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Abstract We consider the problem of speed scaling to conserve energy in a multi-
processor setting where there are precedence constraints between tasks, and where
the performance measure is the makespan. That is, we consider an energy bounded
version of the classic problem Pm|prec|Cmax. We extend the standard 3-field no-
tation and denote this problem as Sm|prec, energy|Cmax. We show that, without
loss of generality, one need only consider constant power schedules. We then show
how to reduce this problem to the problem Qm|prec|Cmax to obtain a poly-log(m)-
approximation algorithm.

1 Introduction

1.1 Motivation

Power is now widely recognized as a first-class design constraint for modern com-
puting devices. This is particularly critical for mobile devices, such as laptops, that
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rely on batteries for energy. While the power consumption of devices has been grow-
ing exponentially, battery capacities have been growing at a (modest) linear rate. One
common technique for managing power is speed/voltage/power scaling. For exam-
ple, current microprocessors from AMD, Intel and Transmeta allow the speed of the
microprocessor to be set dynamically. The motivation for speed scaling as an en-
ergy saving technique is that, as the speed to power function P(s) in all devices is
strictly convex, less aggregate energy is used if a task is run at a slower speed. The
application of speed scaling requires a policy/algorithm to determine the speed of the
processor at each point in time. The processor speed should be adjusted so that the
energy/power used is in some sense justifiable by the improvement in performance
attained by running at this speed.

In this paper, we consider the problem of speed scaling to conserve energy in
a multiprocessor setting where there are precedence constraints between tasks, and
where the performance measure is the makespan, the time when the last task fin-
ishes. We will denote this problem by Sm|prec, energy|Cmax. Without speed scaling,
this problem is denoted by Pm|prec|Cmax in the standard three field scheduling no-
tation [9]. Here m is the number of processors. This is a classic scheduling problem
considered by Graham in his seminal paper [8] where he showed that list scheduling
produces a (2 − 1

m
)-approximate solution. In our speed scaling version, we make a

standard assumption that there is a continuous function P(s), such that if a processor
is run at speed s, then its power, the amount of energy consumed per unit time, is
P(s) = sα , for some α > 1. For example, the well known cube-root rule for CMOS-
based devices states that the speed s is roughly proportional to the cube-root of the
power P , or equivalently, P(s) = s3 (the power is proportional to the speed cubed)
[4, 16]. Our second objective is to minimize the total energy consumed. Energy is
power integrated over time. Thus we consider a bicriteria problem, in that we want
to optimize both makespan and total energy consumption. Bicriteria problems can
be formalized in multiple ways depending on how one values one objective in re-
lationship to the other. We say that a schedule S is a b-energy c-approximate if the
makespan for S is at most cM and the energy used is at most bE where M is the
makespan of an optimal schedule which uses E units of energy. The most obvious
approach is to bound one of the objective functions and optimize the other. In our
setting, where the energy of the battery may reasonably be assumed to be fixed and
known, it seems perhaps most natural to bound the energy used, and to optimize
makespan.

Power management for tasks with precedence constraints has received some at-
tention in computer systems literature, see for example [10, 14, 15, 20] and the refer-
ences therein. These papers describe experimental results for various heuristics.

In the last few years, interest in power management has seeped over from the
computer systems communities to the algorithmic community. For a survey of recent
literature in the algorithmic community related to power management, see [11].

1.2 Summary of Our Results

For simplicity, we state our results when we have a single objective of minimizing
makespan, subject to a fixed energy constraint, although our results are a bit more
general.
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We begin by noting that several special cases of Sm|prec, energy|Cmax are rela-
tively easy. If there is only one processor (S1|prec, energy|Cmax), then it is clear from
the convexity of P(s) that the optimal speed scaling policy is to run the processor at
a constant speed; if there were times where the speeds were different, then by averag-
ing the speeds one would not disturb the makespan, but the energy would be reduced.
If there are no precedence constraints (Sm|energy|Cmax), then the problem reduces to
finding a partition of the jobs that minimizes the �α norm of the load. A PTAS for this
problem is known [1]. One can also get an O(1)-approximate constant-speed sched-
ule using Graham’s list scheduling algorithm. So for these problems, speed scaling
doesn’t buy you more than an O(1) factor in terms of energy savings. Note that the
O(1) notation mentioned above means that the multiplicative factor is a constant that
is independent of the input parameters even when they are taken into consideration.

We now turn to Sm|prec, energy|Cmax. We start by showing that there are in-
stances where every schedule, in which all machines have the same fixed speed, has
a makespan that is a factor of ω(1) more than the optimal makespan. The intuition
is that if there are several jobs, on different processors, that are waiting for a par-
ticular job j , then j should be run with higher speed than if it were the case that
no jobs were waiting on j . In contrast, we show that what should remain constant
is the aggregate powers of the processors. That is, we show that in any locally op-
timal schedule, the sum of the powers at which the machines run is constant over
time. If the cube-root rule holds (power equals speed cubed), this means the sum
of cubes of the machines speeds should be constant over time. We call schedules
with this property constant power schedules. We then show how to reduce our en-
ergy minimization problem to the problem of scheduling on machines of different
speeds (without energy considerations). In the three field scheduling notation, this
problem is denoted by Q|prec|Cmax. Using the O(logm)-approximate algorithms
from [5, 7], we can then obtain a O(log2 m)-energy O(logm)-approximate algo-
rithm for makespan for our problem. We then show a trade-off between energy and
makespan for our problem. That is, an O(b)-energy O(c)-approximate schedule for
makespan can be converted into O(c ·b1/α)-approximate schedule. Thus we can then
get an O(log1+2/α m)-approximate algorithm for makespan.

We believe that the most interesting insight from these investigations is the obser-
vation that one can restrict one’s attention to constant power schedules. This fact will
also hold for several related problems.

1.3 Related Results

We will be brief here, and refer the reader to the recent survey [11] for more details.
Theoretical investigations of speed scaling algorithms were initiated by Yao, Demers,
and Shankar [18]. They considered the problem of minimizing energy usage when
each task has to be finished on one machine by a predetermined deadline. Most of
the results in the literature to date focus on deadline feasibility as the measure for
the quality of the schedule. Yao, Demers, and Shankar [18] give an optimal offline
greedy algorithm. The running time of this algorithm can be improved if the jobs
form a tree structure [13]. Bansal, Kimbrel, and Pruhs [3] and Bansal and Pruhs [2]
extend the results in [18] on online algorithms and introduce the problem of speed
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scaling to manage temperature. For jobs with a fixed priority, Yun and Kim [19] show
that it is NP-hard to compute a minimum energy schedule. In this model, priorities
of jobs are given as part of the input, and an available job with the highest priority
should be run at any time. They also give an FPTAS for the problem. Kwon and
Kim [12] give a polynomial-time algorithm for the case of a processor with discrete
speeds. Chen, Kuo and Lu [6] give a PTAS for some special cases of this problem.
Pruhs, Uthaisombut, and Woeginger [17] give some results on the flow time objective
function.

2 Formal Problem Description

The setting for our problems consists of m variable-speed machines. If a machine is
run at speed s, its power is P(s) = sα , α > 1. The energy used by each machine is
power integrated over time.

An instance consists of n jobs and an energy bound E. All jobs arrive at time
0. Each job i has an associated work (or size) wi . If this job is run consistently at
speed s, it finishes in wi/s units of time. There are precedence constraints among the
jobs. If i ≺ j , then job j cannot start before job i completes.

Each job must be run non-preemptively on some machine. The machines can
change speed continuously over time. Although it is easy to see by the convexity
of P(s) that it is best to run each job at a constant speed.

A schedule specifies, for each time and each machine, which job to run and at
what speed. A schedule is feasible at energy level E if it completes all jobs and
the total amount of energy used is at most E. Suppose S is a schedule for an input
instance I . We define a number of concepts which depend on S. The completion
time of job i is denoted CS

i . The makespan of S, denoted CS
max, is the maximum

completion time of any job. A schedule is optimal for energy level E if it has the
smallest makespan among all feasible schedules at energy level E. The goal of the
problem is to find an optimal schedule for energy level E. We denote the problem as
Sm|prec, energy|Cmax.

We use sS
i to denote the speed of job i. The execution time of i is denoted by xS

i .
Note that xS

i = wi/s
S
i . The power of job i is denoted by pS

i . Note that pS
i = (sS

i )α .
We use ES

i to denote the energy used by job i. Note that ES
i = pS

i xS
i . The total energy

used in schedule S is denoted ES . Note that ES = ∑n
i=1 ES

i . We drop the superscript
S if the schedule is clear from the context.

3 No Precedence Constraints

As a warm-up, we consider the scheduling of tasks without precedence constraints.
In this case we know that each machine will run at a fixed speed, since otherwise
the energy use could be decreased without affecting the makespan by averaging the
speed.

We may assume that there are at least as many jobs as there are machines. (If
m > n, we simply ignore the last m − n machines.) We then know that each ma-
chine will finish at the same time, since otherwise some energy from a machine
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which finishes early could be transferred to machines which finish late, decreasing
the makespan. Furthermore there will be no gaps in the schedule.

For any schedule, denote the makespan by M , and denote the load on machine j ,
which is the sum of the work of the jobs on machine j , by Lj . Since each machine
runs at a fixed speed, in this section we denote by sj the speed of machine j , by pj

its power, and by Ej its energy used. By our observations so far we have sj = Lj/M .
The energy used by machine j is

Ej = pjM = sα
j M = Lα

j

Mα−1
.

We can sum this over all the machines and rewrite it as

Mα−1 = 1

E

∑

j

Lα
j . (1)

It turns out that minimizing the makespan is equivalent to minimizing the �α norm of
the loads. For this we can use the PTAS for identical machines given in [1]. Denote
the optimal loads by OPT1, . . . , OPTm. Similarly to (1), we have

OPTα−1 = 1

E

∑

j

OPTα
j , (2)

where OPT is the optimal makespan. For any ε > 0, we can find loads L1, . . . ,Lm

in polynomial time such that
∑

j Lα
j ≤ (1 + ε)

∑
j OPTα

j . For the corresponding
makespan M it now follows from (1) and (2) that

Mα−1 = 1

E

∑

j

Lα
j ≤ (1 + ε) · 1

E

∑

j

OPTα
j = (1 + ε)OPTα−1

or

M ≤ (1 + ε)1/(α−1)OPT.

Thus this gives us a PTAS for the problem Sm|energy|Cmax.

4 Main Results

4.1 One Speed for All Machines

In the remainder of the paper, we only consider the case with precedence constraints.
Suppose all machines run at a fixed speed s. We show that under this constraint, it is
not possible to get a good approximation of the optimal makespan. For simplicity, we
only consider the special case α = 3.

Consider the following input: one job of size m1/3 and m jobs of size 1, which
can only start after the first job has finished. Suppose the total energy available is
E = 2m. It is possible to run the large job at a speed of s1 = m1/3 and all others
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at a speed of 1. The makespan of this schedule is 2, and the total amount of energy
required is s3

1 + m = 2m.
Now consider an approximation algorithm with a fixed speed s. The total time

for which this speed is required is the total size of all the jobs divided by s. Thus
s must satisfy s3(m1/3 + m)/s ≤ E = 2m, or s2 ≤ 2m/(m1/3 + m). This clearly
implies s ≤ 2, but then the makespan is at least m1/3/2. Thus the approximation ratio
is �(m1/3) = ω(1).

4.2 The Power Equality

To discuss the relationship among the powers of jobs in an optimal schedule, we
need the following definitions. Given a schedule S of an input instance I , we define
the schedule-based constraint ≺S among jobs in I as follows. For any jobs i and j ,
i ≺S j if and only if i ≺ j in I , or i runs before j on the same machine in S. Suppose
S is a schedule where each job is run at a constant speed. The power relation graph of
a schedule S of an instance I is a vertex-weighted directed graph G = (V ,E) created
as follows:

• For each job i, create vertices ui and vi , each with weight pi where pi is the
power at which job i is run. Vertex ui corresponds to the start of job i. Vertex vi

corresponds to the completion of job i.
• In S, if i ≺S j and job j starts as soon as job i finishes (maybe on different ma-

chines), then create a directed edge (vi, uj ).
• Two dummy vertices v0 and un+1 are added. In S, if job i starts at time 0, then

create a directed edge (v0, ui). In S, if job i completes at time CS
max, then create a

directed edge (vi, un+1). Let p0 = ∑
i:(v0,ui )∈E pi , and let the weight of v0 be p0.

Let pn+1 = ∑
i:(vi ,un+1)∈E pi , and let the weight of un+1 be pn+1.

Basically, the power relation graph G tells us which pairs of jobs on the same machine
run back to back, and which pairs of jobs with precedence constraint ≺ between them
run back to back. For an example, see Fig. 1.

In this paper, we define a connected component of a directed graph G to be a
subgraph of G that corresponds to a connected component of the underlying undi-
rected graph of G. Note that an isolated vertex will form a connected component
by itself. Suppose C is a connected component of a power relation graph G. Define
H(C) = {u|(v,u) ∈ C} and T (C) = {v|(v,u) ∈ C}. Note that H(C) and T (C) is the
set of vertices at the heads and tails, respectively, of directed edges in C. If C con-
tains only one vertex, then H(C) = T (C) = ∅. The completion of jobs in T (C) and
the start of jobs in H(C) all occur at the same time. This holds simply because for
each edge (vi, uj ) in C, the completion time of job i is the starting time of job j by
definition of an edge. Travelling through all the edges of a component shows that all
completions and starts occur at a common time. If time t is when this occurs, we say
that C occurs at time t . We say that a connected component C satisfies the power
equality if

∑

i:ui∈H(C)

pi =
∑

i:vi∈T (C)

pi.
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Fig. 1 An example of a
schedule and the corresponding
power relation graph. In the
schedule on the left, the arrows
denote precedence constraints
between jobs. Note that the
precedence constraint between
jobs 1 and 6 is not represented in
the power relation graph.
However, in the power relation
graph there is an edge between
jobs 2 and 5 since they run back
to back on the same machine. In
this example, the graph has six
connected components

Note that pi is the power at which job i is run, and is also the weight of vertices
ui and vi . We say that a power relation graph G satisfies the power equality if each
connected component of G has at least one edge, and each connected component of
G satisfies the power equality. We now need to establish some properties of optimal
schedules. The following observation is an obvious consequence of the convexity of
the speed to power function.

Observation 1 If S is an optimal schedule for some energy level E, then each job is
run at a constant speed. This also implies that each job is run at a constant power.

Lemma 2 If S is an optimal schedule for some energy level E, then in the power
relation graph G of S, each component contains at least one edge.

Proof Let C be any connected component of the power relation graph G of an op-
timal schedule S. Assume to reach a contradiction that C contains no edges, that is,
C contains only one vertex x. Let t be the time in S corresponding to the occurrence
of C. Vertex x either corresponds to the start of some job i (x = ui ), or the completion
of some job i (x = vi).

If x = ui for some job i, then x corresponds to the start of some job i. Since there
is no edge incident to ui , then no jobs complete at time t . Thus, the machine that
job i runs on is idle right before time t . We can modify the schedule S by starting
job i earlier and running job i at a slower speed without violating the precedence
constraints. Slowing down the job reduces the energy used. The energy saved could
be reinvested elsewhere to get a better makespan. This contradicts the fact that S is
optimal.

If x = vi for some job i, then x corresponds to the completion of job i. Since there
is no edge incident from vi , then no jobs start at time t . Thus, the machine that job i

runs on is idle right after time t . We can modify the schedule S by running job i at a
slower speed so that it completes later without violating the precedence constraints.
Also this does not increase the makespan because job i could not be the last job to
finish from the construction of G. Slowing down the job reduces the energy used. The
energy saved could be reinvested elsewhere to get a better makespan. This contradicts
the fact that S is optimal. �
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Lemma 3 If S is an optimal schedule for some energy level E, then the power rela-
tion graph G of S satisfies the power equality.

Proof Let G be the power relation graph of an optimal schedule S. From Lemma 2,
every component of G contains at least one edge. Thus, it only remains to show that
each component of G satisfies the power equality. The idea of the proof is to consider
an arbitrary component C of G. Then create a new schedule S′ from S by slightly
stretching and compressing jobs in C. Since S is optimal, S′ cannot use a smaller
amount of energy. By creating an equality to represent this relationship and solving
it, we have that C must satisfy the power equality.

Now we give the details. C contains at least two vertices by Lemma 2. Let ε �= 0
be a small number such that xi + ε > 0 for any job i in T (C), and xi − ε > 0 for any
job i in H(C). Note that we allow ε to be either positive or negative.

We create a new schedule S′ by modifying schedule S in the following manner.
Increase the execution time of every job in T (C) by ε, and decrease the execution
time of every job in H(C) by ε. All other jobs are unchanged. Note the following:

(1) The execution time of job i in T (C) in S′ is positive because xi + ε > 0.
(2) The execution time of job i in H(C) in S′ is positive because xi − ε > 0.
(3) For |ε| small enough, S′ has the same power relation graph as S.

In particular, we choose ε such that |ε| is less than the smallest difference between
two successive times at which connected components occur (i.e., at which the set of
jobs being executed changes). Therefore, S′ is a feasible schedule having the same
power relation graph as S. Observe that the makespan of S′ remains the same as that
of S. All that has changed is the timing of some inner changeover point.

As an example, in Fig. 1 we might take the connected component consisting of
v1, v2, u4, u5. Changing the execution times in this component as described above
means that the horizontal line between jobs 1 and 2 and jobs 4 and 5 gets moved
slightly up or down, without affecting the rest of the schedule. Our restriction (3) on
ε means that this line is not for instance moved above the starting point of job 6,
which would violate a precedence constraint and give an infeasible schedule.

The change in the energy used, �E(ε), is

�E(ε) = ES′ − ES

=
∑

i:vi∈T (C)

(
ES′

i − ES
i

) +
∑

i:ui∈H(C)

(
ES′

i − ES
i

)

=
∑

i:vi∈T (C)

(
wα

i

(xi + ε)α−1
− wα

i

xα−1
i

)

+
∑

i:ui∈H(C)

(
wα

i

(xi − ε)α−1
− wα

i

xα−1
i

)

.

Since S is optimal, �E(ε) must be non-negative. Otherwise, we could reinvest the
energy saved by this change to obtain a schedule with a better makespan. Since the
derivative �E′(ε) is continuous for |ε| small enough, we must have �E′(0) = 0. We
have

�E′(ε) =
∑

i:vi∈T (C)

(1 − α)wα
i

(xi + ε)α
+

∑

i:ui∈H(C)

(α − 1)wα
i

(xi − ε)α
.
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Substitute ε = 0 and solve for �E′(0) = 0.

�E′(0) = 0,

∑

i:vi∈T (C)

(1 − α)wα
i

xα
i

−
∑

i:ui∈H(C)

(1 − α)wα
i

xα
i

= 0,

∑

i:vi∈T (C)

(1 − α)wα
i

xα
i

=
∑

i:ui∈H(C)

(1 − α)wα
i

xα
i

,

∑

i:vi∈T (C)

sα
i =

∑

i:ui∈H(C)

sα
i ,

∑

i:vi∈T (C)

pi =
∑

i:ui∈H(C)

pi .

Thus, this connected component C satisfies the power equality. Since C is an
arbitrarily chosen connected component in G, then G satisfies the power equality,
and the result follows. �

Note that the above proof also establishes that the power equality must also hold
for any schedule that locally optimal schedule with respect to the change considered
in the proof.

Let pi(t) be the power at which job j runs at time t . Let p(k, t) be the power at
which machine k runs at time t . By convention if job i starts at time t1 and completes
at time t2, we say that it runs in the close-open interval [t1, t2). If a job has just finished
at time t and another has just start at time t on machine k, then p(k, t) is equal to the
power of the starting job. We will use p(k, t−) to denote the power of the completing
job. Also by convention, if no job is running at time t on machine k, then p(k, t) = 0.

Lemma 4 If S is an optimal schedule for some energy level E, there exists a constant
p such that at any time t ,

∑m
k=1 p(k, t) = p, i.e. the sum of the powers of all machines

at time t is p.

Proof Suppose S is an optimal schedule. Let t0 = 0. For i ≥ 1, let ti be the earliest
time, if it exists, strictly after ti−1 at which some job completes or starts. Suppose tl
is the completion time of the last job. For i = 0, . . . , l − 1 and for any time t ′ such
that ti < t ′ < ti+1, we will show that

m∑

k=1

p(k, ti) =
m∑

k=1

p(k, t ′) and (3)

m∑

k=1

p(k, ti) =
m∑

k=1

p(k, ti+1). (4)

If this is the case, then the result follows.
Let i be an index such that 0 ≤ i ≤ l −1. Let t ′ be any time such that ti < t ′ < ti+1.

We now prove (3). Since no jobs start or complete in the interval (ti , t
′], then the same
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set of jobs are running at time t and t ′. By Observation 1, each job runs at a constant
speed at all time. This also means that each job runs at a constant power at all time.
Thus, (3) follows.

We now prove (4). Let A be the set of jobs that are running (or have just started)
at time ti . Let B be the set of jobs that are running (or have just started) at time ti+1.
Since no jobs start or finish during (ti , ti+1), then A − B is the set of jobs that com-
pletes at time ti+1, B − A is the set of jobs that starts at time ti+1, and A ∩ B is the
set of jobs that has been running since time ti (or earlier) and until after ti+1. If X is
a set of jobs, then let M(X) be the set of machines on which jobs in X run.

m∑

k=1

p(k, ti) =
∑

j∈A

pj (ti)

=
∑

j∈A−B

pj (ti) +
∑

j∈A∩B

pj (ti)

=
∑

j∈A−B

pj (t
−
i+1) +

∑

j∈A∩B

pj (ti+1) by the same argument as (3)

=
∑

k∈M(A−B)

p(k, t−i+1) +
∑

j∈A∩B

pj (ti+1)

=
∑

k∈M(B−A)

p(k, ti+1) +
∑

j∈A∩B

pj (ti+1) from Lemma 3

=
∑

j∈B−A

pj (ti+1) +
∑

j∈A∩B

pj (ti+1)

=
∑

j∈B

pj (ti+1)

=
m∑

k=1

p(k, ti+1).
�

4.3 Algorithm

Lemma 4 implies that the total power at which all the machines run is constant over
time (only the distribution of the power over the machines may vary). We will de-
scribe a scheme to use this lemma to relate Sm|prec, energy|Cmax to the problem
Q|prec|Cmax. Then, we can use an approximation algorithm for the latter problem
given in [5] to obtain an approximate schedule. The schedule is then scaled so that
the total amount of energy used is within the energy bound E.

Let p̄ be the sum of powers at which the machines run in the optimal schedule
OPT(I,E). Since energy is power times makespan, we have p̄ = E/OPT(I,E). How-
ever, an approximation algorithm does not know the value of OPT(I,E), so it cannot
immediately compute p̄. Nevertheless, we will assume that we know the value of p̄.
The value of p̄ can be approximated using binary search, and this will be discussed
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later. Given p̄, define the set M(p̄) to consist of the following fixed speed machines:
1 machine running at power p̄, 2 machines running at power p̄/2, and in general 2i

machines running at power p̄/2i for i = 0,1, . . . , 
log(m + 1)� − 1. Denoting the
total number of machines so far by m′, there are an additional m − m′ machines run-
ning at power p̄/2
log(m+1)�. Thus there are m machines in the set M(p̄), but the total
power is at most (logm + 1)p̄. We show in the following lemma that if the optimal
algorithm is given the choice between m variable speed machines with total energy E

and the set M(p̄) of machines just described, where it is allowed to use preemptions,
it will always take the latter, since the makespan will be smaller.

Lemma 5 We have

PREEMPTIVEOPTM(p̄)(I ) ≤ OPT(I,E),

where PREEMPTIVEOPTM(p̄)(I ) is the makespan of the optimal preemptive schedule
using fixed speed machines in the set M(p̄), and OPT(I,E) is the makespan of the
optimal schedule using m variable-speed machines with energy bound E.

Proof In an abuse of notation, we let PREEMPTIVEOPTM(p̄)(I ) and OPT(I,E) refer
both to the makespans of the two optimal schedules and those respective schedules
themselves. We will create a preemptive schedule S using fixed speed machines in
the set M(p̄). We will consider each time t and assign jobs in OPT(I,E) to machines
in S. We will show that the assignment can be feasibly done. We abuse the notation
by using S to refer to the makespan of schedule S. Thus, PREEMPTIVEOPTM(p̄)(I ) ≤
S ≤ OPT(I,E).

Consider any time t in OPT(I,E). Denote the power of machine k of OPT(I,E) at
this time by Pk . Suppose the machines are labeled so that P1 ≥ P2 ≥ · · · ≥ Pm. Now
we simply assign the job on machine 1 to the machine of power p̄ in S. And for i ≥ 1
we assign the jobs on machines 2i , . . . ,2i+1 − 1 to the machines of power p̄/2i in S.

Clearly, P1 ≤ p̄, since no machine can use more than p̄ power at any time. In
general, we have that Pj ≤ p̄/j for j = 1, . . . ,m. If we can show that the first ma-
chine in any power group has at least as much power as the corresponding machine
of OPT(I,E), this holds for all the machines. But since machine 2i in S has power
exactly p̄/2i , this follows immediately.

It follows that S allocates each individual job at least as much power as OPT(I,E)

at time t . We can apply this transformation for any time t , where we only need to take
into account that S might finish some jobs earlier than OPT(I,E). So the schedule for
S might contain unnecessary gaps, but it is a valid schedule, at least when we allow
preemptions. This proves the lemma. �

To construct an approximate schedule, we assume the value of p̄ is known, and the
set of fixed speed machines in M(p̄) will be used. The schedule is created using the
algorithm given in [5]. The schedule created may use too much energy. To fix this,
the speeds of all jobs are decreased so that the total energy used is within E at the
expense of having a longer makespan. The steps are given in subroutine FindSchedule
in Fig. 2.
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FindSchedule(I,p)

1. Find a schedule for instance I and machines in the set M(p) using the algorithm
in [5].

2. Reduce the speed of all machines by a factor of log2/α m.
3. Return the resulting schedule.

ALG(I,E)

1. Set p∗ = ( E
W

)
α

α−1 where W is the total work of all jobs.
2. Using binary search on [0,p∗] with p as the search variable, find the largest

value for p such that this 2-step process returns true. Binary search terminates
when the binary search interval is shorter than 1.
(a) Call FindSchedule(I,p).
(b) If for the schedule obtained we have

∑n
i=1 sα−1

i wi ≤ E, return true.

Fig. 2 Our speed scaling algorithm. The input consists a set of jobs I and an energy bound E

4.4 Analysis

Lemma 6 Suppose p = E/OPT(I,E). Subroutine FindSchedule(I,p) creates a
schedule which has makespan O(log1+2/α m)OPT(I,E) and uses energy O(E).

Proof Let S1 and S2 denote the schedules obtained in steps 1 and 2 of the subroutine
FindSchedule(I,p), respectively. Schedule S2 is the one returned by FindSchedule.
First we analyze the makespan.

From the results in [5], C
S1
max = O(logm)PREEMPTIVEOPTM(p)(I ). This holds

because although their algorithm does not use preemptions, it has this approximation
ratio even when compared against an optimal preemptive algorithm. In step 2, the
speed of every job decreases by a factor of log2/α m. Thus, the makespan increases by
a factor of log2/α m. From Lemma 5, PREEMPTIVEOPTM(p)(I ) ≤ OPT(I,E). There-
fore, taken together, we have

CS2
max = (log2/α m)CS1

max = (log2/α m)O(logm)PREEMPTIVEOPTM(p)(I )

= O(log1+2/α m)OPT(I,E).

Next we analyze the energy. The machines in the schedule OPT(I,E) run for
OPT(I,E) time units at the total power of p = E/OPT(I,E) consuming a total en-
ergy of E. Recall that if all machines in M(p) are busy, the total power is at most
p(1 + logm).

Schedule S1 runs the machines for O(logm)PREEMPTIVEOPTM(p)(I ) time units
at the total power at most p(1 + logm). Thus, it uses energy at most

p(1 + logm)O(logm)PREEMPTIVEOPTM(p)(I )

≤ O(log2 m)pOPT(I,E) = O(log2 m)E, (5)
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where the inequality follows from Lemma 5. The speeds at which the machines in S2
run are log2/α m slower than those in M(p), which S1 uses. Thus, the total power at
which the machines in S2 run is log2 m times smaller than that of S1. By (5), this is
O(E). �

Note that when we decrease the speed in S2 by some constant factor, the makespan
increases by that factor and the energy decreases by a larger constant factor. To find
the value of p̄, we use binary search in the interval [0,p∗] where p∗ is an initial
upper bound to be computed shortly. We continue until the length of the interval is at
most 1. We then use the left endpoint of this interval as our power. Now we compute
the initial upper bound p∗. For a given schedule, the total energy used is

n∑

i=1

pixi =
n∑

i=1

sα
i wi/si =

n∑

i=1

sα−1
i wi.

The best scenario that could happen for the optimal algorithm is when the work
is evenly distributed on all the machines and all the machines run at the same speed
at all time. Let W be the total work of all the jobs. Completing x units of work at a
speed of s requires sα−1x units of energy. If each of the m machines processes W/m

units of work, then it takes a total Wsα−1 units of energy. This must be less than E.

For the speed we find sα−1 ≤ E/W and thus p
α−1
α ≤ E/W . This gives us an initial

upper bound for p for the binary search:

p ≤ p∗ =
(

E

W

) α
α−1

.

OPT does not use a higher power than this, because then it would run out of energy
before all jobs complete.

From Lemma 6 and our analysis above, the following theorem holds.

Theorem 7 ALG is an O(log1+2/α m)-approximation algorithm for the problem
Sm|prec, energy|Cmax where the power is equal to the speed raised to the power of α

and α > 1.
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