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Abstract. We consider the problems of computing maximal points and the convex
hull of a set of points in two dimensions, when the points are “in motion.” We assume
that the point locations (or trajectories) are not known precisely and determining
these values exactly is feasible, but expensive. In our model the algorithm only
knows areas within which each of the input points lie, and is required to identify
the maximal points or points on the convex hull correctly by updating some points
(i.e., determining their location exactly). We compare the number of points updated
by the algorithm on a given instance to the minimum number of points that must
be updated by a nondeterministic strategy in order to compute the answer provably
correctly. We give algorithms for both of the above problems that always update at
most three times as many points as the nondeterministic strategy, and show that this
is the best possible. Our model is similar to that in [3] and [5].

1. Introduction

In many applications, an intrinsic property of the data one is dealing with is that it is “in
motion,” i.e., changing value (within prescribed limits) over time. For example, the data
may be derived from a random process such as stock market quotes or queue lengths in
switches or it may be positional data for moving objects such as planes in an air traffic
control area or users in a mobile ad hoc network. Much work has gone into developing
on-line algorithms [2] and kinetic data structures [1] in order to compute efficiently in
these situations.
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Most of the previous approaches to data in motion assume that the actual data values
are known precisely at all times or that there is no cost in establishing these values. This is
not always the case. In reality finding the exact value of some data item may involve costs
in time, energy, money, bandwidth, etc. Accurate and timely stock quotes cost money.
Remote access to the state of network queues costs time and bandwidth. Querying
battery-powered units of sensor networks unnecessarily uses up precious energy.

In order to study the costs associated with updating data in an uncertain environment,
we consider the update complexity of aproblem. A problem instance consists of a function
of n inputs to be computed (e.g., the maxima) and a specification of the possible values
each of the inputs might obtain (e.g., a set of n real intervals). An update strategy is an
adaptive algorithm for deciding which of the inputs should be updated (i.e., be determined
exactly) in order to compute the function correctly. Consider a nondeterministic strategy
that guesses a set of inputs to update and then verifies that the given set is sufficient
to compute the function correctly. Let OPT be the size of the smallest guessed set for
which the nondeterministic strategy is able to verify the correctness of the function
value computed. An update strategy is said to c-update optimal if it updates at most
¢ x OPT 4 O(1) inputs. The notion of update complexity is implicit in Kahan’s [5]
model for data in motion. In the spirit of online competitive analysis he defined the lucky
ratio of an update strategy on a sequence of queries whereby a strategy competes against
a “lucky” (i.e., nondeterministic) strategy. Kahan provides update optimal strategies for
the problems of finding the maximum, median and the minimum gap of a set of n real
values constrained to fall in a given set of n real intervals.

Motivated by the situation where one maintains in a local cache, intervals containing
the actual (changing) data values stored at a remote location, Olston and Widom [7]
studied a similar notion. In their model the costs associated with updating data items
may vary with the item and the function need not be computed exactly but only to
within a given tolerance. A series of papers [3], [4], [6] establish tradeoffs between
the update costs and the error tolerance and/or give complexity results for computing
optimal strategies for such problems as selection, sum, average and computing shortest
paths.

For the most part, the above results assume the uncertainty of a data item is best
described by a real interval that contains it. In a number of situations, the uncertainty
is more naturally captured by regions in two- (or higher) dimensional space. This is
especially the case for positional data of moving objects with known upper bounds to
their speed and possible constraints on their trajectories. The functions to be computed
in these situations are most often geometric in nature. For example, to establish which
planes to deal with first, an air traffic controller would be interested in computing the
closest pair of points in three dimensions. To apply greedy directional routing in a mobile
ad hoc network, a node must establish which of its neighbors is currently closest to the
destination of a packet it is forwarding. To determine the extent of the coverage area
of a mobile sensor network, one would like to compute the convex hull of the sensor’s
current positions.

In this paper we describe a general method, called the witness algorithm, for es-
tablishing upper bounds on the update complexity of geometric problems. The witness
algorithm is used to derive update optimal strategies for the problems of finding all max-
imal points and reporting all points on the convex hull of a set of moving points whose
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uncertainty may be described by the closure of open connected regions on the plane. The
restriction to connected regions is necessary in order to ensure the existence of strategies
with bounded update complexity. For both of these problems we provide examples that
show our update strategies are optimal.

The remainder of the paper is organized as follows. In Section 2 we describe a
general method for establishing upper bounds on the update complexity for geometric
problems. This approach is then used in Sections 3 and 4 where update optimal strategies
for finding maximal points and points on the convex hull are given, respectively.

2. Preliminaries

We begin by giving some definitions. An input instance is specified by a set P of points
in M2, and associated with each point p € P,isanarea A, whichincludes p.LetS C P
be a set of points with some property ¢, such as the set of all maximal points in P, or
the set of points on the convex hull of P. For convenience, we say that p € P has the
property ¢ if p € S, and that A, has the property ¢ if p has. The algorithm is given only
the set {A,|p € P}, and must return all areas which have the property ¢.

In order to determine the areas with property ¢, the algorithm may update an area
A, and determine the exact location of the point p with which it is associated. This
reduces A, to a trivial area containing only one point, namely p. The performance of
an algorithm is measured in terms of the number of updates it performs to compute the
answer; in particular, it should be expressible as a function of the minimal number of
updates OPT required to verify the solution. An update strategy is said to be c-update
optimal if it updates at most ¢ * OPT + O(1) inputs, and update-optimal if it is c-update
optimal for some constant ¢ > 1. Note that the algorithm may choose to return areas
that are not updated as part of the solution. Indeed, in some instances, an algorithm may
not need to update any areas to solve the problem.

In Sections 3 and 4 we give two update-optimal algorithms for the maximal points
and convex hull problems, respectively. These two algorithms are instances of the same
generic algorithm, the witness algorithm. In this section we describe this algorithm. We
begin by giving some definitions. For a given set of areas F = {Ay, ..., A,} we call
C ={p1,..., pn} aconfiguration for F if p; € A; fori =1,...,n.

Definition 1. Let F be a set of areas, A € F and p € A. Then:

— The point p is always ¢ if for any configuration C of F — {A}, the point p has
the property ¢ in C U {p}.

— The point p is never ¢ if for any configuration C of F — {A}, the point p does
not have the property ¢ in C U {p}.

— The point p is dependent ¢ if for at least one configuration C of F — {A}, the
point p has the property ¢ in C U {p} and p is not always ¢.

— A dependent ¢ point p depends on an area B, if for at least one configuration
C of F — {A, B}, there exist points b and b, in B such that the point p has the
property ¢ in C U {p, b;} and does not have the property ¢ in C U {p, b,}.

We extend this notion from points to areas.
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Definition 2. Let F be a set of areas. Let A be an area in F. We say:

— The area A is always ¢ if every point in A is always ¢.

— The area A is partly ¢ if A contains at least one always ¢ point and A is not
always .

— The area A is dependent ¢ if A contains at least one dependent ¢ point and A is
not partly ¢.

— The area A is never ¢ if every point in A is never ¢.

Definition 3. Let F be a set of areas and let C be a set of configurations for F. A set
W of areas in F is called a witness set of F with respect to C if for any configuration
in C at least one area in W must have been updated to verify the solution. We say W is
a witness set of F if W is a witness set of F with respect to all possible configurations
of F.

The witness algorithm is as follows:

step 1: while (there exists at least one partly ¢ or one dependent ¢ area)

step 2: if there exists a partly ¢ area

step 3: find a witness set W; update all areas in W.
step 5: else // there must exists a dependent ¢ area //

step 6: find a witness set W; update all areas in W
step 8: end

The split in these two cases helps to identify witness sets.

Note that the idea is to concentrate first on partly ¢ areas and witness sets concerning
these areas. Only if there are no partly ¢ areas left in the given instance, will a strategy
based on the existence of dependent areas be used to find witness sets.

Lemma 1. [fthere exists a constant k such that every witness set that gets updated by
the witness algorithm is of size at most k, then the witness algorithm is k-update optimal.

Proof. Let Fy be the set of areas. Assume that the witness algorithm updates n witness
sets to determine all areas in Fj that have property ¢. Let Wy, ..., W, be the witness
sets in same order as updated by the witness algorithm. Let F; for j < n be the set of
areas after updating W1, ..., W;. Further let C> be the set of all possible configuration
of F;.SoCy D C; D --- D C,, and W; is a witness set of F; for j < i and in particular
all W; are witness sets of Fy. Since all W; are disjoint, at least n updates have to be
made to verify the solution (OPT > n). Since all witness sets are of size at most k, the
witness algorithm updated at most k * n areas. Hence the witness algorithm is k-update
optimal. |

3. Maximal points

We now give an update-optimal algorithm for the maximal points problem when the
areas are either trivial or closures of connected, open areas. We then note (Figure 2) that
there is no update-optimal algorithm for arbitrary areas.
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Given two points p = (py, py) and g = (g, q,) we say that p > g if p # g and
DPx = gy and p, > g,. We say aline [ intersects an area A if they share a common point.
We say a line [ splits an area A if A — [ is not connected.

Lemma 2. Let p be a dependent maximal point. Let Y be the set of areas p depends
on. Then all areas of Y must be updated to show p is maximal.

Proof. Let B be an area on which p depends. Hence there exist by, b, € B withb; # p
and b, > p. In order to verify that p is maximal the area B must be updated. O

Lemma 3. Let A be a partly maximal area, then there exists a witness set of size at
most 2.

Proof.  Since the area A is partly maximal it contains at least one always maximal point.
It also contains either a never maximal point or a dependent maximal point. We look at
these cases separately.

Case a: The area A contains a never maximal point. In order to verify that A is maximal
or not, we have to update the area A. Therefore the set {A} is a witness set.

Case b: The area A contains a dependent maximal point p. Since the area A is partly
maximal, by updating only areas other than A the area A can change its status to only
an always maximal area. Let B be an area on which p depends. By Lemma 2, in order
to verify that p is maximal, we have to at least update B. Hence {B, A} is a witness set
of size 2. O

Lemma 4. Let! be a horizontal or vertical line. Further let [ split two areas A and B.
Then the areas A and B cannot both be always maximal areas.

Proof. Since all areas are closures of connected open areas the intersection of / with
A must contain an open interval and similarly with B. So there exists a € A N[ and
b € BN with a # b. Therefore either a < b or b < a. Hence not both A and B are
always maximal areas. O

Lemma 5. [fthere are no partly maximal areas, but there exists a dependent area, then
there exists a witness set of size at most 3.

Proof. Let A be the area with a dependent maximal point p € A, such that there is no
dependent maximal point ¢ in any area such that ¢ > p. In other words, p is maximal
among the all dependent maximal points. Note that p must exist since all areas are closed.
Let ; be the vertical line starting at p and going upwards. Let /; be the horizontal line
starting at p and going to the right. Since p is maximal among the dependent points,
every point that lies in /; Ul, — { p} and also in an area other than A is an always maximal
point. Let Q be the top right quadrant of /; and /, including /; and /, but not { p}. Since p
is dependent there exists at least one area B with a point in Q and a point notin Q. Since
p is maximum among the dependent points every point in Q is always maximal. By our
assumption that there are no partly maximal areas the area B must be always maximal.
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Hence it does not contain p. Let /| be the line /; shifted by ¢ to the left and let [, be the
line /, shifted downwards by &, where ¢ > 0 is arbitrarily small. Since all areas are the
closure of connected, open areas B must be split either /] or /5. By Lemma 4 there are at
most two areas that contain a point in Q as well as a point not in Q. We call these areas
B and C and let W = {B, C, A}. Note, it is possible that only one of the areas B or C
exists. To verify whether A is an always maximal area or not we have at least to update
A or we have to verify that p is or is not maximal. For this we have to either update B
or C or both. In all cases W is a witness set. O

‘We now show:

Theorem 1. Under the restriction to the closure of open, connected areas or trivial
areas, the witness algorithm for the maximal point problem is 3-update optimal. Fur-
thermore, this is the best possible.

Proof. The above lemmas show that there is always a witness set of size less than 3.
By Lemma 1 we have that the witness algorithm is 3-update optimal. We now argue that
there is no c-update optimal algorithm for any ¢ < 3.

Consider the three areas A, B and C in Figure 1. The areas A and C are always
maximal areas, but updates are needed to determine whether the point of area B is
maximal. Note that this picture demonstrate a situation with no partly maximal areas,
but with one dependent area and therefore is an example of Lemma 5. For any strategy
S in updating these areas there exists a configuration of points for these three areas such
that S requires three update where actually only one was needed. For example, consider
that S updates A first. We choose one of (1) and (3) to be the input. If the algorithm
updates B next, we say that (1) is the input, and force the algorithm to update C as
well. However, both (1) and (3) can be “solved” by updating C and B, respectively. To
show the lower bound, we simply repeat this configuration arbitrarily often, with each

configuration lying below and to the right of the previous one. |
A A
- C C
B ° B
1 @
A
. C
B

(3)

Fig. 1. The three configurations.
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Fig. 2. Example showing that update-optimality is impossible for unrestricted areas.

Remark 1. Finally, we note that there is no update-optimal algorithm for the maximal
problem with arbitrary areas. Consider the situation shown in Figure 2. Assume there
are n intervals on the line segment / such that after a vertical projection each interval
contains the projection of A. Hence each interval is maximal and for any strategy that
determines whether A is maximal we have to update some of these intervals. For any
given strategy there exists a configuration such that the first n — 1 updated intervals
correspond to points whose projection on the x-axis lies to the left of the projection of
A on the x-axis, and the nth updated interval corresponds to a point such that no point
in A can be maximal. If this interval would have been updated first the status of A could
have been determined by only one update. Since n was arbitrary there exists no c-update
optimal algorithm for arbitrary areas.

4. Convex Hull

Based on the witness algorithm, described in Section 2, we now give an algorithm for
computing the convex hull. Again, we restrict the areas to either trivial areas or closures
of connected open areas. We also require that every non-empty intersection of two non-
trivial areas contains an e-ball. This algorithm will again be 3-update optimal, and we
will also show that this is the best possible. Let F be the set of areas.

Definition 4. Let F be a set of areas in h” and let / be a line. Then [ splits R? in three
regions: two half-planes (H;,H,) and [. We say [ has an empty half with respect to F if
H, or H, does not intersect any area in JF.

Proposition 1. Let p be a point in A € F. The point p is always on the convex hull if,
and only if, for every configuration with p as the point of the area A, there exists a line
[ through p such that | has an empty half with respect to F — {A}.

Proof. Obvious. |

Lemma 6. Let A and B be two non-trivial areas in F with a non-empty intersection.
Further, let F — {A, B} contain at least two areas C and D such that there exists ¢ € C
and d € D with ¢ # d. Then neither A nor B is an always convex hull area.

Proof. By our general condition on all areas in F the intersection of A and B must
contain a non-empty open area E. Since ¢ # d and E is open there exist p, g € E such
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Fig. 3. Choice of p and g.

that p lies inside the triangle with vertices ¢, ¢ and d, see Figure 3. Hence neither A nor
B is an always convex hull area. O

Lemma 7. Let p be a point in an area A € F and let | be a line through p such that
in one direction of p the line [ splits an area B € F — {A} and in the other direction of
p the line [ intersects an area C € F — {A, B}. Further, let D € F — {A, B, C} such
that either

(i) D — {p} is not empty, if the area C is non-trivial,
(1) D — 1 is not empty, if the area C is trivial.

Then p is not always on the convex hull.

Proof. (i) By our assumption there exists a point d € D with d # p. Since C is non-
trivial it must be the closure of an open area. Hence there exists a ¢ € C such that p, ¢
and d are not in a line and there exists a point b € B such that p lies inside the triangle
with vertices b, ¢ and d.

(i1) The area C is trivial. So let ¢ be the pointin C. Letd € D — [. Since [ splits B
there exists a point b € B such that p lies insid the triangle with vertices b, ¢ and d, see
Figure 4. O

Lemma 8. Let p be a dependent convex hull point in an area A € F. Then there exists
a line | through p such that in one direction of p the line [ splits an area B € F — {A}
and in the other direction of p the line [ intersects an area C € F — {A, B} and there
exists an area D € F — {A, B, C} such that

(i) D — {p} is not empty, if the area C is non-trivial,
(1) D — 1 is not empty, if the area C is trivial.

c ™ (Y
OBV
p

Fig. 4. A line through p that splits an area on one side and touches another one on the other side.

|
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Proof. Since p is a dependent convex hull there exists a configuration G and a line /
such that p € [ and [ has an empty half H with respect to G. If all areas except A do not
intersect with H then / has an empty half for any configuration and p would be therefore
an always convex hull. Since all areas are connected, / splits at least one area other than
A. By rotating [ at the point p we can assume that / in one direction of p splits an area
B € F — {A} and intersects in the other direction another area C € F — {A, B}.

(1) Since p is a dependent convex hull there exist three points in three different areas
other than A, such that p lies inside the triangle created by these three points. Hence
there exist at least three areas which are not identical to {p}. Hence if C is not trivial
there exists D € 7 — {A, B, C} such that D — {p} is not empty.

(i) If C is trivial and all areas except A, B are lying completely on / then in any
configuration G| with p as the point of the area A, all points in G lie on the convex hull,
since all points in G| except the point of the area B lie on one line. This contradicts the
assumption that p is a dependent convex hull. Hence if C is trivial there exists at least
one other area in F — {A, B} which does not lie completely on /. |

Lemma 9. [f there exists a partly convex hull area, then there exists a witness set of
size at most 3.

Proof. Let A be a partly convex hull area. If we assume there exists a never convex hull
point in A, then in order to verify whether A is on the convex hull we have to update A.
So {A} is a witness set. For the rest of this proof let A contain a dependent convex hull
point p.

In a verification that shows whether A is on the convex hull and does not update A,
the status of the point p must change through updating other areas than A to an always
convex hull point.

By Lemma 8 there exists a line / through p such that in one direction of p the line
[ splits an area B € F — {A} and in the other direction of p the line / intersects an area
C € F — {A, B} and there exists an area D € F — {A, B, C} such that

(i) D — {p} is not empty, if the area C is non-trivial,
(i) D — [ is not empty, if the area C is trivial.

We look at these cases separately.

(1) C is non-trivial. Since A is a partly convex hull and connected, there exists a
pointg € A and a line I’ through ¢ such that in one direction of ¢ the line / splits the area
B and in the other direction of ¢ the line / intersects C. By Lemma 7 without updating
B or C, the points p and g cannot both change their status to always convex hull points.
Hence {A, B, C} is a witness set.

(ii) C is trivial. By Lemma 7 without updating B or D the point p cannot change
its status to an always convex hull point. Hence {A, B, D} is a witness set. |

The following definitions and lemmas lead to Theorem 2, which shows that we can
also find a witness of size at most 3 if there are no partly convex hull areas but at least
one dependent area.
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Definition 5. Let F consist only of always convex hull areas. Let A and B be two
areas in F. We call A and B neighbors if in any configuration the points of A and B are
adjacent on the convex hull.

Lemma 10. Let F consist of only always convex hull areas and let F not contain
identical trivial areas. Further, let F contain three or more areas. Then every area in F
has exactly two neighbors.

Proof. Since F has no multiple trivial areas and every non-trivial area is a closure of
an open area there exists a configuration C; of F such that all points in C; are distinct.
Let A be an area in F and let a be the point in C; that corresponds to the area A. Since
all points in C; are distinct the point a has exactly two neighbors (b € B € F and
c € C € F) on the convex hull with respect to C;. We will show that the areas A and B
as well as A and C are neighboring areas.

Let us assume that A and B are not neighboring areas. So, there exists anarea D € F
and a configuration C; witha’ € A,b' € B — {a’} andd’ € D — {a’, b’} such that a’
and d’ are neighbors and a’ and b’ are not. Since all of these points are disjoint we can
change our set of areas as follows.

F=1{s— U T: Se{A,B,C,D}}.
Te{A,B,C,D},T is trivial, S#T

Since all areas in F are either closures of connected open areas or trivial, all areas in F’
are connected. Note also that by Lemma 6 none of the areas in J intersects with another
area in F'. Let d be the corresponding point of the area D in the configuration C; and
let ¢’ be the corresponding point of the area C in the configuration C,. Note that C; and
C, when restricted to points corresponding to the areas A, B, C and D are configuration
for F'. Since the areas A, B, C and D are connected we can continuously transform the
configuration C; (see Figure 5) to the configuration C, (see Figure 6). Since all areas in
F' are disjoint and always convex hulls, this is not possible; a contradiction. Hence A
and B are neighboring areas. Similarly for the areas A and C. |

Definition 6. Let 7 be acollection of areas. Let Aand Bbein F.Let 7' ={C € F : C
is always convex hull}. We call A and B always neighbors if A and B are always convex
hull areas and A and B are neighbors in F'.

Fig. 5. Configuration where a and b are neighbors.
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O

s

C

Fig. 6. Configuration where a’ and b’ are neighbors.

Definition 7. Let A and B be always neighbors. We call the set
Nap={p:3q € A,r € Bwith p € edge,,}
the neighboring band of A and B.

Lemma 11. [fthere are no partly convex hull areas in F, but F contains at least three
always convex hull areas, then any dependent convex hull area A € F must intersect
with at least one neighboring band.

Proof. Since we have at least three always convex hull areas, the neighboring bands of
these areas build a closed “polygon” P. Note that an edge of P is a neighboring band
and it might therefore be thick. We call all points that lie either outside of P or on the
convex hull of P outer points, points that lie in a neighboring band except on the convex
hull of P, points on P and the rest inner points. Since all areas in F are closed, any area
that contains outer points must contain an always convex hull point, which contradicts
our assumption that there are no partly convex hull areas. In particular, no dependent
convex hull area contains outer points. Since all inner points are never convex hull points,
a dependent convex hull area must contain at least a point on P and therefore it must
intersect with at least one neighboring band. |

Lemma 12. Let there be no partly convex hull areas in F. Let F contain at least
three always convex hull areas. If A is a dependent convex hull area intersecting the
neighboring band N ¢, then {A, B, C} is a witness set.

Proof. Assume that we do not need to update A, B or C. Since A is a dependent convex
hull area, in the worst case we must update other areas to change the status of A. Since
F contains at least three always convex hull areas, without updating B or C the area A
will not become an always convex hull area. Hence we must update an area D such that
A becomes a never convex hull area. Therefore the updated trivial area D’ must intersect
Np ¢ and it must be a dependent convex hull area. We are now in a similar situation as
before. Since we do not update B or C we have to update an area E such that D’ becomes
a never convex hull area, but again the updated trivial area E’ lies in Ng . Therefore
eventually we have to update the area B or C. O

Lemma 13. [If there are no partly convex hull areas in F and F contains at least one
dependent convex hull area, there exists a witness set of size at most 3.
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Proof. Case 1: F contains one always convex hull area A. If the area A is not updated
other updates must lead to the situation where there are only three areas in the collection
of areas without counting multiple trivial area. Hence A and any two non-trivial areas in
JF form a witness set.

Case 2: F contains two always convex hull areas A and B. Similar to Case 1. If the
areas A and B are not updated, other updates must lead to the situation in which there are
only three areas, without counting multiple trivial areas. Hence A, B and any non-trivial
area in JF form a witness set.

Case 3: F contains three or more always convex hull areas. Let D be a dependent
convex hull area in . By Lemma 11 the area D must intersect at least the neighboring
band Np ¢ where B and C are always convex hull areas in 7. By Lemma 12 the set
{D, B, C} is a witness set. |

Theorem 2. Under the restriction to the closure of open, connected areas or trivial
areas, and every non-empty intersection of two non-trivial areas contains an g-ball, the
witness algorithm for the convex hull problem is 3-update optimal. Furthermore, this is
the best possible.

Proof. By Lemmas 13,9 and 1 the witness algorithm is 3-update optimal.

Figure 7 shows that there is no algorithm which is c-update optimal for ¢ < 3.
The areas A, B, D and E are always on the convex hull. However, for any strategy to
determine the status of C there exists a configuration such that this strategy requires to
update all three areas, but starting with updating the last one would have given the answer
directly. Since we can construct a set of areas that consists entirely of triples following
the same pattern, there cannot exist a c-update optimal algorithm with ¢ less than 3. O

Remark 2. Using a similar ideas to that described in Remark 1 we can show that there
is no update-optimal algorithm for the convex hull problem with arbitrary areas:

In Figure 8 let there be n intervals on the line /, let each interval contain at least two
points ¢ and ¢’ such that p lies inside the triangle r, g, s and p lies outside the triangle
r,q’, s. In order to determine whether p is on the convex hull the intervals on the line /
must be updated. For any strategy there exists a configuration such that the first n — 1
updates of intervals on / do not determine whether p is on the convex hull or not and the
nth interval updated ensures that p cannot lie on the convex hull. Hence there exists no
update-optimal algorithm for arbitrary areas.

O

o

Fig. 7
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