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Abstract. We define and study the complexity of robust polynomials for Boolean
functions and the related fault-tolerant quantum decision trees, where input bits are
perturbed by noise. We compare several different possible definitions. Our main
results are:

• For every n-bit Boolean function f there is an n-variate polynomial p of degree
O(n) that robustly approximates it, in the sense that p(x) remains close to f (x)
if we slightly vary each of the n inputs of the polynomial.

• There is an O(n)-query quantum algorithm that robustly recovers n noisy input
bits. Hence every n-bit function can be quantum computed with O(n) queries
in the presence of noise. This contrasts with the classical model of Feige et al.,
where functions such as parity need �(n log n) queries.

We give several extensions and applications of these results.
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1. Introduction

In the last two decades, polynomials of many varieties have been used quite successfully
in complexity theory, both for upper and lower bounds. We study a variety here that is
tailored to analyzing algorithms with noisy input.

Robust Polynomials. A robust polynomial for a Boolean function f : {0, 1}n → {0, 1}
is a real multivariate polynomial p(z1, . . . , zn) such that for every x = (x1, . . . , xn) ∈
{0, 1}n and every z = (z1, . . . , zn) ∈ Rn, if ∀i : |xi − zi | ≤ 1

3 then | f (x) − p(z)| ≤ 1
3

(the 1
3 in both cases can be changed to any other positive constant less than 1

2 ). The
robust degree of f is the smallest degree of a robust polynomial for f ; note that we do
not require robust polynomials to be multilinear.

The motivation behind the definition of robust polynomials is twofold. First, it can be
viewed as a strengthening (restriction) of the notion of approximating polynomials. An
approximating polynomial for f is a multivariate real polynomial q that approximates
f within an additive term of 1

3 for each Boolean input. Approximating polynomials for
Boolean functions are of interest in themselves and have been the object of study for
quite a while. Their minimal degree is tightly related to the decision tree complexity of
f [11], [4]. Indeed, this “polynomial method” [4] is one of the main tools for obtaining
lower bounds on the number of queries in quantum algorithms. One difficulty, how-
ever, is that approximating polynomials do not directly compose: if f (x1, . . . , xn) is a
Boolean function with an approximating polynomial pf and g(y1, . . . , ym) is a Boolean
function with an approximating polynomial pg , then the polynomial on n · m variables
pf (pg, . . . , pg) obtained by plugging in a copy of pg for each of the xi is not necessarily
an approximating polynomial for the composed function f (g, . . . , g) on n ·m variables.
This difficulty is avoided with robust polynomials: if pf , pg are robust for f, g, respec-
tively, then their composition is a robust polynomial (and thus also approximating) for
the composed function.

A second motivation for robust polynomials is the study of quantum decision trees
that can tolerate noise in their inputs. We show that a natural quantum analogue of
classical fault-tolerant decision trees can be defined. As a result, it will follow that every
such algorithm that uses T queries to its input bits (and hence every classical noisy
decision tree algorithm as well) implies the existence of a robust degree-2T polynomial
for the function. This relates the robust degree to fault-tolerant quantum query algorithms
in exactly the same way that approximating polynomials are related to bounded-error
quantum query algorithms. Surprisingly, our results imply robust quantum algorithms
with a linear number of queries, as well as robust polynomials of linear degree, for any
Boolean function. This should be contrasted with the result of Feige et al. [5]. They
proved that for most Boolean functions, an overhead factor of �(log n) on the number
of queries is needed in the noisy case compared to the non-noisy case. In particular,
consider the parity function on n variables. This function can be decided trivially by
an n-query decision tree, and hence can be represented exactly by a real multilinear
polynomial of degree n (which is just the single monomial containing all variables in the
{−1, 1} representation). Feige et al. [5] prove that in the noisy decision tree model any
algorithm for PARITY needs�(n log n) queries. Using standard amplification techniques,
this yields an O(n log n)-degree robust polynomial for PARITY. Can one do better? Our
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results imply that there is a robust polynomial for PARITY of degree O(n). However, we
only have an indirect description of this polynomial by means of a quantum algorithm,
and we do not know of an explicit simple construction of such a polynomial.

Noisy Quantum Queries. We now discuss in more detail the model of noisy decision
trees in the quantum world. The notion of a “noisy query” in the quantum case is not as
obvious and natural as in the classical case, because one application of a quantum query
can address many different xi s in superposition. A first proposal would be that for each
quantum query, each of the bits is flipped independently with probability ε. Each such
quantum query introduces a lot of randomness and the algorithm’s state after the query
is a mixed quantum state rather than a pure state. In fact, this model is a concrete (and
very destructive) form of decoherence; the effects of various forms of decoherence on
oracle algorithms like Grover’s have been studied before, see e.g., [10] and [12].

A second model, which we adopt here, is to assume that we have n quantum pro-
cedures, A1, . . . , An , such that Ai outputs xi with probability at least 1 − ε. Such a
coherent-noise model is not unreasonable. For instance, it could be the case that the
input bits are actually computed for us by subroutines. Such algorithms can always be
made coherent by pushing measurements to the end, which means that we can apply and
reverse them at will. To enable us to apply the Ai s in superposition, we assume we have
a black box that maps

A: |i〉|0〉 �→ |i〉Ai |0〉.
One application of this will count as one query.

A third model, which we call the multiple-noisy-copies model, was studied by
Szegedy and Chen [13]. Here, instead of xi , the algorithm can only query “perturbed”
copies yi,1, . . . , yi,m of xi . The yi, j are independent Boolean random variables with
Pr[xi = yi, j ] ≥ 1 − ε for each i = 1, . . . , n and j = 1, . . . ,m. In contrast to the first
proposal, this model leaves the queries perfectly reversible, since the perturbed copies
are fixed at the start of the algorithm and the same yi, j can be queried more than once. The
assumption of this model is also stronger than the second model, since we can construct
a 1-query Ai that just outputs a superposition of all yi, j . If m is sufficiently large, this Ai

will compute xi with high success probability, satisfying the assumption of the second
model (see Section 4.2 for details).

Robust Quantum Algorithms. Assuming the second model of noisy queries and some
fixed ε, we call a quantum algorithm robust if it computes f on n inputs with bounded
error probability when the n inputs are given by bounded-error algorithms A1, . . . , An ,
respectively.

A first observation is that every T -query non-robust algorithm can be made robust
at a multiplicative cost of O(log T ). With O(log T ) queries, a majority gate, and an
uncomputation step, we can construct a unitary Ũx that approximates an exact quantum
query

Ux : |i〉|b〉 �→ |i〉|b ⊕ xi 〉
very well in the standard operator norm: ‖Ux − Ũx‖ ≤ 1/(100T ). Since errors add
linearly in a quantum algorithm [3], replacing Ux by Ũx in a non-robust algorithm gives
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a robust algorithm with almost the same final state. In some cases better constructions
are possible. For instance, a recent result by Høyer et al. [7] implies a quantum algorithm
that robustly computes the n-bit OR function with O(

√
n) queries. This is only a constant

factor worse than the noiseless case, which is Grover’s algorithm [6]. In fact, we do not
know of any function where the robust quantum query complexity is more than a constant
factor larger than the non-robust complexity.

Our main result about robust quantum algorithms (made precise in Theorem 3) is
the following:

There exists a quantum algorithm that outputs x1, . . . , xn , with high probability,
using O(n) invocations of the Ai algorithms (i.e., queries).

As already mentioned, this result implies that every n-bit function f can be robustly
quantum computed with O(n) queries. This contrasts with the classical�(n log n) lower
bound for PARITY. It is quite interesting to note that quantum computers, which usually are
more fragile than classical computers, are actually more robust in the case of computing
PARITY in this model with noisy inputs. The result for PARITY can be extended to every
symmetric function: for every such function, the optimal quantum algorithm can be made
robust with only a constant factor overhead (see Section 4.1).

Our result has a direct bearing on the direct-sum problem, which is the question of
how the complexity of computing n independent instances of a function scales with the
complexity of one instance. One would expect that computing n instances with bounded
error takes no more than n times the complexity of one instance. However, since we
want all n instances to be computed correctly simultaneously with high probability, the
only known general method in the classical world is to compute each instance with error
probability reduced to O(1/n). This costs another factor of O(log n). In fact, it follows
from the �(n log n) bound for PARITY that this factor of log n is optimal if we can only
run algorithms for individual instances in a black-box fashion. In contrast, our result
implies that in the quantum world, the bounded-error complexity of n instances is at
most O(n) times the bounded-error complexity of one instance. This is a very general
result. For example, it also applies to communication complexity [9, Section 4.1.1]. If
Alice and Bob have a bounded-error protocol for a distributed function f , using c bits
(or qubits) of communication, then there is a bounded-error quantum protocol for n
instances of f , using O(n(c + log n)) qubits of communication. The additive log n is
because Alice and Bob need to communicate (possibly in superposition) the index of the
instance that they are computing. In contrast, the best-known general classical solution
uses �(cn log n) bits of communication.

Note About Related Work. In their manuscript [8], Iwama et al. study a similar but
slightly weaker setting. There, the error probability for each input variable is exactly ε.
If ε is known, then one can use a version of exact amplitude amplification to “rotate off”
the error using O(1) queries and hence make the algorithm robust. If ε is unknown, it
can be estimated very well using quantum amplitude estimation, after which amplitude
amplification can be used as if ε was known. Iwama et al. derive from this that any
quantum algorithm can be made robust (in their model) with only a constant factor
overhead. Their model has the disadvantage that it does not cover the subroutine scenario,
where each input bit xi is computed for us by an algorithm or subroutine Ai whose error
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we can only upper bound. Our model does not need the assumption that the error is the
same for all input bits, and hence does not have this disadvantage.

2. Robust Polynomials—Preliminaries

In this section we study robust polynomials of two different but essentially equivalent
types. The first type arises from the multiple-noisy-copies model; the second type is what
we discussed in the introduction.

2.1. Two Definitions

Definition 1. Let ε ∈ [0, 1
2 ). An (ε,m)-perturbation of x ∈ {0, 1}n is a matrix y of

n ×m independent binary random variables yi, j such that Pr[yi, j = xi ] ≥ 1− ε for each
1 ≤ j ≤ m.

Definition 2. A type-1 (ε,m)-robust polynomial for the Boolean function f : {0, 1}n →
{0, 1} is a real polynomial p in nm variables yi, j (with 1 ≤ i ≤ n and 1 ≤ j ≤ m) so
that for every x ∈ {0, 1}n and y an (ε,m)-perturbation of x , we have

Pr[|p(y)− f (x)| > 1
3 ] < 1

3 ,

where the probability is taken over the distribution on the nm bits in y. Moreover, for
every v ∈ {0, 1}nm , we require − 1

3 ≤ p(v) ≤ 4
3 .

Since y2
i, j = yi, j for a bit yi, j , we can restrict attention to multilinear polynomials here.

Notice that the error parameter 1
3 in our definition of type-1 polynomial is consistent

with having expected error more than 1
2 for some x : it could be that |p(y)− f (x)| = 1

3
with probability 2

3 , and |p(y) − f (x)| = 4
3 with probability 1

3 , giving expected error
2
3 . However, this is not a significant problem, as the next lemma shows that the error
parameter 1

3 can be reduced to any small δ > 0 at only a small multiplicative cost in the
degree and the number of perturbations. It employs the following Chernoff bound from
Theorem A.1.16 of [1].

Theorem 1 (Chernoff). Let Xi , 1 ≤ i ≤ k, be mutually independent random variables
with all E[Xi ] = 0 and all |Xi | ≤ 1. Set S =∑k

i=1 Xi . Then Pr[S > a] ≤ e−a2/2k .

Lemma 1. Consider any δ > 0. If there is a type-1 (ε,m)-robust polynomial p for
f of degree d, then there exists a type-1 (ε,m ′)-robust polynomial q for f of degree
O(d log(1/δ)) and m ′ = O(m log(1/δ)), such that for x ∈ {0, 1}n and y an (ε,m ′)-
perturbation of x , we have

Pr[|q(y)− f (x)| > δ] < δ.

Moreover, for every v ∈ {0, 1}nm ′
we have q(v) ∈ [0, 1].
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Proof. We first analyze the following single-variate “amplification polynomial” of de-
gree k:

hk(x) =
∑

i>k/2

(
k

i

)
xi (1 − x)k−i .

Note that hk(x) is exactly the probability that among k coin flips with bias x toward 1,
more than half come up 1. Since it is a probability, we have hk(x) ∈ [0, 1] for all
x ∈ [0, 1]. Moreover, applying the Chernoff bound with Xi being the outcome of the
i th coin flip minus x , and a = ( 1

2 − x)k, we have hk(x) ∈ [0, 2−�(k)] for all x ∈ [0, 1
3 ].

Similarly hk(x) ∈ [1−2−�(k), 1] for x ∈ [ 2
3 , 1]. By “stretching” the domain a bit, we can

turn this into a degree-k polynomial hk such that hk(x) ∈ [0, 2−�(k)] for x ∈ [− 2
5 ,

2
5 ],

hk(x) ∈ [0, 1] for x ∈ [ 2
5 ,

3
5 ], and hk(x) ∈ [1 − 2−�(k), 1] for x ∈ [ 3

5 ,
7
5 ].

We use r independent (ε,m)-perturbations of x , denoted y = y1, . . . , yr , for some
number r to be determined later. For each perturbation yi it holds that Pr[|p(yi )− f (x)| >
1
3 ] < 1

3 . Using the amplification polynomial hk with k = O(1) we can get the value
of p closer to f : Pr[|hk(p(yi )) − f (x)| > 1

20 ] < 1
3 . Note that the expected value of

|hk(p(yi ))− f (x)| is now at most ( 2
3 )(

1
20 )+( 1

3 )1 = 11
30 . Now define an average polynomial

p(y) = 1
r

∑r
i=1 hk(p(yi )). Choosing r = O(log(1/δ)), the Chernoff bound (with k = r ,

and Xi being the indicator random variable for the event that |hk(p(yi )) − f (x)| > 23
60

minus its expectation) we have

Pr[|p(y)− f (x)| > 2
5 ] < δ.

Finally we apply hk again, this time with degree k = O(log(1/δ)), in order to get the
value of p δ-close to the value f (x): if we define q(y) = hk(p(y)) then

Pr[|q(y)− f (x)| > δ] < δ.

The degree of q is O(d log(1/δ)), and m ′ = mr = O(m log(1/δ)). The last property of
the lemma is also easily seen.

The second kind of robust polynomial is the following:

Definition 3. For a Boolean function f : {0, 1}n → {0, 1}, we call q a type-2 ε-robust
polynomial for f if q is a real polynomial in n variables such that for every x ∈ {0, 1}n

and every z ∈ [0, 1]n we have |q(z)− f (x)| ≤ 1
3 if |zi − xi | ≤ ε for all i ∈ [n]. If ε = 0,

then q is called an approximating polynomial for f .

Note that we restrict the zi s to lie in the set [0, ε]∪[1−ε, 1] rather than the less restrictive
[−ε, ε]∪ [1− ε, 1+ ε]. This facilitates later proofs, because it enables us to interpret the
zi s as probabilities. However, with some extra work we could also use the less restrictive
definition here. Also note that a minimal-degree type-2 robust polynomial for f need
not be multilinear, in contrast to the type-1 variety.
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Definition 4. For f : {0, 1}n → {0, 1}, let rdeg1( f ) denote the minimum degree of
any type-1 ( 1

3 ,O(log n)-robust polynomial for f , let rdeg2( f ) be the minimum degree
of any type-2 1

3 -robust polynomial for f , and let d̃eg( f ) be the minimum degree among
all approximating polynomials for f .

Strictly speaking, we should fix an explicit constant for the O(log n) of the type-1
polynomial, but to simplify proofs we will use the O(·) instead.

2.2. Relation between Type-1 and Type-2 Robust Polynomials

We characterize the relation of type-1 and type-2 robust polynomials as follows:

Theorem 2. For every type-2 ε-robust polynomial of degree d for f there is a type-1
(ε/2,O(log(n)/( 1

2 − ε)2))-robust polynomial of degree d for f .
Conversely, for every type-1 (ε,m)-robust polynomial of degree d for f there is a

type-2 ε-robust polynomial of degree O(d) for f .

Proof. Let p be a type-2 ε-robust polynomial of degree d for f . We choose m =
O(log(n)/( 1

2 − ε)2). If each yi, j is wrong with probability ≤ ε/2, then the Chernoff
bound implies that the probability that the average yi = ∑m

j=1 yi, j/m is more than ε

away from xi is at most 1/(3n). Then, by the union bound, with probability at least 2
3 we

have |yi − xi | ≤ ε for all i ∈ [n] simultaneously. Hence the polynomial p(y1, . . . , yn)

will be a type-1 (ε/2,O(log(n)/( 1
2 − ε)2))-robust polynomial of degree d for f .

For the other direction, consider a type-1 (ε,m)-robust polynomial of degree d for
f . Using Lemma 1, we boost the approximation parameters to obtain a type-1 (ε,m ′)-
robust polynomial p of degree O(d), with m ′ = O(m), such that for any x ∈ {0, 1}n and
(ε,m ′)-perturbation y of x , Pr[|p(y)− f (x)| > 1

9 ] < 1
9 . For z = (z1, . . . , zn) define the

formal polynomial q(z) (over the reals) by replacing each appearance of yi, j in p(y)with
zi . For z ∈ Rn with 0 ≤ zi ≤ 1 for all i , let yi, j (i ∈ [n], j ∈ [m ′]) be independent 0/1
random variables, where E[yi, j ] = zi . Then the polynomial q(z) that is defined above can
be viewed as q(z) = E[p(y)] because E[p(y)] = p(E[y]) and E[yi, j ] = zi . In particular,
if for z there exists x ∈ {0, 1}n with |zi − xi | ≤ ε for all i , then for any y ∈ {0, 1}nm that
is an (ε,m)-perturbation of x , we have q(z) = E[p(y)] (here expectation is according
to the distribution induced by y). Therefore V := {v ∈ {0, 1}nm : |p(v)− f (x)| < 1/9}
has probability Pr[y ∈ V ] > 8

9 and

| f (x)− q(z)| ≤
∣∣∣∣∣
∑
v∈V

Pr[y = v]( f (x)− p(v))

∣∣∣∣∣+
∣∣∣∣∣
∑
v /∈V

Pr[y = v](1 + 1
9 )

∣∣∣∣∣ < 1
3 .

This means that q(z) is a type-2 ε-robust polynomial for f of degree O(d).

Note, in all the above we have discussed total Boolean functions. The definitions
above make sense also for partial Boolean functions (or promise problems). The theorem
as well as the next corollary are true also for such cases.
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Corollary 1. rdeg1( f ) = �(rdeg2( f )) for every Boolean function f : {0, 1}n →
{0, 1}.

2.3. Polynomials Induced by Quantum Algorithms

The well-known “polynomial method” [2] allows us to make a connection between
“robust” quantum algorithms and robust type-1 polynomials:

Lemma 2. Let f : {0, 1}n → {0, 1} be a Boolean function. Let Q be a quantum al-
gorithm that makes at most T queries on inputs y from {0, 1}n×m , and let Q(y) denote
the binary random variable that is its output. If for every x ∈ {0, 1}n and y an (ε,m)-
perturbation of x , we have that Pry[Q(y) = f (x)] ≥ 8

9 (probability taken over the
distribution on the nm bits in y as well as over the algorithm), then there exists a
degree-2T type-1 (ε,m)-robust polynomial for f .

Proof. By Lemma 4.2 of [2], Q induces a degree-2T multilinear polynomial p on nm
variables that gives the acceptance probability of Q on fixed input y ∈ {0, 1}nm , i.e.,
p(y) = Pr[Q(y) = 1] (probability taken only over the algorithm). Fix x ∈ {0, 1}n .
Suppose f (x) = 0, then we want to show that Pry[p(y) > 1

3 ] < 1
3 . Since Pry[Q(y) =

f (x) = 0] ≥ 8
9 , we have Ey[p(y)] = Pry[Q(y) = 1] ≤ 1

9 . Hence Markov’s inequality
implies Pry[p(y) > 1

3 ] < 1
3 and we are done. The case f (x) = 1 is similar.

3. Quantum Robust Input Recovery

In this section we prove our main result, that we can recover an n-bit string x using O(n)
invocations of algorithms A1, . . . , An where Ai computes xi with bounded error. Let
|x | denote the Hamming weight of a bit string x . Our main theorem says that with high
probability we can find t 1-bits in the input x (if they are present) using O(

√
nt) noisy

queries.

Theorem 3. Let ε ∈ [0, 1
2 ). Consider ε-error algorithms A1, . . . , An that compute the

bits x = x1, . . . , xn . For every t , 1 ≤ t ≤ n, there is a quantum algorithm that makes
O(

√
nt) queries (invocations of the Ai ) and that outputs x̃ = x̃1, . . . , x̃n such that with

probability at least 2
3

1. for all i , x̃i = 1 ⇒ xi = 1,
2. |x̃ | ≥ min{t, |x |}.

In particular, with t = n we obtain x̃ = x using O(n) queries.

3.1. Some More Preliminaries

For simplicity we assume that 0 < ε < 1
100 is fixed and that Ai is a unitary transformation

Ai : |0t 〉 �→ αi |0〉|ψ0
i 〉 +

√
1 − α2

i |1〉|ψ1
i 〉
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for some αi ≥ 0 such that |αi |2 ≤ ε if xi = 1 and |αi |2 ≥ 1 − ε if xi = 0; |ψ0
i 〉 and |ψ1

i 〉
are arbitrary norm-1 quantum states. The output is the random variable obtained from
measuring the first qubit. It equals xi with probability at least 1 − ε. It is standard that
any quantum algorithm can be expressed in this form by postponing measurements (i.e.,
unitarily write the measurement in an auxiliary register without collapsing the state); any
classical randomized algorithm can be converted into this form by making it reversible
and replacing random bits by states (|0〉 + |1〉)/√2.

We define the following notion of closeness:

Definition 5. For ε ∈ [0, 1/2) and algorithmsA = (A1, . . . , An), we sayA is ε-close
to x ∈ {0, 1}n if Pr[Ai outputs xi ] ≥ 1 − ε for all i ∈ [n].

We sometimes modify our sequence of algorithmsA = (A1, . . . , An) as follows: For an
n-bit string x̃ , we negate the answer of Ai if x̃i = 1, and denote the resulting sequence
of n algorithms by A(̃x). Note that A(̃x) is close to 0n if and only if x̃ = x . In other
words, by finding ones in A(̃x), we find positions where x̃ differs from x . In addition,
for a set S ⊆ [n] we use AS (̃x) to denote the vector of algorithms A(̃x), except that for
all i �∈ S the i th algorithm always outputs 0 instead of running Ai . Also, for S as above
and x ∈ {0, 1}n we denote by x S ∈ {0, 1}n the string that is identical to x on indices in
S and is 0 on indices in S̄.

Our algorithm builds on a robust quantum search algorithm by Høyer et al. [7],
which we call RobustFind. This subroutine takes a vector A of n quantum algorithms
and in the good case returns an index i such that the “high probability” output of Ai is
1. Formally, the input/output relation of RobustFind is stated in Theorem 4.

Theorem 4 [7]. There is a procedure RobustFind(n, A, ε, β, γ , δ) where n ∈ N, A:
n quantum algorithms, ε, β, γ, δ > 0.

Output: i ∈ [n] ∪ {⊥} and with the following properties:

1. if A is ε-close to x ∈ {0, 1}n and x has Hamming weight |x | ≥ βn, then i �=⊥
with probability ≥ 1 − δ,

2. if A is ε-close to x ∈ {0, 1}n and if i �=⊥, then xi = 1 with probability ≥ 1 − γ

Complexity: O(1/( 1
2 − ε)2 · √1/β · log 1/γ δ) invocations of the Ai .

3.2. The Algorithm and Its Intuition

Before we formally prove Theorem 3 we explain the intuition and high level of our
algorithm (as defined by the AllInputs pseudo code) and of the proof. Clearly, for t =
O(1) Theorem 3 is obvious as we can run RobustFind t times to recover t indices i such
that xi = 1 with O(

√
n) queries. Therefore all considerations below will be for t > t0

for some t0 that is independent of n and will be specified later.
An important feature of the robust quantum search is that it can be used to verify a

purported solution x̃ ∈ {0, 1}n by running RobustFind on A(x̃) to find differences with
the real input x .

Let x be the unique assignment such that A is ε-close to x . Assume first that the
Hamming weight is |x | < 3t/2. Our idea is to apply RobustFind repeatedly for about
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Procedure AllInputs(n, t , A, ε)

n, t ∈ N, A: n algorithms, ε > 0

1: x̃ ← 0n

Part 1, Aim: to find a set of indices S ⊆ [n] that contains at least min(|x |, t) and
at most 3t/2 1s of the input.

2: for 3t/2 times do
3: i ← RobustFind(n,A(x̃), ε, t

100n ,
1

100 ,
1

100 )

4: if i �=⊥ then
5: x̃i ← 1 − x̃i

6: S ← {i | x̃i = 1}
7: if |S| < 5t/4 then
8: S ← [n]

Part 2, Aim: correctly find all but t/ log2 t 1s.
9: β ← t/100n

10: x̃ ← 0n

11: for k ← 1 to log((log t)2) do
12: βk ← β/2k

13: tk ← 3t/2k

14: for �← 1 to tk do
15: i ← RobustFind(n,AS(x̃), ε, βkn, 1

100 ,
1

100 )

16: if i �=⊥ then
17: x̃i ← 1 − x̃i

Part 3, Aim: correctly find all other 1s and eliminate remaining errors.
18: for m ← t/(log t)2 down to 1 do
19: i ← RobustFind(n,AS(x̃), ε, m

n ,
1

20t ,
1

20t )

20: if i �=⊥ then
21: x̃i ← 1 − x̃i

22: return x̃

3t/2 times (with threshold, say, β = t/(100n)) and error probability 1
100 . We expect that

for at least a 98
100 -fraction of the calls, RobustFind will return an index i such that xi = 1,

and we expect at most a 2
100 -fraction of wrong indices. The first problem to note is that

RobustFind might return the same (correct) index over and over again. This is easily
resolved as follows: We set x̃ ∈ {0, 1}n to be x̃i = 1 for every index i that we obtained
from RobustFind and 0 everywhere else, and we call RobustFind with A(x̃) rather than
withA. This means that the 1s that are to be reported by RobustFind are in x ⊕ x̃ which
is supported on the erroneous indices of x̃ , namely, on those indices that are either 1 in
x̃ but are 0 in x (false positive) and those indices that are 0 on x̃ while they are 1 on x
(false negative).

Done this, we expect about 3t/200 errors of both kinds (false positive and false
negative) in the 3t/2 calls to RobustFind, which should result in x̃ being quite close to
x . We then call RobustFind 3t/4 times hoping to correct some of the errors while not
introducing too many new errors. This would be reasonable as we call RobustFind in
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this second phase half the times we call it in the first phase. Thus we expect to have half
the number of new errors, while good chance of correcting many old errors (as they are
1 in x ⊕ x̃ and hence RobustFind is expected to report a 98

100 -fraction of them). We keep
doing this until the number of expected errors is smaller than t/(log2 t). At this point
we can afford to run RobustFind for t/(log2 t) times, with error probability as low as
1/(20t). This finds all remaining errors with high probability. Indeed this is the structure
of Parts 2 and 3 of our algorithm.

However, the idea above fails to work when |x | � t . To see the problem assume
that t = √

n while |x | = n/2. Then, after the first round above, x̃ will be supported
on about

√
n indices, out of which about

√
n/100 might be false positives. However, in

every next call to RobustFind, the procedure has about n/2 −√
n false negative indices

to report back—those that are 1s in x but still 0 in x̃ . Thus, even if all the next O(t) calls
return a correct such index, we still might be left with the same

√
n/100 false positive

errors that are introduced in the first round. Note that if t = n, which is the case when
the algorithm is applied to find all inputs, this last discussion is of no concern. However,
for relatively small t (which will be needed for some applications, e.g., Theorem 5) we
need to introduce a first part to the algorithm. This part is only meant to find a subset
S ⊆ [n] such that |x S| < 3t/2. Once this is done, we can use x S instead of x in the
description above, which will now work for every input.

3.3. Detailed Proof

We now prove that the success probability of the algorithm is at least 2
3 .

Success Probability. The algorithm is composed of three parts. We first prove that after
Part 1—that is, prior to line 9—we have min(t, |x |) ≤ |x S| ≤ 3t/2 with probability
1 − o(1).

Indeed, assume first that just prior to the execution of line 7 we have |S| ≥ 5t/4. Then
the upper bound on |x S| is trivial. For the lower bound assume (by way of contradiction)
that |x S| < t . Then we can have |S| ≥ 5t/4 only if at least t/4 wrong indices have
been reported by RobustFind. However, as we call RobustFind with γ = 1

100 we expect
at most 3t/200 errors. Thus by the Chernoff bound we have |x S| ≥ t with probability
1 − o(1).

If, on the other hand, we reach line 7 with |S| < 5t/4 then S is set to be [n], for which
the lower bound on |x S| certainly holds. For the upper bound assume that |x | ≥ 3t/2.
Then to have |S| < 5t/4 at line 7 means that at least t/4 − t/100 errors occurred in the
3t/2 calls for RobustFind (an error here is whenever RobustFind returns either i = ⊥
or a false negative index; the t/100 term comes from the threshold β = t/(100n)).
However, the error probability in this case is at most 2

100 (as we call RobustFind with
δ = γ = 1

100 ). Thus we expect at most 3t/100 errors. Again by Chernoff we are done.
Accordingly, we may assume that with probability 1− o(1), the S we have at line 9

is such that min(t, |x |) ≤ |x S| ≤ 3t/2. In Part 2 of the algorithm we want to find
correctly most of the 1s in x S . We maintain x̃ as our current estimate of x S . Initially
x̃ = 0n . Denote by Gk , k = 1, . . . , log((log t)2) the event that |x̃ ⊕ x S| < 30tk/100 at
the end of the kth run of the loop in line 10; Ḡk denotes the complementary event (the
negation of Gk). We prove inductively that Pr[Ḡk |Gk−1] = e−�(tk ). This together with an
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assertion that Pr[G1] = e−�(t) will imply that at the end of Part 2, |x S⊕x̃ | ≤ t/ log2 t with
probability at least 9

10 , assuming that t is large enough (such that e−�(tk ) = e−�(t/ log2 t) <

1/(10 log(log2 t))).
Indeed, let us examine the situation during the first round, namely for k = 1. We

call RobustFind in the first round for t1 = 3t/2 times with threshold β1n = t/200.
Thus, as long as |x S ⊕ x̃ | > t/200 happens, each call to RobustFind gives an i ∈ [n]
with probability at least 99

100 . Moreover, we expect at most a 1
100 -fraction of errors in the

reported indices. Assume first that at the beginning of the first round |x S ⊕ x̃ | > 20t/100
and let h = |x S ⊕ x̃ | − t/200. Then after the first h calls to RobustFind we expect at
least 98

100 -fraction of correct indices. Thus with probability e−�(t) we will get less than
90
100 correct indices. However, if we do get at least 90

100 · |x S ⊕ x̃ | correct indices after
those h calls we get an x̃ for which |x S ⊕ x̃ | ≤ 20

100 h ≤ 6t/100. Now, assuming this
happens, then Ḡ1 can happen at the end of the first round only if during the rest of
the 3t/2 − h ≤ 129t/100 remaining calls at least 39t/100 incorrect indices have been
made. As the probability for an incorrect index is bounded by 1

100 we expect only at most
1.3t/100 errors. Thus, by Chernoff 39t/100 errors will occur with probability e−�(t).
If, however, at the beginning of the first round |x S ⊕ x̃ | ≤ 20t/100 then by a similar
argument Ḡ1 can happen at the end of the first round only if during the 3t/2 calls to
RobustFind at least 25t/100 incorrect indices have been made. Again by Chernoff this
will happen with probability e−�(t). This concludes the proof that Pr[Ḡ1] = e−�(t).

We now inductively prove that Pr[Ḡk |Gk−1] ≤ e−�(tk ).
Indeed, assume that Gk−1 happens, namely that just prior to the beginning of the kth

round we have |x̃ ⊕ x S| < 30tk−1/100 = 60tk/100. In round k we call RobustFind with
threshold βkn = tk/200; hence, as long as |x̃ ⊕ x S| > tk/200, we expect RobustFind to
return an index i ∈ [n] ∩ S with probability at least 99

100 . Moreover, every time it returns
a correct index (which occurs with probability at least 99

100 ) it is a 1 in (x̃ ⊕ x S), hence it
reduces the weight of symmetric difference (the total number of errors) by 1.

Suppose first that prior to round k, |x̃ ⊕ x S| < 30tk/100. Then, for Ḡk to happen at
the end of round k, RobustFind would need to return at least 31tk/100 wrong indices,
namely i ∈ [n] ∩ S such that x̃i = xi . (Returning a ⊥ here does not count as a false
index.) However, as the probability of a wrong index is at most 1

100 and RobustFind is
called tk times, then, by Chernoff, the probability of Ḡk is e−�(tk ).

Assume now that |x̃ ⊕ x S| ≥ 30tk/100 at the beginning of round k. Recall also
that by the assumption that Gk−1 occurs, we have |x̃ ⊕ x S| < 60tk/100 at the beginning
of the kth round. Consider the first h = |x̃ ⊕ x S| − tk/200 calls for RobustFind. In
each of those calls |x̃ ⊕ x S| > tk/200 = βkn, hence with probability 99

100 every such
call returns an index i ∈ [n] ∩ S which is then a correct index with probability 99

100 .
Thus we expect that at least 98

100 · h correct indices will be returned in the first h calls.
By Chernoff, the probability that the number of correctly returned indices in those h
calls is fewer than 90h/100 is e−�(tk ) (as h ≥ 15tk/100). However, if the number of
correctly returned indices is at least 90h/100, then after the first h calls of RobustFind,
|x̃ ⊕ x S| < 0.2h ≤ 0.2 · 59tk/100 < 12tk/100. Thus, at this point we are still left with
3tk/2 − h calls to RobustFind which will result in Ḡk only if at least 48tk/100 wrong
indices will be returned. This again will happen with probability e−�(tk ). We conclude
that in all cases Pr[Ḡk |Gk−1] = e−�(tk ).
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Note that tk > t/(log2 t). Thus if we choose t > t0 such that for every k the
probability Pr[Ḡk |Gk−1] = e−�(tk ) < 1/(10t) we get that Pr[Ḡk] < 1

10 for k = log2 t
after the end of Part 2. Hence, with probability at least 0.8, we have |x̃ ⊕ x | < t/(log t)2

bad indices at the end of the for loop in lines 11–17.
Finally, in Part 3 we find (with probability close to 1) all remaining wrong indices by

making the individual error probability in RobustFind so small that we can use the union
bound: we determine each of the remaining bad indices with error probability 1/(10t).
This implies an overall success probability of at least 0.8 · 0.9 > 2

3 .

Complexity. Clearly the complexity is determined by Parts 2 and 3 of the algorithm.
We bound the number of queries to f in lines 11–17 as follows:

O


log(log2 t)∑

k=1

tk
√

1/βk


 = O


log(log2 t)∑

k=1

t

2k

√
n2k

t


 = O

(√
nt
)
. (1)

The number of queries in lines 18–21 is bounded by

O


t/(log t)2∑

m=1

√
n

m
log t


 = O

(√
nt
)
.

Therefore, the total query complexity of AllInputs is O(
√

nt).

4. Making Quantum Algorithms Robust

4.1. Inputs Computed by Quantum Algorithms

Here we state a few corollaries of Theorem 3. First, once we have recovered the input x
we can compute any function of x without further queries, hence

Corollary 2. For every f : {0, 1}n → {0, 1}, there is a robust quantum algorithm that
computes f using O(n) queries.

In particular, PARITY can be robustly quantum computed with O(n) queries while it takes
�(n log n) queries classically [5].

Second, in the context of the direct-sum problem, the complexity of quantum com-
puting a vector of instances of a function scales linearly with the complexity of one
instance.

Corollary 3 (Direct Sum). If there exists a T -query bounded-error quantum algorithm
for f , then there is an O(T n)-query bounded-error quantum algorithm for n independent
instances of f .

As mentioned, the best classical upper bound has an additional factor of log n, and this
is optimal in a classical black-box setting.

Third, all symmetric functions can be computed robustly on a quantum computer
with the same asymptotic complexity as non-robustly. A function is symmetric if its
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value only depends on the Hamming weight of the input. Let �( f ) := min{|2k − n +
1|: f changes value if the Hamming weight of the input changes from k to k + 1}.
Beals et al. [2, Theorem 4.10] exhibited a bounded-error quantum algorithm for f using
O(

√
n(n − �( f )+ 1)) quantum queries, which is optimal. We show that this upper

bound remains valid also for robust algorithms.

Theorem 5. For every symmetric function f , there is a robust quantum algorithm that
computes f using O(

√
n(n − �( f )+ 1)) quantum queries.

Proof. Note that f is constant when the Hamming weight of its input lies in the middle
interval [(n − �( f ))/2, (n + �( f )− 2)/2]. Using two applications of Theorem 3 with
sufficiently small error probability, we robustly search for  (n − �( f ))/2! ones and
n −  (n + �( f ) − 2)/2! zeros in the input. If both of these searches succeeded (i.e.,
found the required zeros and ones), then we know that our input lies in the middle
interval. If the search for zeros failed (i.e., ended with fewer zeros) then we know all
zeros and hence the whole input x . Similarly, if the search for ones failed then we know
x . Either way, we can output f (x).

4.2. Multiple Noisy Copies

As mentioned in the Introduction, the assumption that we have a bounded-error algorithm
Ai for each of the input bits xi also covers the model of [13] where we have a sequence
yi,1, . . . , yi,m of noisy copies of xi . These we can query by means of a mapping

|i〉| j〉|0〉 �→ |i〉| j〉|yi, j 〉.
Here we spell out this connection in some more detail. First, by a Chernoff bound,
choosing m := O(log(n)/ε2) implies that the average yi := ∑m

j=1 yi, j/m is close to xi

with very high probability:

Pr[|yi − xi | ≥ 2ε] ≤ 1

100n
.

By the union bound, with probability 99
100 this closeness will hold for all i ∈ [n] simulta-

neously. Assuming this is the case, we implement the following unitary mapping using
one query:

Ai : |0log(m)+1〉 �→ 1√
m

m∑
j=1

| j〉|yi, j 〉.

Measuring the last qubit of the resulting state gives xi with probability at least 1 − 2ε.
Hence, we can run our algorithm from Section 3 and recover x using O(n) queries to the
yi, j . Similarly, all consequences mentioned in Section 4.1 hold for this multiple-noisy-
copies model as well.

5. Making Approximating Polynomials Robust

The next theorem follows immediately from earlier results.
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Theorem 6. rdeg1,2( f ) = O(n) for every f : {0, 1}n → {0, 1}.

Proof. By Corollary 2 and the discussion in Section 4.2, f has an O(n)-query robust
quantum algorithm in the multiple-noisy-copies model that operates on O(log n) copies.
By Lemma 2 this induces a type-1 robust polynomial for f of degree O(n). Finally, by
Corollary 1 there also exists a degree-O(n) type-2 robust polynomial for f .

In particular, this shows that for functions with approximate degree �(n) we can
make the approximating polynomial robust at only constant factor overhead in the degree.
This case includes explicit functions like PARITY and MAJORITY, but also random (hence
almost all) functions. It is open whether approximating polynomials can always be made
robust at only a constant overhead in the degree. The best we can do is show that a non-
robust degree-d approximating polynomial can be made robust at a cost of a factor
O(log d). Our proof makes use of the well-known notion of certificate complexity.

Definition 6. An assignment C : S → {0, 1} of values to some subset S ⊆ [n] of the
n variables is consistent with x ∈ {0, 1}n if xi = C(i) for all i ∈ S. For b ∈ {0, 1},
a b-certificate for f is an assignment C such that f (x) = b whenever x is consistent
with C . The size of C is |S|, the cardinality of S. The certificate complexity Cx ( f ) of
f on x is the size of a smallest f (x)-certificate that is consistent with x . The certificate
complexity of f is C( f ) = maxx Cx ( f ).

Lemma 3. Let p be an ε-approximating polynomial for f : {0, 1}n → {0, 1}, and let
c = C( f ) be the certificate complexity of f . If x ∈ {0, 1}n and z ∈ [0, 1]n satisfy
|xi − zi | ≤ 1/(10c) for all i ∈ [n], then |p(z)− f (x)| ≤ 6ε/5 + 1

10 .

Proof. Consider a certificate C for x of size c. We will use xC and xC to denote the
parts of x corresponding to C and to its complement, respectively, and write x = xC xC .
If y ∈ {0, 1}n is chosen according to the z-distribution (yi = 1 with probability zi ),
then

p(z) = Ey[p(y)] =
∑
yC yC

Pr[yC ] Pr[yC ]p(yC yC) =
∑
yC

Pr[yC ] · EyC [p(yC yC)].

Now consider the expectation EyC [p(yC yC)], where yC ∈ {0, 1}n−c is fixed, while the
yC -bits are still chosen according to the z-distribution. Consider the c-variate polynomial
obtained from p by fixing the bits in yC . Since the “error” in the zC -variables is at most
1/10c, we have Pr[yC = xC ] ≥ (1 − 1/(10c))c ≥ 9

10 . If yC �= xC , then the difference

between p(yC yC) and p(xC yC) is at most 1 + 2ε, so

|EyC [p(yC yC)] − p(xC yC)| ≤ (1 + 2ε)/10.
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However, f (xC yC) = f (x), because the input xC yC is consistent with the same certifi-
cate as x . Hence

|EyC [p(yC yC)] − f (x)| ≤ |EyC [p(yC yC)] − p(xC yC)| + |p(xC yC)− f (x)|
≤ (1 + 2ε)/10 + ε = 1

10 + 6ε/5,

and also |p(z)− f (x)| ≤ 6ε/5 + 1
10 .

This lemma implies that we can make a non-robust approximating polynomial ro-
bust at the cost of a factor of O(log C( f )) in the degree: replace each variable by an
O(log C( f ))-degree amplification polynomial as used in the proof of Lemma 1. Since it
is known that C( f ) and d̃eg( f ) are polynomially related (C( f ) = O(d̃eg( f )4), see [4]),
we obtain:

Theorem 7. rdeg1,2( f ) = O(d̃eg( f ) · log d̃eg( f )).

6. Open Problems

We mention some open problems. First, in contrast to the classical case (PARITY) we do
not know of any function where making a quantum algorithm robust costs more than a
constant factor. Such a constant overhead suffices in the case of symmetric functions and
functions whose approximate degree is�(n). It is conceivable that quantum algorithms
(and polynomials) can always be made robust at a constant factor overhead. Proving or
disproving this would be very interesting.

Second, we are not aware of a direct “closed form” or other natural way to describe
a robust degree-n polynomial for the parity of n bits, but can only infer its existence
from the existence of a robust quantum algorithm. Given the simplicity of the non-robust
representing polynomial for PARITY, one would hope for a simple closed form for robust
polynomials for PARITY as well.

Finally, we have chosen our model of a noisy query such that we can coherently
make a query and reverse it. It is not clear to what extent non-robust quantum algorithms
can be made resilient against decohering queries, since the usual transformations to
achieve fault-tolerant quantum computation do not immediately apply to the query gate,
which acts on a non-constant number of quantum bits simultaneously.
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