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Abstract. A central question in computational biology is the design of genetic
markers to distinguish between two given sets of (DNA) sequences. This question
is formalized as the NP-complete DISTINGUISHING SUBSTRING SELECTION problem
(DSSS for short) which asks, given a set of “good” strings and a set of “bad” strings,
for a solution string which is, with respect to the Hamming metric, “away” from the
good strings and “close” to the bad strings. More precisely, given integers dg, db,
and L , we ask for a length-L string s such that s has Hamming distance at least dg

to every length-L substring of the good strings and such that every bad string has a
length-L substring with Hamming distance at most db to s.

Studying the parameterized complexity of DSSS, we show that, already for
binary alphabet, DSSS is W[1]-hard with respect to its natural parameters. This,
in particular, implies that a recently given polynomial-time approximation scheme
(PTAS) by Deng et al. [6], [7] cannot be replaced by a so-called efficient poly-
nomial-time approximation scheme (EPTAS) [4] unless an unlikely collapse in
parameterized complexity theory occurs. This is seemingly the first computational
biology problem for which such a border between PTAS (which exists) and EPTAS
(which is unlikely to exist) could be established.

By way of contrast, for a special case of DSSS, we present an exact fixed-
parameter algorithm solving the problem efficiently. In this way we also exhibit a
sharp border between fixed-parameter tractability and intractability results.

∗ An extended abstract of this paper appeared under the title “On exact and approximation algorithms for
Distinguishing Substring Selection” at the 14th International Symposium on Fundamentals of Computation
Theory (FCT 2003), Springer-Verlag, LNCS 2751, pages 195–209, held in Malmö, Sweden, August 13–15,
2003. The first author was supported by the Deutsche Forschungsgemeinschaft (DFG), project OPAL (optimal
solutions for hard problems in computational biology), NI 369/2, and the other two authors were supported
by the Deutsche Forschungsgemeinschaft (DFG), junior research group PIAF (fixed-parameter algorithms),
NI 369/4. Work done while all three authors were with the Universität Tübingen.
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1. Introduction

Motivation. Recently, there has been strong interest in developing polynomial-time ap-
proximation schemes (PTASs) for several string problems motivated by computational
molecular biology [6]–[8], [19], [20]. More precisely, all these problems adhere to a
scenario where we are looking for a string which is “close” to a given set of strings and,
in some cases, which shall also be “far” from another given set of strings. Applications in
molecular biology include motif discovery (when we search a motif common to one set
of sequences which are, e.g., related to a common expression behavior, opposed to a set
of sequences not exhibiting this behavior) and primer design (when we search for primers
that “mark” one type of sequences opposed to a second type); see [18] for an overview
on these kinds of applications. The underlying distance measure is the Hamming metric.
The list of problems in this context, for which PTASs were given, includes CLOSEST

(SUB)STRING [19], CONSENSUS PATTERNS [20], and DISTINGUISHING (SUB)STRING SE-
LECTION [6]–[8]. All these problems are NP-complete, hence polynomial-time exact
solutions are out of reach and PTASs might be the best one can hope for. PTASs, how-
ever, often carry huge hidden constant factors that make them useless from a practical
point of view. This difficulty also occurs with the problems mentioned above. Hence,
two natural questions arise:

1. To what extent can the above approximation schemes be made really practical?1

2. Are there, besides pure heuristics, theoretically satisfying approaches to solving
these problems exactly, perhaps based on a parameterized point of view [2], [12]?

Problem Definition. In this paper we address both these questions, focusing on the
DISTINGUISHING SUBSTRING SELECTION problem (DSSS):

Input: Given an alphabet � of constant size, two sets of strings over �,

• Sg = {s1, . . . , skg}, each string of length at least L (the “good” strings),2

• Sb = {s ′1, . . . , s ′kb
}, each string of length at least L (the “bad” strings),

and two non-negative integers dg and db.

Question: Is there a length-L string s over � such that

• in every si ∈ Sg, for every length-L substring ti , dH(s, ti ) ≥ dg and
• every s ′i ∈ Sb has at least one length-L substring t ′i with dH(s, t ′i ) ≤ db?

Here, dH(s, ti ) denotes the Hamming distance between strings s and ti . Following
Deng et al. [6], [7], we distinguish DSSS from DISTINGUISHING STRING SELECTION

1 As Fellows [12] put it in his survey, “it would be interesting to sort out which problems with PTASs
have any hope of practical approximation.” Also see the surveys by Downey [9] and Fellows [13] for good
expositions on this issue.

2 Deng et al. [6], [7] let all good strings be of the same length L; we come back to this restriction in
Section 4. The terminology “good” and “bad” has its motivation in the application [18] of designing genetic
markers to distinguish the sequences of harmful germs (to which the markers should bind) from human
sequences (to which the markers should not bind).
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(DSS) in which all good and bad strings have the same length L; note that Lanctot et al.
[18] did not make this distinction and denoted both problems as DSS.

The above-mentioned CLOSEST SUBSTRING is the special case of DSSS where
the set of good strings is empty. Furthermore, CLOSEST STRING is the special case of
CLOSEST SUBSTRING where all given strings and the goal string have the same length.

Previous Results. Since CLOSEST STRING is known to be NP-complete [15], [18], the
NP-completeness of CLOSEST SUBSTRING, DSS, and DSSS immediately follows. All
the mentioned problems carry at least two natural input parameters (“distance” and
“number of input strings”) which often are small in practice when compared with the
overall input size. This leads to the important question whether the seemingly inevitable
“combinatorial explosion” in exact algorithms for these problems can be restricted to
some of the parameters—this is the parameterized complexity approach [2], [9], [10],
[12], [13]. A problem for which this can be successfully done allows for a fixed-parameter
algorithm and is called fixed-parameter tractable. In [16] fixed-parameter algorithms are
given for CLOSEST STRING both for the “distance” parameter as well as the parameter
“number of input strings.” However, CLOSEST STRING is the easiest of these problems. As
to CLOSEST SUBSTRING, fixed-parameter intractability (in the above sense of restricting
combinatorial explosion to parameters) was recently shown with respect to the parameter
“number of input strings” [14]. More precisely, a proof of W[1]-hardness (see [10] for
details on parameterized complexity theory) was given. This result already holds for the
binary alphabet.

New Results. In this work we show that DSSS is fixed-parameter intractable (i.e., W[1]-
hard) with respect to all natural parameters as given in the problem definition and, thus,
in particular, with respect to the distance parameters. Besides the interest on its own
concerning the impossibility3 of efficient exact fixed-parameter algorithms, this result
also has important consequences concerning approximation algorithms. More precisely,
our result implies that no efficient polynomial-time approximation scheme (EPTAS) in
the sense of Cesati and Trevisan [4] is available for DSSS. As a consequence, there is
strong theoretical support for the claim that the recent PTAS of Deng et al. [6], [7] cannot
be made practical. In addition, we indicate an instructive border between fixed-parameter
tractability and fixed-parameter intractability for DSSS which, somewhat surprisingly,
lies between alphabets of size two and alphabets of size greater than two. All results in
this paper refer to alphabets � of constant size.

Approximation versus Parameterized Complexity. Table 1 gives an overview on results
concerning the approximability and the parameterized complexity of the mentioned prob-
lems (considering the practically most relevant case of constant-size alphabets), including
results from this work. Table 1 shows that the results of this paper (and of [14]) give a
strong theory-based support for the common intuition that both CLOSEST SUBSTRING and
DISTINGUISHING SUBSTRING SELECTION (W[1]-hard) seem to be much harder problems
than CLOSEST STRING (fixed-parameter tractable). This observation does not derive from

3 Unless an unlikely collapse in structural parameterized complexity theory occurs [12].
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Table 1. Overview on results concerning the approximation and the parameterized complexity
of CLOSEST (SUB)STRING and DISTINGUISHING SUBSTRING SELECTION for alphabets of constant

size.∗

Parameterized complexity with respect to

The number The distance
Approximation of input strings parameter(s)

CLOSEST STRING PTAS [19] FPT [16] FPT [16]

CLOSEST SUBSTRING PTAS [19] W[1]-hard [14] ?

DISTINGUISHING
SUBSTRING SELECTION

PTAS [6] W[1]-hard(∗) W[1]-hard(∗)

∗We consider the parameterized complexity with respect to the two natural parameterizations,
namely the distance parameter(s) and number of input strings (FPT meaning that the problem is
fixed-parameter tractable). Results from this paper are marked by (∗), “?” indicates an open question.

results of approximation theory (all problems have a PTAS). Considering CLOSEST SUB-
STRING, it was conjectured that CLOSEST SUBSTRING is also fixed-parameter intractable
with respect to the distance parameter, but it is an open question to prove (or disprove)
this statement;4 notably, W[1]-hardness would imply, analogously as for DSSS, that the
PTAS for CLOSEST SUBSTRING cannot be replaced by an efficient PTAS.

Structure of This Work. In Section 2 we give a brief introduction to parameterized
complexity and approximation schemes and provide an overview on further related
work. In Section 3 we show the parameterized intractability of DSSS, the main result
of this paper. In Section 4 we consider a special case of DSSS, leading to a modified
problem formulation, for which we, then, present a fixed-parameter algorithm. Section 5
summarizes our findings and contains directions for future work.

2. Preliminaries and Previous Work

Parameterized Complexity. Given an undirected graph G = (V, E) with vertex set V ,
edge set E , and a positive integer k, the NP-complete VERTEX COVER problem is to
determine whether there is a subset of vertices C ⊆ V with k or fewer vertices such that
each edge in E has at least one of its endpoints in C . VERTEX COVER is fixed-parameter
tractable with respect to the parameter k. There are now algorithms solving it in less
than O(1.3k + kn) time [5], [21], [22], where n denotes the number of graph vertices.
The corresponding complexity class is called FPT. By way of contrast, consider the
NP-complete CLIQUE problem: given an undirected graph G = (V, E) and a positive
integer k, does there exist a subset of vertices C ⊆ V with at least k vertices such that C
forms a clique by having all possible edges between the vertices in C? CLIQUE appears
to be fixed-parameter intractable: it is not known whether it can be solved in f (k) ·nO(1)

time, where f might be an arbitrarily fast growing function only depending on k.

4 In fact, more hardness results for an unbounded alphabet size are known [11], [14]. Here, we refer to
the practically more relevant case of a constant alphabet size.
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Downey and Fellows developed a completeness program for showing fixed-para-
meter intractability [10]. We very briefly sketch some integral parts of this theory.

Let L , L ′ ⊆ �∗ × N be two parameterized languages.5 For example, in the case
of CLIQUE, the first component is the input graph coded over some alphabet � and the
second component is the positive integer k, that is, the parameter. We say that L reduces
to L ′ by a standard parameterized m-reduction if there are functions k �→ k ′ and k �→ k ′′

from N to N and a function (x, k) �→ x ′ from �∗ × N to �∗ such that

1. (x, k) �→ x ′ is computable in time k ′′|x |c for some constant c and
2. (x, k) ∈ L iff (x ′, k ′) ∈ L ′.

In the subsequent section we present a reduction from CLIQUE to DSSS, mapping
the CLIQUE parameter k into all four parameters of DSSS; i.e., k ′ in fact is a four-tuple
(kg, kb, dg, db) = (1,

(k
2

)
, k+3, k−2) (see Section 3.1 for details). Notably, most reduc-

tions from classical complexity turn out not to be parameterized ones. The basic reference
degree for fixed-parameter intractability, W[1], can be defined as the class of parameter-
ized languages that are equivalent to the SHORT TURING MACHINE ACCEPTANCE problem
(also known as the k-STEP HALTING problem). Here, we want to determine, for an input
consisting of a nondeterministic Turing machine M (with unbounded nondeterminism
and alphabet size), and a string x , whether or not M has a computation path accepting x
in at most k steps. This can trivially be solved in O(nk+1) time (where n denotes a
bound on the total input size) and we would be surprised if this can be improved much.
Therefore, this is the parameterized analogue of the TURING MACHINE ACCEPTANCE

problem that is the basic generic NP-complete problem in classical complexity theory,
and the conjecture that FPT �= W[1] is very much analogous to the conjecture that
P �= NP. Other problems that are W[1]-hard (and also W[1]-complete) include CLIQUE

and INDEPENDENT SET, where the parameter is the size of the relevant vertex set [10].
W[1]-hardness gives a concrete indication that a parameterized problem with parame-
ter k is unlikely to allow for a solving algorithm with f (k) · nO(1) running time, i.e.,
restricting the combinatorial explosion to the parameter. For recent surveys we refer to
[2], [9], [12], and [13].

Approximation. In the following we explain some basic terms of approximation theory,
thereby restricting attention to minimization problems. Given a minimization problem, a
solution of the problem is (1+ ε)-approximate if the cost of the solution is d, the cost of
an optimal solution is dopt, and d/dopt ≤ 1+ε. A polynomial-time approximation scheme
(PTAS) is an algorithm that computes, for any given real ε > 0, a (1+ ε)-approximate
solution in polynomial time wherever ε is considered to be (a small) constant. For
an overview on approximation algorithms, refer to [3], [17], and [23]. Often, PTASs
have a running time nO(1/ε) with large constant factors hidden in the exponent which
make them already infeasible for moderate approximation ratio. Therefore, Cesati and
Trevisan [4] proposed the concept of an efficient polynomial-time approximation scheme
(EPTAS) where the PTAS is required to have an f (ε) · nO(1) running time where f is an

5 Generally, the second component (representing the parameter) can also be drawn from �∗; for most
cases (particularly, within this paper), assuming the parameter to be a positive integer (or a tuple of positive
integers) is sufficient.
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arbitrary function depending only on ε and not on n. Notably, seemingly most known
PTASs are not EPTASs [9], [12], [13].

Previous Work. Lanctot et al. [18] initiated the research on the algorithmic com-
plexity of distinguishing string selection problems. In particular, besides showing NP-
completeness (an independent NP-completeness result was proven by Frances and Lit-
man [15]), they gave a polynomial-time factor-2-approximation for DSSS. Building on
PTAS algorithms for CLOSEST STRING and CLOSEST SUBSTRING [19], Deng et al. [8]
gave PTASs for DSS (which even holds for unbounded alphabet size), and recently
gave a PTAS for DSSS [6], [7]. Concerning the running times of these PTASs, con-
sider, for example, the one for CLOSEST STRING [19], the starting point in this series
of results: For k length-L input strings, it has a worst-case bound on the running time
of O((k ·L)r ·kO(log |�|·r2/ε2)) in order to achieve a factor-(1+(1/(2r−1))+ε) approxima-
tion, for an integer r , 2 ≤ r , and real ε > 0. To achieve a 25% error, we find the optimal
trade-off between r and ε in this term for r = 5 and ε ≈ 0.14; then, the r2/ε2 term in the
exponent of the running time estimation already evaluates to more than 1200. The corre-
sponding polynomial running time is enormous and the algorithm is clearly impractical.

There appear to be no nontrivial results on exact or fixed-parameter algorithms
for DSSS. Since CLOSEST SUBSTRING is a special case of DSSS, the fixed-parameter
intractability results for CLOSEST SUBSTRING [11], [14] also apply to DSSS, implying
that DSSS is W[1]-hard with respect to the parameter “number of input strings.”

Concerning the special case DSS (where all given input strings have exactly the
same length as the goal string) of DSSS, the fixed-parameter algorithm for CLOSEST

STRING with respect to the number of input strings [16] can easily be extended to solve
DSS, showing that the problem is fixed-parameter tractable with respect to the aggre-
gate parameter (kg, kb). It is open whether or not DSS is fixed-parameter tractable with
respect to the distance parameters db and dg. However, DSS is fixed-parameter tractable
when considering, instead of distance parameter dg, its “dual” parameter d ′g = L − dg:
DSS is solvable in O((kg + kb) · L · (max {db + 1, (d ′g + 1) · (|�| − 1)})db) time [16],
i.e., for a constant alphabet size, it is fixed-parameter tractable with respect to the aggre-
gate parameter (d ′g, db). In a sense, DSS relates to DSSS as CLOSEST STRING relates to
CLOSEST SUBSTRING and, thus, DSS should be regarded as considerably easier (and of
less practical importance) than DSSS.

3. Fixed-Parameter Intractability of DSSS

We show that DSSS is, even for binary alphabet, W[1]-hard with respect to the aggre-
gate parameter (dg, db, kg, kb). This also means hardness for every single one of these
parameters. With [4], this implies that DSSS does not have an EPTAS.

To simplify the presentation, we use the following technical terms. Regarding the
good strings, we say that a length-L string s matches an si ∈ Sg or, equivalently, s is a
match for si , if dH(s, ti ) ≥ dg for every length-L substring ti of si . Regarding the bad
strings, we say that s matches an s ′i ∈ Sb or, equivalently, s is a match for s ′i , if there is a
length-L substring t ′i of s ′i with dH(s, t ′i ) ≤ db. Both these notions of matching for good
as well as for bad strings generalize to sets of strings in the natural way.
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Our hardness proof follows a similar structure as the W[1]-hardness proof for CLOS-
EST SUBSTRING [14]. We give a parameterized reduction from CLIQUE to DSSS. Here,
however, the reduction has novel features in two ways. Firstly, from the technical point
of view, the reduction becomes much more compact and, thus, more elegant. Secondly,
for CLOSEST SUBSTRING with binary alphabet, we could only show W[1]-hardness with
respect to the number of input strings. Here, however, we can show W[1]-hardness with
respect to, among others, parameters dg and db. This has a strong consequence: here,
we can conclude that DSSS has no EPTAS, which is an open question for CLOSEST

SUBSTRING [14].

3.1. Reduction from CLIQUE to DSSS

A CLIQUE instance is given by an undirected graph G = (V, E), with a set V =
{v1, v2, . . . , vn} of n vertices, a set E of m edges, and a positive integer k denoting the
desired clique size. We describe how to generate two sets of strings over alphabet {0, 1},
Sg (containing one string sg of length L := nk + 5) and Sb (containing

(k
2

)
strings, each

of length m · (2nk + 5) + (m − 1)), such that G has a clique of size k iff there is a
length-L string s which is a match for Sg as well as for Sb; this means that dH(s, sg) ≥ dg

with Sg := {sg} and dg := k + 3, and every s ′b ∈ Sb has a length-L substring t ′b with
dH(s, t ′b) ≤ db and db := k − 2. In the following we use “·” to denote the concatenation
of strings.

Good string. Sg := {sg} where sg = 0L , the all-zero string of length L .
Bad strings. Sb := {s ′1,2, . . . , s ′1,k , s ′2,3, s ′2,4, . . . , s ′k−1,k}, where every s ′i, j has length

m · (2nk + 5) + (m − 1) and encodes the whole graph; in the following, we
describe how we generate a string s ′i, j .

We encode a vertex vr ∈ V , 1 ≤ r ≤ n, in a length-n string by setting the r th
position of this string to “1” and all other positions to “0”, i.e.,

〈vertex(vr )〉 := 0r−110n−r .

In s ′i, j , we encode an edge {vr , vs} ∈ E , 1 ≤ r < s ≤ n, by a length-(nk) string

〈edge(i, j, {vr , vs})〉 := 0n · · · 0n
︸ ︷︷ ︸
(i−1)

·〈vertex(vr )〉 · 0n · · · 0n
︸ ︷︷ ︸
( j−i−1)

·〈vertex(vs)〉 · 0n · · · 0n
︸ ︷︷ ︸
(k− j)

.

Furthermore, for purely technical reasons, we define

〈edge block(i, j, {vr , vs})〉
:= 〈edge(i, j, {vr , vs})〉 · 01110 · 〈edge(i, j, {vr , vs})〉.

Before explaining why we choose this way of constructing the 〈edge block(·, ·, ·)〉
strings, we define, given E = {e1, . . . , em}, the resulting set of bad strings by

s ′i, j := 〈edge block(i, j, e1)〉 · 0 · 〈edge block(i, j, e2)〉 · · · 〈edge block(i, j, em)〉
for 1≤ i< j≤k. Now, we give a motivation for our construction of the 〈edge block(·, ·, ·)〉
strings. The following obvious observation, where we use s[h1, h2] to denote the sub-
string of a string s ranging from position h1 to position h2, 1 ≤ h1 ≤ h2 ≤ |s|, is
essential. If h1 > h2, then s[h1, h2] denotes the empty string.



552 J. Gramm, J. Guo, and R. Niedermeier

· · · · · ·

〈edge()〉

· · · · · ·

〈edge()〉

1 12 2nk nkh − 1 h − 1h h

Fig. 1. Illustration of Observation 1. Shown is an 〈edge block()〉 string, constructed as explained in Sec-
tion 3.1; boxes are used to display bits, dark-shaded boxes denote bits set to 1, white boxes denote bits set to 0.
The shown string consists of two 〈edge()〉 strings (light-shaded, details are omitted) of length nk, separated by
a “01110” string. The dashed box indicates a length-(nk+ 5) substring which contains the “01110” substring:
It necessarily starts at a position h, 1 ≤ h ≤ nk+1, in the first 〈edge()〉 substring and extends to position h−1
in the second 〈edge()〉 substring.

Observation 1. Let s ′ := 〈edge block(i, j, e)〉 for positive integers i, j , i < j , and
e ∈ E . Then every length L = nk + 5 substring of s ′ which contains the “01110”
substring has the form

〈edge(i, j, e)〉[h, nk] · 01110 · 〈edge(i, j, e)〉[1, h − 1]

for 1 ≤ h ≤ nk + 1.

An illustration of Observation 1 is given in Figure 1. This observation will be useful
for the following reason. The goal of our construction is that, assuming a solution string s
of the produced DSSS instance, a match for s in a bad string s ′i, j contains all “information,”
i.e., all bits, of one of the 〈edge(i, j, e)〉 substrings encoded in s ′i, j for some e ∈ E . This
is achieved by using Observation 1 since, as will be shown in Section 3.2, it is possible
to enforce that a match contains the “01110” substring.

Parameter values. We set L := nk + 5 and generate kg := 1 good string, kb := (k
2

)
bad

strings, and we set distance parameters dg := k + 3 and db := k − 2.

Example. Let G = (V, E) with V := {v1, v2, v3, v4} and E := {{v1, v3}, {v1, v4},
{v2, v3}, {v3, v4}} as shown in Figure 2(a) and let k = 3. Figure 2(b) displays the good
string sg and the

(k
2

) = 3 bad strings s ′1,2, s ′1,3, and s ′2,3. Additionally, we show the
length-(nk + 5), i.e., length-17, string s which is a match for Sg = {sg} and a match for
Sb = {s ′1,2, s ′1,3, s ′2,3} and, thus, corresponds to the k-clique in G.

3.2. Correctness of the Reduction

We show the two directions of the correctness proof for the above construction by two
lemmas.

Lemma 1. For a graph with a k-clique, the construction in Section 3.1 produces
an instance of DSSS that has a solution, i.e., there is a length-L string s such that
dH(s, sg) ≥ dg and every s ′i, j ∈ Sb has a length-L substring t ′i, j with dH(s, t ′i, j ) ≤ db.
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v1 v2

v3 v4

(a)

t′1,2

t′1,3

t′2,3

sg

s

v1 v3 v4

(c)

s′1,2s′1,2s′1,2s′1,2

s′1,3s′1,3s′1,3s′1,3

s′2,3s′2,3s′2,3s′2,3

sg s

〈edge block(i, j, {v1, v3})〉 〈edge block(i, j, {v1, v4})〉 〈edge block(i, j, {v2, v3})〉 〈edge block(i, j, {v3, v4})〉

(b)

Fig. 2. Example for the reduction from a CLIQUE instance to a DSSS instance with binary alphabet. (a) A
CLIQUE instance G = (V, E) with k = 3. (b) The produced DSSS instance. We indicate the “1”s of the
construction by grey boxes, the “0”s by white boxes. We display the solution s that is found since G has a
clique of size k = 3; matches of s in s′1,2, s′1,3, and s′2,3 are indicated by dashed boxes. By bold lines we
indicate the substrings by which we constructed the bad strings: each 〈edge block(·, ·, e)〉 substring is built
from 〈edge(·, ·, e)〉 for some e ∈ E , consisting of k length-n substrings, followed by “01110”, followed again
by 〈edge(·, ·, e)〉. (c) Alignment of the matches t ′1,2, t ′1,3, and t ′2,3 (marked by dashed boxes in (b)) with sg

and s.

Proof. Let h1, h2, . . . , hk denote the indices of the clique’s vertices, 1 ≤ h1 < h2 <

. . . < hk ≤ n. Then we can find a solution string

s := 〈vertex(vh1)〉 · 〈vertex(vh2)〉 · · · 〈vertex(vhk )〉 · 01110.

For every s ′i, j , 1 ≤ i < j ≤ k, the bad string s ′i, j contains a substring t ′i, j with
dH(s, t ′i, j ) = db = k − 2, namely

t ′i, j := 〈edge(i, j, {vhi , vhj })〉 · 01110.

Moreover, we have dH(s, sg) = dg = k + 3.

Lemma 2. A solution for the DSSS instance produced from a graph G by the con-
struction in Section 3.1 corresponds to a k-clique in G.

Proof. We prove this statement in several steps:
(1) We observe that a solution for the DSSS instance has at least k + 3 “1”s since

dH(s, sg) ≥ dg = k + 3 and sg is the all-“0” string.



554 J. Gramm, J. Guo, and R. Niedermeier

(2) We observe that a solution for the DSSS instance has at most k + 3 many
“1”s: following the construction, every length-L substring t ′i, j of every bad string s ′i, j ,
1 ≤ i < j ≤ k, contains at most five “1”s and dH(s, t ′i, j ) ≤ k − 2.

(3) A match t ′i, j for s in the bad string s ′i, j contains exactly five “1”s: This follows
from the observation that every length-L substring in a bad string contains at most five
“1”s together with (1) and (2). Only if t ′i, j contains five “1”s and all of them coincide
with “1”s in s, do we have dH(s, t ′i, j ) = (k + 3)− 5 = k − 2.

(4) All t ′i, j , 1 ≤ i < j ≤ k, and s must contain a “111” substring, located at the same
position: To show this, let t ′i, j be a match of s in a bad string s ′i, j for some 1 ≤ i < j ≤ k.
From (3), we know that the match t ′i, j must contain exactly five “1”s. Thus, since a
substring of a bad string contains five “1”s only if it contains a “111” substring, t ′i, j must
also contain a “111” substring (which separates in s ′i, j two substrings 〈edge(i, j, e)〉 for
some e ∈ E). All “1”s in t ′i, j have to coincide with “1”s chosen from the k+ 3 “1”s in s.
In particular, the position of the “111” substring must be the same in s and in t ′i, j for all
1 ≤ i < j ≤ k. This ensures a “synchronization” of the matches.

(5) Without loss of generality, all t ′i, j , 1 ≤ i < j ≤ k, and s end with the “01110”
substring: From (4), we know that all t ′i, j contain a “111” substring at the same position.
If they do not all end with “01110”, we can shift them such that the contained “111”
substring is shifted to the appropriate position, as we describe more precisely in the
following. Recall that every length-L substring which contains the “111” substring of
〈edge block(i, j, e)〉 has the form 〈edge(i, j, e)〉[h, nk] ·01110 · 〈edge(i, j, e)〉[1, h−1]
for 1 ≤ h ≤ nk + 1 and e ∈ E . Since all t ′i, j , 1 ≤ i < j ≤ k, contain the “111”
substring at the same position, they all have this form for the same h. Then we can,
instead, consider 〈edge(i, j, e)〉[1, nk] · 01110 and, by a circular shift, move the “111”
substring in the solution to the appropriate position. Considering the solution s and the
matches t ′i, j for all 1 ≤ i < j ≤ k as a character matrix, this is a reordering of columns
and, thus, the pairwise Hamming distances do not change.

(6) We divide the starting nk positions of the matches and the solution into k “sec-
tions”, each of length n. In s, each of these sections has the form 〈vertex(v)〉 for a vertex
v ∈ V by the following argument: By (5), all matches in bad strings end with “01110”
and, by the way we constructed the bad strings, each of their sections either consists only
of “0”s or has the form 〈vertex(v)〉 for a vertex v ∈ V . If the section encodes a vertex,
it contains one “1” which has to coincide with a “1” in s. For the i th section, 1 ≤ i ≤ k,
the matches in strings s ′i, j for i < j ≤ k and in strings s ′j,i for 1 ≤ j < i , encode a
vertex in their i th section. Therefore, every one of the k sections in s contains a “1” and,
since s (by (1) and (2)) contains k + 3 many “1”s and (by (4)) ends with “01110”, each
of its sections contains exactly one “1”. Therefore, every section of s can be read as the
encoding 〈vertex(v)〉 for a v ∈ V .

Summary. Following (6), let vhi , 1 ≤ i ≤ k, be the vertex encoded in the i th length-n
section of s. Now, consider some 1 ≤ i < j ≤ k. Solution s has a match in s ′i, j iff there
is an 〈edge(i, j, {vhi , vhj })〉 · 01110 substring in s ′i, j and this holds iff {vhi , vhj } ∈ E .
Since this is true for all 1 ≤ i < j ≤ k, all vh1 , vh2 , . . . , vhk are pairwisely connected by
edges in G and, thus, form a k-clique.

Lemmas 1 and 2 yield the following theorem.
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Theorem 1. DSSS with binary alphabet is W[1]-hard for every combination of the
parameters kg, kb, dg, and db.6

Theorem 1 means, in particular, that DSSS with binary alphabet is W[1]-hard with
respect to every single parameter kg, kb, dg, and db. Moreover, it allows us to exploit an
important connection between parameterized complexity and the theory of approxima-
tion algorithms as follows.

Corollary 1. There is no EPTAS for DSSS unless W[1] = FPT.

Proof. Cesati and Trevisan [4] have shown that a problem with an EPTAS is fixed-
parameter tractable with respect to the parameters that correspond to the objective func-
tions of the EPTAS. In Theorem 1, as a special case, we have shown W[1]-hardness
for DSSS with respect to dg and db. Therefore, we conclude that DSSS cannot have an
EPTAS for the objective functions dg and db unless W[1] = FPT.

4. Exploring the Border between Parameterized Tractability and
Intractability

In the previous section we showed that the prospects for provable efficient and exact
algorithmic solvability of DSSS are rather bad. On the one hand, we showed that DSSS
is W[1]-hard with respect to seemingly all natural parameters. On the other hand, we
know from [16] that CLOSEST STRING—the special case of DSSS where all strings have
the same length and the set of good strings is empty—is fixed-parameter tractable with
respect to both its natural parameterizations, i.e., distance parameter and number of in-
put strings. This naturally leads to the goal of better understanding what the reasons
are that make these NP-complete problems, both having a PTAS, so different from a
parameterized (exact) point of view. In a generalized meaning, here we attempt to under-
stand better and explore the border between parameterized tractability and intractability.
Surprisingly, our subsequent investigations show that the alphabet size—here not only
the distinction between constant-size and unbounded-size alphabet (as usually studied)
but the distinction between binary and nonbinary alphabet matters—and the parameter
choice seem to influence the parameterized complexity strongly. To this end, we consider
a somewhat contrived, modified version of DSSS. More precisely, we consider a special
case of DSSS which, then, leads to a modified problem formulation. Note, however,
that it is unclear whether or not this modified version may be useful in the discussed
biological application.

We impose the following restrictions on DSSS: First, we use, for the sake of sim-
plicity, a “harmless” restriction already employed, e.g., by Deng et al. [6], [7]:

Length of good strings: We assume that all strings in Sg are of length L . Increasing
the number of good strings by a factor linear in the string lengths, we can easily

6 Note that this is the strongest statement possible for these parameters because it means that the com-
binatorial explosion cannot be restricted to a function f (kg, kb, dg, db).
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transform an instance of DSSS into one in which all good strings have the same
length L: we replace every si ∈ Sg by a set consisting of all length-L substrings
of si .

The “real” restrictions are as follows:

Binary alphabet: We restrict the problem to a binary alphabet � = {0, 1}; this
applies when the given strings encode binary properties like, e.g., the distinction
between purines and pyrimidines in DNA sequences, or between hydrophobic
and hydrophilic amino acids in protein sequences.

Dual parameter: We consider, instead of the parameter dg from the DSSS definition,
the “dual parameter” d ′g := L − dg such that we require a solution string s with
dH(s, si ) ≥ L − d ′g for every si ∈ Sg. The idea behind this is that in some
practical cases it might occur that, while dg is rather large, d ′g is fairly small.
Hence, restricting the combinatorial explosion to d ′g might sometimes be even
more natural than restricting it to dg.7

Optimality of distance parameter: We require that the distance parameter d ′g is
“optimal”; here, d ′g is optimal if d ′g is minimum among all values such that there
is at least one length-L string s with dH(s, si ) ≥ L − d ′g for every si ∈ Sg.

The restrictions outlined above lead us to a modified version of DSSS to which we refer
as MDSSS:

Input: Given an alphabet � = {0, 1} and two sets of strings over �,

• Sg = {s1, . . . , skg}, each string of length L (the “good” strings),
• Sb = {s ′1, . . . , s ′kb

}, each string of length at least L (the “bad” strings),

and a non-negative integer db.

Question: Is there a length-L string s such that, for an optimal value of distance param-
eter d ′g, dH(s, si ) ≥ L − d ′g for every si ∈ Sg and such that every s ′i ∈ Sb has a length-L
substring t ′i with dH(s, t ′i ) ≤ db?

Note that, in this definition, we can read the set Sg of kg length-L strings as a kg × L
character matrix. We call a column in this matrix dirty if it contains “0”s as well as “1”s.

We give, in the remaining section, a fixed-parameter algorithm that solves MDSSS
and, moreover, that determines the minimal db that allows a solution together with
all solution strings corresponding to this found optimal db. We conclude this section
by pointing out the difficulties that arise when we give up some of the restrictions
concerning MDSSS. Altogether, in this way we hope to shed light on the reasons for the
“parameterized (resp. exact) gap” between DSSS and CLOSEST STRING.

7 Observe that the distance value dg concerning the good strings is a maximization parameter whereas
the corresponding value db for the bad strings is a minimization parameter. Hence, replacing dg by d ′g makes
DSSS for both d ′g and db a minimization problem which seems more natural in the light of the fact that most

NP-hard problems that possess efficient fixed-parameter algorithms are minimization problems.
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Fixed-Parameter Algorithm for MDSSS.
The structure of the algorithm is as follows.

Preprocessing: For an all-“0” (all-“1”) column in the kg × L character matrix, we set
the corresponding character in the solution string to its inverse “1” (“0”); otherwise, we
cannot find a solution with an optimal d ′g. Columns containing “0” as well as “1” are
called dirty. If there are more than d ′g · kg dirty columns then we reject the input instance.
Otherwise, we proceed on the thereby reduced set Sg consisting only of dirty columns.

The correctness of the preprocessing follows in an easy way similar to the correct-
ness of the “problem kernel” for CLOSEST STRING observed by Evans et al. [11]. The
preprocessing can easily be done in O(kg · L) time.

Phase 1: We determine all solution strings s such that dH(s, si ) ≥ L − d ′g for every
si ∈ Sg for the optimal d ′g. This phase extends the ideas behind a bounded search tree
algorithm for CLOSEST STRING described in [16]. There, however, the focus was on
finding one solution string whereas, here, we require to find all solution strings for the
optimal parameter value. This extension was only discussed in [16] and it is described
in more detail here.

The precondition of this phase is an optimal parameter d ′g. Since, in general, the
optimal d ′g is not known in advance, it can be found by looping through d ′g = 0, 1, 2, . . .,
each time invoking the procedure described in the following until we meet the optimal d ′g.
For each such d ′g value, we do not have to redo the preprocessing, but only compare the
number of dirty columns against d ′g · kg.

Phase 1 is realized as a recursive procedure and is invoked with parameters sc :=
inv(s1) for s1 ∈ Sg and d ′g, where inv(s1) denotes the bitwise complement of s1.8 The
procedure distinguishes between two cases: either (1) sc is already a solution string
for this phase or (2) it is not. In both cases the procedure invokes recursive calls with
a modified sc and a decreased d ′g as parameters, described as follows. In case (1) sc

is already far away from all strings in Sg (i.e., dH(sc, si ) ≥ L − d ′g for all si ∈ Sg).
Then the procedure returns sc as a solution string. Note that it is possible that sc can be
further transformed into another solution. Thus, we select a string si ∈ Sg such that sc

is not allowed to be closer to si (i.e., dH(sc, si ) = L − d ′g); such an si must exist since
parameter d ′g is optimal. We try all possible ways to move sc away from si (such that
dH(sc, si ) = L − (d ′g − 1)), and call the recursive procedure for each of the produced
instances. Since si coincides with sc in exactly d ′g positions, the procedure produces at
most d ′g new instances.

In case (2) sc is not a solution string. We select a string si ∈ Sg such that sc is too
close to si (i.e., dH(sc, si ) < L − d ′g); we try all possible ways to move sc away from si ,
and we call the recursive procedure for each of the produced instances. As shown in [16],
there are at most d ′g + 1 new instances and, thus, at most d ′g + 1 recursive calls.

The invocations of the recursive procedure can, thus, be described by a search tree.
In the above recursive calls, we go without those calls that try to change a position
in sc which has already been changed before. We also omit further invocations of the

8 The choice of s1 was arbitrary—we could choose any of the good input strings.
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recursive procedure if the current node of the search tree is already at depth d ′g of the
tree; otherwise, sc would move too close to s1 (i.e., dH(sc, s1) < L − d ′g).

The proof of the correctness of Phase 1 can be done in a similar way as in [16].
Furthermore, it is easy to observe that the search tree has a size of O((d ′g + 1)d

′
g) =

O((d ′g)
d ′g). In each node of the search tree, we need at most O(d ′g · kg) time to determine

whether or not sc is a match for Sg and to identify the positions in which sc coincides
with an si ∈ Sg. Together with the loop d ′g = 0, 1, 2, . . . in order to find the optimal d ′g,

Phase 1 can be done in O((d ′g)
2 · kg · (d ′g)d

′
g) time.

Phase 2: For every s found in Phase 1, we determine the minimal value of db such
that every s ′i ∈ Sb has a length-L substring t ′i with dH(s, t ′i ) ≤ db. Finally, find the
minimal value of db over all examined choices of s. For a given solution string s
from the first phase and a string s ′i ∈ Sb, we use Abrahamson’s algorithm [1] to find
the minimum number of mismatches between s and every length-L substring of s ′i
in O(|s ′i |

√
L log L) time. We denote this minimum by mint ′i dH (s, t ′i ), where t ′i is a

length-L substring of s ′i . Applying this algorithm to all strings in Sb, we get db,s :=
maxi=1,...,kb mint ′i dH (s, t ′i ). The minimum value of db,s , over all solution strings s from
the first phase, is then the minimum distance of a solution string from Phase 1 to all
bad strings, and an s which achieves this minimum distance is a corresponding solution
string.

This phase is apparently correct and can be done in O(N
√

L log L · (d ′g)d
′
g) time.

Altogether, we obtain the following theorem:

Theorem 2. MDSSS can be solved in O(L ·kg+ ((d ′g)2kg+N
√

L log L) · (d ′g)d
′
g) time

where N =∑s ′i∈Sb
|s ′i | is the total size of the bad strings.

Discussion. The special requirements imposed on the input of MDSSS seem inevitable
in order to obtain the above fixed-parameter tractability result. We discuss the problems
arising when relaxing the constraints on the alphabet size and the value of d ′g.

Nonbinary alphabet. Already extending the alphabet size in the problem formulation
from two to three makes MDSSS combinatorially much more difficult such that the
approach described above does not yield fixed-parameter tractability any more. A reason
lies in the preprocessing. When having an all-equal column in the character matrix
induced by Sg, for a three-letter alphabet there are two instead of one possible choices for
the corresponding position in the solution string. Therefore, to enumerate all solutions s
with dH(s, si ) ≥ L − d ′g for all si ∈ Sg, which is essential for our approach, is not fixed-
parameter tractable: the number of solutions is too large. Let L ′ ≤ L be the number of
nondirty columns and let the alphabet size be three. Then, aside from the dirty columns,
we already have 2L ′ assignments of characters to the positions corresponding to nondirty
columns.

Nonoptimal d ′g parameter. Also for a nonoptimal d ′g parameter, the number of so-
lutions s with dH(s, si ) ≥ L − d ′g for all si ∈ Sg can become too large and it ap-
pears to be fixed-parameter intractable with respect to d ′g to enumerate them all. Con-

sider the example where Sg = {0L}. Then there are more than
( L

d ′g

)
strings s with

dH(s, 0L) ≥ L − d ′g.
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5. Conclusion

Summary of Results. The main result shown in this paper is that DISTINGUISHING

SUBSTRING SELECTION is W[1]-hard with respect to all its natural parameters (distance
values and input string numbers). Thus, the status of this problem is, generally speaking,
hopeless concerning the existence of useful fixed-parameter algorithms. Moreover, our
result also implies that DSSS has no efficient PTAS unless FPT =W[1], thus, bringing
also bad news concerning approximation algorithms. A way out of such misery is to
consider relevant special cases of the given problem. We did this by studying MDSSS,
which restricts DSSS to binary alphabet, employs a dual “distance parameterization”
for good strings, and also requires this new parameter d ′g to be optimal. We showed that
MDSSS is fixed-parameter tractable with respect to the parameter d ′g. Surprisingly, the
borderline between (fixed-parameter) tractability and intractability seems to lie between
alphabet sizes two and three.

Discussion. So far, there has been quite a lot of work on PTASs for various NP-hard
problems from computational biology (e.g., see [6], [7], [19], and [20]) and many other
fields. As Downey [9] and Fellows [12], [13] discussed in their recent surveys, the
practical usefulness of many PTAS results is doubtful. This work brings one of the so far
few (if any) examples with provable nonexistence (unless FPT = W[1]) of an efficient
PTAS. In addition, we also revealed that parameterized complexity studies here also
seem of little help for practically solving the problem. Altogether, since DSSS needs
to be solved in practice, this gives strong theory-based support to investigations on
heuristic solutions and for the determination of practically relevant and tractable special
cases of DSSS.

Open Questions and Future Work. It remains open whether analogous parameterized
hardness results (in particular, with respect to distance parameters) can be shown for
the closely related problems CLOSEST SUBSTRING and CONSENSUS PATTERNS [19], [20].
Both these problems have PTASs, but the existence of EPTASs is open. It has only
been shown that, already for binary alphabet, CLOSEST SUBSTRING and CONSENSUS

PATTERNS are W[1]-hard with respect to the number of input strings [14]. Furthermore,
it is an issue of future research to find out whether MDSSS is of practical use in the
computational biology context or whether the results on MDSSS can be further extended
and improved. Finally, we conjecture that DSSS is also W[1]-hard with respect to the
dual parameter d ′g := L − dg (as we considered for MDSSS), but it remains open to
prove or disprove this statement.
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