero circulation as seen in previous lemma. Any cycle that passes
through higher rows can be decomposed into the arcs, the portion of the cycle that fall
strictly above the bottom row of edges (it might contain the edges of the penultimate
row). Now for each such arc, the alternate sum along the arc will compute in absolute
value the number of blocks of the grid below it if we look at the weights in the first
co-ordinate. Now, the topmost arc has to be unique because consider the leftmost

Fig. 4 Non-vanishing
circulation in a non-bipartite
graph
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point where the cycle leaves the bottommost row of vertices and then the first time
it comes back to the bottommost row, the rest of the cycle has to fall inside this arc.
Moreover it is easy to see that there can be only two layers of the arcs there is no
way to accommodate the third layer of arch inside an arc in the second layer. Thus,
no matter what signs the alternating sum along these arcs acquire, the total sum is
not going to cancel out in the first co-ordinate because the topmost arc is going to
survive. �

In summary, non-bipartiteness seems to be an issue which is difficult to get around.
Hence, we keep the bipartiteness and next we explore the possibility of generalizing
our result for non-planar graphs.

5.3 Bipartite Non-Planar Matching

Instead of looking at two dimensional grid we now consider three dimensional grids.
The matching problem remains as hard as that for general bipartite graphs in this
restriction as well.

Lemma 5.6 One can embed any bipartite graph in a three dimensional grid while
preserving matchings.

Proof Firstly, one can make the degree of the graph bounded by 3. Then one can use
the third dimension to make the space for crossings in the graph. �

Open Problem 5.7 Is the perfect matching problem for subgraphs of a three dimen-
sional grid of height 2 in NC? Is it possible to generalize our method from grid graphs
to 3-dimensional grid graphs of height 2?

The deterministic isolation of perfect matching is possible through non-vanishing
circulations as seen in Sect. 3.3.

5.4 Bit Complexity of the Method of Non-Vanishing Circulations

It is not-known whether logn bits are necessary to isolate a perfect matching in planar
graphs or even in general graphs. Our method for obtaining non-vanishing circula-
tions in grid graphs relied crucially on the following observation: It suffices to assign
the weights so that:

(1) Circulation of every block is non-zero.
(2) Circulations of adjacent blocks are opposite in sign.

We show that this method would require �(logn) bits for some edge.

Theorem 5.8 Any weighting scheme for an n × n grid that achieves nonzero circu-
lation for every block such that circulations of adjacent blocks are opposite in signs,
has to use �(logn) bit weights for some edge of the grid.
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Fig. 5 An orientation of dual
grid

Proof Consider the dual graph. Construct an orientation of the dual graph as follows:
for the dual vertex corresponding to the bottom-left corner block of the grid, vertical
dual edges go outwards whereas the horizontal dual edges go inwards. For its adjacent
dual vertex, vertical dual edges go inwards whereas the horizontal dual edges go
outwards. See Fig. 5. Thus we get a directed graph with the weights on its directed
edges inherited from the weights of the original graph.

Flux out of a vertex in the directed graph is the sum of the weights of the outgoing
edges minus the sum of the weights of the incoming edges at that vertex. Now, flux
out of every vertex in the graph is positive because the orientations of the edges are
chosen such that the flux out of a vertex is precisely sign times circulation of the
corresponding face in the primal graph. So, total of �(n2) flux has to pass through
the perimeter of the n × n grid which is O(n). Thus, some edge on the perimeter
must get a weight of �(n). �

5.5 Isolation for Matching and Directed Paths

In this section we will consider two methods used for deterministic isolation. In [5]
the method of non-vanishing directed cycle sums is used to isolate directed paths
in planar graphs. In this paper, we use the method of non-vanishing circulations to
isolate a perfect matching in bipartite planar graphs.

Definition 5.9 (Non-Vanishing Directed Cycle Sums) Given an undirected graph,
consider each undirected edge as two edges directed in each direction. Non-vanishing
directed cycle sums is a skew symmetric (w(i, j) = −w(j, i)) weighting of the di-
rected edges using logarithmic bit long weights such that the sum of the weights of
the directed edges along any directed cycle is not zero.

We show that in any class of graphs that is closed under subdivision of edges,
non-vanishing circulations lead to non-vanishing cycle sums.

Theorem 5.10 For a class of graphs which is closed under subdivision of edges,
suppose we can achieve non-vanishing circulation for all bipartite graphs in the class,
then we can achieve non-vanishing cycle sum for all graphs in the same class.
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Fig. 6 A non-vanishing
circulation yielding exactly
weighting from [5] for isolating
directed paths in grid graphs

Proof Given a graph, construct a bipartite graph by replacing each directed edge by a
path of length 2. Suppose that the edge e gets replaced by two edges e1 and e2. Now,
obtain a non-vanishing circulation for this bipartite graph. Suppose that the edge e1

gets weight a and e2 gets weight b. Assign the weight of e in one direction to be
a − b and in other direction b − a. Now, directed cycle sum in the original graph will
correspond exactly to the circulations in the new graph and thus are non-vanishing. �

Corollary 5.11 Non-vanishing directed cycle sums for planar graphs can be ob-
tained by a Logspace procedure.

Proof Non-vanishing circulations for bipartite planar graphs will give non-vanishing
directed cycle sum for arbitrary planar graphs. �

Non-vanishing circulations in Fig. 6 give exactly the weighting used by [5] for
isolating directed paths in grid graphs. To see this, four blocks constitute one block
of the grid as the procedure above splits every edge into two. All vertical edges have
weight zero. Every horizontal edge consists of two horizontal edges of weight say a

and b from left to right. The directed edge going from left to right gets weight a − b

whereas the opposite edge gets weight b − a.

An alternate way of obtaining non-vanishing circulations is to orient the edges of
the grid graph in a nice way and then use the weighting scheme used in [5] for directed
grid graphs on the oriented graph. We call this a projection from directed to undi-
rected graphs, i.e., choice a direction for every undirected edge. Figure 7 gives such a
projection which gives non-vanishing circulations. To see that indeed this projection
gives non-vanishing circulations one has to essentially use the block decomposition
of circulations. In general graphs it is not clear whether non-vanishing directed cycle
sums give rise to non-vanishing circulations, i.e, whether such projection is possible.
Reachability reduces to bipartite matching [12] but the other way is not known, even
when restricted to planar graphs. The projection from weighting scheme of [5] to ob-
tain non-vanishing circulations for grid, however, implies a lower bound of �(logn)

on the size of the weights obtained by following the method of [5], namely to as-
sign weights so as to make anti-clockwise cycle sum for every block to be positive.
Figure 7 describes the projection from [5] to obtain non-vanishing circulations.
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Fig. 7 A projection from
weights from [5] yielding
non-vanishing circulations for
grid

5.6 Other Variations

We know that reachability in directed planar graphs reduces to bipartite planar match-
ing. Note that while the isolation step in our algorithm works in Logspace, placing the
bipartite planar perfect matching problem in Logspace might be too strong a result
to expect. This seems like a possible but not very promising approach to place planar
reachability in Logspace.

However, we also know that reachability in layered grid graphs reduces to the UPM
question in the same [6]. A Logspace upper bound on Bipartite Planar UPM might
very well be achievable and Theorem 4.4 yields some (weak) substantiation for that.
Thus a positive resolution of the following question would place layered grid graph
reachability in Logspace.

Open Problem 5.12 Is bipartite planar UPM in L?

We saw how to isolate a perfect matching in bipartite planar graph. The isolation
holds for maximum matching in bipartite planar graphs. However, we do not know
how to extract out the maximum weight perfect matching in NC.

Open Problem 5.13 Is it possible to extract out the isolated maximum matching in
NC for bipartite planar graphs?

Finally, the question of constructing a perfect matching in planar graphs in NC still
remains open.
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