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Abstract. We investigate the problem of path selection in radio networks for a
given static set of n sites in two- and three-dimensional space. For static point-
to-point communication we define measures for congestion, dilation, and energy
consumption that take interferences among communication links into account.

We show that energy-optimal path selection for radio networks can be computed
in polynomial time. Then we introduce the diversity g(V ) of a set V ⊆ Rd for any
constant d . It can be used to upper bound the number of interfering edges. For
real-world applications it can be regarded as �(log n). A main result is that a c-
spanner construction as a communication network allows one to approximate the
congestion-optimal path system by a factor of O(g(V )2).

Furthermore, we show that there are vertex sets where only one of the per-
formance parameters congestion, dilation, and energy can be optimized at a time.
We show trade-offs lower bounding congestion × dilation and dilation × energy.
The trade-off between congestion and dilation increases with switching from two-
dimensional to three-dimensional space. For congestion and energy the situation is
even worse. It is only possible to find a reasonable approximation for either con-
gestion or energy minimization, while the other parameter is at least a polynomial
factor worse than in the optimal network.
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1. Introduction

Radio networks are widely used today. People access voice and data services via mobile
phones, bluetooth technology replaces unhandy cables by wireless links and wireless
networking is possible via IEEE 802.11 compatible network equipment. Nodes in such
networks exchange their data packets usually with fixed base-stations that connect them
with a wired backbone. However, in applications such as search and rescue missions or
environmental monitoring, no explicit communication infrastructure is available. Since
the communication range of the usually mobile nodes is limited, target nodes are not
always directly reachable. The data has to be routed over intermediate nodes (multi-
hop routing), therefore each node has to have router capabilities. Such networks are
called ad hoc networks. They impose higher requirements on routing algorithms such
as adaptability to dynamic link changes and awareness of the limited energy in mobile
nodes while maintaining high throughput and small delays. Methods that enable ad hoc
networking can be assessed with three measurable quantities: link congestion, dilation
(also known as hop count), and energy consumption. Traditional routing protocols such
as AODV, DSDV, and DSR [21] usually choose the path with the lowest hop count. There
also exist power-aware routing protocols that use different metrics (e.g., energy consumed
per packet, variance in node power level) to choose the best route in order to extend the
lifetime of individual nodes or the whole network [25], [26], [3]. The congestion of a route
is usually not regarded directly, but some routing protocols choose routes with the shortest
route discovery, assuming that the route with the quickest response is less congested
(e.g., SSA [5]). All these routing protocols assess the paths that have been found by
route discoveries according to a cost function. However, how are the factors congestion,
dilation, and energy that are mostly employed in the cost function related to each other?

Due to interfering links, it is not clear how to choose nodes or devices or vertices
as communication partners. In our model nodes can adjust their transmission powers in
order to change the transmission range. We are looking for the optimal choice of this
network for a given static distribution of the nodes in Rd for d ∈ {2, 3}.

In Section 1.1 we introduce our model of radio networks, and define and motivate
our notions of congestion, dilation, and energy. Then, in Section 1.2, we shortly present
and discuss our results to give the reader a short overview. In Section 2 we relate con-
gestion and dilation to the routing time in radio networks and present upper and lower
bounds for the routing time. In Section 3 we present strategies for path selection that
provably optimize energy consumption and give an O(g(V )2)-factor approximation of
congestion where g(V ) is defined as the diversity that describes the number of magni-
tudes of all node-to-node distances. Two distances d1, d2 are in the same magnitude if
�log d1� = �log d2�. In Section 4, as a main insight, we can conclude that not any two
of these measures can be minimized simultaneously. Trade-offs between two measures
are unavoidable. Finally, Section 5 reflects work in the light of an experimental setting,
we are working on, and proposes future research directions.

1.1. Modeling Radio Networks

We consider a set V ⊆ Rd of n radio stations (or sites, or vertices, or nodes) for d ∈ {2, 3}.
In order to transmit a message from a radio station u to a radio station v, u is able to
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adjust its transmission radius to |u, v| := ||{u, v}||2, the Euclidean distance between u
and v. We say that u establishes the communication link e = {u, v}. Instead of sending
the packet directly from u to v, multi-hop communication is also possible by using a
path (u = u1, . . . , um = v) of stations. In order to submit a packet from u to v, the
communication links {ui , ui+1}, i = 1, . . . ,m − 1, have to be established.

Consider now a routing problem f : V × V → N, where f (u, v) packets have to
be sent from u to v, for all u, v ∈ V . A collection of paths, one for each packet, forms a
path system P for f . In this paper we assume (as in [20]) that each transmission along a
link {ui , ui+1} has to be acknowledged, so that the communication from ui+1 to ui also
has to be established. Thus the edges of the paths have to be used in both directions.
The undirected graph on V defined by the undirected edges of the paths in P is the
communication network N defined by P . As already well established and analyzed for
wired networks, see, e.g., [17], we define the dilation of P to be the maximum of the
lengths of all paths in P . In order to define congestion, we have to look at the specific
properties of radio networks. For wired networks, the load �(e) of an edge e = {u, v} of
the communication graph G is defined as the number of packets to be forwarded along
e. (This load is often called congestion in a wired network, see [17]; we use the notion
“load” to distinguish it from our notion of congestion for radio networks, to be described
below.)

A major problem in radio networks is the effect of interfering radio signals. If two
nodes A and B are in range of a third listening node C, but cannot hear each other, a
collision occurs at C if A and B transmit simultaneously. This is the hidden terminal
problem [2]. Solutions exist that reduce this effect. In the IEEE 802.11 standard, see
[13], sender A and receiver C reserve the channel by sending request-to-send (RTS)
and clear-to-send (CTS) packets prior to the data communication. Other nodes, also the
nodes that cannot hear the sender, hear at least one of these packets and suspend all
transmissions until the channel is free. However, this also reduces the network capacity
since any node B that hears the RTS of A cannot start a transmission even if C is outside
of B’s range and thus no collision would occur. This is the exposed terminal problem
[2].

In our radio model we allow only one radio frequency. Now, if two packets are
transmitted at the same time we may experience radio interference such that only one
or none of them can be received. The area covered by sending and acknowledging a
packet from u to v along an edge e = {u, v} is D(e) := Dr (u) ∪ Dr (v), where Dr (u)
denotes a disk with center u and radius r := |e| (see Figure 1). Now, if another packet
q has to be sent or received by a site within D(e), the radio interference prevents the
successful transmission of q . Since sites adjust their transmission powers for sending
packets, interferences may not be symmetric.

As mentioned above, for radio networks we need to reflect the impact of radio
interferences on the delay of a packet. Therefore, we define the set of edges interfering
with an edge e = {u, v} of N as

Int(e) := {e′ ∈ E(N )\{e} | u ∈ D(e′) or v ∈ D(e′)}.
Thus, sending a packet along e is successful only if no other edges from Int(e) send
concurrently. We define the interference number of a communication link by |Int(e)|.
The maximum interference number of the network is the maximum interference number
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Fig. 1. Stations, packet paths, and induced radio interferences.

of all edges. Now we define the congestion of the edge e by

CP(e) := �(e)+
∑

e′∈Int(e)

�(e′).

The congestion of the path system P is defined by

CP(V ) := max
e∈EP
{CP(e)}.

The variable choice of the transmitter power allows us to reduce the energy con-
sumption, saving on the tight resources of batteries in portable radio stations and reducing
interferences. The energy needed to send over a distance of r is given by r2. It turns out
that in practice the energy consumption is O(r4) or even O(r5). However, all results
besides Theorem 5 can be easily transferred to higher exponents.

We distinguish two energy models reflecting the power consumption by link main-
tenance and packet transmission. In the first model, called the unit energy model, we
assume that maintaining a communication link e is proportional to |e|2, where |e| denotes
its Euclidean length. So, we completely neglect any impact of power consumption by
packet delivery. Therefore, the unit energy U-Energy used by radio network N is given
by

U-EnergyP(V ) :=
∑

e∈EP (N )

|e|2.

The flow energy model reflects the energy actually consumed by transmitting all
packets of a routing problem f , if path system P is used. So, we neglect any power
consumption by link maintenance. Here, the power consumption of a communication
link e is weighted by its load �(e):

F-EnergyP(V ) :=
∑

e∈EP (N )

�(e)|e|2.

We subdivide the design of a routing strategy for f into the following three steps:

• Path selection: Select a path system P for f .
• Interference handling: Design a strategy, that realizes the transmission of a packet

along a link in the presence of interferences.
• Packet switching: Decide when and in which order packets are sent along a link.
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1.2. Our Results

The main topic of this paper is to design path systems and to analyze and compare
them with regard to congestion, dilation, and energy. Before we start that, we show in
Section 2 how to handle interferences and how to resolve collisions. This will result
in lower and upper bounds for the routing time which can be expressed in terms of
congestion, dilation, and interference number. Here we adopt methods from [1], where
such protocols are designed for the case that V is randomly chosen.

In Section 3 we consider congestion, dilation, and energy in radio networks and
try to minimize each of these measures individually. Optimal path systems P that are
optimized for dilation or energy can be found in polynomial time. An optimal network
for the dilation is given by the complete network. In Theorem 4 we prove that the unique
paths defined by a minimum spanning tree (MST) result in an optimal path system
for a radio network with respect to unit energy. It is known that the Gabriel Graph
GG(V ), introduced in [6], provides energy-optimal paths [18]. Such a Gabriel Graph
consists of all edges {u, v} such that the open sphere using the line from u to v as
diameter does not contain any other node from V ⊆ Rd , d ∈ {2, 3}. It is also known
that MST(V ) ⊆ GG(V ). In Theorem 5 we show that the shortest paths in a subgraph of
the weighted Gabriel Graph (the weight of an edge is given by the square of its length)
form an optimal path system for flow energy. Finding optimal solutions for congestion
is considerably harder, and to our knowledge nothing non-trivial was known before
this work. We begin our considerations with the introduction of the diversity g(V ) of a
set V that can be used to upper bound the number of interfering edges. After that we
present a path selection strategy that gives an O(g(V )2)-approximation for congestion.
We use the Hierarchical Layer Graph (HL-graph) introduced in [9] to achieve this
result. For randomly or “reasonably” distributed nodes, g(V ) = O(log n), which gives
an O(log2 n)-approximation for congestion.

Finally, in Section 4, we study the problem of minimizing combinations of param-
eters. Here, the main result is that no two of the parameters congestion, dilation, and
energy can be minimized at the same time. Tables 1 and 2 give an overview.

2. Upper and Lower Bounds for Routing Time

It is easy to see, and is well known, that both the dilation and the maximum load
maxe∈E {�(e)} lower bound the routing time, even in wired networks. In this section we
show that the routing time in radio networks can also be lower bounded in terms of our
extended notion of congestion (Theorem 1). We further present an upper bound.

Table 1. Approximation results for logarithmic diversity.

Congestion Dilation Unit Energy Flow energy

Structure HL-graph Complete Network MST Gabriel subgraph
Approx.-factor O(log2n) Optimal Optimal Optimal
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Table 2. Trade-offs and incompatibilities on network parameters.

Dilation Congestion

Congestion CP (V ) · DP (V ) ≥ 	(W ) —

Unit energy DP (V ) · UEP (V ) ≥ 	(d2)
CP (V ) ≥ 	(n1/3C∗P (V )) or

UEP (V ) ≥ 	(n1/3UE∗P (V ))

Flow energy DP (V ) · FEP (V ) ≥ 	(d2W )
CP (V ) ≥ 	(n1/3C∗P (V )) or

FEP (V ) ≥ 	(n1/3FE∗P (V ))

Theorem 1. Consider a radio network N in d-dimensional space (d ∈ {2, 3}) and a
path system P for a routing problem f with dilation D and congestion C . Let T be its
optimal routing time. Then it holds for c2 = 6 and c3 = 20 that

T ≥ max

{
C

2cd
, D

}
= 	(C + D).

Proof. Let e = {u, v} be an edge with maximum congestion C . Now we try to calculate
the number of edges along which successful transmissions can take place simultaneously
to e. We partition the d-dimensional space into regions R1, . . . , Rcd (see Figure 2).

The main property of these regions is that, for every pair of points r, s ∈ Ri for all
i , the angle between ur and us is less than or equal to π/3. Clearly, for two-dimensional
space we have c2 = 6. In [12] it has been shown that c3 ≤ 20. Similarly we consider the
analogous partitioning Rcd+1, . . . , R2cd with v as the corner point of angles. Define

Ei := {{p, q} | (p ∈ Ri ∨ q ∈ Ri ) ∧ {p, q} ∈ Int(e)}.

Note that by a straightforward geometric argument, for two edges e′, e′′ ∈ Ei , it holds
that either e′ ∈ Int(e′′) or e′′ ∈ Int(e′). Therefore, all transmissions over edges in Ei∪{e}
have to be done sequentially. Let �i := �(e)+∑

e′∈Ei
�(e′). Then

∑2cd
i=1 �i ≥ C . Hence,

T ≥ max
i∈[2cd ]

{�i } ≥ 1

2cd

2cd∑
i=1

�i ≥ C

2cd
.

We now turn to upper bounding the routing time. Following the approach of local
probabilistic control protocols for the MAC layer (also called LPC schemes) given in [1],

R2

R1R3

R4

R5

R6 R7

R8

R9

R10

R11

R12

Fig. 2. Partitioning of the two-dimensional space into regions R1, . . . , R12.
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we use the following protocol for handling interferences. If u wants to send a packet (or
an acknowledgment) along link e to v, u proceeds as follows. The link e is activated with
probability ϕ(e) and so, in each step, it decides with probability ϕ(e) to send a packet.
We choose ϕ(e) := min{ 1

2 , �(e)/CP(V )}. Then it holds that ϕ(e)+∑
e′∈Int(e) ϕ(e

′) ≤ 1.
We have the following for a transmission between two nodes:

Lemma 1. The probability of a successful transmission on a link e is at least 1
4ϕ(e).

Therefore, the expected time for a successful transmission is at most 4/ϕ(e). Further, if u
has decided to send a message to v, this transmission attempt has a success probability
of at least 1/4.

Proof. Note that 1 − p ≥ 1/4p for p ∈ [0, 1
2 ]. Let Int(e) be defined as {e1, ..., em}.

Then the following holds:

Prob[Transmission on link e is successful] = ϕ(e)
m∏

i=1

(1− ϕ(ei ))

≥ ϕ(e)
m∏

i=1

4−ϕ(ei ) = ϕ(e)4−�
m
i=1ϕ(ei )

≥ 1
4ϕ(e).

The bounds for the expected transmission time and the constant success probability
follow directly.

Definition 1 [1, Definition 2.2]. Let the probabilistic communication graph (or PCG
for short) G = (V, ϕ̃) be defined as a complete directed graph with node set V and edge
labels determined by the function ϕ̃ : V × V → [0, 1]. Every edge e can forward a
packet in one time step, but only succeeds in doing this with probability ϕ̃(e).

The authors of [1] transform the problem of routing in wireless networks to routing
in PCGs. Since we have a constant success probability, we can use the same technique
to transform the problem of routing in our graphs to routing in PCGs. We make use of
the results given in [1].

We adopt the following result, but we need some other notation from [1]. Let the
maximum edge latency L̃ of a PCG G be defined as the maximum expected time and the
minimum edge latency l̃ as the minimum expected time needed to successfully transmit
a packet along an edge in G. Note that our interference handling guarantees: L̃ ≤ ∞
and l̃ ≥ 2, since 1

2 ≥ ϕ(e) ≥ c for all e ∈ E and a constant c ∈ R. Given a collection P
of simple paths in some PCG G, the PCG-dilation D̃ of P is defined as the maximum
over all paths inP of the sum of 1/ϕ̃(e) over all edges e used by it (that is, D̃ denotes the
maximum expected time a packet needs to traverse a path inP), and the PCG-congestion
C̃ of P is defined as the maximum over all edges e of 1/ϕ̃(e) times the number of paths
in P that cross it (that is, C̃ denotes the maximum expected time spent at an edge e
to forward all packets which contain e in their path). The size n of an arbitrary path
collection is defined as the number of packets given by the routing problem.
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Theorem 2 [1, Theorem 2.12]. There is an online protocol for sending packets along
an arbitrary path collection of size n with PCG-dilation D̃, PCG-congestion C̃ , maximum
edge latency L̃ , and minimum edge latency l̃ in time O(C̃+D̃ log(n·L̃/l̃))with probability
at least 1− n−c for any constant c.

Applying this to our model yields:

Theorem 3. Consider a radio network N = (V, E) and a path system P of size n
for some routing problem f with maximum interference number I , dilation D, and
congestion C . Let T be its optimal routing time, when the path system P is used. There
is an online routing protocol that needs routing time O(C + D · I · log(n · I )), with
probability at least 1− n−c for any constant c.

Proof. By definition we have that 1/ϕ(e) ≤ I for all e ∈ E . It follows directly that
D̃ ≤ D · I and by definition we have C̃ = C . The maximum edge latency L̃ is given
by maxe∈E {1/ϕ(e)} = O(I ). The minimum edge latency l̃ is at least 2, by definition
of ϕ(e). Now we consider the PCG G = (V, ϕ) and use Theorem 2 to complete the
proof.

3. Minimizing Energy and Congestion

In this section we try to optimize congestion, dilation, and energy separately. It is clear
that the complete network is the optimal choice for dilation. So we only have to focus
on congestion and energy. We show that energy-optimal path selection for radio net-
works can be computed in polynomial time. In the case of congestion we present an
approximation of the congestion-optimal path system.

3.1. Energy

The unit energy of a path system for a radio network is defined as the energy consumption
necessary to deliver one packet on each communication link. It turns out that the minimum
spanning tree (MST(V )) optimizes unit energy, i.e., power consumption for maintaining
links while neglecting all additional energy consumption for packet delivery. Note that the
hardness results shown in [15] and [4] do not apply because in our model the transmission
radii are adjusted for each packet.

Theorem 4. The unique paths defined by a minimum spanning tree result in an optimal
path system for a radio network N = (V, E), V ⊆ Rd for any d , with respect to the unit
energy.

Proof. Consider the complete graph on V , where each edge g gets weight |e|2. The
minimum energy network can be constructed using Prim’s or Kruskal’s algorithm for a
minimum spanning tree. Note that the decisions in this algorithm are based on comparison
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c
a

b

Fig. 3. Communication on an edge c is more expensive with regard to unit energy than communication on
the edges a and b (a2 + b2 < c2).

of the length of some edges e and e′, i.e., |e| ≤ |e′|. Thus, the minimal network for energy
is also the minimum spanning tree for Euclidean distances.

For the flow energy model, the best network is not necessarily a tree. However, one
can compute the minimal flow energy network in polynomial time. In consideration of
the flow energy we use the Gabriel Graph (GG(V )) introduced in [6]. It consists of all
edges {u, v} such that the open sphere using the line from u to v as diameter does not
contain any other node from V ⊆ Rd , d ∈ {2, 3}. It turns out that MST(V ) ⊆ GG(V ).
Let G̃G(V ) denote the weighted version of GG(V ) where each edge e has weight |e|2.
The following holds:

Theorem 5. For a given vertex set V and a routing problem f , the shortest paths
between vertices u, v ∈ V with f (u, v) �= 0 of G̃G(V ) form an optimal path system for
a radio network with respect to the flow energy.

Proof. By the theorem of Thales, the flow-optimal path between two sites u and v only
contains edges of GG(V ) (see Figure 3). Thus, it is a shortest path in GG(V ), where
each edge e has weight |e|2, i.e., in G̃G(V ). By the definition of the flow energy of a
path system, the collection of all flow-optimal paths for packets of the routing problem
f form a flow-optimal path system.

Note that a flow-optimal path system can easily be computed in polynomial time
by an all-pairs-shortest-paths algorithm. There are situations where edges of the Gabriel
Graph can be replaced by less energy-consuming paths, even if no site lies inside the
disk described by the edge. In this case the edge of the Gabriel Graph is not part of any
energy optimal route.

3.2. Congestion

In the following we try to optimize congestion. We begin with the introduction of the
diversity g(V ) of a set V that can be used to upper bound the number of interfering
edges. After this we present a data structure that approximates the congestion-optimal
communication network by a factor of O(g(V )2).

3.2.1. Diversity of a Vertex Set. Sometimes the location of the radio stations does
not allow any routing without incurring high congestion. Consider a vertex set V =
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Fig. 4. The high diversity of the vertex set causes many interferences, resulting in high congestion.

{v1, . . . , vn} on a line, with distances |vi , vi+1| = 2i . The edge {vi , vi+1} interferes with
all edges {vj , vj+1} for j ≤ i , see Figure 4. Therefore the interference number of the
network is n− 2. Suppose only v1 and vn want to communicate, then the better solution
for congestion is to disconnect all interior points and to realize only the edge {v1, vn}.
Of course this is not an option when interior nodes need to communicate.

It turns out that a determining parameter for the realization of optimal communica-
tion networks for radio networks is the number of magnitudes of distances. Distances
have different magnitudes if they differ by more than a factor of 2.

Definition 2. The diversity g(V ) of a point set V in Euclidean space is defined by
g(V ) := |Q(V )|, where Q(V ) := {m | ∃u, v ∈ V : �log|u, v|� = m} denotes the levels
of different magnitudes of all distances.

Note that in the scenario of Figure 4 we observe almost maximum diversity of n (and
a high interference number). We first show the close connection between the interference
number and diversity for vertices on a line.

Theorem 6. The interference number of a line graph G = (V, E) with edges between
direct neighbors, i.e., V = {v1, . . . , vn} ⊆ R and E = {{vi , vi+1} | i ∈ [n − 1]}, is at
most 6 · g(V ).

Proof. At most six edges of a length in a distance in the range [2q , 2q+1) can exist with
an endpoint within distance 2q+1 of a given edge. These are the only edges of this length
that possibly can interfere with this edge. Hence, the overall number of interfering edges
is at most 6 · |Q(V )|.

Because of this relationship between interferences of radio networks and the diver-
sity of points sets, we take a closer look at the possible range of the diversity. It is upper
bounded by

(n
2

)
, because it is defined over all possible distances. A divide-and-conquer

argument, however, gives an upper bound of O(n log n). With a randomization technique
we will show that the diversity grows at most linear in the number of points. Such a worst
case is depicted in Figure 4.

On the other hand, the diversity is at least logarithmic in the number of nodes. Such
small diversity can be observed for equidistant points on a line or an m × m grid.
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Theorem 7. For the diversity g(V ) of n points V ⊆ Rd we observe the following:

1. g(V ) = 	((log n)/d),
2. g(V ) = O(n) for d = 1, i.e., V ⊆ R,
3. g(V ) = O(d(log d) n),
4. g(V ) ≤ 2+ log(maxu,v∈V |u, v|/minu,v∈V∧u �=v|u, v|).
5. For a point set V randomly chosen from [0, 1]d the diversity is at most O(log n)+

1
2 log d with probability 1− n−c, for any constant c > 0.

Proof. Let r0 := minu,v∈V,u �=v |u, v| denote the minimum distance of two different
points.

1. g(V ) = 	((log n)/d).
Note that all pairs of points u �= v have a minimum distance |u, v| ≥ r0.

For a point u we consider all points W which are at most 2r0 distant to u. Now
observe that all spheres with a center of W and radius r0/2 do not intersect (yet
may be tangent) and are included in the sphere with center u and radius 5

2r0 (This
results from distance 2r0 between center points and u plus r0/2 for the rest of
the spheres). Hence, the sum of volumes of all the spheres with radius r0/2 is at
most the volume of the larger sphere. Note that the volume of a d-dimensional
sphere with radius r is given by kdrd , where kd := πd/2/(d/2)!. This leads to
the following inequality:

|W | · kd

(r0

2

)d
≤ kd

(
5r0

2

)d

.

This yields

|W | ≤ 5d .

Now pick an arbitrary point of V , erase all points of V that are closer than
2r0 to this point, and reiterate this step until all points in the resulting set V ′ have
a minimum distance 2r0. The above observation implies |V ′| ≥ |V |/5d , since
every point has at most 5d other points in its 2r0 neighborhood.

Now, we iterate this process on the reduced point set V ′, with r ′0 =
minu,v∈V ′:u �=v|u, v|, until only one point is left. This process takes at least
�log5d |V |� = 	((log n)/d) iterations. In every iteration step we find at least
one new element of Q(V ), since the minimum distance after each reduction of
the point set is at least twice as large as before.

Therefore, the number of rounds of this process gives a lower bound on the
diversity of V .

2. For a set V ⊆ R of n elements we have g(V ) = O(n).
The main difficulty for the proof of this statement arises from side effects

due to the rounding in the definition of the diversity. We overcome this problem
by randomization, in particular we multiply each number of V = {v1, . . . , vn},
where v1 < v2 < · · · < vn , by the same factor k = 2R yielding v′i = kvi , where
R is a continuous uniform random variable over [0, 1]. Let VR = {v′1, . . . , v′n} be
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the resulting set of real numbers and define for all i ∈ [n]: Qi := Q({v′1, . . . , v′i }).
We will prove, for i ∈ {2, . . . , n}, that

E[|Qi\Qi−1|] ≤ 5. (1)

We concentrate on elements in the set Si defined by

Si := {m ∈ Z | ∃ j ∈ [i − 1] : m = �log(kvi − kvj )�},
because Si\Si−1 ⊇ Qi\Qi−1. We give a short proof that this inclusion is valid:

m ∈ Qi\Qi−1 ⇔ ∃ j ∈ [i − 1] : m = �log(kvi − kvj )�
∧ ∀� ∈ [i − 1],∀ j ∈ [�− 1] : m �= �log(kv� − kvj )�

⇒ ∃ j ∈ [i − 1] : m = �log(kvi − kvj )�
∧ ∀ j ∈ [�− 2] : m �= �log(kvi−1 − kvj )�

⇔ m ∈ Si\Si−1.

For fixed i ∈ [2..n] let x := vi − vi−1, yj := vi−1 − vj , and zj := vi − vj .
Analogously, we define x ′ := v′i − v′i−1 = kx , y′j := v′i−1 − v′j = kyj , and
z′j := v′i − v′j = kzj . In this notation we have

Si = {m ∈ Z | ∃ j ∈ [i − 1] : m = �log z′j�}.
If we observe yj ≤ 2yj+1 in an interval j ∈ [a..b − 1], we can conclude that
zj ≤ 2zj+1, since x + yj = zj . A further implication is that y′j ≤ 2y′j+1 and
z′j ≤ 2z′j+1. The consequence of yj ≤ 2yj+1 is that the rounded logarithms
�log y′j� ∈ Si−1 form a consecutive interval of integer values

{�log y′a�, �log y′a+1�, . . . , �log y′b�} = [�log y′a�..�log y′b�] ⊆ Si−1.

Yet, the same is true for Si :

{�log z′a�, �log z′a+1�, . . . , �log z′b�} = [�log z′a�..�log z′b�] ⊆ Si .

If x ≤ yb we have z′b = x ′ + y′b ≤ 2y′b. Thus, log z′b ≤ 1+ log y′b and therefore
the only contribution of the set {�log z′j� | j ∈ [a..b]} to Si\Si−1 is one element
at the most, namely �log z′b�.

Furthermore, the probability that this element occurs decreases proportionally
to 1/zb as we will see now. For this, we estimate the probability that �log z′b� �=
�log y′b�. An equivalent representation of this inequality is

�R + δ + log yb� �= �R + log yb�,
where

δ = log zb − log yb = − log
zb − x

zb
= − log

(
1− x

zb

)
.

Clearly, the probability for satisfying this inequality is given by max{δ, 1}, since R
is chosen uniformly from [0, 1]. Note that for r ∈ [0, 1

2 ] it holds that log(1−r) ≥
−2r . Substituting r = x/zb we can conclude δ ≤ 2x/zb if zb ≥ 2x .
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Putting it all together, we see that if zj ≤ 2x we have

log z′j ≤ 1+ log zj ≤ 2+ log x

and hence at most the elements q := �x�, q + 1, and q + 2 might be added to
Si\Si−1.

For all zj > 2x we partition [i−1] into intervals Ik = [ak ..bk] with ak ≤ bk <

ak+1 such that for all j ∈ Ik\{bk} we have yi ≤ 2yi+1 and ybk > 2yak+1 > 2ybk+1 .
The probability for �log z′bk

� ∈ Si\Si−1 is at most 2x/zb. Since 2x/zb1 ≤ 1, and
zbk+1 ≥ 2zbk , the expected number of such elements is bounded by

∑∞
k=1 2k−1 ≤

2. Since Qi\Qi−1 ⊆ Si\Si−1, this proves (1).
As a consequence of (1) it follows (note that Q1 = ∅) that

E[|Q(VR)|] = E

[
n∑

i=2

|Qi\Qi−1|
]
=

n∑
i=2

E[|Qi\Qi−1|] ≤ 5(n − 1).

Now we derandomize: If for the random variable R ∈ [0, 1] the expected value is
bounded by E[|Q(VR)|] ≤ 5(n−1), than there exists a concrete choice r ∈ [0, 1]
such that |Q(Vr )| ≤ 5(n − 1).

The relationship between Q(Vr ) and the diversity is the following. If � ∈
Q(Vr ), then either � ∈ Q(V ) or �− 1 ∈ Q(V ). Therefore |Q(V )| ≤ 2|Q(Vr )|,
which shows that

g(V ) = |Q(V )| ≤ 2Q(Vr ) ≤ 10(n − 1).

3. g(V ) = O(d log d · n).
For every point u let u1, . . . , ud ∈ R denote its coordinates inRd . We observe,

for any points u, v ∈ V , u �= v, that

|u − v|√
d
≤ max

i∈[d]
|ui − vi | ≤ |u − v|.

This implies the following:

�log |u − v|� − 1
2 log d ≤ max

i∈[d]
�log |ui − vi |� ≤ �log |u − v|�.

Let m be the number of different values for �log |ui − vi |�, then the number of
different values for �log|u − v|� is bounded by m( 1

2 log d + 1).
Note that for a fixed i the set {�log|ui −vi |� | u, v ∈ V } describe the diversity

levels of a one-dimensional point set and thus has at most 10(n − 1) elements.
Summing over all d dimensions gives m ≤ 10d(n − 1), bounding the diversity
of V by g(V ) ≤ 10 d(n − 1)( 1

2 log d + 1) = O(nd log d).
4. Note that min(Q) > −1+log minu,v∈V :u �=v |u, v| and max(Q) ≤ log maxu,v∈V |u, v|.

Therefore

g(V ) ≤ max(Q)−min(Q)+ 1

≤ 2+ log max
u,v∈V
|u, v| − log min

u,v∈V :u �=v
|u, v|

= 2+ log
maxu,v∈V |u, v|

minu,v∈V :u �=v|u, v| .
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5. The maximum distance between two points in [0, 1]d is maxu,v∈[0,1]d |u, v| ≤ √d.
The probability that two random coordinates ui , vi are closer than 1/nc+2 is at
most 1/nd . This probability that for a pair u, v ∈ V of all n/2 choices for
|ui , vi | ≤ 1/nc+2 is bounded by (1/nc+2)(n/2) ≤ 1/nc. Therefore for all u, v ∈
V we have |u, v| ≥ |ui , vi | ≥ 1/nc+2 with probability 1−n−c. From the previous
item it follows that in this case the diversity is bounded by 1+ log(nc+2

√
d) ≤

1+ (c + 2) log n + 1
2 log d.

There are many reasons why for real-world scenarios the diversity can always be
assumed to be bounded by O(log n). To achieve high diversity radio stations must be
positioned with high accuracy such that most radio stations are closer than any polynomial
fraction of the largest distance. In most other research on mobile radio networks a standard
assumption is that the fraction between the largest and smallest distance of radio stations
is bounded by a polynomial, which implies logarithmic diversity. A further reason may
be that there are not many orders of magnitude between the transmitting range of a radio
station and the physical size of the radio stations antenna.

3.2.2. Approximating Congestion. To approximate congestion-optimal path systems
for radio networks we use the Hierarchical Layer Graph (HL-graph) with bounded degree
introduced in [9]. Adopting ideas from clustering [7], [8] and generalizing an approach of
Adler and Scheideler [1] we present a graph consisting ofw layers L1, L2, . . . , Lw. The
union of all these graphs gives the HL-graph. The lowest layer L1 contains all vertices
V . The vertex set of a higher layer is a subset of the vertex set of a lower layer until in the
highest layer there is only one vertex, i.e., V = V (L1) ⊇ V (L2) ⊇ · · · ⊇ V (Lw) = {v0}.

The crucial property of these layers is that in each layer Li vertices obey a minimum
distance: ∀u, v ∈ V (Li ), |u, v| ≥ ri . Furthermore, all nodes in the next-lower layer
must be covered by this distance: ∀u ∈ V (Li ), ∃v ∈ V (Li+1), |u, v| ≤ ri+1. Our
construction uses parameters α ≥ β > 1, where for some r0 < minu,v∈V |u, v| we use
radii ri := β i ·r0 and we define in layer Li the edge set E(Li ) by E(Li ) := {(u, v) | u, v ∈
V (Li ) ∧ |u, v| ≤ α · ri }.

Note that if V (Li ) = V (L j ) for i < j , then all edges of Li are also in L j , i.e.,
E(Li ) ⊆ E(L j ). Hence, we omit the lower layer and consider only layers i1 < i2 <

· · · < iw, such that V (Lij ) ⊂ V (Lij ) and all k ∈ [i j−1 + 1..i j ]: V (Lk) = V (Lij ). The
only execption to this rule is the uppermost layer with |V (Liw )| = 1, where we choose
the minimum iw with |V (Liw )| = 1.

Using this subset of layers L ′j := Lij we extend the indices of the layers also to
negative values, i.e., i j ∈ Z. As a side effect, we avoid any dependency between the
parameter r0 and the minimum distance of two points.

It turns out that the number of layers grows linear with the the diversity of the point
set.

Lemma 2. The number of layers of the HL-graph of a point set of n nodes is bounded
by g(V )(2 + 1/logβ) + O(1). If the orders of magnitudes of all distances Q(V ) form
a consecutive interval, then the number of layers is bounded by g(V )/logβ + O(1).



Congestion, Dilation, and Energy in Radio Networks 357

Proof. We start with the case that Q(V ) is consecutive, i.e., Q(V ) = {q0, . . . , qmax},
where qmax > q0. Then there are no vertices u, v ∈ V with |u, v| < 2q0 . For all layers
Li with ri < 2q0 we have V (Li ) = V . Therefore, the first layer of the HL-graph is
i1 := �q0/logβ�.

For qmax = max{Q(V )} we observe that all vertices u, v ∈ V satisfy |u, v| <
2qmax+1. Hence, in the layer Li with ri ≥ 2qmax+1 there is exactly one vertex. The index
of this layer is iw = �(qmax + 1)/logβ�.

So, we get the following maximum number of layers:

w = iw − i1 + 1 ≤
⌈

qmax + 1

logβ

⌉
−

⌊
q0

logβ

⌋
+ 1

=
⌈

q0

logβ
+ g(V )

logβ

⌉
−

⌊
q0

logβ

⌋
+ 1

≤
⌈

g(V )

logβ

⌉
+ 2.

If Q(V ) is non-consecutive, there are m sets {q ′i , . . . , q ′i + δi } ⊆ {q0, . . . , qmax}
such that {q ′i , . . . , q ′i + δi } ∩ Q(V ) = ∅. Note that qmax − q0 + 1 −∑m

i=1 δi = g(V ).
For all i ∈ [m] there exists no u, v ∈ V such that 2q ′i ≤ |u, v| < 2q ′i+δ+1. Hence, no
points u, v ∈ V exist with distance βq ′i/logβ ≤ |u, v| < β(q

′
i+δi+1)/logβ , which implies

that layers L j with j ∈ {1+�q ′i/logβ�, . . . , �(q ′i + δ+1)/logβ�−1} are omitted in the
HL-graph. The number S of all omitted layers can be lower bounded as follows using
m ≤ g(V ):

S ≥
m∑

i=1

⌊
q ′i + δi + 1

logβ

⌋
−

⌈
q ′i

logβ

⌉
− 1

≥
⌈

m +∑m
i=1 δi

logβ

⌉
− 2m

≥
∑m

i=1 δi

logβ
− 2g(V ).

Subtracting S from the number of layers in the consecutive case with lowest level q0

and uppermost level qmax we obtain the following for the number of layers w by using
m ≤ g(V ):

w ≤
⌈

qmax − q0

logβ
+ 2

⌉
−

∑m
i=1 δi

logβ
+ 2g(V )

≤ qmax − q0

logβ
+ 3− qmax − q0 + g(V )− 1

logβ
+ 2g(V )

≤ 2g(V )+ g(V )

logβ
+ 3.

We will see that the c-spanner property has implications for minimizing congestion.



358 F. Meyer auf der Heide, C. Schindelhauer, K. Volbert, and M. Grünewald

Definition 3. A graph G = (V, E) is a c-spanner, if for all u, v ∈ V there exists a path
p from u to v with |p| ≤ c · |u, v|.

Theorem 8 [9]. If α > 2(β/(β − 1)) the HL-graph is a c-spanner for

c = β α(β − 1)+ 2β

α(β − 1)− 2β
.

Proof. Define a directed tree T on the vertex set V × [w] as follows. The leafs of T are
all pairs V × {1}. If u ∈ V (Li ), then (u, i) is a vertex of T . T consists of the following
edges: For i ≥ 1 if u ∈ V (Li ), then {(u, i − 1), (u, i)} ∈ E(T ). If u ∈ V (Li )\V (Li+1),
then choose arbitrary v ∈ V (Li+1) with {u, v} ∈ E(Li ) and add {(u, i), (v, i + 1)} to
the edge set of the tree T . Note that the tree has depth w and the root (v0, w).

Now for two vertices u, v ∈ V we define a clamp of height j , which is a path
connecting u and v. The clamp consists of two paths

P j
u := (u, p(u), p2(u), . . . , p j (u)) and P j

v := (v, p(v), p2(v), . . . , p j (v))

of length j − 1, where pi (w) denotes the ancestor of height i of a vertex w in the tree
T . These two paths are connected by the edge {p j (u), p j (v)}.

Lemma 3. If for vertices u, v the distance is bounded by |u, v| ≤ f j , where

fj = rj

(
α − 2

β − 1/β j

β − 1

)
,

then a clamp of height at most j is contained in the HL-graph.

Proof. We have

|u, v| ≤ f j = αrj − 2
j∑

i=0

ri .

Consider the paths (u, p(u), p2(u), . . . , p j (u)) and (v, p(v), p2(v), . . . , p j (v)). They
are contained in the HL-graph, since |pi (u), pi+1(u)|≤ri+1 and |pi (v), pi+1(v)|≤ri+1.
Further, the edge {p j (u), p j (v)} is in the HL-graph since |p j (u), p j (v)| ≤ |u, v| −
2

∑ j
i=0 ri ≤ αrj . Hence, a clamp of height j is contained in G.

Lemma 4. A clamp of height j has maximum length gj , where

gj = rj

(
α + 2

β − 1/β j

β − 1

)
.
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Proof. Recall that the length of the paths P j
u and P j

v is bounded by 2
∑ j

i=1 ri and the
edge {p j (u), p j (v)} has length of at most αrj . This gives

||C || ≤ αrj + 2
j∑

i=0

ri = gj .

For any pair of vertices u, v with f j−1 < |u, v| ≤ f j there is clamp of height j and
length gj . Hence, the stretch factor is bounded by c = gj/ f j−1:

c = gj

fj−1

= gj

fj
· f j

f j−1

= gj

fj
· β · α(β − 1)− 2β + 2β− j

α(β − 1)− 2β + 2β− j+1

≤ β · gj

f j

= β · α(β − 1)+ 2β − 2β− j

α(β − 1)− 2β + 2β− j

≤ β · α(β − 1)+ 2β

α(β − 1)− 2β
.

Lemma 5. For any finite point set V ⊂ Rd and every layer Li of an HL-graph with
parameters α ≥ β > 1 we have the following:

1. For any u ∈ Rd , the number of points v ∈ V (Li ) with |u − v| ≤ cri is at most
(2c + 1)d .

2. The degree of the subgraph Li is at most (2α + 1)d .
3. The interference number of Li is bounded by (2α + 1)2d .

Proof. Recall that kd := πd/2/(d/2)! where kdrd is the volume of a d-dimensional
sphere with radius r .

1. For all u, v ∈ V (Li ) we have |u, v| ≥ ri . Hence, all spheres with radii ri/2 and
center points u ∈ V (Li ) do not intersect. If |u, v| ≤ cri , then the sphere with
center u and radius ri/2 lies inside a sphere with center v and radius (c + 1

2 )ri .
Let m be the number of the smaller spheres inside this larger one. Then it follows
that

mkd

(ri

2

)d
≤ kd((c + 1

2 ))ri )
d %⇒ m ≤ (2c + 1)d .

2. This follows by combining the preceding with the fact that edge {u, v} ∈ E(Li )

if u, v ∈ V (Li ) and |u, v| ≤ αri .
3. Two edges each of length αri can only interfere if their endpoints have at most

distanceαri . For each layer the number of such points of the same layer is bounded
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by (2α + 1)d . Every one of these points is adjacent to at most (2α + 1)d edges
of Li . Hence, the number of interferences in Li is bounded by (2α + 1)2d .

Theorem 9. For a vertex set V with diversity g(V ) the degree of the HL-graph is
at most g(V )(2 + 1/logβ)(2α + 1)d + O(1). The interference number is at most
g(V )(2 + 1/logβ)(2α + 1)2d + O(1). If Q(V ) is consecutive, the degree is bounded
by g(V )((2α + 1)d/logβ) + O(1) and the interference number is at most g(V )
((2α + 1)2d/logβ)+ O(1).

Proof. This theorem combines Lemmas 4 and 5. For each point we observe that there
are at most (2α+ 1)d vertices in a layer Li with distance αri . Each of these nodes has at
most (2α+1)d edges of at most length αri . Therefore, a vertex may suffer under at most
(2α + 1)2d interferences per layer. Summing up over all layers this observation proves
the upper bound of the interference number of the HL-graph.

A typical feature of radio communication is that transmitting information blocks a
region for other transmissions. We formalize this observation and define the capacity of
a region following a similar approach presented in [11]. Let A(R) denote the area of a
geometric region R.

Definition 4. Given a network G = (V, E) and a load � : E → R
+
0 we define the

interference function of an edge e ∈ E and a point x ∈ Rd as

f�(e, x) :=
{
�(e), if x ∈ D(e),
0, elsewhere.

The communication load κG,� of a point x and a bounded geometric region R ⊆ R+ for
a given network G and load � is defined as follows:

κG,�(x) :=
∑

e∈E(G)

f�(e, x) and κG,�(R) :=
∫

R
κG,�(x) dx .

An equivalent description of the communication load can be done by partitioning
the region R in elementary regions, where the same subset of edges interfere. For such
an elementary region R′ we observe

κG,�(R
′) =

∑
e∈E(G):R′⊆D(e)

�(e) · A(R′),

where A(R′) denotes the volume of R′ (or area for the plane).
For a non-elementary bounded region R we consider a partitioning into elementary

regions R1, . . . , Rm and get κG,�(R) :=∑m
i=1 κG,�(Ri ).

The following lemma will help to understand the relationship between the commu-
nication load of an elementary area and the congestion.
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Lemma 6. For a graph G = (V, E) with V ⊂ Rd , load �, and a point x ∈ Rd it holds
for d ∈ {2, 3} that

κG,�(x) ≤ cd · max
e∈E(G)

∑
e′∈Int(e)

�(e′),

where c2 = 6 and c3 = 20.

Proof. For the point x we partition the space into cd disjoint subspaces A1, . . . , Acd

such that for all u, v ∈ Ai , |u, x | ≤ |v, x |, then |u, v| ≤ |v, x |. Then the angle between
xu and xv is at most π/3. Clearly, for two dimensions the optimal choice is cd = 6,
which resembles six sectors centered at x . For three dimensions, one can show that
c3 = 20 cones starting at x suffice. For this, one has to cover the surface of a sphere
with disks whose diameter equals the radius of the sphere. In [12] it is shown that that
20 such disks cover a sphere.

Now choose for each subspace Ai a vertex ui ∈ Ai that minimizes the distance
|x, ui | (if the subspace is not empty). For every edge {v,w} with x ∈ D({v,w}) we
show that there exists a vertex ui with ui ∈ D({v,w}).

Assume without loss of generality that x ∈ D|v,w|(v) and let ui be in the subspace
where v lies. Since |ui , x | ≤ |x, v| we have |ui , v| ≤ |x, v| ≤ |v,w|. Therefore we have

∑
e∈E(G):x∈D(e)

�(e) ≤
cd∑

i=1

∑
e∈E(G):ui∈D(e)

�(e)

≤ cd · max
u∈V (G)

∑
e∈E(G):ui∈D(e)

�(e)

≤ cd · max
e∈E(G)

∑
e′∈Int(e)

�(e).

This definition implies the following relationship between capacity, area, and
congestion.

Lemma 7. Let R be a bounded region of volume A(R) and let C be the congestion of a
path systemP . Then, the communication load of R is bounded by κ(R) ≤ cd · A(R) ·C ,
where c2 = 6 and c3 = 20.

Proof.

κG,�(R) =
∫

R
κG,�(z) dz

=
∫

R

∑
e∈E(G)

∑
e′:z∈D(e)

�(e′) dz

≤
∫

R
cd · C dz

= cd · C · A(R).
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Every edge e with load �(e) has a certain impact on the capacity of the area covered
by the radio network. The following lemma claims that an edge e with load �(e) induces
at least communication load kd�(e)|e|d into a region R with D(e) ⊆ R.

Lemma 8. Consider an edge e in a region R, i.e., D(e) ⊆ R. Let K be the communi-
cation load of R without any load on e and let K ′ be the communication load of R with
load �(e) on e without any load change on the other edges. Then we observe that

K ′ − K ≥ kd�(e)|e|d .

Proof. The proof follows from the definition of f�(e, x) and the fact that the volume
of D(e) for e = {u, v} is at least V (D|u,v|(u)) = kdrd .

Lemma 9. Let C∗ be the congestion of the congestion-optimal path system P∗ for a
vertex set V . Then every c-spanner N can host a path system P ′ such that the induced
load �(e) in N is bounded by �(e) ≤ c′g(V ) C∗ for a positive constant c′.

Proof. Given a path p of the path system P∗, we replace every edge e = {u, v} that
does not exist in the c-spanner N with a path p from u to v in N such that the new route
lies completely inside a disk Dc(e) of radius (c − 1

2 )|u, v| and center 1
2 (u + v).

For the path systemP∗ there may have been interferences between e and other edges.
For simplicity we underestimate the area where e can interfere with other communication
by the disk D1(e) with center 1

2 (u + v) and radius 1
2 |u, v| (see Figure 5).

We want to describe the impact of rerouting all edges in E(N ∗) to a specific edge
e0 ∈ E(N ) in the c-spanner N . If this edge e0 = {u0, v0} ∈ E(N ) transmits the traffic
of a detour for an edge e = {u, v} ∈ E(N ∗) of length at most c|e|, then the distance

e
u v

p

Fig. 5. The edge e interferes with other edges (at least) within the central disk. Its information is rerouted on
p, lying completely within the outer disk with radius (c − 1

2 )|e|.
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between u as well as v and any point of the tour is at most c|e|. Hence, also for the center
z0 := 1

2 (u0 + v0) of e0 and z := 1
2 (u + v) we observe |z0, z| ≤ c|e|.

Now consider the edge set Ei,e0 ⊆ E(N ∗) of edges e with length |e| ∈ [2i , 2i+1)

for i ∈ Z which reroute their traffic to e0. Their center points are located inside a sphere
with radius c2i+1 and center z0. The region where e interferes has been defined by D(e).
D(e) has volume (resp. area) of at least kd2di and lies completely inside the sphere D
with radius 2i+1(c+ 1) and center z0. The volume (resp. area) of D is kd2d(i+1)(c+ 1)d .

Lemma 8 shows that every edge e reduces the capacity in D by at least kd�(e)2di .
Because of Lemma 7, the overall capacity of C is at most

κG,�(D) ≤ cdkd2d(i+1)(c + 1)dC∗.

This implies the following:

∑
e∈Ei,e0

�(e)kd2di ≤ cdkd2d(i+1)(c + 1)dC∗

%⇒
∑

e∈Ei,e0

�(e) ≤ cd2d(c + 1)dC∗.

There are at most g(V ) non-empty sets Ei,e0 . This implies for the sum of loads �(e) of
the set Ee0 :=⋃

i Ei,e0 ⊆ E(N ∗) that

∑
e∈Ee0

�(e) ≤ cd2d(c + 1)d g(V )C∗.

Theorem 10. Let P∗ be the congestion-optimal path system for the vertex set V . Then
the HL-graph contains a path system P with congestion O(g(V )2CP∗(V )).

Proof. From Theorem 8 we know that the HL-graph is a c-spanner with

c = β α(β − 1)+ 2β

α(β − 1)− 2β
if α > 2β

β

β − 1
.

Therefore we can use Lemma 9 to show that there exists a routing such that the load
of an edge e is bounded by �(e) ≤ 2d(c + 1)d g(V )CP∗(V ). Theorem 9 shows that
the interference number of the network is bounded by O(g(V )). So, this implies that
CP(V ) = O(g(V )2CP∗(V )).

In practical scenarios the diversity can be seen as a logarithmic term (e.g., because the
ratio between the longest and shortest distance is polynomial in the number of vertices,
or the points are chosen according to some uniform probability distribution). In these
cases the HL-graph provides an O((log n)2)-approximation for congestion.
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Fig. 6. The grid Gn .

4. Trade-Offs

We have seen efficient ways for selecting paths to optimize energy and approximate
congestion. One might wonder whether an algorithm can compute a path system for a
radio network optimizing congestion, dilation, and energy at the same time. It turns out
that this is not the case.

4.1. Congestion versus Dilation

For a vertex set Gn given by a
√

n ×√n grid with unit grid distance, the best choice to
minimize congestion is to connect grid points only to their neighbors given the demand
f (u, v) = W/n2 for all pairs of vertices (Figure 6). Then the congestion is O(W/

√
n)

and the dilation is given by O(
√

n). In [11] it is shown that such a congestion is best
possible in a radio network. A fast realization is given by a tree featuring a hop-distance
of O(log n) and congestion O(W log n). (Such a tree-construction for the cost-distance
problem is presented in [24].) In both cases we observe CP(Gn)DP(Gn) ≥ 	(W ). This
also is true for any other path selection.

In three-dimensional space we place the vertices on a 3
√

n × 3
√

n × 3
√

n grid and
experience minimal congestion of O(W n−2/3) with dilation O(n1/3). It shows that in
three dimensions this trade-off increases.

Theorem 11. Given the grid vertex set Gn in d-dimensional space (d ∈ {2, 3}) with
traffic W , then for every path systemP the following trade-off between dilation DP(Gn)

and congestion CP(Gn) exists:

CP(Gn) · (DP(Gn))
d−1 ≥ 	(W ).

Proof. For n = (3p)d we partition the two-dimensional grid into three p×3p rectangle-
shaped vertex sets V1, V2, V3, such that V1 contains all left vertices, V3 all right vertices,
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and V2 the vertices in the middle. Similarly, we partition the thee-dimensional grid into
three p× 3p× 3p cubicle-shaped vertex sets V1, V2, V3.

In both cases G denotes the complete graph with vertex set Gn and P denotes a
path system for the demand f . We concentrate on one-ninth of the demand starting at V1

heading for vertices in V3. Let D ≤ 3p be the dilation of the network and let pi, j denote
the route from vertex vi to vertex vj . Let �(pi, j ) = f (ui , uj ) denote the information flow
on path pi, j .

Consider two vertices vi ∈ V1 and vj ∈ V3. Then the path pi, j has at most DP(G)
edges. The induced communication load κG,�(pi, j ) of the path pi, j is at least κG,�(pi, j ) ≥
kd�(pi, j )

∑
e∈pi, j
|e|d = kd(W/n2)

∑
e∈pi, j
|e|d . This term is minimized if the path uses

the maximum possible number DP(G) of edges and all edges have equal length of |e| =
|ui , vj |/DP(G). Since |ui , vj | ≥ 1

3
d
√

n, this implies κG,�(pi, j ) ≥ kd W/3dnDP(G)d−1.
All points with non-zero communication load reside in a square S with edge length

(2
√

d+1) d
√

n. (This size is caused by the edge connecting the nodes on the diagonal of the
grid.) Lemma 7 states that the communication load of S with area A(S) = (2√d + 1)dn
is bounded by

κ(G, �)(S) ≤ cd · CP(G)A(S) = cd · CP(G)(2
√

d + 1)dn.

The sum of the communication load induced by all paths pi, f cannot extend the
communication load of S:

∑
vi∈V1

∑
vj∈V3

κG,�(pi, j ) ≤ κG,�(S).

Combining the inequalities we get

n2

9

kd W

3dnDP(G)d−1
≤

∑
vi∈V1

∑
vj∈V3

κG,�(pi, j ) ≤ κG,�(S) ≤ cd · CP(G)(2
√

d + 1)dn.

This states the claim, since

cd · CP(G)(DP(G))d−1 ≥ kd W

9cd(6
√

d + 3)d
.

4.2. Dilation versus Energy

The simplest location of sites is the line vertex set Ln as investigated in [15], see
Figure 7. Here all vertices Ln = {v1, . . . , vn} are placed on a line with equal dis-
tances |vi , vi+1| = �/(n − 1). Only the leftmost and the rightmost nodes want to ex-
change messages, i.e., f (v1, vn) = W and f (v,w) = 0 for all other pairs (v,w). The
energy-optimal network for unit and flow energy is the path (v1, v2, . . . , vn), given the
unit energy U-EnergyP(Ln) = (n − 1)(�2/(n − 1)2) = �2/(n − 1), the flow energy
F-EnergyP(Ln) = �2W/(n − 1), and the dilation n.
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Fig. 7. The line Ln .

The fastest network realizes only the edge {v1, vn} with hop-distance 1 and unit
energy �2 (and flow energy W�2). There are path systems that can give a compromise
between these extremes. However, it turns out that the product of dilation and energy
cannot be decreased:

Theorem 12. Given the vertex set Ln with diameter � then for every path system P
the following trade-offs between dilation D and unit energy U-Energy (resp. flow energy
F-Energy) exist:

DP(Ln) · U-EnergyP(Ln) ≥ 	(�2),

DP(Ln) · F-EnergyP(Ln) ≥ 	(�2W ).

Proof. Let m be the length (i.e., number of edges) of the longest path of cal P (without
the loss of generality we assume that there are only edges with non-zero information
flow �(e) > 0). For the unit energy model we can assume that there is only a path p from
v1 to vn (because introducing more edges needs additional energy without decreasing
the dilation). We have to minimize U-EnergyP(p) := ∑m

i=1(Li )
2 defined by the

edge lengths L1, . . . , Lm , where
∑m

i=1 Li = �. Clearly, the energy sum is minimal for
L1 = L2 = · · · = Lm = �/m giving U-EnergyP(p) · DP(p) ≥ �2 .

The bound for the flow energy follows analogously.

4.3. The Incompatibility of Congestion and Energy

We will show that for some vertex sets congestion and energy are incompatible. This
is the worst occurrence of a trade-off situation since there is no possible compromise
between energy and congestion.

The vertex set Uα,n for α ∈ [0, 1
2 ] consists of two horizontal parallel line graphs Lnα .

Neighbored (and opposing) vertices have distance �/nα . There is only demand W/nα

between the vertical pairs of opposing vertices of the line graphs. The rest of the n−n−α

vertices are equidistantly placed between the vertices of each line graph and the leftmost
vertical pair of vertices (see Figure 8).

Fig. 8. Vertex set Uα .



Congestion, Dilation, and Energy in Radio Networks 367

The minimum spanning tree consists of n vertices where all edges have length
�(�/n). This results in a total unit energy of

U-EnergyMST(Uα,n) = O(�2n−1)

and congestion

CMST(Uα,n) = O(W ).

The flow energy of the (same) minimum network is given by

F-EnergyMST(Uα,n) = O(W�2n−1).

The congestion optimal path system P ′ connects only vertices with non-zero de-
mand. Its congestion is

CP ′(Uα,n) = O(W n−α)

and its unit energy is

U-EnergyP ′(Uα,n) = O(�2n−α).

The flow energy is given by

F-EnergyP ′(Uα,n) = O(W n−α�2).

Lemma 10. Forα ∈ [0, 1
2 ) and the vertex set Uα,n with diameter�, let x ∈ {0, . . . , nα}

be the number of edges of length at least�n−α of a path system for the radio network and
let r ∈ [0,W ] be the information flow on these edges. Then we have for the congestion
C , unit energy and flow energy:

U-EnergyP(Uα,n) ≥ max

{
�2

4n
,

x�2

n2α

}
, (2)

CP(Uα,n) ≥ W

x + 1
, (3)

F-EnergyP(Uα,n) ≥ max

{
W
�2

4n
, r
�2

n2α

}
, (4)

CP(Uα,n) ≥ max
{ r

12nα
,W − r

}
. (5)

Proof. The energy consumption of the minimum unit energy network is given by the
U-shaped path. The minimum hop-distance between, for half of the communication
partners, is at least n/2. Hence, the minimum energy is at least �2/4n. For x , edges of
length δ/nα exist, then the unit energy cost of theses edges alone is x�2/n2α .
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The lower bound for the flow energy follows analogously.
For simplicity we call an edge with minimum length �n−α a long edge. Note that

every long edge {u, v} that connects two points on the same horizontal line or one of
the leftmost vertical pair and a horizontal line does not reduce the congestion of any
point that lies between u and v according to the minimum unit energy network. So, let
r denote the number of edges connecting nodes of the lower row with the upper row.
Using these r edges the minimum cut of the path system between the upper row and the
lower row is r + 1. Hence, the minimum load on every edge of this cut is W/(r + 1). If
we optimistically assume that these edges do not interfere we obtain the lower bound.

Now, let r denote the number of messages that are delivered on long edges connect-
ing the lower with the upper row. Now consider the rectangular region R between the
rows. The communication load of each of these long edges e induced into this region
R of area A(R) = �2/nα is at least (�2/2n2α)�(e). Therefore the communication
load induced by all these edges is at least r(�2/2n2α) and at most c2CP(Uα,n)A(R) =
6(�2/nα)CP(Uα,n). This implies

CP(Uα,n) ≥ r

12nα
.

The residual W − r packets need to be routed between the shorter edges of the leftmost
vertices. Even without counting radio interferences at least congestion Wr will occur.

Theorem 13. There exists a vertex set V with a path system minimizing congestion
to C∗, and another path system optimizing unit energy by U-Energy∗ and minimal flow
energy by F-Energy∗ such that we have for any path system P on this vertex set V ,

CP(V ) ≥ 	(n1/3C∗) or

U-EnergyP(V ) ≥ 	(n1/3U-Energy∗),
CP(V ) ≥ 	(n1/3C∗) or

F-EnergyP(V ) ≥ 	(n1/3F-Energy∗).

Proof. The claim follows directly by Lemma 10 using the graph V = U1/3,n .

Hence, there is no hope that routing in wireless networks can optimize more than
one parameter at a time. The wireless network designer has to decide in favor of small
congestion or low energy consumption.

5. Open Problems and Further Work

An interesting topic that remains open for further research is mobility. In this work we
investigated static point-to-point communication for a given static set of radio stations
in two- and three-dimensional space. We concentrated on the measures congestion,
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dilation, and energy. Besides this work we have started to consider scenarios in which
nodes are allowed to move. In [23] we investigate distributed algorithms for mobile ad
hoc networks for moving radio stations with adjustable transmission power in a worst-
case scenario. We consider two models to find a reasonable restriction on the worst-case
mobility. In the pedestrian model we assume a maximum speed vmax of the radio stations,
while in the vehicular model we assume a maximum acceleration amax of the points. For
both models we present distributed algorithms based on a grid clustering technique
and a high-dimensional representation of the dynamical start situation which construct
a mobile hierarchical layer graph with low congestion, low interference number, low
energy-consumption, and low degree. Further, we present solutions for dynamic position
information management under both models.

Besides the standard model of omni-directional communication we are investigat-
ing a sector model where the sender and receiver can focus signals (e.g., infrared). Such
sector communication is a special case of so-called space multiplexing techniques to
increase the network capacity (e.g., by using directional antennas [16]). The techniques
of the results shown here can be easily transferred to such a model [9]. Besides computer
simulations [27], [22], we are currently setting up a testbed consisting of a group of mo-
bile robots that can communicate in sectors. We have developed an infrared-light-based
hardware module that allows us to submit data in a eight directions with separate trans-
mission powers [10]. It can be used as an extension module for the mobile mini-robot
Khepera [19], [14]. Thus, realistic scenarios for ad hoc networks can be reproduced by
performing experiments with these mini-robots. This enables us to validate our com-
munication strategies under practical conditions. Such a network is technically more
complicated, but our goal is to show that it is possible to set up a geometric spanner
graph as a communication network. Notably, we show that such geometric spanners
always provide good solutions for congestion minimization in radio networks.
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