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1Department of Combinatorics and Optimization
and
Institute for Quantum Computing, University of Waterloo,
200 University Avenue West, Waterloo, Ontario, Canada N2L 2T2
ambainis@math.uwaterloo.ca
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Abstract. We use tools from the algebraic theory of automata to investigate the
class of languages recognized by two models of Quantum Finite Automata (QFA):
Brodsky and Pippenger’s end-decisive model (which we call BPQFA) and a new
QFA model (which we call LQFA) whose definition is motivated by implementations
of quantum computers using nucleo-magnetic resonance (NMR). In particular, we
are interested in LQFA since NMR was used to construct the most powerful physical
quantum machine to date. We give a complete characterization of the languages
recognized by LQFA and by Boolean combinations of BPQFA. It is a surprising
consequence of our results that LQFA and Boolean combinations of BPQFA are
equivalent in language recognition power.

∗ The research of A.A. was supported by NSF Grant DMS-0111298. Most of this work was done while he
was at the University of Latvia. The research of M.B., M.M., and D.T. was supported by NSERC and FQRNT.
The research of M.G. and A.K. was supported by Grant No. 01.0354 from the Latvian Council of Science;
European Commission, Contract IST-1999-11234; and the University of Latvia, Kristaps Morbergs fellowship.



166 A. Ambainis, M. Beaudry, M. Golovkins, A. Ķikusts, M. Mercer, and D. Thérien

1. Introduction

In the classical theory of finite automata, it is unanimously recognized that the algebraic
point of view is an essential ingredient in understanding and classifying computations
that can be realized by finite state machines, i.e., the regular languages. It is well known
that there is a canonical finite monoid associated with every regular language L (namely
its syntactic monoid M(L)) and unsurprisingly the algebraic structure of this monoid
strongly characterizes the combinatorial properties of L . The theory of pseudo-varieties
of Eilenberg (which in this paper are called M-varieties for short) provides an elegant
abstract framework in which these correspondences between monoids and languages
can be uniformly discussed.

Finite automata are a natural model for classical computing with finite memory, and
likewise quantum finite automata (QFA) are a natural model for quantum computers that
use a finite-dimensional state space as memory. The more general model of quantum
circuits [16] gives us an upper bound on the capability of quantum machines, but the
fact that several years have passed without the construction of such circuits (despite the
efforts of many scientists) suggests that the first quantum machines are not going to be
this strong. Thus it is not only interesting but practical to study simpler models alongside
the more general quantum circuit model.

There are several models of QFA [14], [12], [7], [4], [8], [6] which differ in which
quantum measurements are allowed. Independently, Ciamarra [8] and Bertoni et al. [6]
showed that QFAs can recognize all regular languages if they are permitted to make
unrestricted transformations and measurements. In contrast, if only one measurement is
allowed at the end, the power of QFAs is then equal to that of permutation automata [14],
[7] (i.e., they recognize exactly those languages whose syntactic monoid is a group). In
intermediate models [12], [7], [4], more than one measurement is allowed but the form
of those measurements is restricted. In this case the language recognition power of QFAs
lies between those in [14] and those in [8] and [6], but has not been characterized exactly,
despite considerable effort [3], [2]. The most general definition of QFAs describes what is
achievable in principle according to laws of quantum mechanics while some of the more
restricted definitions correspond to what is actually achieved by current implementations
of quantum computers.

In view of the enduring success of the algebraic approach to analyze classical finite
state devices, it is natural to ask whether the framework can be used in the quantum
context as well. The work that we present here answers the question in the affirma-
tive. We analyze two types of QFA: one introduced in [7] (which we call BPQFA)
and a new type of QFA (which we call LQFA) whose definition is motivated by the
properties of nucleo-magnetic resonance (NMR) quantum computing. Among various
physical systems used to implement quantum computing, liquid state NMR has been
the most successful so far, realizing physical implementation of a quantum computer
with 7 qubits [20]. Liquid state NMR imposes restrictions on what measurements can
be performed, and the definition of LQFA reflects this. In both cases we are able to
provide an algebraic characterization for the languages that these models can recog-
nize. It turns out that the class of languages recognized by these two models coin-
cides almost exactly (that is, up to Boolean combinations), which is quite surprising
considering the differences between the two definitions (for example, the latter allows
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mixed states while the former does not). It is a pleasant fact that the M-variety that
turns up in analyzing these QFAs is a natural one that has been extensively studied by
algebraists.

In addition to algebra, our arguments are also based on providing new constructions
to enlarge the class of languages previously known to be recognizable in these models, as
well as proving new impossibility results using subspace techniques (as developed in [3]),
information theory (as developed in [15]), and quantum Markov chains (as developed
in [1]). In particular, we show that BPQFA cannot recognize the language a�∗ (it is
already known [12] that�∗a is not recognizable), and that LQFA cannot recognize a�∗

or �∗a.
The paper is organized as follows. In Section 2 we give an introduction to the

algebraic theory of automata and we give all of the necessary QFA definitions. In the
next two sections we give our results on the two models we introduced, and in the last
section we outline some open problems.

2. Preliminaries

2.1. Algebraic Theory of Automata

A language L ⊆ �∗ is said to be recognized [17] by the monoid M if there exists
a homomorphism ϕ: �∗ → M and a set F ⊆ M such that ϕ−1(F) = L . It can be
easily shown that a language is recognized by some finite monoid if and only if it is
regular. Given a regular language L , we can construct a canonical finite monoid M(L)
recognizing L , which is called the syntactic monoid. Let ∼L be the congruence on �∗

defined by v ∼L w if, for all x, y, xvy ∈ L ⇔ xwy ∈ L . Then M(L) is the quotient set
induced by ∼L .

A monoid M divides N (we write M ≤ N ) if M is a morphic image of a submonoid
of N . The division relation is transitive. If M recognizes L and M ≤ N , it follows that
L is also recognized by N . The syntactic monoid is the smallest monoid recognizing L
with respect to the division relation.

An M-variety is a class of finite monoids which is closed under taking submonoids,
surjective homomorphisms, and direct products. Given an M-variety V, with each finite
alphabet� we associate the class of regular languages V(�∗) = {L ⊆ �∗: M(L) ∈ V}.
It can be shown thatV(�∗) is a Boolean algebra closed under quotients (i.e., if L ∈ V(�∗)
then for all w ∈ �∗ we have w−1L = {x : wx ∈ L} ∈ V(�∗) and Lw−1 = {x : xw ∈
L} ∈ V(�∗)) and inverse homomorphisms (i.e., if ϕ: �∗ → �∗ is a homomorphism
and L ∈ V(�∗), then ϕ−1(L) ∈ V(�∗)). Any class of languages satisfying these closure
properties is called a ∗-variety of languages. A theorem of Eilenberg [9] says that there
is a 1–1 correspondence between M-varieties and ∗-varieties of languages: a driving
theme of the research in automata theory has been to find explicit instantiations of this
abstract correspondence.

The M-variety that plays the key role in our work is the so-called block groups [18],
classically denoted BG. This variety is ubiquitous: it appears in topological analysis
of languages [18], in questions arising in the study of nonassociative algebras [5], and
in constraint satisfaction problems [11]. It can be defined by the following algebraic



168 A. Ambainis, M. Beaudry, M. Golovkins, A. Ķikusts, M. Mercer, and D. Thérien

condition: M is a block group iff for any e = e2 and f = f 2 in M , eM = fM or
Me = Mf implies e = f . For any language L , M(L) is a block group iff L is a Boolean
combination of languages of the form L0a1L1 · · · ak Lk , where each ai ∈ � and each
Li is a language that can be recognized by a finite group: this class of languages is
the largest ∗-variety that does not contain a�∗ or �∗a for arbitrary alphabet satisfying
|�| ≥ 2 [18].

2.2. Models

We adopt the following conventions. Unless otherwise stated, for any machine M where
these symbols are defined, Q is a finite set of states with |Q| = n,� is the input alphabet,
q0 is the initial state, and Qacc ⊆ Q (Qrej ⊆ Q) are accepting (rejecting) states. If Qacc

and Qrej are defined then we require Qacc ∩ Qrej = ∅. Also, each model in this paper
uses distinct start and endmarkers, ¢ and $, respectively. On input w, M processes the
characters of ¢w$ from left to right.

A superposition over a finite set Q is a mapping ψ : Q → C
n that satisfies ‖ψ‖2 =√∑

q ψ(q)
2 = 1. We sayψ(q) is the amplitude with whichψ is in q. Superpositions can

be expressed mathematically as vectors in Cn . For each q ∈ Q we uniquely associate
an element of the canonical basis of Cn , and we denote this element |q〉. Now the
superposition can be written as the vector

∑
q ψ(q)|q〉.

For all QFAs in this paper, the state of the machine M at any given time is a
superposition over Q. Note that this is different from the notion of state for DFAs, so
some care is required to avoid confusion.

In the case of an LQFA, the state of the machine after reading some prefix is,
in general, a random variable. In other words, the state is taken from a probability
distribution of superpositions {(pi , ψi )}, each ψi with probability pi . In this case we
say the system is in a mixed state. Mixed states can be expressed in terms of density
matrices [16], and these are usually denoted ρ. If the distribution is trivial, we say that
the machine is in a pure state. A more detailed discussion of mixed states is given in
Section 3.2.1.

A quantum transformation is a linear unitary transformation. We say that A ∈ Cn×n

is unitary if A∗ = A−1, where A∗ is the Hermitian conjugate of A and is obtained
by taking the conjugate of every element in AT . Unitary transformations are length
preserving, and they are closed under product.

Let E1 ⊕ · · · ⊕ Ej be a partition of Cn into orthogonal subspaces. A projective
measurement of a superposition ψ with respect to E1⊕· · ·⊕ Ej has the effect of proba-
bilistically projecting (or collapsing)ψ into exactly one Ei , according to the distribution
outlined below. For all i , let Pi be the projection operator for Ei . Then the probability of
projecting into Ei while measuring with respect to E1⊕· · ·⊕ Ej is ‖Piψ‖2

2. When such
a measurement is made on a quantum state, the index of the projection is communicated
to the observer. Measurements are the only way in which an observer can obtain a priori
information about a quantum state, thus the output of QFAs are based on the outcome
of some measurement.

We consider two modes of acceptance. For a probabilistic machine M , we say M
recognizes L with bounded (two-sided) error if M accepts any w ∈ L and rejects any
w /∈ L with probability at least p > 1

2 . We say M recognizes L with bounded positive
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one-sided error if any w ∈ L is accepted with probability p > 0 and any w /∈ L is
rejected with probability 1.

We consider three models of QFAs. The first is motivated by liquid state NMR.
Liquid state NMR technology has been used to realize physically a 7-qubit quantum
computer [20]. NMR uses nuclei of atoms as quantum bits, and the state of the machine
is a molecule in which seven different atoms can be individually addressed. One of the
features of NMR is that quantum transformations are simultaneously applied to a liquid
containing 1021 molecules. Thus, we have the same quantum computation carried out by
1021 identical quantum computers. Applying a measurement is problematic, however. On
different molecules, the measurement can have a different result. We can determine the
fraction of molecules that produce each outcome, but we cannot separate the molecules
by the measurement outcome. Because of that, the operations performed cannot be
conditional on the outcome of a measurement. On the other hand, measurements which do
not affect the next transformation are allowed. This situation is reflected in the definition
of our new model, given below:

Latvian QFA (LQFA). An LQFA is a tuple M = (Q, �, {Aσ }, {Pσ }, q0, Qacc), where,
for each σ ∈ � ∪ {¢, $}, Aσ is a unitary matrix and Pσ is a measurement (each Pσ
is specified by a partition E1 ⊕ · · · ⊕ Ej of Cn into orthogonal subspaces). We define
Qrej = Q\Qacc and we require that P$ is a measurement with respect to Eacc ⊕ Erej,
where Eacc = span{|q〉: q ∈ Qacc} and Erej = span{|q〉: q ∈ Qrej}. Let ψ be the state
of M after reading some partial input. On input σ , ψ is transformed by Aσ and then
measured with respect to Pσ . Note that the outcome of the measurement is probabilistic,
so the state after the measurement is a random variable. At the end of the input, M accepts
or rejects according to the outcome of the P$ measurement. The acceptance mode for
LQFA is bounded error.

Also, in [10], a probabilistic automata model related to an LQFA was introduced,
which Golovkins and Kravtsev called “1-way probabilistic reversible C-automata” (we
abbreviate this to PRA). A PRA is a tuple M = (Q, �, {Aσ }, q0, Qacc), where each Aσ
is a doubly stochastic matrix. A matrix is doubly stochastic if the sum of the elements
in each row and column is 1. The acceptance mode for a PRA is bounded error. The two
models are related in the following way: If M is an LQFA such that each Pσ measures
with respect to

⊕
q∈Q span{|q〉} for every σ ∈ �, then M can be simulated by a PRA.

Conversely, a PRA can be simulated by an LQFA if each Aσ of the PRA has a unitary
prototype [10]. A matrix U = [ui j ] is a unitary prototype for S = [si j ] if, for all i, j ,
|ui, j |2 = si, j . When S has a unitary prototype it is called unitary stochastic [13]. This
relationship between an LQFA and a PRA is helpful in proving that certain languages
are recognized by an LQFA.

LQFAs were introduced as QRA-M-C in the classification of QFAs proposed in [10].
A superset of the LQFA model has been studied in [15] and [4].

The first and most studied model of a QFA was defined by Kondacs and Watrous
in [12] (we call these KWQFAs). A KWQFA is defined by a tuple M = (Q, �, {Aσ }, q0,

Qacc, Qrej)where each Aσ is unitary. The state sets Qacc and Qrej will be halt/accept and
halt/reject states, respectively. We also define Qnon = Q\(Qacc∪Qrej) to be the the set of
nonhalting states. Lastly, forµ ∈ {acc, rej, non}we define Eµ = span{|q〉: q ∈ Qµ}, and



170 A. Ambainis, M. Beaudry, M. Golovkins, A. Ķikusts, M. Mercer, and D. Thérien

Pµ to be the projection onto Eµ. Letψ be the state of M after reading some partial input.
On input σ , ψ is transformed by Aσ and the outcome is measured with respect to Eacc⊕
Erej ⊕ Enon. If the outcome of the measurement is acc or rej, then M halts and accepts
or rejects accordingly. Otherwise, the state becomes ψ ′ = Pnon Aσψ/‖Pnon Aσψ‖2 and
M continues. We require that after reading $ the state is in Enon with probability 0, so
that Pr[M accepts w] + Pr[M rejects w] = 1. The acceptance mode for a KWQFA is
bounded error.

BPQFAs were introduced in [7] as a natural restriction of the KWQFA model. We
define BPQFAs below.

Brodsky–Pippenger QFA (BPQFA). A BPQFA M is a KWQFA where M is not per-
mitted to halt in an accepting state until $ is read, and the acceptance mode is changed
to bounded positive one-sided error.

In [7], it was shown that BPQFAs recognize positive Boolean combinations (unions
and intersections) of �∗a1�

∗a2 · · · ak�
∗. In this paper we generalize these results and

give nearly tight upper bounds.

3. Latvian QFA

Our main result for this model is a complete characterization of the languages recognized
by LQFAs:

Theorem 1. LQFAs recognize exactly the class of languages whose syntactic monoid
is in BG.

To prove this result, we first show that the class of languages recognized by LQFAs
forms a ∗-variety of languages. Then we give tight upper and lower bounds on the
languages recognized by LQFAs. Before we begin the proof of this theorem, we establish
a few simple properties:

Lemma 1. Given an LQFA M recognizing L with probability p > 1
2 , we can construct

M ′ recognizing L with probability 1− ε for any ε > 0.

Proof. Let M = (Q, �, q0, {Aσ }, {Pσ }, Qacc). Our boosting strategy is to construct
a single machine that simulates m copies of M in parallel using a single machine M ′

and accepts only if the majority of the copies accept. By a Chernoff argument, we can
always find an m that will give the desired probability of acceptance. Let M ′ have state
set Qm , initial state (q0, . . . , q0), set of transitions {⊗m

i=1 Aσ }σ∈� , similarly defined
measurements, and accepting state set {(qx1 , . . . , qxm ): |{qxi ∈ Qacc}| ≥ m/2}. This
machine simulates m trials of M as required.

Claim 1. Consider a sequence of l finite transformations and measurements operating
on a finite space E . These operations can be simulated by one transformation and one
measurement on a (possibly larger) finite subspace E ′.
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Proof. Assume we have a sequence of l unitaries Ui on a space E , each of them followed
by a measurement Ei1⊕· · ·⊕ Eiki . Define a new space E ′ of dimension (dim E) ·∏i ki .
It is spanned by states |ψ〉| j1〉 · · · | jl〉, |ψ〉 ∈ E , ji ∈ {0, . . . , (ki − 1)}. Each Ui can be
viewed as a transformation on E ′ that acts only on the |ψ〉 part of the state. Replace the
measurements by unitary transformations Vi defined by

Vi |ψ〉| j1〉 · · · | ji 〉 · · · | jl〉 = |ψ〉| j1〉 · · · |( ji + j) mod ki 〉 · · · | jl〉

for |ψ〉 ∈ Ei j . We claim that the unitary operation VlUl · · · V1U1, followed by the mea-
surement operation that measures all of j1, . . . , jl , will simulate the l transformations and
measurements as required. It is sufficient to consider the case where the system is cur-
rently in a pure stateψ . Applying the original sequence of operations will produce a mixed
state {(pi , ψi )}, eachψi with probability pi . Now consider our simulation of the original
sequence. We start in state |ψ〉| j1〉 · · · | jl〉 and then move to {(pj ′1,..., j ′l , |ψ〉| j ′1〉 · · · | j ′l 〉)},
where pj ′1,···, j ′l is the probability that, for all i , the i th measurement caused a projection
into Ei,( j ′i− ji )mod ki . Thus when we restrict our attention to the E part of the state, the
behavior of our simulation is actually equivalent to that of the original sequence.

Now to prove that the languages recognized by LQFAs form a variety, it is sufficient
to show:

Theorem 2. The class of languages recognized by LQFAs is closed under union, com-
plement, inverse homomorphisms, and word quotient.

Proof. For any LQFA M recognizing L , we can trivially construct M recognizing L
by swapping the accept and reject states. This proves closure under complement.

Next we show closure under union. Let M1 and M2 be LQFAs recognizing L1 and
L2 with probability p1 and p2, respectively. Without loss of generality assume p1 ≥ 3

4
and p2 ≥ 3

4 . Now to compute the union of L1 ∪ L2, construct the tensor product M ′ of
M1 and M2 as in Lemma 1 but set Q′

acc = {(qi , qj ): qi ∈ Q1,acc ∨ qj ∈ Q2,acc}. It is
easy to check that M ′ recognizes L with probability at least 9

16 .
Now suppose that M recognizes L , and that h: �∗ → �∗ is a homomorphism.

Define M ′ so that, on input σ ∈ �, M ′ simulates the state transition of M on input h(σ ).
By Claim 1 this simulation can be performed with one unitary transformation and one
measurement, so M ′ is constructible. It is easy to check that M ′ recognizes h−1(L).

Finally, we prove closure under quotient. Let M be an LQFA recognizing L . We can
construct M ′ recognizingw−1L as follows. Use Claim 1 to simulate A′¢w with one unitary
transformation and measurement, and make these the new A¢ and P¢ operation. Make
all other operations in M ′ the same as in M . Clearly M ′ will recognize {x : wx ∈ L}.
Right quotient is similar.

3.1. LQFA Lower Bounds

We now proceed to show that LQFAs recognize any language whose syntactic monoid
is in BG. We begin with the following simpler result:

Theorem 3. LQFAs can recognize languages of the form �∗a1�
∗ · · · ak�

∗.
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Proof. To prove this result, we first give a construction of a PRA that recognizes
�∗a1�

∗ · · · ak�
∗ with probability ((n − 1)/n)k , for any n ∈ N. Then we show that the

transitions of this PRA can be simulated by an LQFA.
We construct our PRA inductively on the length of the subword. For k = 1 we

construct M (1) = (Q(1), q0, �, {A(1)σ }, Q(1)
acc) as follows. Let Q(1) = {q0, q2, . . . , qn},

A(1)a1
= (1/n)1 (where 1 is an n × n matrix of all ones), A(1)σ = I for all σ �= a1, and

Q(1)
acc = Q(1)\{q0}. It is easy to check that this machine accepts any w ∈ �∗a1�

∗ with
probability ((n − 1)/n) and rejects any w /∈ �∗a�∗ with probability 1.

Assume we have a machine M (i−1) = (Q(i−1), q0, �, {A(i−1)
σ }, Q(i−1)

acc ) recognizing
inputs containing the subword a1 · · · ai−1 with probability ((n − 1)/n)i−1, we construct
M (i) = (Q(i), q0, �, {A(i)σ }, Q(i)

acc) recognizing inputs containing the subword a1 · · · ai

with probability ((n − 1)/n)i . Our augmentation will proceed as follows. First let Q(i)
acc

be a set of (n − 1)i new states all distinct from Q(i−1), and let Q(i) = Q(i−1) ∪ Q(i)
acc.

For each q ∈ Q(i−1)
acc we uniquely associate n − 1 states q2, . . . , qn ∈ Q(i)

acc. We leave q0

unchanged.
It remains to define the A(i)σ transitions. Define Ã(i−1)

σ to be the transformation that
acts as A(i−1)

σ on Q(i−1) ⊂ Q(i) and as the identity elsewhere. We let A(i)σ = Ã(i−1)
σ B(i)σ ,

where B(i)σ is an additional transformation that will process the ai character (note that the
matrices are applied from right to left). For all σ �= ai we define B(i)σ = I . For σ = ai

we define B(i)σ so that, independently for each q ∈ Q(i−1)
acc , the transformation (1/n)1 is

applied to {q, q2, q3, . . . , qn}. At the end we have a machine M = M (k) that recognizes
�∗a1�

∗ · · · ak�
∗.

To simplify notation, we define Q(0) = Q(0)
acc = {q0} and B(1)σ = A(1)σ for all σ . The

correctness of the construction follows from this lemma:

Lemma 2. Let w be any word. As we process w with M , for all 0 ≤ i < k the total
probability of M being in one of the states of Q(i) is nonincreasing.

Proof. For any S ⊆ Q, denote by P(S) the sum probability of being in one of the states
of S. Every nontrivial Aσ matrix can be decomposed into a product of B(i)ai

matrices
operating on different parts of the state space. All of these matrices operate on the
machine state in such a way that for all j and for any {q, q ′} ⊆ Q( j)

acc, at any time there
is an equal probability of being in state q or q ′. Thus the distribution of the state at any
time can be completely specified by P(Q(0)

acc), . . . , P(Q(k)
acc).

For all 0 ≤ i < k the machine can only move from Q(i) to Q\Q(i) when B(i+1)
ai+1

is
applied, and this matrix has the effect of averaging the likelihood of being in any given
state of Q(i)

acc ∪ Q(i+1)
acc . Since |Q(i+1)

acc | = (n − 1)|Q(i)
acc|, it follows that a B(i+1)

ai+1
operation

will not increase P(Q(i)) unless P(Q(i+1)
acc ) > (n − 1)P(Q(i)

acc). It can easily be shown
by induction on the sequence of B( j)

aj matrices forming the transitions of M that this
condition is never satisfied. Thus P(Q(i)) is nonincreasing for all i .

We are now ready to prove that M recognizes L = �∗a1�
∗ · · · ak�

∗. First we show
that any w /∈ L is rejected with certainty. The transitions are constructed in such a way
that M can only move from Q(i−1) to Q(i) upon reading ai , and M cannot move from
Q(i−1) to Q(i+1) in one step (even if ai = ai+1). Next we show that anyw ∈ L is accepted
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with probability ((n − 1)/n)k . After reading the first a1, P(Q(1)
acc) ≥ ((n − 1)/n) and by

Lemma 2 this remains satisfied until a2 is read, at which point M will satisfy P(Q(2)
acc) ≥

((n − 1)/n)2. Inductively after reading subword a, M satisfies P(Qacc) ≥ ((n − 1)/n)k .
Thus M indeed recognizes �∗a1�

∗ · · · ak�
∗.

All that remains is to show that we can simulate each Aσ using LQFA transforma-
tions. Recall that each Aσ is a product of B(i)ai

matrices operating on different parts of
the state space. If each B(i)ai

has a unitary prototype, then each B(i)ai
can be simulated

by a single transformation followed by a single measurement, and each Aσ could be
simulated using the series of l transformations and measurements. Thus, by Claim 1, it
is sufficient to show that each B(i)ai

has a unitary prototype.
Observe that any block diagonal matrix such that all of the blocks have unitary

prototypes is itself a unitary prototype, and that unitary prototypes are trivially closed
under permutations. Each B(i)ai

can be written as a block diagonal matrix, where each
block is the 1 × 1 identity matrix or the (1/n)1 matrix, so it remains to show that
there is a unitary prototype for (1/n)1 matrices. Coincidentally the quantum Fourier
transform matrix [16], which is the basis for most efficient quantum algorithms, is a
unitary prototype for (1/n)1. Thus, Aσ can be simulated by an LQFA. This completes
the proof of Theorem 3.

We can generalize Theorem 3 as follows:

Theorem 4. LQFAs recognize any language whose syntactic monoid is in BG.

Proof. We give a PRA construction recognizing the language L defined by w ∈ L if
and only if w = w0a1w1 · · · akwk where, for each i , w0a1w1 · · ·wi ∈ Li for some pre-
specified group languages L0, . . . , Lk . By the cancellative law of groups, it is sufficient
to show that PRA recognize any language of the form L0a1L1 · · · ak Lk . We will see that
each transition matrix has a unitary prototype, thus there is an LQFA recognizing this
language as well. This along with the closure properties of an LQFA is sufficient to prove
that any language whose syntactic monoid is in BG is recognized by an LQFA.

For all i let Gi = M(Li ). Also let ϕi : �∗ → Gi and Fi be such that ϕ−1
i (Fi ) = Li .

We compose these groups into a single group G = G0 × · · · × Gk with identity 1 =
(1, 1, . . . , 1).

Let M = (Q, q0, �, {Aσ }, Qacc) be a PRA recognizing the subword a1 · · · ak con-
structed as in Theorem 3. From M we construct an LQFA M ′ = (Q′, q ′0, �, {A′σ }, Q′

acc)

recognizing L . We set Q′ = Q×G, q ′0 = (q0, 1), Q′
acc = Qacc×(G1×· · ·×Gk−1×Fk),

and A¢ = A$ = I . For each σ ∈ � define A′σ as follows. Let Pσ be the permutation ma-
trix that maps (q, g) to (q, gσ) for each q ∈ Q and g ∈ G. For each 1 ≤ i ≤ k let A′σ i be
the matrix that, for each f ∈ G1×· · ·× Fi−1×Gi ×· · ·×Gk , acts as the transformation
B(i)σ on Q(i) × { f } and as the identity everywhere else. Finally, A′σ = Pσ A′σ1 · · · A′σk .

The A′σ are constructed so that M ′ keeps track of the current group element at every
step. If M is in state (q, g), then after applying A′1, . . . , A′k it remains in Q×{g}with prob-
ability 1. The Pσ matrix “translates” all of the transition probabilities from Q×{g} to Q×
{gσ }. Initially M is in Q×{1}, so after reading any partial inputw, M will be in Q×{1w}
with probability 1. In this way M will always keep track of the current group element.
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Each A′σ matrix refines Aσ from the �∗a1�
∗a2 · · · ak�

∗ construction in such a way
that, on inputσ after readingw, we do not move from Q(i−1) to Q(i) (the action performed
by B(i)ai

) unless σ = ai and w ∈ Fi−1. This is exactly what we need to recognize
L . The transition matrices can be simulated by LQFAs by the same argument as in
Theorem 3.

Lemma 3. Letw be any word. As we process the characters ofw in M, for all 0 ≤ i < k
the total probability of being in one of the states of Q(i) × G is nonincreasing.

Proof. Same argument as in Lemma 2 holds.

We claim that the machine M constructed above rejects every w /∈ L = L0a1L1 · · ·
ak Lk with certainty. The PRA M does not move out of Q(0) × G unless some prefix
w0a1 with w0 ∈ L0 is read. Inductively, we do not move into Qacc unless we have read
each subword letter on the correct context and the current state corresponds to a group
element f ∈ Fk .

Now suppose w ∈ L . Rewrite w as w0a1 · · · akwk . Clearly M does not move out
of Q(0) × G while reading w0. The character a1 is now read, and M moves to (Q(1) ×
G)\(Q(0)×G)with probability (n − 1)/n. By the previous lemma, this probability does
not decrease while reading w1. So now after reading w0a1w1 we will be in Q(1)

acc × G
with probability (n − 1)/n. If a2 is read we move to Q(2) with probability ((n − 1)/n)2.
By induction after reading w0a1 · · ·wk−1ak we move to (Q(k) × G)\(Q(k−1) × G) with
total probability at least ((n − 1)/n)k . Finally, after reading wk we move to Q′

acc with
total probability at least ((n − 1)/n)k , and so we accept anyw ∈ L with this probability.
By choosing a suitable n we can recognize L with arbitrarily high probability. This
completes the proof of Theorem 4.

3.2. LQFA Upper Bounds

Next, to prove that LQFAs cannot recognize any language whose syntactic monoid is
not in BG, we need to show that LQFAs cannot recognize �∗a or a�∗. We note that
LQFAs are a special case of Nayak’s EQFA model [15], and EQFAs cannot recognize
�∗a. The proof that LQFAs cannot recognize a�∗ is considerably harder.

Theorem 5. LQFAs cannot recognize a�∗.

The focus of the remainder of the section is the proof of this result.

3.2.1. Mixed States, Density Matrices, and CPSOs. This section provides definitions
and properties needed for the proof of Theorem 5 which we give in the next section. For
more information, see [16].

Mixed states: A mixed state {(pi , |ψi 〉)}, 0 ≤ pi ≤ 1,
∑

i pi = 1, is a clas-
sical probability distribution over quantum states |ψi 〉 (which are called pure
states). The quantum system described by a mixed state is in the state |ψi 〉 with
probability pi .
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Density matrices: A density matrix of a pure state |ψ〉 is |ψ〉〈ψ |. A density matrix
of a mixed state is ρ = ∑

i pi |ψi 〉〈ψi |. We often identify the mixed state with
its density matrix.

Unitary transformations and measurements: Definitions of unitary transformations
and measurements extend naturally to mixed states. For example, a unitary
transformation U maps a mixed state {(pi , |ψi 〉)} to {(pi ,U |ψi 〉)}.

This can be described in terms of density matrices. If, before U , the system
was in a mixed state with a density matrix ρ, the state after the transformation
is the mixed state with the density matrix UρU †.

If we measure a state with density matrix ρ with respect to E1 ⊕ · · · ⊕ Ek ,
the result is i with probability Tr Piρ, Tr being the trace of a matrix (the sum of
its diagonal entries). The remaining state is PiρPi/Tr Piρ.

Completely positive superoperators: Transformations allowed by quantum mechan-
ics are various combinations of unitary transformations and measurements. Any
such transformation E has the following properties:
1. Let ρ be a d × d density matrix and let Eρ be the density matrix of the

state which results if we apply E . The transformation ρ → Eρ is a linear
transformation on the d2-dimensional space of d × d matrices.

2. E is trace-preserving: Tr Eρ = Tr ρ.
3. E is completely positive, i.e., if H is the space on which E operates, then

for any additional space H ′ the transformation E ⊗ I is a positive map on
H ⊗ H ′.

A transformation satisfying these requirements is called a trace-preserving CPSO
(completely positive superoperator). Any trace-preserving CPSO can be con-
structed from unitary transformations and measurements [16]. Therefore, these
properties can be taken as an alternative definition of the transformations per-
mitted by quantum mechanics.

Kraus decomposition: For any trace-preserving CPSO A there exists k matrices
A1, . . . , Ak such that

∑k
i=1 Ai A†

i = I and Aρ =∑k
i=1 AiρA†

i .
Distance between density matrices: A natural measure of the distance between two

density matrices is the trace distance. The trace norm ‖A‖t of a matrix A is
defined as Tr|A|, where |A| is the positive matrix square root of AA†. The trace
distance between ρ0 and ρ1 is just the trace norm of ρ0−ρ1. We use the following
properties of the trace distance:
1. The trace distance describes the distinguishability of quantum states. For any
ρ0 and ρ1 there is a measurement that, given an unknown ρi ∈ {ρ0, ρ1},
produces i with probability at least 1

2 + ‖ρ0 − ρ1‖t/4.
2. The trace distance is nonincreasing. For any CPSO A, we have

‖Aρ0 − Aρ1‖t ≤ ‖ρ0 − ρ1‖t .

3.2.2. Proof of Theorem 5. We start with a proof outline. During this outline, we state
three lemmas (Lemmas 5–7) and prove the theorem, assuming these lemmas. Then we
prove the lemmas.

Let E be a sequence U1, P1, U2, P2, . . ., Ul , Pl , with the Ui ’s being unitary trans-
formations and the Pi ’s being measurements (for example, E could be the unitary trans-
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formation + measurement corresponding to reading a letter or it could be a sequence of
unitaries and measurements corresponding to reading a word). We view E as one oper-
ation mapping (mixed) quantum state ρ to (mixed) quantum state Eρ. E is a particular
case of the CPSOs.

In our case we have an additional constraint on E . Not every CPSO can be repre-
sented as a sequence U1, P1, U2, P2, . . ., Ul , Pl . For example, a mapping that replaces
any quantum state by a fixed state (say, |0〉) is a CPSO. However, it cannot be represented
as a sequence U1, P1, U2, P2, . . ., Ul , Pl (and is not allowed in NMR implementations of
quantum computing as well). This constraint is nicely captured by a quantity called the
Von Neumann entropy. (The Von Neumann entropy S(ρ) is defined as −∑i λi log2 λi ,
with λi being the eigenvalues of ρ. For this proof, three properties of S are sufficient.
These properties are given by Lemmas 4, 8, and 9.)

Lemma 4 [4]. Let E be a sequence U1, P1, U2, P2, . . ., Ul , Pl , with Ui being unitary
transformations and Pi being measurements. Then, for any ρ, S(Eρ) ≥ S(ρ).

From this moment, we assume that the transformation corresponding to each letter
x is a CPSO E with the property that S(Eρ) ≥ S(ρ).

We study the effect of repeatedly applying E to a (mixed) quantum state ρ. We
would like to study the sequence ρ, Eρ, E2ρ, . . .. However, this sequence might not
converge (for example, if E is a unitary transformation

U =
(

1 0
0 −1

)
,

this sequence is periodic with period 2). To avoid this problem, define E ′ as an operation
consisting of applying E with probability 1

2 and applying identity otherwise.

Note 1. This is similar to making a periodic Markov chain aperiodic by adding self-
loops.

Note 2. A similar periodicity problem comes up in quantum walks [1]. There, it is
solved by a different approach (Cesaro limit). We think our approach (introducing E ′)
gives results that are similar to the Cesaro limit. In this paper we choose to introduce E ′

instead of using the Cesaro limit because this seems to make the analysis of our problem
simpler.

Lemma 5.

1. For any CPSO E such that S(Eρ) ≥ S(ρ) and any mixed state ρ, the sequence
E ′ρ, (E ′)2ρ, . . ., (E ′)iρ, . . . converges.

2. Let Elim be the map ρ → limi→∞(E ′)iρ. Then Elim is a CPSO and S(Elimρ) ≥
S(ρ) for any density matrix ρ.

Lemma 6. Let A, B be two sequences of unitary transformations and measurements.
Let C = Alim Blim and D = Blim Alim. Then Clim = Dlim.

Assume that we are given an LQFA M . We show that M does not recognize the
language a�∗.



Algebraic Results on Quantum Automata 177

Let A, B be the transformations corresponding to reading letters a, b. We also
consider Alim, Blim, C = Alim Blim, D = Blim Alim, Clim and Dlim.

Intuitively, Alim (Blim) corresponds to reading a long sequence of letters a (b), with
the length being a random variable. Clim (Dlim) corresponds to a long sequence of ai

and b j alternating with ai at the beginning (b j at the beginning). If M is correct, it must
accept if Clim is applied to the starting state and reject if Dlim is applied. However, by
Lemma 6, Clim = Dlim which causes a contradiction.

More formally, let ρx be the (mixed) state after reading the word x . We consider two
sets of mixed states Qa and Qb. The set Qa (Qb) consists of all probabilistic combinations
of states ρax (ρbx ). Let Qa , Qb be closures of Qa and Qb.

Lemma 7. Let ρ be the state after reading the start marker ¢. Then Climρ ∈ Qa and
Dlimρ ∈ Qb.

We consider applying the right endmarker and the final measurement to the state
Climρ = Dlimρ. This state belongs to Qa . Therefore, it is a limit of a sequence ρ1, ρ2, . . .
with eachρi being a probabilistic combination of final states of M on words which belong
to a�∗. If M accepts a�∗, applying the right endmarker and the final measurement to
any such ρi must cause acceptance with probability at least p. Therefore, M must accept
with probability at least p. On the other hand, since Climρ = Dlimρ also belongs to Qb,
M must reject with probability at least p as well. This is a contradiction, proving that
M does not recognize a�∗.

To prove the theorem, it remains to prove Lemmas 5–7.

Proof of Lemma 5. Let H(p) = −p log2 p−(1− p) log2(1− p) be the usual Shannon
entropy and let S(ρ) be the Von Neumann entropy of a mixed quantum state ρ.

Lemma 8 [4]. Let τ0, τ1 be two density matrices and let τ = 1
2τ0 + 1

2τ1. If there is a
measurement that, given τi , outputs i correctly with probability at least p, then

S(τ ) ≥ 1
2 (S(τ0)+ S(τ1))+ 1− H(p).

Lemma 9 [16, Theorem 11.8]. For any mixed state ρ of dimension d , S(ρ) ≤ log2 d,
with the equality if and only if ρ is a d-dimensional completely mixed state.

Lemma 10 [16, Theorem 11.6]. Let τ0, τ1 be two density matrices of dimension d and
let ε = ‖τ0 − τ1‖t , ε < 1

3 . Then

|S(τ0)− S(τ1)| ≤ ε log2 d − ε log2 ε.

Let ρ0 be the initial state and let ρi+1 = E ′ρi be the sequence we are studying.
Since S(Eρi ) ≥ S(ρi ), Lemma 8 implies S(E ′ρi ) ≥ S(ρi ). Consider the sequence of
numbers si = S(ρi ). This is an nondecreasing sequence and, by Lemma 9, is bounded
from above by log2 d . Therefore, it converges to a value slim.
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Moreover,ρ0,ρ1, . . . is a sequence in a closed bounded subset of a finite-dimensional
space (the set of all d × d density matrices). Therefore, it must have a limit point ρ, i.e.,
ρ such that, for every ε > 0, there exists i satisfying ‖ρ − ρi‖t ≤ ε. It follows from the
continuity of S that S(ρ) = slim. We will show that the sequence converges to ρ.

To show that, it suffices to show Eρ = ρ. If this is the case, then E ′ρ = ρ. Therefore,

‖ρi+1 − ρ‖t = ‖E ′ρi − E ′ρ‖t ≤ ‖ρi − ρ‖t .

This means that if ‖ρi − ρ‖t ≤ ε, then ‖ρj − ρ‖t ≤ ε for all j ≥ i . Therefore, ρ is the
limit of ρi .

It remains to show Eρ = ρ. Assume that this is not true. Then ‖Eρ− ρ‖t = δ > 0.
Define ρ ′ = 1

2 (ρ + Eρ). Since the trace distance describes distinguishability, Lemma 8
implies S(ρ ′) ≥ S(ρ)+1−H( 1

2+δ/4). We now choose ε > 0 so that ε log2 d−ε log2 ε <

H( 1
2 + δ/4). Since ρ is a limit point, there exists i such that ‖ρ − ρi‖t ≤ ε. Then

‖ρ ′ − ρi+1‖t ≤ ε. By Lemma 10, S(ρi+1) ≥ S(ρ ′) − ε log2 d + ε log2 ε. This implies
S(ρi+1) > slim.

However, this is not possible. Let δ = S(ρi+1) − slim and pick ε so that ε log2 d −
ε log2 ε < δ Then there exists i such that ‖ρ−ρi‖ ≤ ε. We have S(ρi ) > S(ρ)−δ = slim

which contradicts S(ρi )being a nondecreasing sequence that converges to slim. Therefore,
it must be the case that Eρ = ρ. This completes the proof of the first part of Lemma 5.

To see the second part, notice that the limit of a sequence of linear maps on d × d
matrices is a linear map on d × d matrices. Furthermore, if each map is trace pre-
serving and positive, the limit is trace preserving and positive. Finally, S(Elimρ) =
slim ≥ S(ρi ).

Proof of Lemma 6.

Proposition 1. For a mixed state ρ, Climρ = ρ if and only if Dlimρ = ρ.

Proof. It suffices to prove that Climρ = ρ implies Dlimρ = ρ since both directions are
similar.

Climρ = ρ implies Cρ = ρ. Otherwise, by Lemma 8, S(C ′ρ) > S(ρ) and, since
S((C ′)iρ) ≥ S(C ′ρ) (Lemma 4), we have S(Climρ) > S(ρ) and Climρ �= ρ.

We can rewrite Cρ = ρ as Alim Blimρ = ρ. Definition of Blim implies that Blim =
Blim B ′. Therefore, Alim Blim B ′ρ = ρ. Similarly to previous paragraph, this implies
S(B ′ρ) = S(ρ) and Bρ = ρ. Therefore, B ′ρ = ρ, Blimρ = ρ, and Alimρ = Alim Blimρ

= ρ.
This implies Dρ = Blim Alimρ = Blimρ = ρ and Dlimρ = ρ.

Proposition 2. Let A be an arbitrary CPSO. Assume that ρ is such that Aρ = ρ. Let
H be the support of ρ (subspace spanned by pure states from which ρ consists). Then
A(H) ⊆ H .

Proof. By contradiction, assume that ρ ′ is a state in H which is not mapped to H by
A. We can represent ρ as a probabilistic combination ερ ′ + (1− ε)ρ ′′ where ρ ′′ is some
other density matrix. This implies that ρ is not mapped to H either and ρ �= Aρ.
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We now use these two claims to show that, for any ρ, Climρ = Dlimρ.
Let ρdiff = Climρ − Dlimρ. We would like to show that ρdiff = 0. Climρ is fixed by

Clim and, by Proposition 1, by Dlim as well. Similarly, Dlimρ is fixed by both Dlim and
Clim. Therefore, the difference of these two density matrices is fixed by both C and D
as well: Climρdiff = Dlimρdiff = ρdiff.

We decompose ρdiff = ρ+ − ρ−, with ρ+ being the state formed by eigenvectors
of ρdiff with positive eigenvalues and ρ− being the state formed by eigenvectors with
negative eigenvalues. Then we must have Climρ+ = Dlimρ+ = ρ+ and Climρ− =
Dlimρ− = ρ−.

Let H+ and H− be the subspaces spanned by states forming ρ+ and ρ− respetively.
By Proposition 2, H+ and H− are fixed by Clim and Dlim.

We consider a measurement which measures a state ρ with respect to H+ and
its complement. The probability of obtaining H+ is equal to Tr PH+ρ where PH+ is a
projection to H+ and Tr is the trace of a matrix.

Proposition 3. Let E be a CPSO such that S(Eρ) ≥ S(ρ). Let H be such that E(H) ⊆
H . Then, for any ρ, Tr PHρ = Tr PH Eρ.

Proof. First we show that E(H) ⊆ H implies E(H⊥) ⊆ H⊥. To see that, let |ψ1〉,
. . ., |ψk〉 be a basis for H and let |ψ ′1〉, . . ., |ψ ′l 〉 be a basis for H⊥. Let ρ1 be the mixed
state that is |ψi 〉, i ∈ {1, . . . , k}, with probability 1/k. Let ρ2 be the mixed state that is
|ψ ′i 〉, i ∈ {1, . . . , l}, with probability 1/ l. Let ρ = (k/(k + l))ρ1 + (l/(k + l))ρ2. Then
S(ρ1) = log2 k and S(ρ) = log2(k + l), so, S(Eρ1) ≥ log2 k and S(Eρ) ≥ log2(k + l).
By Lemma 9 and the assumption, this means Eρ1 = ρ1 and Eρ = ρ. Therefore,
E(ρ2) = E(ρ−ρ1) = ρ−ρ1 = ρ2. By Proposition 2, this means that H⊥ is fixed by E .

Next we show Tr PHρ = Tr PH Eρ for any ρ. It suffices to show this for pure states
ρ = |ψ〉〈ψ |. We write |ψ〉 = √α|ψ1〉 +

√
1− α|ψ2〉, |ψ1〉 ∈ H , |ψ2〉 ∈ H⊥. Then the

density matrix of |ψ〉 is

|ψ〉〈ψ | = αρ1 + (1− α)ρ2 +
√
α(1− α)ρ3,

ρ1 = |ψ1〉〈ψ1|, ρ2 = |ψ2〉〈ψ2|,

ρ3 = |ψ1〉〈ψ2| + |ψ2〉〈ψ1|,

PHρ = α|ψ1〉〈ψ1|, and Tr PHρ = α. Since H and H⊥ are mapped to themselves by E ,
the states ρ1 and ρ2 are mapped to mixed states in H and H⊥. To complete the proof, it
suffices to show that Tr PHρ3 = 0.

Let A1, . . ., Am be the Kraus decomposition of E . Now consider the state
E(|ψ1〉〈ψ1|). We have

E(|ψ1〉〈ψ1|) =
m∑

i=1

Ai |ψ1〉〈ψ1|A†
i .

Remember that E maps H to itself. This is only possible if all Ai |ψ1〉 are in H . Similarly,
Ai |ψ2〉 ∈ H⊥. Therefore, Eρ3 is a sum of |ϕ〉〈ϕ′|, with one of |ϕ〉 and |ϕ′〉 in H and the
other in H⊥. For each such matrix, Tr PH |ϕ〉〈ϕ′| = 0. Therefore, Tr PHρ3 = 0.
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By this proposition, Tr PrH+ Climρ = Tr PrH+ ρ = Tr PrH+ Dlimρ. This implies

Tr ρ+ = Tr PrH+ ρdiff = Tr PrH+(Climρ − Dlimρ) = 0.

By definition, ρ+ is the part of ρdiff with positive eigenvalues. Therefore, Tr ρ+ = 0 iff
ρ+ = 0. Similarly, ρ− = 0 and we get ρdiff = 0 and Climρ = Dlimρ.

Proof of Lemma 7.

Proposition 4. A(Qa) ⊆ Qa ; B(Qa) ⊆ Qa ; A(Qb) ⊆ Qb; and B(Qb) ⊆ Qb.

Proof. A maps ρax to ρaxa . Therefore, a probabilistic combination of states ρax gets
mapped to a probabilistic combination of states ρaxa and A(Qa) ⊆ Qa . This implies
A(Qa) ⊆ A(Qa) ⊆ Qa . Other inclusions are similar.

Proposition 5. Alim(Qa) ⊆ Qa ; Alim(Qb) ⊆ Qb; Blim(Qa) ⊆ Qa ; and Blim(Qb) ⊆
Qb.

Proof. Since A(Qa) ⊆ Qa and A′ is a probabilistic combination of A and identity,
A′(Qa) ⊆ Qa . Therefore, (A′)i (Qa) ⊆ Qa . Alim is the limit of (A′)i . Since Qa is
closed, Alim(Qa) ⊆ Qa . Again, other inclusions are similar.

Proposition 6. Let ρ be the state of M after reading the left endmarker. Then ρA =
Alimρ ∈ Qa and ρB = Blimρ ∈ Qb.

Proof. It suffices to prove the first part. Let ρi = (A′)iρ. This state is a probabilistic
combination of A jρ, for j ∈ {0, . . . , i}. All of those, except for A0ρ = ρ are in Qa .
Therefore, (A′)iρ = (1/2i )ρ + (1− 1/2i )ρ ′i , ρ

′
i ∈ Qa .

Let ρA = limi→∞ ρi . Then ρA = limi→∞ ρ ′i . Since ρ ′i ∈ Qa , we have ρA ∈ Qa .

Furthermore, by Proposition 5, Cρ = Blim Alimρ = BlimρA ∈ Qa . By applying
Proposition 5 repeatedly, we get Ciρ = (Blim Alim)

iρ ∈ Qa . The closure of Qa gives us
Climρ ∈ Qa . Similarly, from ρB ∈ Qb, we get Dρ ∈ Qb and then Dlimρ ∈ Qb.

Theorem 1 now follows from Theorems 2 and 4 and by the upper bound results of
this section.

Theorem 4 is proved by showing that probabilistic reversible automata recognize
any language in BG. On the other hand, in [10] it is proved that any other regular language
is not recognizable by PRAs. Hence an easy corollary is that LQFAs and PRAs recognize
exactly the same class of languages.

4. Results for BPQFAs

Our main result for BPQFAs is given below:

Theorem 6. The language L has its syntactic monoid in BG iff it is a Boolean combi-
nation of languages recognized by BPQFAs.
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Similar to the LQFA case, we first show that Boolean combinations of languages
recognized by BPQFAs form a ∗-variety of languages, and then we give tight upper and
lower bounds for the languages contained in this variety.

The fact that this class of languages forms a ∗-variety follows from this theorem:

Theorem 7 [7]. The class of languages recognized by BPQFAs is closed under inverse
homomorphisms and word quotient.

For the remainder of the section, we use a technique introduced in [12] to analyze
BPQFAs. Letψ be an unnormalized state vector of M . Define A′σ = Pnon Aσ , and for any
word w = w1 · · ·wk let A′w = A′wk

· · · A′w1
. If ψ = A′¢|q0〉, then the vector ψw = A′wψ

completely describes the probabilistic behavior of M on input w, since M halts while
readingw with probability 1−‖ψw‖2

2 and continues in stateψw/‖ψw‖2 with probability
‖ψw‖2

2.

4.1. BPQFA Lower Bounds

Theorem 8. Any language whose syntactic monoid is in BG is a Boolean combination
of languages recognized by BPQFAs.

Proof. A general construction for �∗a1�
∗a2 · · · ak�

∗ was given in [7]. We augment
this construction so that it recognizes L defined by w ∈ L iff w = w0a1w1 · · · akwk ,
where for each i , w0a1w1 · · ·wi ∈ Li for some prespecified group language Li . By
the cancellative law of groups and the closure properties, this is sufficient to prove
the theorem. We present Brodsky and Pippenger’s construction here in full with minor
modifications. As above, we adopt the point of view that the state vector is unnormalized.

The key to their construction is what they call a trigger chain. A trigger chain
recognizing a1, . . . , ak is constructed out of interleaved 3-tuples of states, one for each
ai with i ≥ 2. A link in the chain is activated by the following transition:

T =




1
2

1√
2

1
2

1√
2

0 − 1√
2

1
2 − 1√

2
1
2


 .

Whenever the middle element is 0 in a three-element vector, T has the following effect:

T (α, 0, β)T =
(
α

2
+ β

2
,
α√
2
− β√

2
,
α

2
+ β

2

)T

.

Thus if α and β are positive reals, then T averages the amplitude between the first and
the third element, and places any excess amplitude into the middle state. If α = β, then
the trigger will have no effect. In the construction, the middle state will correspond to a
rejecting state and so its amplitude will always be 0 at the beginning of every transition.
Also define Ti to be the matrix that acts as T on states i , i + 1, and i + 2, and as the
identity everywhere else.

Now a machine M = (Q, �, q0, {Aσ }, Qacc, Qrej) is constructed to recognize
�∗a1�

∗ · · ·�∗ak�
∗ using 2k + 3 states as follows:

Q = {q0, q2, . . . , q2k+2},
Qrej = {q1, q3, . . . , q2k−3} ∪ {q2k+1, q2k+2},
Qacc = {q2k−1}.
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To simplify the construction of the transitions, we define Im to be the m×m identity
matrix, and

R =
[

0 1
1 0

]
.

For each character σ ∈ �, we define Aσ = Uσ1 · · ·Uσk , where for each i ,

Uσ i =




[
R

I2k+1

]
if i = 0 and σ = a1,

T2i−4 if 2 ≤ i ≤ k and σ = a1,
I2k+3 otherwise.

We define the initial transition A¢ such that A¢|q0〉 =
∑2k

i=0(1/
√

2k + 1)|q2i 〉, and
finally we define A$ = FT2k−2, where

F =




I2(k−1) ⊗ R
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
1 0 0 0 0



.

Here is an outline of the proof of correctness given in [7]. Initially, after reading ¢
the amplitude is distributed among the nonhalting states. When a1 is read, the amplitude
of q0 becomes 0 and M halts and rejects with small probability. If a2 is now read then
states q2 and q4 are averaged, causing a bounded decrease in amplitude of q4. Inductively,
there will be a bounded amount of amplitude in the accepting state q2k−1 if and only if
a1, . . . , ak and the endmarker were read in sequence. The I2(k−1) ⊗ R submatrix serves
to channel all the unused amplitude into the rejecting states.

Now given M we construct M ′ = (Q′, �, q ′0, {Aσ }, Q′
acc, Q′

rej) to recognize L . For

all i let Gi = M(Li ). Also let ϕi : �∗ → Gi and let Fi be such that ϕ−1
i (Fi ) = Li .

We can compose these groups into a single group G = G0 × · · · × Gk with identity
1 = (1, 1, . . . , 1) and |G| = m.

Let Q′
acc = Qacc×(G1×· · ·×Gk−1×Fk). For the endmarkers, define A′¢ = (A¢⊗ Im)

and A′$ = (A$⊗ Im). For each σ ∈ �, we define A′σ = PσU ′
σ1, . . . ,U

′
σk . Each U ′

σ i is the
matrix that acts as Uσ i on Q×{ f } for each f ∈ G1×· · ·×Gi−2×Fi−1×Gi×· · ·×Gk and as the
identity everywhere else. Finally Pσ is a permutation matrix such that Pσ |q, g〉 = |q, gσ 〉
for all |q, g〉.

The transition matrices are constructed so that, after reading any partial inputw, the
state vector will be in the subspace E = span{|q, 1w〉: q ∈ Q}.

The construction contains k + 1 triggers. If a series of such triggers are activated in
sequence, then as the last trigger is applied there will be a bounded amount of amplitude
sent to the middle state of the last trigger. For 1 ≤ i ≤ k the i th trigger is activated when
ai is read and the current group element is in the set Fi−1. When the right endmarker
is read, the last trigger is activated. This places amplitude into (q2i−1, g) (where g is
the current group element) if and only if a1, . . . , ak are read in the correct context in
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order. Finally, we accept only if the current group element g is in Fk . M ′ rejects with
probability 1 any word not in the language, and accepts any word in the language with
bounded probability, thus M ′ recognizes L .

4.2. BPQFA Upper Bounds

As discussed at the beginning of the section, we take the states of the BPQFA to be
unnormalized. The following lemma nicely characterizes the behavior of the operation
A′σ = Pnon Aσ , and thus is very useful for showing upper bounds on the BPQFA:

Lemma 11 [3]. Let {x, y} ⊆ �+. Then there are subspaces E1, E2 such that Enon =
E1 ⊕ E2 and

– ifψ ∈ E1, then A′x (ψ) ∈ E1, A′y(ψ) ∈ E1, and ‖A′x (ψ)‖2 = ‖A′y(ψ)‖2 = ‖ψ‖2;
– if ψ ∈ E2, then for any ε > 0, and for any word t ∈ {x, y}∗ there exists a word

t ′ ∈ {x, y}∗ such that ‖A′t t ′(ψ)‖2 < ε.

Theorem 9. The languages a�∗ and �∗a cannot be expressed as Boolean combina-
tions of languages recognized by BPQFAs.

Proof. We begin with the a�∗ result. By closure under inverse homomorphisms, it
is sufficient to show this for � = {a, b}. Let M be a BPQFA that recognizes L
with probability p, and let ψ = A′¢(|q0〉). The first step is to show that for any
two prefixes v,w ∈ {a, b}+ and any ε > 0, there exists v′, w′ ∈ {a, b}∗ such that
‖A′vv′ψ − A′ww′ψ‖2 < ε. Thus if ε ≤ √p, it follows that M cannot distinguish between
vv′ and ww′ with sufficiently large probability. As in Lemma 11, separate Enon into two
subspaces E1 and E2 with respect to the words x = a and y = b. Then we can rewriteψ
asψ = ψ1+ψ2, whereψi ∈ Ei . By the lemma, and since A′a and A′b act unitarily on E1,
for any ε′ there exists v′ andw′ such that ‖A′vv′ψ−ψ1‖2

2 < ε′ and ‖A′ww′ψ−ψ1‖2
2 < ε′.

For any fixed ε, we can find a sufficiently small ε′ so that ‖A′vv′ψ − A′ww′ψ‖2
2 < ε.

Suppose L is a Boolean combination of m languages L1, . . . , Lm , with each Li

recognized by a BPQFA Mi . As above, we can construct inductively on the languages
Li , two words v = v1v2 · · · vm ∈ {a, b}∗ and w = w1w2 · · ·wm ∈ {a, b}∗ such that av
and bw are indistinguishable for every Mi . Thus we must have either {av, bw} ⊆ L or
L ∩ {av, bw} = ∅, and in either case L �= a�∗. For the construction, we first choose v1

and w1 so that, for all v′ and w′, av1v
′ and bw1w

′ are indistinguishable by M1. Given
that, for all v′ and w′, av1 · · · vi−1v

′ and bw1 · · ·wi−1w
′ are not distinguishable by any

of M1, . . . ,Mi−1, we construct vi and wi so that, for all v′ and w′, av1 · · · viv
′ and

bw1 · · ·wiw
′ are indistinguishable by Mi .

A similar analysis can be used to show the�∗a result. Consider a single BPQFA M
recognizing L with probability p. Let ψ = A′¢|q0〉 be the initial state. Let b ∈ �\{a},
and let E1 and E2 be as in Lemma 11 with x = a and y = b. We can uniquely split ψ
into ψ1 + ψ2, where ψ1 ∈ E1 and ψ2 ∈ E2.

Suppose L is a Boolean combination of m languages L1, . . . , Lm where each Li is
recognized by some BPQFA Mi with probability pi . For any ε, we can construct a word
w = w1 · · ·wm such that, for all w′, the condition ‖A′ww′ψ − A′ww′ψ1‖2 < ε is met by
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each Mi . If we choose ε <
√

min{pi }, then there is a k such that for all i , machine Mi

satisfies ‖A′
ww′abkψ − A′ww′a‖2 < pi . Thus we must have either {ww′abk, ww′a} ⊆ L

or {ww′abk, ww′a} ∩ L = ∅, and in either case L �= �∗a.

Theorem 6 now follows from Theorems 7–9.
Note that in our characterization we have to take Boolean combinations because

BPQFAs are not closed under complement. This follows from the theorem below:

Theorem 10. For any a �= b and for any � satisfying {a, b} ⊆ �, BPQFAs cannot
recognize �∗b�∗a�∗.

By closure under inverse homomorphisms it is sufficient to prove the result for
� = {a, b}. In this case, �∗b�∗a�∗ = a∗b∗. Our proof makes frequent use of the
following corollary to Lemma 11:

Corollary 1. For any KWQFA (or BPQFA) M and word w we can define subspaces
Ew

1 ⊕ Ew
2 = Enon such that ψ1 ∈ Ew

1 implies (A′w)
i (ψ1) = (Aw)i (ψ1) for all i , and

ψ2 ∈ Ew
2 implies limi→∞ ‖(A′w)iψ2‖2 = 0.

Any ϕ ∈ Enon can be uniquely decomposed into ϕ1 + ϕ2 so that ϕ1 ∈ Ew
1 and

ϕ2 ∈ Ew
2 . The components ϕ1 and ϕ2 are called the ergodic and transient parts of ϕ,

respectively.
We now establish a relationship between projection operations and idempotents.

An orthogonal projection P is a Hermitian operator satisfying P2 = P . We define the
following subclass of operations:

Definition 1. We say that an orthogonal projection P is an Enon-projection if P(Enon) ⊆
Enon.

Thus if we restrict our attention to vectors in Enon, then P will behave exactly as
an orthogonal projection. This is relevant to our situation since the state ψ of M after
reading some partial input must satisfy ψ ∈ Enon.

Claim 2. Any Enon-projection P can be simulated by a unitary transformation U and
the BPQFA measurement.

Proof. Assume without loss of generality that |Qrej| ≥ |Q\Qrej| (if this is not the
case, then we can simply augment M with the required number of Qrej states). Let
S = {Pψ : ψ ∈ Enon}. Note that S is a subspace. Let S be the subspace such that
S ⊕ S = Enon. Now to simulate the Enon-projection, we choose U to be the operation
that rotates S into Erej. Any amplitude that was in S will be removed when the BPQFA
measurement is applied.

Let L be a language recognized by a BPQFA M with probability p, and let ϕ: �∗ →
M(L) be the syntactic morphism. Clearly, if A′a is an Enon-projection, then ϕ(a) must
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be idempotent (i.e. ϕ(a) = e = e2). We claim that the following converse is also
true:

Claim 3. Let L , M , p, and ϕ be as above, and let ϕ(a) be an idempotent. Let M ′ be
the machine constructed by replacing each A′a with an Enon-projection onto Ea

1 . Then
M ′ also recognizes L with probability p.

Proof. Suppose that M ′ does not recognize L with probability p. Thus, either M ′

accepts some word w ∈ L with probability pw < p, or M ′ accepts some word w /∈ L
with probability pw > 0. We consider the former case, the latter is similar.

Define ε so that
√

p = √pw + ε. Let k be the number of occurrences of a in w.
Note that k > 0, otherwise M and M ′ would accept w with the same probability. Let
w = w0aw1 · · ·wk−1awk with wi ∈ (�\{a})∗. Let U be a unitary matrix such that U ′

is the Enon-projection onto Ea
1 . We set j to be such that ‖(A′a) jϕ −U ′ϕ‖2 = ε′ < ε/k

for all ϕ ∈ Enon (we know by Corollary 1 that such a j exists). Now consider:

w′ = w0a jw1 · · ·wk−1a jwk .

We have w′ ∈ L since ϕ(a) is idempotent. Let ψ = |q0〉 be the initial state of M . Note
that, for all ϕ, (A′a)

j A′w0
ϕ = U ′

a A′w0
ϕ + ξ for some ξ satisfying ‖ξ‖2 < ε′. So there

exists a vector ξ1 such that ‖ξ1‖2 < ε′ and

A′wk
(A′a)

j · · · A′w1
(A′a)

j A′w0
ψ = A′wk

(A′a)
j · · · A′w1

(U ′A′w0
ψ + ξ)

= A′wk
(A′a)

j · · · A′w1
U ′A′w0

ψ + ξ1.

In general there exist vectors ξi , 1 ≤ i ≤ k, such that ‖ξi‖2 ≤ ε′ for all i , and

A′wk
(A′a)

j · · · A′w1
(A′a)

j A′w0
ψ = A′wk

U ′ · · · A′w1
U ′A′w0

ψ +
k∑

i=1

ξi ,

and so

P[M accepts w′] =
∥∥∥Pacc A′$

(
A′wk

U ′ · · · A′w1
U ′A′w0

ψ +
∑

ξi

)∥∥∥2

2

≤
(
‖Pacc A′$(A

′
wk

U ′ · · · A′w1
U ′A′w0

ψ)‖2 +
∑

‖ξi‖2

)2

<
(√

pw + ε
)2 = p.

The original M accepts w′ with probability strictly less than p, a contradiction.

Proof of Theorem 10. Suppose M is a BPQFA that recognizes �∗b�∗a�∗ with prob-
ability p. We show that such an M cannot exist. By Claim 3, we can assume without
loss of generality that A′a and A′b are Enon-projections.

For any M and w, we can define Ew,rej to be the set of all vectors ψ ∈ Enon such
that A′wψ ∈ Erej (if M halts with certainty beforew is processed then A′wψ = "0 ∈ Erej).
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It is easy to show by linearity that Ew,rej is a subspace. For shorthand, define

Eα =
⋂

w,x,y∈�∗
Ewbxay$,rej, Eβ =

⋂
x,y∈�∗

Exay$,rej, Eγ =
⋂

y∈�∗
Ey$,rej.

Observe that Eα ⊇ Eβ ⊇ Eγ . At all times, the state vector of M must be contained
in the subspace Eα in order to recognize the language �∗b�∗a�∗, since all words
containing the subword ba must be rejected with certainty. When the first b is read, the
state vector must fall into the subspace Eβ , since by definitionϕ ∈ Eα implies A′bϕ ∈ Eβ .
If an a is read while the state vector is in the subspace Eβ , the state vector must fall into
the subspace Eγ , and the state vector must remain here until the end of the computation.
We argue that any vector in ψ ∈ Eα will fall into Eγ reading an a followed by a b, thus
the word ab is rejected with certainty, a contradiction.

Define Eβ to be the subspace such that Eβ ⊕ Eβ = Cn . The vector ψa = A′aψ can
be uniquely decomposed into ψα + ψβ , where ψα ∈ Eα ∩ Eβ and ψβ ∈ Eβ . We claim
that ψβ ∈ Eγ . Observe that A′aψ = A′a A′aψ , so ψα + ψβ = A′a(ψα + ψβ). Let P

β
be

the projection operator onto Eβ . Now,

ψα + ψβ = A′a(ψα + ψβ) $⇒ P
β
(ψα + ψβ) = P

β
(A′a(ψα + ψβ))

⇐⇒ ψα = P
β
(A′aψα)

$⇒ ψα = A′aψα

and so

ψα + ψβ = A′a(ψα + ψβ) ⇐⇒ ψα + ψβ = ψα + A′aψβ

⇐⇒ ψβ = A′aψβ.

From ψβ ∈ Eβ it follows that A′aψβ ∈ Eγ , and thus ψβ ∈ Eγ . Now consider ψab =
A′b(ψα + ψβ). Since A′b(ψα + ψβ) ∈ Eβ and A′bψβ ∈ Eβ , we must have A′bψα ∈ Eβ .
However, ψα ⊥ Eβ and A′b is an Enon-projection, so we must have A′bψα = "0. Thus
ψab = A′bψα + A′bψβ = A′bψβ ∈ Eγ . Thus, ab is rejected with certainty, as we wanted
to show.

5. Conclusion

In this paper we have produced algebraic characterizations for the languages recognized
by a new model which we called Latvian Quantum Finite Automata, and for the Boolean
closure of languages recognized by Brodsky–Pippenger Quantum Finite Automata. A
somewhat surprising consequence of our results is that the two models are equivalent in
power, up to Boolean combinations. It has been shown that a language L is recognizable
by an LQFA iff its syntactic monoid is a block group; hence membership in the class is
decidable. The situation is more complicated for a BPQFA since the corresponding class
of languages is not closed under complement. The good news is that we have shown that
the class forms what is known as a positive ∗-variety and thus is amenable to algebraic
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description through the mechanism of ordered monoids [19]. We know that this positive
∗-variety strictly contains the regular languages that are open in the group topology and
a precise characterization seems to be within reach.

Another open problem is to find an algebraic characterization of the Kondacs–
Watrous model. It is an easy consequence of our results on BPQFAs that KWQFAs can
recognize any language whose syntactic monoid is in BG. However, outside of BG the
question of language recognition is still unresolved.

The class of languages recognized by KWQFAs is known not be closed under
union [3], hence does not form a ∗-variety. It is nevertheless meaningful to ask for an
algebraic description of the ∗-variety generated by those languages. We conjecture that
the right answer involves replacing block groups by a one-sided version V of this M-
variety defined by the following condition: for any e = e2 and f = f 2 in M , eM = f M
implies e = f . The corresponding variety of languages can be described as the largest
variety that does not contain �∗a for |�| ≥ 2.
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