
DOI: 10.1007/s00224-005-1233-3

Theory Comput. Systems 40, 163–185 (2007) Theory of
Computing

Systems
© 2005 Springer Science+Business Media, Inc.

Query Learning of Regular Tree Languages:
How to Avoid Dead States

Frank Drewes and Johanna Högberg

Department of Computing Science, Umeå University,
S-901 87 Umeå, Sweden
{drewes,johanna}@cs.umu.se

Abstract. We generalize an inference algorithm by Angluin, that learns a regular
string language from a “minimally adequate teacher”, to regular tree languages.
The (deterministic bottom-up) finite tree automaton constructed by the learning
algorithm is the minimal partial one recognizing the unknown language. This im-
proves a similar algorithm proposed by Sakakibara by avoiding dead states both in
the resulting automaton and the learning phase, which also leads to a considerable
improvement with respect to efficiency.

1. Introduction

Language learning addresses the problem of algorithmically deriving an explicit gram-
matical description of a language U which is only implicitly available in the form of
examples or similar information. Given such information, the algorithmic goal is to de-
rive a formal description of U , e.g., an automaton or a grammar. A popular model for
language learning is query learning: The learning algorithm, called the learner, may
actively query an oracle, the teacher, in order to gather information about U [Ang2] (see
also [Ang3] for a recent survey focusing on results about the number of queries needed).

One type of query learning, often called MAT-learning, was proposed by Angluin
in [Ang1]. It assumes the existence of a minimally adequate teacher (MAT) capable of
answering two types of queries: membership and equivalence queries. A membership
query asks whether a certain string is an element of U . An equivalence query asks
whether a proposed automaton correctly describes U . If not, the teacher returns a counter-
example, i.e., an element of the symmetric difference of both languages. For the case
where U is regular, it is shown in [Ang1] that the minimal deterministic finite automaton
recognizing U can be constructed in polynomial time in the MAT model. Several other

164 F. Drewes and J. Högberg

researchers adopted the model to learn languages by constructing, e.g., nondeterministic
finite-state automata [Yok] and restricted types of context-free grammars [BR], [Ish2],
[SY], [FR]. (For a general overview of results about learning context-free languages see
[Lee].) Fernau [Fer] showed that the so-called deterministic even linear matrix grammars
can be constructed in polynomial time in the MAT model.

In this article we use the same model, but for learning regular tree languages. These
languages provide a well-known generalization of regular string languages to which
nearly all the classical results carry over (see, e.g., [GS1] and [GS2]). In particular,
there is a convenient type of language acceptor for this class of languages, namely the
deterministic bottom-up finite-state tree automaton [TW], called fta in the following.

An important property of regular tree languages is that their yields are exactly the
context-free string languages. Here, the yield of a tree is the string of leaves of this tree,
read from left to right. Intuitively, the tree language consists of the derivation trees of
strings in the string language. In fact, for this it suffices to consider so-called skeletal
trees, in which internal nodes are unlabelled [LJ]. Such a tree reveals only the syntactic
structure of the string but not the concrete rules generating it.

These facts make it interesting to study learning algorithms for regular tree languages
as is done in, e.g., [FK], [Sak1], [Sak2], and [COC]. Using the MAT model, Sakakibara
[Sak1] extended the algorithm proposed by Angluin to skeletal regular tree languages.
In this way, context-free string languages can be learned in polynomial time, provided
that the teacher is able to check (skeletal) trees and fta’s (instead of strings and ordinary
finite-state automata), supplying the learner with skeletal trees as counter-examples. In
the following we drop the restriction to skeletal trees because regular tree languages are
not only useful as a syntactic basis for context-free string grammars, but also for, e.g.,
graph and picture generating devices (see, e.g., [Eng], [Dre1], and [Dre2]).

We propose an alternative extension of the algorithm by Angluin, which general-
izes and improves the one in [Sak1]. Our algorithm constructs the minimal partial fta
accepting the regular tree language learned. It combines the technique by Angluin with
contradiction backtracking [Sha] in order to avoid dealing with large or unnecessary
examples. Here, an example is considered to be unnecessary if it provides the same
information as an earlier one, or corresponds to a “dead state”. As a consequence, we
are not only able to show that the algorithm runs in polynomial time, but also that the
maximum rank of symbols and the maximum size of counter-examples returned by the
teacher appear only as linear factors in the expression that bounds its running time. The
remainder of this Introduction discusses our approach in more detail.

We first describe the approach used in [Sak1]. Inspired by the Myhill–Nerode theo-
rem and the minimization of finite automata, the central idea is to determine equivalence
classes of trees, using them as the states of a total fta. For this, finite sets S and C of trees
and contexts are maintained, where a context is a tree c with a unique placeholder for
which another tree s can be substituted, which is as usual denoted by c[[s]]. Intuitively,
the trees in S are representatives of the equivalence classes found, and the contexts in
C witness that certain trees in S belong to different equivalence classes. More precisely,
given some tree s, let obsC(s) be a bit string of all “observations”, telling for each c ∈ C
whether c[[s]] ∈ U . Then s, s ′ ∈ S are inequivalent if obsC(s) �= obsC(s ′). Even though
the converse might not be true, the algorithm will tentatively assume that s and s ′ are
equivalent if obsC(s) = obsC(s ′). Based on this assumption (and certain consistency

Query Learning of Regular Tree Languages 165

and completeness conditions that we omit here), an fta can be synthesized. Its state set is
{obsC(s) | s ∈ S}, where a state obsC(s) is accepting if s ∈ U . The bottom-up transition
function δ is obtained by defining, for every tree s = f [s1, . . . , sk] with s1, . . . , sk ∈ S,

δ(obsC(s1) · · · obsC(sk), f) = obsC(s).

If the synthesized automaton is passed to the teacher and she returns a counter-example,
then this counter-example is, together with all its subtrees, added to S. This will create an
inconsistency, which is resolved by adding a suitable context to C . In this way, S and C
are iteratively enlarged until all equivalence classes have been found and separated from
each other. The synthesized automaton will then be the minimal total fta recognizing U .

Assuming that a fixed ranked alphabet is considered, it is shown in [Sak1] that this
algorithm is polynomial in the size of the sought automaton and the size of counter-
examples received from the teacher. However, one may identify two problems with this
approach:

1. Let m be the maximum size of counter-examples returned by the teacher and
let r be the maximum rank of symbols in the alphabet. Then the expression mr

appears as a factor in all major terms of the polynomial that bounds the running
time of the learner. This is mainly due to the fact that, if the teacher selects a
counter-example that is larger than necessary, the tree and all its subtrees are
added to the set S. Thus, states may be represented many times in S. Since S
must be searched in all important parts of the algorithm, this has quite a negative
impact on the running time. Due to this fact, the algorithm is polynomial only
if r is assumed to be a constant (which is of course the case if the alphabet is
considered to be fixed).

The approach presented in this paper uses the counter-examples provided by
the teacher in a different way in order to overcome this problem. Roughly speak-
ing, we search a given counter-example t for a single small subtree s representing
a new equivalence class. We then decompose t into c[[s]] and add s to S and c
to C . As will be seen later, this results in sets S and C being, in a certain sense,
minimal. In contrast to this, C may contain huge contexts (obtained from large
counter-examples), but this does not matter as the algorithm never needs to in-
spect a context in C in detail. As a consequence, the upper bound on the running
time no longer involves the factor mr ; only the two linear factors m and r occur.

Our method to extract a suitable tree s from a counter-example (described in
detail in Section 3) is essentially the contradiction backtracking technique by
Shapiro [Sha],1 which has also been used to learn regular string languages (see,
e.g., [Ish1] and [Yok]).

2. As pointed out in [Sak1], for many practically relevant languages the constructed
fta will typically contain many transitions that involve a dead state, i.e., one
from which no path leads to an accepting state. Being a minimal total fta, the
automaton can at most contain one dead state, but in the extreme all but a linear
number of transitions may lead to that state. In other words, the transition table
of the minimal partial fta (obtained from the total one by removing the dead state

1 We thank an anonymous referee who observed this relationship and provided us with the reference.

166 F. Drewes and J. Högberg

together with all transitions involving it) may be much smaller than the minimal
total one. In particular, if we do not assume any more that a fixed alphabet is
considered, thus allowing r to vary, the minimal total fta may be exponentially
larger than the minimal partial one. Thus, it would be valuable to be able to
construct the minimal partial fta by an algorithm whose running time depends
on the size of that automaton rather than on the size of the total one.

We show that this is indeed possible. Our algorithm maintains a third set R
of trees besides S and C . Instead of defining the transition function by simply
setting δ(obsC(s1) · · · obsC(sk), f) = obsC(s) for all s = f [s1, . . . , sk] with
s1, . . . , sk ∈ S, which by construction yields a total fta, we collect representatives
of transitions in R and set δ(obsC(s1) · · · obsC(sk), f) = obsC(s) for all s =
f [s1, . . . , sk] in R. By a careful choice of the trees in R, we guarantee that no
tree in R represents a dead state. In fact, it will also turn out that R is minimal in
the sense that its trees represent pairwise distinct transitions.

We finally discuss the practical relevance of the questions, assumptions, and results
described above. Clearly, the minimally adequate teacher is a formal idealization. A real
teacher will probably not be able to check the correctness of a proposed fta directly, and
in particular not with error probability zero. However, one may nevertheless think of
meaningful applications in which the theoretical teacher is simulated by, e.g., a user who
wants to convey her knowledge to the learner. To see this, it is helpful to notice that the
tree language itself is usually not what the “end user” is interested in. Instead, a tree is
an internal syntactic description of some object of interest. It may, as in [Sak1], be the
skeletal description of a string (a program in some programming language or a sentence
in a natural language), an expression yielding a graph in a context-free graph language
[Eng], or a description of a picture in some kind of picture language [Dre1], [Dre2]. In all
these cases the trees are viewed as expressions that denote the actual objects of interest.
Hence, one may envision future applications that learn languages of such objects by
internally constructing a suitable fta but on the outside dealing only with strings, graphs,
pictures, or the like.

The approach presented in this article improves the one in [DH]. The biggest dis-
advantage of the method used there was that the avoidance of dead states was an added
feature instead of being an inherent property of the approach. Consequently, it did not
lead to a provable reduction in complexity even though it was expected to improve the
running time in practice. As explained above, the present paper solves this problem.

The paper is structured as follows. In the next section we collect some basic notions
regarding trees and tree automata. Section 3 is devoted to our basic algorithm and illus-
trates it by means of an example. The correctness and complexity of this algorithm is
addressed in Section 4. Section 5 concludes the paper with a short discussion.

2. Trees and Tree Automata

The set of natural numbers (including 0) is denoted by N. For n ∈ N, [n] denotes the
set {1, . . . , n}. The cardinality of a set S is denoted by |S| and the symmetric difference
of S and another set S′ is S 	 S′ = (S\S′) ∪ (S′\S). Given a function f : A → B, we

Query Learning of Regular Tree Languages 167

denote the canonical extensions of f to subsets of A and to sequences over A by f as
well. Hence, f (S) = { f (a) | a ∈ S} for all S ⊆ A and f (a1 · · · ak) = f (a1) · · · f (ak)

for a1, . . . , ak ∈ A.
A ranked alphabet is a finite set of symbols � = ⋃

k∈N�(k) which is partitioned
into pairwise disjoint subsets�(k). The symbols in�(k) are said to have rank k. We write
a symbol a with rank k as a(k) if the rank cannot easily be determined from the context.
The set T� of all trees over � is defined inductively, as usual: It is the smallest set of
strings over � such that f t1 · · · tk ∈ T� for every f ∈ �(k) and all t1, . . . , tk ∈ T� .
For the sake of better readability we write f [t1, . . . , tk] instead of f t1 · · · tk ∈ T� unless
k = 0.

The size of a tree, denoted by |t |, is the number of (occurrences of) symbols in t .
Thus, |t | = 1+∑k

i=1 |ti | for every tree t = f [t1, . . . , tk]. Given a set T of trees, �(T)
denotes the set of all trees of the form f [t1, . . . , tk] such that f ∈ �(k) for some k ∈ N
and t1, . . . , tk ∈ T . A subset of T� is called a tree language. We identify a tree language
L with the corresponding predicate on trees, i.e.,

L(t) =
{

true if t ∈ L ,
false otherwise.

We frequently decompose a tree into a so-called context and a subtree. For this
purpose, we reserve a special symbol ✷ of rank 0 that does not occur in �. A tree
c ∈ T�∪{✷} in which ✷ occurs exactly once as a leaf is called a context (over �). The
set of all contexts over � is denoted by C� . Given a context c ∈ C� and a tree s, we
denote by c[[s]] the tree obtained by substituting s for the unique occurrence of ✷ in c.
If L ⊆ T� is a tree language, then a tree s is a forbidden subtree (with respect to L) if
c[[s]] /∈ L for all contexts c ∈ C� .

We now recall the definition of bottom-up finite-state tree automata. We only work
with deterministic automata, but they may be partial. Hence, a bottom-up finite-state tree
automaton (fta, for short) is a tuple A = (�, Q, δ, F) where

• � is the ranked input alphabet,
• Q is the finite set of states,
• δ is a finite set of transitions of the form (q1 · · · qk, f, q) such that f ∈ �(k) and

q1, . . . , qk, q ∈ Q for some k ∈ N, and
• F ⊆ Q is the set of accepting (or final) states.

Given f ∈ �(k) and q1, . . . , qk ∈ Q, we require that there is at most one q ∈ Q with
(q1 · · · qk, f, q) ∈ δ. In other words, A is deterministic. Hence, δ may also be viewed as
a partial transition function which, for f ∈ �(k) and q1, . . . , qk ∈ Q, yields the resulting
state q = δ(q1 · · · qk, f) (or is undefined if no such q exists). We say that A is total if δ
is a total function.

In the obvious way, δ extends to trees, yielding a partial function δ: T� → Q as
follows: for t = f [t1, . . . , tk] ∈ T� , if q1 = δ(t1), . . . , qk = δ(tk) are defined, then
δ(t) = δ(q1 · · · qk, f). Otherwise, δ(t) is undefined. The set of trees accepted by A is

L(A) = {t ∈ T� | δ(t) is defined and belongs to F}.
A tree language L is called a regular tree language if there exists an fta A such that
L = L(A). In this case, A is said to recognize L .

168 F. Drewes and J. Högberg

Example 2.1. As a running example, let � = �(2) ∪ �(0) where �(2) = {a, b} and
�(0) = {ε}, and consider the tree language

U = {t ∈ T� | t = c[[s]] for some c ∈ C{a,ε} and s ∈ T{b,ε}}.

Thus, a tree is an element of U if it is composed of a context over a and ε, and a tree
over b and ε.

We discuss how to recognize U by means of a total fta. For this, we need a set Q of
five states:

• a state qε such that δ(t) = qε if and only if t = ε,
• a state qa such that δ(t) = qa if and only if t contains a’s but no b’s,
• a state qb such that δ(t) = qb if and only if t contains b’s but no a’s,
• a state qab such that δ(t) = qab if and only if t = c[[s]] for some c ∈ C{a,ε}\{✷}

and s ∈ T{b,ε}\{ε} (i.e., t ∈ U and it contains both a’s and b’s), and
• a state q⊥ such that δ(t) = q⊥ if and only if t /∈ U .

Among these states, qε, qa, qb, qab are the final ones; the transition function is given as
follows:

δ(λ, ε) = qε
δ(qx qy, a) = qa for x, y ∈ {a, ε},
δ(qx qy, a) = qab for x ∈ {a, ε} and y ∈ {b, ab} or x ∈ {b, ab}

and y ∈ {a, ε},
δ(qx qy, b) = qb for x, y ∈ {b, ε},
δ(qx qy, z) = q⊥ for all remaining cases.

The (rejecting) computation on input t = a[b[ε, ε], a[a[ε, ε], a[b[b[ε, ε], ε], ε]]] can be
illustrated as follows, where the transitions “consume” the tree stepwise from the leaves
towards the root:

a

b

" "

a

a

" "

a

b

b

" "

"

"

❀

a

b

q" q"

a

a

q" q"

a

b

b

q" q"

q"

q"

❀

a

qb a

qa a

b

qb q"

q"

❀

a

qb a

qa a

qb q"

❀

a

qb a

qa qab

❀
a

qb qab

❀ q?

Thus, δ(t) = q⊥, indicating that t does not belong to U .

Query Learning of Regular Tree Languages 169

Given an fta A = (�, Q, δ, F), it follows by an obvious induction from the definition
of δ that any occurrence of a subtree s in a tree t may be replaced with any tree s ′ without
affecting δ(t), provided that δ(s ′) = δ(s).2 This yields the following lemma.

Lemma 2.2. Let A = (�, Q, δ, F) be an fta. For all contexts c ∈ C� and all trees
s, s ′ ∈ T� , if δ(s) = δ(s ′) then δ(c[[s]]) = δ(c[[s ′]]).

One consequence of the previous lemma is that dead states may be removed from
A without affecting L(A). Here, a dead state is a state q ∈ Q such that δ(s) = q for
some forbidden subtree s ∈ T� . Given such a state, Lemma 2.2 yields that δ(c[[s ′]]) =
δ(c[[s]]) for all s ′ ∈ T� with δ(s ′) = q. In other words, all trees s ′ ∈ T� with δ(s ′) =
q are forbidden subtrees. Now, if we remove q from Q and restrict δ accordingly, δ
becomes undefined only on trees outside L(A) (namely on trees containing forbidden
subtrees), which guarantees that the new automaton also recognizes L(A). For instance,
in Example 2.1 the trees s with δ(s) = q⊥ are forbidden subtrees. Thus, we may turn
the automaton into a partial fta that recognizes the same language, by removing q⊥.
Only 17 out of 51 transitions would be left. In general, it is worthwhile noticing that the
removal of dead states may drastically reduce the size of an automaton even if there is
only one dead state. This is because a total fta has about |�| · |Q|r transitions, where r
is the maximum rank of symbols in �. In the extreme case, all but |Q| − 1 out of these
transitions may involve the dead state.

It is well known that the Myhill–Nerode theorem carries over to regular tree lan-
guages. As a consequence, every regular tree language comes with a unique minimal fta
recognizing it. This result is usually stated for total automata but holds for partial ones
as well. Since our aim is to find a minimal partial fta for the language to be learned, we
briefly discuss both variants.

Consider a tree language L ⊆ T� . Given two trees s, s ′ ∈ T� , let s ∼L s ′ if and
only if, for every context c ∈ C� , L(c[[s]]) = L(c[[s ′]]). Thus, either both of c[[s]] and
c[[s ′]] are in L or none of them is. In other words, s ∼L s ′ if s and s ′ can be substituted
for each other in any context without affecting membership in L . Obviously, ∼L is an
equivalence relation on T� . The equivalence class containing s ∈ T� is denoted by [s]L .
The index of L is the number of equivalence classes of ∼L .

In general, the index of a tree language may of course be infinite. However, for
an fta A, the index of L(A) is always finite since δ(s) = δ(s ′) implies s ∼L(A) s ′ by
Lemma 2.2. Conversely, if a tree language L is of finite index, we can easily build a total
fta A = (�, Q, δ, F) recognizing L . Its states are the equivalence classes of ∼L and δ
is the set {trans(s) | s ∈ T�}, where for s = f [s1, . . . , sk],

trans(s) = ([s1]L · · · [sk]L , f, [s]L).

Similar to the string case, it is easy to check that δ is well defined because [s]L depends
only on [s1]L , . . . , [sk]L rather than on the particular choice of s1, . . . , sk . An equivalence
class [s]L is a final state if s ∈ L . By construction, δ(s) = [s]L for all s ∈ T� . Hence,
by the definition of final states, it is indeed true that L(A) = L . Furthermore, it is not

2 Whenever we write δ(s) = δ(s′), this is meant to express the fact that δ(s) and δ(s′) are either both
undefined or are defined and equal.

170 F. Drewes and J. Högberg

difficult to show that A is the uniquely determined minimal total fta recognizing L (up
to a bijective renaming of states).

The automaton constructed above may of course contain a dead state (but not more
than one since forbidden subtrees are pairwise equivalent). Hence, the construction
can be improved to yield the uniquely determined minimal partial fta recognizing L ,
as follows. The state set Q is now the set of all equivalence classes [s]L such that
s ∈ T� is not a forbidden subtree. Similarly, δ = {trans(s) | s ∈ T� and s is not a
forbidden subtree}.

Minimality and uniqueness are obvious, using the uniqueness of the minimal total
fta. This is because a total fta can be obtained by adding a dead state (if required),
together with the missing transitions. As the resulting total fta is unique, there cannot be
two minimal partial ones (since that would give rise to distinct total ones, both of which
would be minimal).

As an example, one may easily check that the index of the tree language L in
Example 2.1 is (at least) 5, by verifying that the trees ε, a[ε, ε], b[ε, ε], a[b[ε, ε], ε],
and a[b[ε, ε], b[ε, ε]] belong to different equivalence classes with respect to ∼L . Since
the fta constructed in that example has five states, we conclude that the index of L is
indeed 5 and the fta discussed in the example is the unique minimal total fta recognizing
L . To construct the minimal partial fta we simply omit the state q⊥ and all transitions
involving it, thus obtaining an fta with 17 transitions instead of 51.

3. Learning a Regular Tree Language

This section is devoted to the description of the learning algorithm. For the rest of the
paper, we consider an arbitrary ranked alphabet�. The aim is to learn an unknown regular
tree language U ⊆ T� , by constructing an fta recognizing U . Following the MAT model
described in the Introduction, the learner has access to an oracle. This teacher is able to
answer membership and equivalence queries:

Membership query. Given some tree t ∈ T� , the teacher checks whether or not
t ∈ U and returns U (t).

Equivalence query. Given an fta A, if L(A) �= U the teacher returns any tree
COUNTEREXAMPLE(A) ∈ U 	 L(A), a tree disproving the conjecture that A
recognizes U . If L(A) = U , then the teacher returns the special symbol⊥ /∈ �,
thus indicating successful completion of the learning process.

The main algorithmic idea behind the learner is inspired by the (theoretical) con-
struction of the minimal partial fta A = (�, Q, δ, F) recognizing U . Recall from the
discussion at the end of Section 2 that Q is the set of all [s]U such that s ∈ T� is
not a forbidden subtree. Thus, to describe the state set Q of A, we need |Q| pairwise
nonequivalent trees. Similarly, the transitions in δ are those of the form

trans(s) = ([s1]U · · · [sk]U , f, [s]U),

where s = f [s1, . . . , sk] ∈ T� is not a forbidden subtree. We can say that the tree
s represents the given transition. In order to describe δ we need |δ| trees representing
pairwise distinct transitions. Note that, except for the trivial case where two trees have

Query Learning of Regular Tree Languages 171

different root symbols, s = f [s1, . . . , sk] and s ′ = f [s ′1, . . . , s ′k] represent distinct
transitions if and only if [si]U �= [s ′i]U for some i ∈ [k].

In order to construct Q and δ, the learner will thus collect finite sets S and R of
trees representing states, respectively transitions. However, the learner also needs some
means to verify that two trees in S belong to different equivalence classes. Therefore, the
learner will not only collect trees in S and R, but will also maintain a set C of contexts
containing, for all distinct trees s, s ′ ∈ S, a context c such that U (c[[s]]) �= U (c[[s ′]]).
In fact, the contexts in C will also verify that the trees in R represent pairwise distinct
transitions. This is because we shall build R in such a way that R ⊆ �(S). Hence, in the
situation discussed above, there will always be a context c ∈ C such that U (c[[si]]) �=
U (c[[s ′i]]) for some i ∈ [k] if s = f [s1, . . . , sk] and s ′ = f [s ′1, . . . , s ′k] are distinct trees
in R.

We now prepare for the description of the actual learning algorithm. At any stage
of the computation, the learner will maintain the mentioned sets S and R of trees, and
a finite set of contexts C ⊆ C� . The first two sets will be related in a rather special
way: It will always be true that S ⊆ R ⊆ �(S). Following the approach of [Ang1], the
algorithm builds a so-called observation table whose rows and columns are indexed by
the elements of R, respectively C . The cell in row s ∈ R and column c ∈ C contains
an observation—a truth value indicating whether c[[s]] ∈ U . Note that the contents of
each cell of the table (for a fixed language U) is uniquely determined by R and C and
can be discovered by a membership query (although a concrete implementation should
of course store this information in order to avoid asking the same questions over and
over again). For this reason, we simply call the triple (S, R,C) an observation table,
thus omitting an explicit representation of the cells. The precise definition reads as
follows.

Definition 3.1 (Observation Table). Given a set C ⊆ C� of contexts and a tree s ∈ T� ,
we denote by obsC(s) the function f : C → {true, false} such that f (c) = U (c[[s]]) for
all c ∈ C . An observation table is a triple T = (S, R,C) of finite sets S, R ⊆ T� and
C ⊆ C� such that

1. S ⊆ R ⊆ �(S), and
2. obsC(s) �= obsC(s ′) for all distinct s, s ′ ∈ S.

Readers who are familiar with the papers of Angluin and Sakakibara may notice that
the requirement S ⊆ �(S) corresponds to the prefix-closedness, respectively subtree-
closedness, in their works. Also, it may be helpful to have another look at the second
requirement in the definition. In the terminology of [Ang1], this implies that our obser-
vation tables are automatically consistent. Thus, an explicit consistency requirement as
in [Ang1] and [Sak1] is not needed.

The reader should notice the connection between obsC(s) and ∼U . Clearly,
obsC� (s) = obsC� (s

′) if and only if [s]U = [s ′]U . For smaller sets C ⊆ C� , it follows
at least that obsC(s) �= obsC(s ′) implies [s]U �= [s ′]U . One task of the learner is to find
suitable contexts to separate all equivalence classes of ∼U from each other.

The observation table maintained by the learner will always have two additional
properties; these are defined next.

172 F. Drewes and J. Högberg

Definition 3.2 (Complete and Small Observation Table). An observation table (S,R,C)
is complete if

obsC(R) ⊆ obsC(S).

It is small if

1. R does not contain any forbidden subtree, and
2. |C | ≤ |S|.

As in the construction of the minimal partial fta recognizing U , a tree can be turned
into a transition based on the information provided by a set C ⊆ C� of contexts. For a
tree s = f [s1, . . . , sk], we define the corresponding transition by

transC(s) = (obsC(s1 · · · sk), f, obsC(s)).

In other words, the construction takes observations for equivalence classes even if the
former may not yet reveal the whole truth about the latter. Given a complete observa-
tion table T = (S, R,C), we use this construction to define an fta SYNTHESIZE(T) =
(�, QT , δT , FT), as follows:

• QT = obsC(S),
• δT = transC(R), and
• FT = {obsC(s) | s ∈ S ∩U }.
It is important to notice that, by the two requirements of Definition 3.1, |QT | = |S|

and |δT | = |R|. As we shall see, this guarantees termination of the learning algorithm
and allows us to derive an upper bound on its running time.

Note that SYNTHESIZE(T) can be easily constructed. Assuming that the implemen-
tation of the observation table explicitly stores the boolean entries of the row obsC(s) for
every s ∈ R, all information needed to build QT and δT can be retrieved from the table. To
construct FT , for every s ∈ S one membership query is needed to find out whether s ∈ U
(unless this information has already been requested in some earlier step and is stored in
memory).

Lemma 3.3. For every complete observation table T , SYNTHESIZE(T) is a well-defined
fta.

Proof. It suffices to show that δT is well defined. If s = f [s1, . . . , sk] is a tree in R then,
by the completeness of T , obsC(s) ∈ obsC(S) and, since s ∈ �(S), also obsC(s1 · · · sk) ∈
obsC(S)k . Hence, transC(s) ∈ Qk

T × �(k) × QT . Further, if s ′ = f [s ′1, . . . , s ′k] ∈ R is
distinct from s then obsC(s1 · · · sk) �= obsC(s ′1 · · · s ′k), by the second requirement in
Definition 3.1 and the fact that s1, . . . , sk, s ′1, . . . , s ′k ∈ S. This proves that δT is a partial
function.

Before presenting the learning algorithm itself, we study the relation between
SYNTHESIZE(T) and T . We first state and verify the rather obvious property of δT that
δT (s) = obsC(s) for all s ∈ R.

Query Learning of Regular Tree Languages 173

Lemma 3.4. For every complete observation table T = (S, R,C) and every tree
s ∈ R, it holds that δT (s) = obsC(s).

Proof. We proceed by structural induction on s = f [s1, . . . , sk]. Since R ⊆ �(S)
we have s1, . . . , sk ∈ S ⊆ R and thus, by the induction hypothesis, δT (s1 · · · sk) =
obsC(s1 · · · sk). By the definition of δT , it contains the transition transC(s) =
(obsC(s1 · · · sk), f, obsC(s)), which readily implies δT (s) = obsC(s).

As an almost immediate consequence, we get the following lemma.

Lemma 3.5. For every complete observation table T = (S, R,C)and every tree s ∈ S,
SYNTHESIZE(T) accepts s if and only if s ∈ U .

Proof. By Lemma 3.4, SYNTHESIZE(T) accepts s if and only if there is some s ′ ∈
S ∩U with obsC(s ′) = obsC(s). However, by the second requirement of Definition 3.1,
obsC(s ′) = obsC(s) is equivalent to s ′ = s.

An observation table T = (S, R,C) can be easily turned into a complete observation
table, denoted by COMPLETE(T). One simply chooses, for each o ∈ obsC(R)\obsC(S),
some tree s ∈ R with obsC(s) = o and adds it to S. In other words, COMPLETE(T) =
(S∪S′, R,C)where S′ is some minimal subset of R with obsC(S′) = obsC(R)\ obsC(S).

Lemma 3.6. For every observation table T , COMPLETE(T) is a complete observation
table. If T is small, then so is COMPLETE(T).

Proof. Obvious.

We also need the following easy lemma.

Lemma 3.7. For every complete observation table T = (S, R,C) and every tree
s = f [s1, . . . , sk] ∈ �(S), if δT (obsC(s1 · · · sk), f) is defined, then s ∈ R.

Proof. If δT (obsC(s1 . . . sk), f) is defined, then there is some s ′ = f [s ′1, . . . , s ′k] ∈
R ⊆ �(S) such that obsC(s1 · · · sk) = obsC(s ′1 · · · s ′k). By the second requirement of
Definition 3.1, s1 = s ′1, . . . , sk = s ′k and thus s = s ′.

We now turn to the description of the learning algorithm. The learner starts with
an initial observation table T = (∅,∅,∅) and enters directly into the main loop. Here
it synthesizes an fta A and asks for a counter-example, receiving in response a tree in
U 	 L(A). From this counter-example, the learner selects a piece of information and
uses it to extend the observation table before it continues by repeating the whole process.
This results in the following overall structure:

T = (S, R,C) := (∅,∅,∅);
loop

174 F. Drewes and J. Högberg

A := SYNTHESIZE(T);
t := COUNTEREXAMPLE(A); (equivalence query)
if t = ⊥ then return A
else T := EXTEND(T, t)

end loop

Line four of the routine is the only place where our algorithm uses an equivalence
query. Exactly how the learner uses the returned counter-example to gain greater knowl-
edge about the target language deserves a detailed explanation. A counter-example t
is by definition a tree which A fails to classify correctly as a member/nonmember of
the target language U . There are two possible reasons for this inaccuracy: either t ∈ U
but A lacks a transition (so that δT (t) is undefined) or δT (t) = obsC(t ′) for some tree
t ′ ∈ S such that t ′ �∼U t . Now, the idea behind the procedure EXTEND is to determine
one reason (although there can be more than one) why δT fails to classify t correctly.
This is done by simulating the run of A on t : The procedure first decomposes t into
c[[s]] where s = f [s1, . . . sk] is an element of �(S)\S. Thus, intuitively, s is a minimal
subtree of t not contained in S (minimal in the sense that the direct subtrees of s belong
to S). Such a subtree s must exist in every counter-example because, by Lemma 3.5, no
counter-example can be an element of S. If s /∈ R then we know by Lemmas 3.7 and 3.4
that δT (s) = δT (δT (s1) · · · δT (sk), f) is undefined. In this case δT (t) is undefined as
well, and thus t is rejected. Hence, t ∈ U because t is a counter-example, showing that
s is not a forbidden subtree and should be added to R in order to provide δT with the
missing transition.

On the other hand, if s ∈ R, then the learner checks the unique tree s ′ in S such
that obsC(s) = obsC(s ′). There are two cases. If U (c[[s]]) �= U (c[[s ′]]) we know that
s �∼U s ′ although A cannot distinguish between them. As a remedy, we add s to S and
c to C . The new context distinguishes between s and s ′ and guarantees that henceforth
obsC(s) �= obsC(s ′). Finally, if U (c[[s]]) = U (c[[s ′]]) then c[[s ′]] is also a counter-example
since we have δT (s ′) = obsC(s ′) = obsC(s) = δT (s) (using Lemma 3.4 twice) and thus,
by Lemma 2.2, c[[s]] ∈ L(A) if and only if c[[s ′]] ∈ L(A). EXTEND then calls itself
recursively with the parameter c[[s ′]]. Intuitively, the procedure goes up in the tree until
it finds a place where the behaviour of the synthesized fta contradicts the information
given by the teacher. As mentioned in the Introduction, this is basically the contradiction
backtracking technique invented by Shapiro [Sha].

In each recursive call of EXTEND, the number of occurrences of subtrees which are
not elements of S is reduced by at least one. Consequently, EXTEND(T, t) terminates
after fewer than |t | recursive calls. An outline of the procedure EXTEND is listed below:

procedure EXTEND(T, t) where T = (S, R,C)
decompose t into t = c[[s]] where s = f [s1, . . . , sk] ∈ �(S)\S;
if s ∈ R then

let s ′ ∈ S be such that obsC(s ′) = obsC(s);
if U (c[[s ′]]) = U (c[[s]]) then (membership query)

return EXTEND(T, c[[s ′]])
else return COMPLETE(S ∪ {s}, R,C ∪ {c})

else return COMPLETE(S, R ∪ {s},C)

Query Learning of Regular Tree Languages 175

Notice the membership query in line five. (Assuming that an explicit observation
table is used, indeed only one membership query is needed since U (c[[s ′]]) = obsC(s ′)(c)
is already known.) In addition, a concrete implementation which explicitly maintains the
entries of the observation table must use membership queries when executing one of the
two last lines. If COMPLETE(S∪{s}, R,C∪{c}) is returned, the new column given by the
new context c must be filled with the respective boolean values. Hence, in this case |R|
membership queries are needed. In contrast, when returning COMPLETE(S, R ∪ {s},C),
the new row represented by s must be established, thus leading to |C | membership
queries. Of course, one can delay updating the table until SYNTHESIZE is called again.

We postpone a more detailed discussion of these issues including formal correctness
and complexity statements to the next section. We now continue Example 2.1 and use
the rest of this section to illustrate how the learner acts in order to learn that language.
Hence,� = �(2) ∪�(0) where�(2) = {a, b} and�(0) = {ε}, and U is the set of all trees
of the form c[[s]], where c ∈ C{a,ε} and s ∈ T{b,ε}. In the tables of this example we use
“+” and “−” instead of “true” and “false” in order to indicate membership, respectively
nonmembership. Furthermore, we denote the sequence of tables generated during the
execution of the learner by T1, T2, T3, . . ., and the automata SYNTHESIZE(Ti) by Ai . In
each table, rows are indexed by elements of R and columns by elements of C . The upper
section of each table displays the rows given by the trees in S while the lower part lists
those given by trees in R\S.

The learner starts its computation with the initial observation table T1 = (∅,∅,∅).
Since A1 = SYNTHESIZE(T1) only recognizes the empty language the teacher will return
as a counter-example some tree in U , say t1 = a[a[ε, ε], b[ε, ε]]. EXTEND then selects
a subtree from the counter-example in �(S)\S, which in this specific situation can only
be ε since S = ∅. Hence ε is added to R and since S is empty, also to S by COMPLETE .
The observation table becomes

T2 =
ε

An fta A2 synthesized from T2 has only a single state q = obs∅(ε) and a single
transition (λ, ε, q) and thus rejects t1 which is in U , so the teacher may use the same
counter-example again. This time EXTEND chooses s = a[ε, ε] to be added to R, but as
obs∅(ε) = obs∅(a[ε, ε]), s will not be added to S by COMPLETE . The observation table
at this point is

T3 = ε

a[ε, ε]

The learner has not yet discovered that ε and a[ε, ε] are inequivalent but knows
already that they are not forbidden subtrees (and are, in fact, elements of U). As A3

fails to accept b[ε, ε] this may be the next counter-example given. If so then R grows
to three elements while S remains unchanged. We omit T4 for brevity, but remark that
L(A4) = T� . A fourth counter-example, t = b[a[a[ε, ε], ε], a[ε, ε]] ∈ L(A4)\U , is
now provided by the teacher as a response to the fta A4 . The procedure EXTEND selects a
subtree of t in�(S4), say the leftmost a[ε, ε], tries to replace it with the tree in S4 whose

176 F. Drewes and J. Högberg

observed behaviour is the same (i.e., with ε), and checks whether the resulting tree is also
a counter-example. Thus, t is turned into the counter-example t ′ = b[a[ε, ε], a[ε, ε]]
and EXTEND is called recursively. Again, some a[ε, ε] can be replaced with ε (say the
leftmost one), leading to a recursive call with the counter-example t ′′ = b[ε, a[ε, ε]].
Here, the remaining occurrence of the subtree a[ε, ε] cannot be replaced with ε because
b[ε, ε] ∈ U . Hence, EXTEND returns T5 = (S4 ∪ {a[ε, ε]}, R,C4 ∪ {b[ε,✷]}), i.e., the
following (complete) table:

T5 =
b[ε,✷]

ε +
a[ε, ε] −
b[ε, ε] +

However, the fta A5 still maps b[ε, ε] to the same state as ε, so the teacher gives
yet another counter-example, a[b[ε, ε], b[ε, ε]] ∈ L(A5)\U . EXTEND decomposes this
into a[b[ε, ε],✷][[b[ε, ε]]], causing b[ε, ε] to be added to S and a[b[ε, ε],✷] to C :

T6 =
b[ε,✷] a[b[ε, ε],✷]

ε + +
a[ε, ε] − +
b[ε, ε] + −

There is still a state missing though. The learner will first discover that one of the
trees a[ε, b[ε, ε]] and a[b[ε, ε], ε] has to be added to R. Afterwards, COMPLETE will
move the tree further into S, where it will give rise to the missing state. What remains
is a series of synthesized fta’s and counter-examples that will fill in the missing rules,
yielding in step 21 the final observation table

T21 =

b[ε,✷] a[b[ε, ε],✷]
ε + +

a[ε, ε] − +
b[ε, ε] + −

a[b[ε, ε], ε] − −
a[ε, a[ε, ε]] − +
a[a[ε, ε], ε] − +

a[a[ε, ε], a[ε, ε]] − +
a[ε, b[ε, ε]] − −

a[a[ε, ε], b[ε, ε]] − −
a[b[ε, ε], a[ε, ε]] − −
a[ε, a[b[ε, ε], ε]] − −
a[a[b[ε, ε], ε], ε] − −

a[a[b[ε, ε], ε], a[ε, ε]] − −
a[a[ε, ε], a[b[ε, ε], ε]] − −

b[b[ε, ε], ε] + −
b[ε, b[ε, ε]] + −

b[b[ε, ε], b[ε, ε]] + −

Query Learning of Regular Tree Languages 177

If we compare the fta A21 with the total fta described in Example 2.1 we see that
the states 〈++〉, 〈−+〉, 〈+−〉, 〈−−〉 are renamings of the states qε, qa, qb, and qab,
respectively. However, since A21 is the minimal partial fta recognizing U there is no
state corresponding to q⊥. Note that, indeed, only 17 instead of 51 transitions have been
computed, as mentioned in Example 2.1.

4. Correctness and Complexity

In this section we prove that the learner is correct, i.e., it returns the minimal partial
fta recognizing U , and examine its time complexity. For the complexity considerations,
we assume that the teacher can answer any query in constant time. In other words, we
do not take into account the complexity of the teacher (which, of course, cannot be
known unless we make further assumptions regarding the teacher). We assume that the
algorithm is implemented on a Random Access Machine (RAM). Such a machine has by
definition a potentially infinite number of registers, each capable of storing an arbitrarily
large integer. Its program is a sequence of instructions like assignment, addition, and
conditional jumps. Moreover, what is most important to our algorithm, it supports indirect
addressing, i.e., the contents of a register may be used to address another register in order
to retrieve or store a value. Thus, we can use pointers in order to deal with trees in an
efficient way. For more information on RAMs the reader is referred to, e.g., the textbook
by Papadimitriou [Pap].

The correctness of the learner is obvious once termination has been proved, simply
because the learner will only return an automaton accepted by the teacher. To prove
termination, we basically have to show that the learner never collects useless information.
At the same time, this will enable us to estimate the time complexity of the learner. To
start, we give two lemmas showing that the recursion of EXTEND works correctly and
a small complete observation table remains small when the learner enlarges it by the
information extracted from a counter-example.

The assumptions of the first lemma correspond to the situation in EXTEND where
s ∈ R, with the two subcases that EXTEND either calls itself recursively or returns
COMPLETE(S ∪ {s}, R,C ∪ {c}).

Lemma 4.1. Let T = (S, R,C) be a small complete observation table and let A =
SYNTHESIZE(T). Let c ∈ C� and s ∈ R be such that c[[s]] ∈ L(A) 	 U , and let
s ′ be the unique tree in S with obsC(s ′) = obsC(s). If U (c[[s ′]]) = U (c[[s]]) then
c[[s ′]] ∈ L(A)	U . Otherwise, (S ∪ {s}, R,C ∪ {c}) is a small observation table.

Proof. By Lemma 3.4, δT (s) = obsC(s) = obsC(s ′) = δT (s ′). Consequently, by
Lemma 2.2, δT (c[[s ′]]) = δT (c[[s]]), which in particular implies that c[[s ′]] ∈ L(A) if and
only if c[[s]] ∈ L(A). Thus, the assumption c[[s]] ∈ L(A)	U yields c[[s ′]] ∈ L(A)	U
if U (c[[s ′]]) = U (c[[s]]). This proves the first statement of the lemma.

Suppose now that U (c[[s ′]]) �= U (c[[s]]). We must prove that T ′ = (S ∪ {s}, R,C ∪
{c}) is a small observation table. Obviously, the first requirement of Definition 3.1 is
satisfied. As for the first requirement, note that obsC(t) �= obsC(t ′) implies obsC∪{c}(t) �=
obsC∪{c}(t ′) for all t, t ′ ∈ T� . Thus, it suffices to prove that obsC∪{c}(s ′′) �= obsC∪{c}(s)

178 F. Drewes and J. Högberg

for all s ′′ ∈ S. For s ′′ = s ′ this is clear as U (c[[s ′]]) �= U (c[[s]]). For s ′′ �= s ′ we already
have obsC(s ′′) �= obsC(s ′) = obsC(s) as (S, R,C) is an observation table, and hence
obsC∪{c}(s ′′) �= obsC∪{c}(s).

Thus, T ′ is an observation table. Furthermore, T ′ obviously satisfies the smallness
conditions (due to the assumption that T satisfies them), which completes the proof.

The second lemma captures the case where EXTEND discovers that s �∈ R and returns
COMPLETE(S, R ∪ {s},C}.

Lemma 4.2. Let T = (S, R,C) be a small complete observation table and let A =
SYNTHESIZE(T). If c ∈ C� and s ∈ �(S)\R are such that c[[s]] ∈ L(A) 	 U , then
(S, R ∪ {s},C) is a small observation table.

Proof. Since s ∈ �(S), it is clear that (S, R ∪ {s},C) is an observation table. To
convince ourselves that it is also small, we have to argue that s is not a forbidden subtree.
Let s = f [s1, . . . , sk]. By Lemma 3.4 and since s1, . . . , sk ∈ S ⊆ R, we know that
δT (s) = δT (obsC(s1 · · · sk), f), and since the latter is undefined, so is δT (c[[s]]). This
shows that c[[s]] �∈ L(A), which means that c[[s]] ∈ U , thus proving the claim that s is
not a forbidden subtree.

We are now ready to show that the learner works correctly and returns the minimal
partial fta recognizing U .

Theorem 4.3. The learner terminates and returns the minimal partial fta recognizing
U (up to renaming of states).

Proof. Let A = (�, Q, δ, F) be the minimal partial fta recognizing U , where Q =
{[s]U | s ∈ T� is not a forbidden subtree} (see Section 2). The learner will call the
procedure EXTEND in every iteration of the main loop (unless there is no counter-
example, in which case the learner halts). Each of these calls terminates (as argued in the
paragraph preceding EXTEND) and will result in a new element being added to at least
one of the sets S and R. Initially, T = (∅,∅,∅) is a small complete observation table.
By induction, using Lemmas 3.6, 4.1, and 4.2, this means that T = (S, R,C) is always
a small complete observation table.

The fact that T is a small observation table implies in particular that |S| ≤ |Q| and
|R| ≤ |δ|. To see this, first note that the smallness of T implies {[s]U | s ∈ S} ⊆ Q and
trans(R) ⊆ δ as it disallows R (and hence S) to contain forbidden subtrees. Now recall
the remark after Definition 3.1 saying that obsC(s) �= obsC(s ′) implies [s]U �= [s ′]U .
Hence, |S| ≤ |Q| is a consequence of the second requirement of Definition 3.1. Similarly,
|R| ≤ |δ| since the second requirement yields trans(s1) �= trans(s2) for all distinct
s1, s2 ∈ �(S) ⊇ R.

The two upper bounds assure that the learner will eventually terminate and return a
partial fta AT = (�, QT , δT , FT). This fta recognizes U since the teacher has accepted it.
Moreover, by the inequalities above, |QT | ≤ |Q| (and |δT | ≤ |δ|). Due to the uniqueness
of the minimal partial fta recognizing U , this means that A and AT are identical up to
the names of states.

Query Learning of Regular Tree Languages 179

We now study the time complexity of the learner. The running time of the algorithm
will be measured in the size of the sought fta and the maximum size m of the counter-
examples returned by the teacher. The former is furthermore decomposed into three
parameters, namely the number of states, number of transitions, and maximum rank of
symbols. As in the Introduction, we denote the latter by r . More precisely, if � is the
smallest ranked alphabet satisfying U ⊆ T� then r denotes the largest natural number
such that �(r) �= ∅ (and r = 0 if � = ∅).

Note that we need m as a parameter even though the procedure EXTEND avoids adding
large counter-examples and their subtrees to S and R. This is because unnecessarily large
counter-examples clearly influence the running time of the procedure EXTEND itself in a
negative way. Hence, the overall running time of the learner depends to a certain degree
on m as well.

To gain efficiency (and avoid repeated membership queries) we assume in the fol-
lowing that the learner explicitly maintains, for every s ∈ R, a reference to a memory cell
holding obsC(s), where T = (S, R,C) is the current observation table. Here, obsC(s) is
stored as a single integer, namely the one obtained by interpreting obsC(s) as a binary
number consisting of |C | bits. The least significant bit is the one corresponding to the
element added to C most recently. Note that if an element c is added to C , the integer
representing obsC(s) can be turned into the one representing obsC∪{c}(s) in constant
time as it requires a multiplication by 2, a membership query, and, in case of a positive
answer, an additional increment by 1. Similarly, if an element s is added to R, computing
obsC(s) takes O(|S|) steps as |C | membership questions are required and |C | ≤ |S| by
the second smallness condition.

We show first that it can be checked efficiently whether a given transition is contained
in δT . Note that this can be used in EXTEND to test whether s ∈ R because s ∈ R if and
only if transC(s) ∈ δT (see Lemma 3.7).

Lemma 4.4. Let T = (S, R,C) be an observation table constructed during a run of
the learner. It can be checked in time O(r · |S|) whether transC(s) ∈ δT for a given tree
s ∈ �(S).

Proof. This is based on a suitable representation of δT , which we describe first. For
every tree s ′ ∈ R, let us identify obsC(s ′) with its integer representation in memory (as
explained above). Now, let f ∈ �(k) and denote by δ f the set of all i1 · · · ik+1 ∈ Nk+1 such
that (i1 · · · ik, f, ik+1) ∈ δT . We represent δ f as the rooted tree (in the graph-theoretic
sense) whose edges are labelled with numbers in obsC(S), such that there is a path
labelled i1 · · · ik+1 from the root to a leaf if and only if i1 · · · ik+1 ∈ δ f .

Let s = f [s1, . . . , sk] be the tree in the statement of the lemma. Since obsC(s1), . . . ,

obsC(sk) are available in memory, the transition transC(s) can be computed by looking up
obsC(s1), . . . , obsC(sk) within O(r) steps and using |C | ≤ |S| membership queries3 to
determine obsC(s). Now, let transC(s) = (i1 · · · ik, f, ik+1). Every node of the described
representation of δT has out-degree at most |S|. Hence, it can be checked by means of
(k + 1)|S| comparisons whether i1 · · · ik+1 ∈ δ f (i.e., whether (i1 · · · ik, f, ik+1) ∈ δT).
Since k ≤ r , this yields the claimed bound.

3 Recall that |C | ≤ |S| since T is small.

180 F. Drewes and J. Högberg

We now estimate how much time is spent in each call EXTEND(T, t) until one of
the nonrecursive return statements is reached (not including the time required to execute
these final return statements).

Lemma 4.5. EXTEND can be implemented in such a way that, for each call
EXTEND(T, t) performed by the learner, one of the two nonrecursive return statements
is reached in time O(r · |t | · |S|) where T = (S, R,C).

Proof. In a bottom-up manner the subtrees of t are marked if they belong to S. We argue
at the end of this proof that the test of whether a subtree s belongs to S can be implemented
to run in time O(r · |S|). As soon as a subtree is reached that does not belong to S, it
must necessarily be an element of �(S)\S. This determines a decomposition t = c[[s]]
as required in the description of EXTEND.

Next, we have to check whether s ∈ R, which is equivalent to testing whether
transC(s) ∈ δT and thus by Lemma 4.4 takes O(r · |S|) steps. If s /∈ R then the execution
of EXTEND has reached the nonrecursive return statement in the last line, so we suppose
that s ∈ R.

Using a loop that ranges over all trees s ′ ∈ S we now find the one for which
obsC(s ′) = obsC(s). By the assumption that all obsC(s), s ∈ R, are kept in memory, a
comparison of obsC(s ′) with obsC(s) takes a constant number of steps (since s, s ′ ∈ R).
Hence, s ′ is found in O(|S|) steps. Afterwards, we check by means of a single membership
query whether U (c[[s]]) = U (c[[s ′]]). If so, we replace s with s ′ (which takes a single
pointer operation, as we shall see below) and continue the bottom-up process (which
corresponds to the recursive call). In this way, each node of t is processed at most
once.

It remains to be discussed how much time is required by the test of whether or not
s ∈ S, where s = f [s1, . . . , sk] is a subtree of t whose own subtrees s1, . . . , sk are
known to be in S as they have already been processed. For an efficient implementation,
we use a convenient representation of (the trees in) S. We represent S by a directed
acyclic graph G consisting of |S| nodes, i.e., an acyclic pointer structure in which equal
subtrees are represented by the same node. (Note that G has indeed exactly |S| nodes
because S ⊆ �(S), i.e., every subtree of a tree in S is itself in S.) During the bottom-up
inspection and modification of t , each subtree which is an element of S is turned into
a pointer to the respective node of G. In particular, the replacement of the subtree s by
s ′ ∈ S above is implemented by establishing a pointer rather than by copying.

Now, for the test of whether s ∈ S, we know that s1, . . . , sk are actually pointers
that refer to nodes in G. The membership test can thus be performed in O(r · |S|) steps
by simply checking, for each node of G, whether it is labelled with f and whether its
k ≤ r children are identical to the nodes s1, . . . , sk refer to.

In summary, each node of t is processed in time O(r · |S|), which means that
EXTEND(T, t) runs in time O(r · |t | · |S|).

If the learner is implemented strictly along the lines of the previous section,
SYNTHESIZE(T) must be computed in each execution of its main loop. However, in
most cases EXTEND adds only a single tree to R (and possibly to S) without chang-
ing the set of contexts. Hence, a more efficient implementation can avoid recomputing

Query Learning of Regular Tree Languages 181

SYNTHESIZE(T) in all but a few loop executions by simply updating the old fta. This is
expressed formally in the lemma below.

Lemma 4.6. Suppose the learner calls EXTEND(T, t), which returns an observation
table T ′ of the form T ′ = COMPLETE(S, R ∪ {s},C). Then the internal data structures
of the algorithm can be updated and the fta SYNTHESIZE(T ′) can be computed from
SYNTHESIZE(T) in time O(r · |S|). This includes the time needed to execute COMPLETE.

Proof. Let s = f [s1, . . . , sk]. We may assume that transC(s) has already been com-
puted (see the proofs of Lemmas 4.4 and 4.5). We now also store obsC(s) in memory in
order to reflect the fact that the observation table has been changed. After that, it suffices
to add transC(s) to the set of transitions of SYNTHESIZE(T) and to check by means of
|S| comparisons whether obsC(s) ∈ obsC(S). If not, we add s to S, i.e., update the graph
described in the proof of Lemma 4.5, within O(r) steps. (For this, we simply create a new
node labelled f and establish k ≤ r edges from that node to s1, . . . , sk .) Furthermore, in
this case we include obsC(s) in the set of states—and in the set of final states if s ∈ U .
Checking the latter requires one additional membership query (see also the paragraph
preceding Lemma 3.3). We note here that the representation of δT described in the proof
of Lemma 4.4 can be updated simultaneously by adding the new transition in O(r · |S|)
steps (similar to the lookup procedure in the proof of Lemma 4.4).

In the case where the observation table is extended by a new context, we simply
recompute SYNTHESIZE(T). The following lemma shows how much time this takes.

Lemma 4.7. Suppose the learner calls EXTEND(T, t), which returns an observation
table T ′ of the form T ′ = COMPLETE(S ∪ {s}, R,C ∪ {c}). Then the internal data
structures of the algorithm can be updated and the fta SYNTHESIZE(T ′) can be computed
in time O(r · |S| · |R|). This includes the time needed to execute COMPLETE.

Proof. We first update the internal representation of the observation table entries by
turning every obsC(s), s ∈ R, into obsC∪{c}(s). As pointed out earlier, this takes a constant
number of steps for each s ∈ R, and thus O(|R|) steps in total. Furthermore, for every
s ∈ R we check by means of |S| comparisons whether obsC(s) ∈ obsC(S), and add s to
S within O(r) steps if not. Thus, this task requires O((r + |S|) · |R|) steps in total.

Now, we compute SYNTHESIZE(T ′). Clearly, constructing the transition table is the
most time-consuming part (as |R| ≥ |S|). For each s = f [s1, . . . , sk] ∈ R, trans(s) can
be constructed in time O(r) as we mainly have to look up the values obsC∪{c}(s1), . . . ,

obsC∪{c}(sk), obsC∪{c}(s), thus yielding O(r · |R|) steps in total.
While the first two steps run in time O(r · |R|), we must not forget to recompute the

representation of δT ′ employed in Lemma 4.4. This can be done within the claimed time
bound O(r · |S| · |R|) since, as observed in the proof of Lemma 4.6, a single transition
can be added in time O(r · |S|).

We can now determine the running time of the learner as a whole.

182 F. Drewes and J. Högberg

Theorem 4.8. Let A = (�, Q, δ, F) be the minimal partial fta recognizing U . The
learner runs in time O(r · |Q| · |δ| · (|Q| + m)), where m is the maximum size of
counter-examples returned by the teacher and r is the maximum rank of symbols in �.

Proof. As argued in the proof of Theorem 4.3, every observation table T = (S, R,C)
constructed by the learner satisfies |S| ≤ |Q| and |R| ≤ |δ| (see also the example
discussed at the end of Section 3). In particular, the statement “return COMPLETE(S∪
{s}, R,C ∪ {c})” in EXTEND is executed at most |Q| times in total. By Lemma 4.7
the overall time spent on this, together with the required updatings, respectively re-
computations, of SYNTHESIZE(T), is O(r · |Q|2 · |δ|).

Similarly, the statement “return COMPLETE(S, R ∪ {s},C)” in the last line of
EXTEND is executed at most |δ| times in total. By Lemma 4.6, the time required in each
of these calls is O(r · |Q|). Multiplying by |δ|, we obtain the upper bound O(r · |Q| · |δ|).

Since each of the two nonrecursive return calls of EXTEND results in the addition
of at least one new element to either S or R, at most 2 · |δ| calls of EXTEND are exe-
cuted by the main procedure (again, the reader may wish to have a look at the example
discussed at the end of Section 3). By Lemma 4.5 the recursion which each of these
calls gives rise to, ends after O(r · m · |Q|) steps, yielding O(r · m · |Q| · |δ|) steps
in total. Summing up, we get the time bound O(r · |Q|2 · |δ| + r · m · |Q| · |δ|) =
O(r · |Q| · |δ| · (|Q| + m)).

We finally discuss in an informal manner how many queries will be made. Assume
again that A = (�, Q, δ, F) is the minimal partial fta recognizing U , and let M denote the
sum of the sizes of counter-examples returned by the teacher. Implementing the algorithm
without any optimization, at most |Q| + |δ| + 1 equivalence queries will be made. This
is because every execution of the body of the main loop requires one equivalence query
while adding at least one tree to S or R. The membership queries of the learner belong to
three different categories. Filling the at most |Q|·|δ| entries of the observation table takes
|Q| · |δ|membership queries in the worst case. Further membership queries are asked by
EXTEND in order to extract the required information from a given counter-example. Since
the counter-example gets smaller with each recursive call, a maximum of M membership
queries is needed here, if we sum up over all executions of EXTEND. Finally, at most
|Q| membership queries in total are needed in order to determine the final states of the
automata SYNTHESIZE(T) constructed during the run of the algorithm. Altogether, in the
worst case the algorithm requires |Q| + |δ| + 1 equivalence and M + |Q| · (|δ| + 1)
membership queries. (See the next section for a partial improvement of the former.)

5. Conclusion

Based on an approach by Angluin [Ang1], we have presented a learning algorithm
that constructs the minimal partial (deterministic bottom-up) finite-state tree automaton
(fta) recognizing an initially unknown regular tree language U . To gather the necessary
information about the target language, the MAT model from [Ang1] is used: The learner
has access to a minimally adequate teacher who can answer membership and equivalence
queries.

Query Learning of Regular Tree Languages 183

During the construction of the minimal partial fta recognizing U , the learner avoids
dealing with so-called dead states. This solves an open problem mentioned by Sakakibara
in [Sak1], where the first extension of the algorithm by Angluin to regular tree languages
was proposed. A previous learner proposed by ourselves in [DH] attacked this problem
as well but solved it only partially.

The benefit of learning a partial fta instead of a total one depends entirely on the target
language. If the language has no forbidden subtrees then nothing is won, but there are
languages where a partial fta is much smaller. As an example, consider the alphabet� =
{a(k), b(0)} and let the language U contain only the fully balanced tree of height n. Clearly,
the minimal total fta recognizing U has n+2 states q0, . . . , qn, q⊥, where qn is final, and
some (n+2)k transitions. However, although a minimal partial fta uses only one state less,
the number of transitions drops to n+1, namely {(b, q0)}∪

⋃n
i=1{(qi−1 · · · qi−1, a, qi)}.

For simplicity, and in order to estimate the running time of the pure learning al-
gorithm, the complexity of membership and equivalence queries were disregarded, i.e.,
queries were assumed to take constant time. Of course, from a practical point of view
this assumption is questionable (to say the least). Moreover, it may be suspected that it
will normally be easier for the teacher to deal with membership than with equivalence
queries. As explained at the end of the previous section, our algorithm makes |Q|+|δ|+1
equivalence queries while learning a minimal partial fta A = (�, Q, δ, F). In contrast,
the algorithms in [Sak1] and [DH] require only |Q|+1 of them (but, in the worst case, a
number of membership queries which is exponential in the size of A). Hence, the number
of equivalence queries needed by our algorithm may be considered to be a disadvantage
compared with the earlier approaches. We conjecture that this cannot be avoided in gen-
eral without, as in [DH], letting the learner also check transition rules that involve dead
states, thus spoiling the gain in efficiency.

Nevertheless, an easy modification of the algorithm yields a certain improvement re-
garding the number of equivalence queries: Instead of requesting a new counter-example
for each execution of EXTEND, one first checks whether the previous counter-example
continues to be one (i.e., the new synthesized fta gives the same answer as the old one).
In this case no new counter-example would have to be asked for. The algorithm would
thus extract from each counter-example all information it can make use of, rather than
discarding a counter-example as soon as one piece of information has been extracted.
Clearly, in the worst case this does not yield an improvement as the teacher may always
give a counter-example revealing precisely one missing row of the observation table.

For many languages this strategy will nevertheless result in an improvement if the
teacher selects counter-examples at random or even finds counter-examples providing
as much information about U as possible. Unfortunately, there are languages for which
such counter-examples do not exist. For instance, let�(0) = {b} and�(2) = {a1, . . . , an},
and define U = {ai [b, b] | i ∈ [n]}. Then the teacher will be forced to give all trees
ai [b, b] as counter-examples, one after the other, since no counter-example contains
another counter-example as a subtree. This may also be considered as an indication
that the approach presented here is optimal in a certain sense. Before receiving the
corresponding counter-example, the learner cannot know whether ai [b, b] is a forbidden
subtree unless this is checked by means of a membership query. However, testing ai [b, b]
for all i ∈ [k] by means of membership queries is not an option because it is too costly
in general as all of them might be forbidden subtrees.

184 F. Drewes and J. Högberg

Obviously, the discussion above gives rise to interesting questions that could be
addressed in future work. In particular, it could be interesting to investigate properties
of the language U that allow the teacher to select counter-examples in such a way that
only a comparatively small number of counter-examples is needed.

Acknowledgments

We thank Joost Engelfriet and the referees for useful comments that have helped improve both the results and
their presentation.

References

[Ang1] Dana Angluin. Learning regular sets from queries and counterexamples. Information and Computa-
tion, 75:87–106, 1987.

[Ang2] Dana Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.
[Ang3] Dana Angluin. Queries revisited. Theoretical Computer Science, 313:175–194, 2004.

[BR] Piotr Berman and Robert Roos. Learning one-counter languages in polynomial time (extended ab-
stract). In Proc. 28th Annual Symposium on Foundations of Computer Science, pages 61–67. IEEE
Press, Piscataway, NJ, 1987.

[COC] Rafael C. Carrasco, Jose Oncina, and Jorge Calera. Stochastic inference of regular tree languages. In
V. Honavar and G. Slutzki, editors, Proc. 4th International Colloquium on Grammatical Inference
(ICGI ’98), pages 185–197. Volume 1433 of Lecture Notes in Artificial Intelligence. Springer-Verlag,
Berlin, 1998.

[DH] Frank Drewes and Johanna Högberg. Learning a regular tree language from a teacher. In Z. Ésik and
Z. Fülöp, editors, Proc. 7th International Conference on Developments in Language Theory (DLT
’03), pages 279–291. Volume 2710 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
2003.

[Dre1] Frank Drewes. Tree-based picture generation. Theoretical Computer Science, 246:1–51, 2000.
[Dre2] Frank Drewes. Grammatical Picture Generation — A Tree-Based Approach. Texts in Theoretical

Computer Science. An EATCS Series. Springer-Verlag, Berlin, to appear.
[Eng] Joost Engelfriet. Graph grammars and tree transducers. In S. Tison, editor, Proc. CAAP 94, pages

15–37. Volume 787 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1994.
[Fer] Henning Fernau. Even linear matrix languages: formal language properties and grammatical infer-

ence. Theoretical Computer Science, 289:425–456, 2002.
[FK] H. Fukuda and K. Kamata. Inference of tree automata from sample set of trees. International Journal

of Computer and Information Sciences, 13(3):177–196, 1984.
[FR] Amr F. Fahmy and Robert Roos. Efficient learning of real time one-counter automata. In K. P. Jantke,

T. Shinohara, and T. Zeugmann, editors, Proc. 6th International Workshop on Algorithmic Learning
Theory (ALT ’95), pages 25–40. Volume 997 of Lecture Notes in Artificial Intelligence. Springer-
Verlag, Berlin, 1995.

[GS1] Ferenc Gécseg and Magnus Steinby. Tree Automata. Akadémiai Kiadó, Budapest, 1984.
[GS2] Ferenc Gécseg and Magnus Steinby. Tree languages. In G. Rozenberg and A. Salomaa, editors,

Handbook of Formal Languages. Vol. III: Beyond Words, chapter 1, pages 1–68. Springer-Verlag,
Berlin, 1997.

[Ish1] Hiroki Ishizaka. Inductive inference of regular languages based on model inference. International
Journal of Computer Mathematics, 27:67–83, 1989.

[Ish2] Hiroki Ishizaka. Polynomial time learnability of simple deterministic languages. Machine Learning,
5:151–164, 1990.

[Lee] Lillian Lee. Learning of context-free languages: a survey of the literature. Report TR-12-96, Center
for Research in Computing Technology, Harvard University, 1996.

Query Learning of Regular Tree Languages 185

[LJ] Leon S. Levy and Aravind K. Joshi. Skeletal structural descriptions. Information and Control,
39:192–211, 1978.

[Pap] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, MA, 1994.
[Sak1] Yasubumi Sakakibara. Learning context-free grammars from structural data in polynomial time.

Theoretical Computer Science, 76:223–242, 1990.
[Sak2] Yasubumi Sakakibara. Efficient learning of context-free grammars from positive structural examples.

Information and Computation, 97:23–60, 1992.
[Sha] Ehud Y. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge, MA, 1983.
[SY] Hiromi Shirakawa and Takashi Yokomori. Polynomial-time MAT learning of c-deterministic context-

free grammars. Transactions of the Information Processing Society of Japan, 34:380–390, 1993.
[TW] James W. Thatcher and Jesse B. Wright. Generalized finite automata theory with an application to a

decision-problem of second-order logic. Mathematical Systems Theory, 2:57–81, 1968.
[Yok] Takashi Yokomori. Learning nondeterministic finite automata from queries and counterexamples. In

K. Furukawa, D. Michie, and S. Muggleton, editors, Machine Intelligence, volume 13, chapter 7,
pages 169–189. Clarendon Press, Oxford, 1994.

Received June 22, 2004, and in revised form January 27, 2005, and in final form January 28, 2005.
Online publication August 3, 2005.

