
DOI: 10.1007/s00224-003-1071-0

Theory Comput. Systems 37, 295–318 (2004) Theory of
Computing

Systems
© 2004 Springer-Verlag

New York Inc.

A Note on N-Body Computations with Cutoffs∗

Marc Snir

Computer Science Department, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA
snir@cs.uiuc.edu

Abstract. We provide a theoretical analysis of the communication requirements of
parallel algorithms for molecular dynamic simulations. We describe two commonly
used algorithms, space decomposition and force decomposition, and analyze their
communication requirements; each is better in a distinct computation regime. We
next introduce a new hybrid algorithm that further reduces communication. We show
that the new algorithm is optimal, by providing a matching lower bound.

1. Introduction

1.1. Outline of Paper

We consider in this paper parallel algorithms for molecular dynamic simulations that
use finite difference methods. Such simulations compute the movement of interacting
atoms at discrete time intervals by repeatedly computing the forces acting on atoms
and updating accordingly the position and velocity coordinates of these atoms. These
simulations are very important in biomolecular research, as they allow us to understand
the behavior of biological systems at the mesoscale level. Molecular simulations are
expected to become increasingly important in drug design and in various applications
of material sciences. However, these simulations are very time consuming and may
require massive parallelism to be performed in acceptable time [2]. Several parallel
implementations of the finite difference method have been analyzed in the past in some
detail [11], [13]. The analysis has shown that communication requirements may be a
significant impediment to the scalability of these algorithms.

∗ The work described in this paper was performed while the author was at IBM Research.

296 M. Snir

This paper presents a communication optimal algorithm for molecular dynamic
simulations that improves on previous algorithms. We focus on the computation of
intermolecular forces, which usually is the most time-consuming part of a molecular
dynamic simulation. The next section summarizes the usual setting for such simulations
and motivates the definition in Section 1.3 of the generic problem that we study in this
paper, which we call “N-body computation with cutoff.” We proceed in Section 2 with
an introduction of the computation model used in this paper. We present and analyze in
Section 3 the two main algorithms that have been used in the past: space decomposition
and force decomposition. We introduce in Section 4 a new algorithm that further reduces
communication. In Section 5 we show that this new algorithm is optimal, by providing
a matching lower bound on communication.

1.2. Molecular Dynamics

We consider in this paper N-body computations, as used in molecular dynamics. A
molecular system of n atoms is simulated by repeatedly computing the forces acting
between atoms and updating the atom coordinates accordingly.

The force applied on an atom is the vector sum of the pairwise interactions of that
atom with all other atoms in the system. Those pairwise interactions can take several
forms, as described in [1]. These include intramolecular forces that occur between atoms
that are close-by in the same molecule and intermolecular forces that occur between any
pair of atoms.

There are two types of intermolecular forces: Lennard–Jones forces and Coulomb
forces. The magnitude of the Lennard–Jones force between two atoms a and b is given
by a term of the form

ULJ = Aab

r12
ab

− Bab

r6
ab

,

where rab is the distance between the two atoms and Aab and Bab are constants that
depend on the atom types; Aab = Aba and Bab = Bba . The magnitude of the Coulomb
force is computed by a term of the form

UC = kqaqb

rab
,

where qa and qb are the atom charges and k is Coulomb’s constant. The Lennard–Jones
forces decay rapidly with distance so that, usually, a cutoff distance is used, and forces
are computed only for atoms that are within this cutoff. Coulomb forces, on the other
hand, decay slowly, so that one needs to account for all pairwise interactions. However,
it is common to simulate a system that consists of a periodic lattice (i.e., a rectangular
cell that is replicated infinitely in all three dimensions). In such a case, one can use the
Ewald method [7], [1] where the computation of the Coulomb forces is divided into two
fast converging sums: a real-space part, where interactions are computed directly only
for atoms within a cutoff distance, and a k-space part, where long-range interactions
are computed in a transform space. By suitably balancing the two computations, one
can reduce the asymptotic complexity to O(n1.5). The use of a periodic system not only
simplifies the computation of Coulomb forces; it also leads to a more realistic simulated

A Note on N-Body Computations with Cutoffs 297

system, as it avoids the “nonphysical” water–vacuum layer one has at the boundary of
the simulated cell in an aperiodic system.

The asymptotic complexity of the Coulomb force computation can be further re-
duced to O(n) by using a fast multipole algorithm [9], [8]. However, it is not clear that
fast multipole algorithms are faster, in practice, for system sizes and machine sizes of
interest [4].

1.3. General Problem Formulation

We focus in this paper on the more time-consuming part of molecular dynamic com-
putations, namely the computation of intermolecular forces between all pairs of atoms
within a cutoff distance. This includes the computation of Lennard–Jones forces and the
real-space part of the Coulomb forces. We ignore the computation of the intramolecular
forces and the k-space part of the Ewald computation.

We assume that the simulation uses a cubic cell D of dimensions d×d×d, replicated
infinitely in all three dimensions. The results can be easily extended to rectangular cells of
bounded aspect ratio, or to an aperiodic system. This cell contains a setA = {a1, . . . , an}
of n atoms. We denote by x(a) = (x1(a), x2(a), x3(a)) the location of atom a. The atom
location varies with time. We omit here and below the implicit time argument t from our
notation.

We use

D(x, y) =
(

3∑
i=1

(xi − yi)
2

)1/2

for the Euclidian distance in R3. We define the cyclic distance between two points x and
y to be

D̃d(x, y) =
(

3∑
i=1

((xi − yi) mod d)2
)1/2

and define

D̃d(a, b) = D̃d(x(a), x(y)).

Let neara(b) be the copy of atom b that is nearest to atom a. Then D̃d(a, b) =
D(a, neara(b)); D̃d(a, b) is the shortest Euclidian distance between a copy of atom
a and a copy of atom b.

A cutoff distance c is used. We assume without loss of generality that c < d/2. This
implies that, for any two atoms a and b, there is at most one copy of b that is within the
cutoff distance from a.

This paper analyzes the following generic problem:

N-body Problem with Cutoff. Given n atoms a1, . . . , an in a cubic cell D of dimen-
sion d , and a cutoff c < d/2, the algorithm maintains for each atom a a small tuple of
fixed parameters p(a) and a small tuple of variable coordinates x(a), x′(a), These

298 M. Snir

include atom position x(a). The algorithm performs the following:

Force computation: for each pair of atoms (a, b) such that D̃d(a, b) < c, compute the
force

fba = f(p(b),p(a), x(neara(b))− x(a)).

Force reduction: for each atom a compute the force

fa =
∑

D̃d (b,a)<c

fba .

Atom update: For each atom a apply an update to the atom coordinates

x(a), x′(a), . . . = U(x(a), x′(a), . . . , fa).

We make the following assumptions:

• The functions f() and U() can be computed in (low) constant time.
• Newton’s third law: f(p,q, x) = −f(q,p,−x). The force that atom a exercises

on atom b has the same magnitude and a reverse direction than the force that atom
b exercises on atom a.

An important feature of molecular dynamic simulations (as distinct from gravita-
tional simulations) is that density is roughly constant. To simplify discussion, we make
the following assumption:

Assumption 1 (Constant Density Assumption). Let ρ = n/d3 be the average density
of the system. Then there exist constants δ and ε, such that any cube or ball of volume
V ≥ δ contains at least ρ(1− ε)V and at most ρ(1+ ε)V atoms.

We assume that c3 � δ, so that the system is homogeneous at the scale of the cutoff
distance. With this assumption, then the number of interatomic forces acting on one atom
is at most

(1+ ε) 4
3πc3ρ = (1+ ε) 4

3π(c/d)
3n

and at least

(1− ε) 4
3πc3ρ = (1− ε) 4

3π(c/d)
3n. (1)

1.4. Typical Parameters

We shall analyze the complexity of the generic problem as a function of the following
parameters:

• n, the number of atoms;
• c/d , the relative cutoff distance; and
• p, the number of processors.

Although the analysis is valid for any combination of values, it is worthwhile keeping
in mind typical values for these parameters.

A typical molecular dynamic simulation may involve between n = 32, 000 and n =
200, 000 atoms [4]; as computers become more powerful, larger systems are simulated.

A Note on N-Body Computations with Cutoffs 299

Cell size may vary between d = 70 Å for small systems and d = 120 Å for large
systems. Cutoff distances in the range 7 Å≤ c ≤ 14 Å are typical, so that 1

15 ≤ c/d ≤ 1
5 .

Molecular dynamic simulations are routinely done on parallel systems with tens to
hundreds of processors. The Blue Gene machine is expected to perform such simulations
on up to 32,000 processors [2].

2. Programming Model and General Results

2.1. Programming Model

We are interested in parallel algorithms that solve the N-body computation with cutoff
using p processors, with minimal computation and communication. We analyze the
problem using the postal model [3]. In this model processors communicate via point-
to-point messages. Those communications can be implemented by send and receive
operations, or put/get operations, etc. The communication of a message of size k takes
time �+ τk; both sending and receiving processor are simultaneously busy for this time
period; a processor can be involved in one communication at most at a time. Our upper
bound results are expressed in this model. The lower bounds are on the communication
volume, i.e., assume � = 0.

2.2. Generic Parallel Algorithm for the N-Body Problem with Cutoff

A parallel implementation of the N-body generic problem on p processors will allocate
force computations and atom updates to the processors. Communications may be required
to broadcast updated atom locations and to collect and sum forces computed at distinct
nodes.

In the general formulation we use, a force may be redundantly computed at several
nodes and the same atom coordinates may be redundantly updated at several nodes.
While such a redundancy will increase computation, it could conceivably lead to reduced
communication. Such a general algorithm is described by the following mappings:

P(a) is the set of processors that update the coordinates of atom a. If the coordinates
of atom a are updated at a unique processor, then we denote this processor by
p(a).

P(a, b) is the set of processors that compute the force between atom a and atom b;
P(a, b) = P(b, a).

B(i, a) is the set of processors to which processor i broadcasts the location of atom
a. If a is held at a unique processor, then we omit the first argument i . B(i, a) = ∅
if i /∈ P(a), i ∈ B(i, a), and P(a, b) ⊆⋃

i B(i, a).
R(i, a) is the set of processors that contribute to the sum-reduction that yields the

value of fa at node i ∈ P(a). If a is held at a unique processor, then we omit the
first argument i . R(i, a) = ∅ if i /∈ P(a); if i ∈ P(a) and D̃d(a, b) < c, then
P(a, b) ∩ R(i, a) �= ∅.

In addition, we denote by A(i) = {a : i ∈ P(a)} the set of atoms that are updated by
processor i , and by F(i) = {(a, b) : i ∈ P(a, b)} the set of forces computed by processor
i . F =⋃

i Fi is the set of forces computed by the algorithm; (a, b) ∈ F iff D̃(a, b) < c.

300 M. Snir

An algorithm for the solution of the N-body problem with cutoff consists of the
following four phases:

Broadcast: For each atom a and each processor i ∈ P(a), broadcast the location
x(a) of atom a from processor i to each processor in the set B(i, a).

Compute: For each pair (a, b) ∈ F , compute the force fab at each processor
i ∈ P(a, b).

Reduce: For each atom a and each processor i ∈ P(a), sum-reduce all forces fba

computed at nodes in R(i, a) and collect the sum at processor i .
Update: For each atom a and each processor i ∈ P(a), update the coordinates of

a at i .

One can see that if the computation of the functions f() and U() are assumed to
be “black-box” operations, and locations and forces are handled as atomic values, then
this is the most general form of a parallel algorithm for the generic problem, with one
qualification: We assume here that the set of processors that holds the coordinates of
atom a at the end of the iteration is the same set that held the coordinates of a at the start
of the iteration. One can further generalize by dropping this assumption. We suspect, but
have no proof, that this last generalization cannot lead to further improvements.

An optimal distribution of atom updates and force computations will depend on the
set of interacting atom pairs. As this set changes in time, the distribution has to be updated.
However, the locations of the atoms change relatively slowly in molecular simulations.
Thus, we assume that the distributions P(a) and P(a, b) and the communication patterns
B(i, a) and R(i, a) may depend on atom locations, while ignoring the overhead for
computing these distributions and remapping atoms.

3. Algorithms

Plimpton presents in [11] three parallel algorithms for molecular dynamics:

Atom Decomposition. Each processor is allocated n/p atoms. The processor com-
putes the forces acting on these atoms and updates their coordinates.

Space Decomposition. Each processor is allocated a subvolume of the simulation cell.
The processor handles the atoms in this subvolume.

Force Decomposition. The computed forces are evenly partitioned among processors.

All these algorithms perform the same computation; they are distinct in the distribu-
tion of computations to processors and in the communication pattern. We analyze below
the last two of these algorithms and present next a new algorithm that combines the best
features of these two algorithms.

A Note on N-Body Computations with Cutoffs 301

3.1. Space Decomposition

We assume that p is perfect cube, to simplify notation. We denote each processor by
a triplet (i, j, k), 0 ≤ i, j, k < p1/3. The simulation cell D is decomposed into p =
p1/3 × p1/3 × p1/3 cubic subcells C(i, j, k), each of dimension d̃ = d/p1/3. The atoms
in subcell C(i, j, k) are allocated to processor (i, j, k). This processor computes all
forces acting on atoms in its subcell and updates the atom coordinates. We have

p(a) = (�x1(a)p
1/3/d�, �x2(a)p

1/3/d�, �x3(a)p
1/3/d�),

P(a, b) = {p(a), p(b)}.

Note that, in this formulation, each force is computed twice and no advantage is taken
of symmetry.

We assume that d3/p > δ, so that each subcell contains at most (1+ ε)n/p atoms.
The algorithm distributes computation evenly: each processor computes at most (1 +
ε)2 4

3π(c/d)
3n2/p forces.

We assume that the processors (= subcells) are logically organized in a cyclical three-
dimensional grid. (This is a virtual grid—each processor can still directly communicate
with any other.) The reduction phase of the algorithm requires no communication. Let
r = �c/d̃� = �(c/d)p1/3�. In the broadcast phase of the algorithm processor (i, j, k)
communicate the positions of its atoms to all processors (i + u, j + v, k + w), where
−r ≤ u, v, w ≤ r , i.e., the broadcast covers a (cyclic) cube of dimension 2r+1, centered
at (i, j, k).

If D̃d(a, b) < c, then |(xi (a) − xi (b)) mod d| < c, i = 1, 2, 3, so that |(pi (a) −
pi (b)) mod p1/3| = |�xi (a)/d̃� − �xi (b)/d̃� mod p1/3| ≤ �c/d̃� = r . Thus, the broad-
cast phase covers all needed communications. The broadcast pattern is illustrated in
Figure 1, for r = 2; for simplicity, we only illustrate a two-dimensional slice.

The broadcast can be implemented by a sequence of 6r circular shifts steps, where at
each step data is shifted by +1 or−1 in one dimension. After the first 2r steps of positive

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

c d

Fig. 1. Two-dimensional view of the communication pattern in space decomposition. Shaded cells exchange
coordinates with the central cell.

302 M. Snir

Fig. 2. First 4r steps of broadcast for the space decomposition algorithm.

and negative shifts in the first dimension, node (i, j, k) contains the coordinates of atoms
for cells in the segment (i + u, j, k),−r ≤ u ≤ r ; after the next 2r steps of positive and
negative shifts in the second dimension, node (i, j, k) contains the coordinates of atoms
for cells in the square (i + u, j + v, k),−r ≤ u, v ≤ r ; the last 2r steps of shifts in the
third dimension complete the broadcast. The first 4r steps of this broadcast algorithm
are illustrated in Figure 2.

The communication complexity for this broadcast algorithm is bounded by

6�r + τ(1+ ε)(2r + 2r(2r + 1)+ 2r(2r + 1)2)n/p

= 6�r + τ(1+ ε)((2r + 1)3 − 1)n/p. (2)

Note that this algorithm uses only nearest neighbor connections in the cyclical three-
dimensional grid. A detailed pseudocode for the space decomposition algorithm appears
in [12]. We also describe there several improvements to the basic algorithm. In particular,
one can achieve better load balance when cells are small by pooling cells; and one can
filter communications so as to ensure that each cell receives only the coordinates of
atoms that interact with atoms within the receiving cell.

3.2. Force Decomposition

We present here a version of force decomposition similar to that used in [2].
Assume that p is a perfect square. We consider the processors to be organized into

a
√

p×√p logical two-dimensional grid. Processors are labeled (i, j), 0 ≤ i, j <
√

p.
Atoms are allocated evenly to processors. Each processor (i, j) holds a set A(i, j) of
n/p atoms.

Let A(i, ∗) = ⋃
j A(i, j) and let A(∗, j) = ⋃

i A(i, j). We allocate to processor
(i, j) all forces due to interactions of atoms in A(i, ∗) with atoms in A(∗, j). We thus
have:

If p(a) = (i, j), then B(a) = {(i, 0), . . . , (i,
√

p − 1), (0, j), . . . (
√

p − 1, j)}.
That is, the positions of the atoms held at a processor (i, j) are broadcast to
all processors in row i and all processors in column j . The broadcast requires

A Note on N-Body Computations with Cutoffs 303

Fig. 3. Broadcast pattern for the force decomposition algorithm.

2
√

p−2 shifts, as illustrated in Figure 3. After this broadcast phase each processor
(i, j) holds the positions of the atoms in A(i, ∗) ∪ A(∗, j).

If p(a) = (i, j), p(b) = (i ′, j ′), p(a) �= p(b), and D̃(a, b) < c, then P(a, b) =
{(i, j ′), (i ′, j)}. The force fba is computed at the two processors that hold both
the positions of a and of b, after the broadcast. This is illustrated in Figure 4.

Reductions can proceed either on columns or on rows. In the former case we have,
if p(a) = (i, j), then R(a) = {(0, j), . . . , (

√
p − 1, j)}.

We describe below in Section 3.3 a randomized allocation of atoms to processors that
results, with overwhelming probability, into a balanced partition of forces to processors,
so that each processor computes �((c/d)3n2/p) interatomic forces.

The communication complexity for the broadcast phase is bounded by

2�
√

p + 2τ
√

p(n/p) = 2�
√

p + 2τn/
√

p.

The reduce phase requires only communication on columns—the “reverse” of half of
the broadcast algorithm. The communication complexity for the reduce phase is bounded
by �
√

p + τn/
√

p and the total communication complexity is bounded by

3�
√

p + 3τn/
√

p. (3)

(i,j)

(i',j')(i',j)

(i,j')

Fig. 4. Allocation of force computations in the force decomposition algorithm.

304 M. Snir

Our analysis has ignored the overhead of identifying, at each processor, the�((c/d)3

n2/p) pairs of atoms within the cutoff distance out of (n/
√

p)× (n/√p) = n2/p pairs
available at the processor after the broadcast phase. Testing each pair would require too
much computation. However, it is possible to use faster algorithms. Given n points and a
cutoff distance, one can find all m pairs within the cutoff distance in time O(n log n+m),
rather than O(n2) [6]; given the constant density assumption, a simple O(n+m) average
complexity algorithm can be designed. Furthermore, as we assume that atom locations
change slowly, it is possible to precompute the set of interacting pairs—using a slightly
increased cutoff distance, so that the same precomputed structure can be used for many
iterations. Therefore, we ignore the overhead of identifying interacting atom pairs.

3.3. Probabilistic Analysis

We show in this subsection that randomization can ensure, with overwhelming proba-
bility, that the force decomposition algorithm is load balanced. The proof uses Chernoff
bounds for tails of binomial distributions. This assumes that the average number of forces
per processor is sufficiently large. Specifically, we assume that

n

log2 n
≥

(
d

c

)3 k
√

p
8
3π(1− ε)

(4)

for some constant k > 3
2 . This assumption is easily satisfied for typical problem

parameters.
We assume that atoms are partitioned deterministically across rows: each row i is

allocated a set Ai of n/
√

p atoms. The atoms are next randomly distributed to columns.
For a fixed atom a and a fixed column j , the number X (a, j) of atoms b that interact
with a and have been allocated to column j is the sum of Na independent Poisson trials,
where 4

3π(1+ ε)(c/d)3n ≥ Na ≥ 4
3π(1− ε)(c/d)3n, and each trial has probability of

success 1/
√

p. The expected value is µa = Na/
√

p.
Let η = 1/nk . Then, using (4), we have

log2(1/η)

µa
− 1 = k log2 n

Na/
√

p
− 1 ≤ k

√
p log2 n

4
3π(1− ε)(c/d)3n

− 1 ≤ 1.

We now use the Chernoff bound (4.11) on page 72 in [10], to obtain that

Pr(X (a, j) > 2µa) ≤ η.

If X (a, j) ≤ 2µa for each atom a and each column j , then the number of forces
computed at processor (i, j) is bounded by∑

a∈Ai

X (a, j) ≤
∑
a∈Ai

2Na/
√

p

≤ (n/√p)2(4
3)π(1+ ε)(c/d)3n/

√
p

= 8
3π(1+ ε)(c/d)3n2/p.

A Note on N-Body Computations with Cutoffs 305

The probability of this occurring is at least

1− n
√

pη ≥ 1− n3/2η = 1− n3/2−k .

4. New Hybrid Method

If we compare the two algorithms described in the previous section, then we see that the
space decomposition algorithm is preferable when p is small relative to d/c, whereas
the force decomposition algorithm is preferable when p is large relative to d/c. In
the extreme case where p < (d/c)3, so that d/p1/3 > c, then each processor in the
space decomposition algorithm communicates only with its 26 neighbors, whereas each
processor in the force decomposition algorithm communicates with 2

√
p − 2 other

processors. At the other extreme, when c = d and there is no cutoff, then, in the space
decomposition algorithm, each processor communicates with all other p−1 processors,
while, in the force decomposition algorithm, it still is the case that each processor
communicates with 2

√
p − 2 other processors. The space decomposition algorithm

takes advantage of locality and has less communication when the cutoff c is small; but
the force decomposition algorithm avoids the expense of a direct broadcast to a large
set of processors. The hybrid algorithm described in this section combines both ideas to
minimize communication.

Consider a partition of atoms to p processors such that each processor holds�(n/p)
atoms, and each atom is updated by a unique processor. We say that two processors p
and q interact if each holds atoms a ∈ A(p) and b ∈ A(q) such that D̃(a, b) < c. In-
teracting processors communicate, either directly or indirectly, during an iteration. With
space decomposition, each processor interacts with O((c/d)3 p) other processors. This
is optimal, as each atom interacts with �((c/d)3n) other atoms, hence each processor
interacts with

�(((c/d)3n)/(n/p)) = �((c/d)3 p)

other processors. However, the broadcast scheme used in the algorithm, where each
processor broadcasts its positions to all other processors it interacts with, is not optimal.

The broadcast scheme used by the force decomposition method has the property
that for any two processors p1 and p2, there is a processor p3 so that both p1 and p2 send
all their data to p3. Then p3 can compute all interactions between atoms from p1 and
atoms from p2. In general, one needs a communication scheme so that if processors p1

and p2 interact, then there is a processor p3 so that both p1 and p2 send all their data to
p3. This reduces communication compared with a scheme where each pair of interacting
processors need to exchange data. We show in this section that such a communication
scheme can be defined, for space decomposition, so that each processor will broadcast
its atom positions to only O(

√
(c/d)3 p) other processors, i.e., to the square root of the

number of processors it interacts with. This is superior to the simple space decomposition
method and equal to the force decomposition method when c = d.

We use the same allocation of atoms to processors as described for the space decom-
position method. The simulation cell is divided into p1/3 × p1/3 × p1/3 subcells, each

306 M. Snir

i
j

k

Fig. 5. Broadcast pattern for hybrid algorithm.

containing at most (1 + ε)n/p atoms. Each subcell is allocated to one processor. We
assume that the processors are organized in a logical three-dimensional cyclical mesh.

Let r = �(c/d)p1/3�. If processor (i, j, k) interacts with processors (i ′, j ′, k ′), then
|(i − i ′) mod p1/3| ≤ r , |(j − j ′) mod p1/3| ≤ r , and |(k − k ′) mod p1/3| ≤ r . Let
r̃ = �√r + 1�. If 0 ≤ m ≤ r , then m = m2r̃ + m1, where 0 ≤ m1 ≤ r̃ − 1 and
0 ≤ m2 ≤ �r/r̃�.

The algorithm will have each processor (i, j, k) broadcast the positions of the atoms
it holds to a set B(i, j, k) of processors, where

B(i, j, k) = {(i + u, j, k − w1), −r ≤ u ≤ r, 0 ≤ w1 ≤ r̃ − 1}
∪ {(i, j + v, k + w2r̃), −r ≤ v ≤ r, 0 ≤ w2 ≤ �r/r̃�}.

The communication pattern is illustrated in Figure 5, for r = 2 and r̃ = 2.

Claim 1. If processor (i, j, k) interacts with processor (i ′, j ′, k ′), then there exists a
processor (î, ĵ, k̂) such that (î, ĵ, k̂) ∈ B(i, j, k) ∩ B(i ′, j ′, k ′).

Proof. Assume without loss of generality that k = k ′ + w, where 0 ≤ w ≤ r (all
equalities are mod p1/3). Then k − k ′ = w = w2r̃ + w1, where 0 ≤ w1 ≤ r̃ − 1 and
0 ≤ w2 ≤ �r/r̃�. Let k̂ = k − w1 = k ′ + w2r̃ . Let î = i ′, and let ĵ = j . Then
(î, ĵ, k̂) = (i + u, j, k − w1), where |u| = |i − i ′| ≤ r and 0 ≤ w1 ≤ r̃ − 1; and
(î, ĵ, k̂) = (i ′, j ′ + v, k ′ + w2r̃), where |v| = | j − j ′| ≤ r and 0 ≤ w1 ≤ �r/r̃�.

If 2r < p1/3, then the node (î, ĵ, k̂) is uniquely defined, and each force is computed
at a unique node. As the construction is shift-invariant, each processor is allocated an
equal number of cell pairs, so that the computation is load balanced.

We describe below the broadcast phase of this algorithm. We denote by A :=
Get ((u, v, w), B) the circular shift operation that assigns to variable A at each processor
(i, j, k) the value of variable B at processor (i + u, j + v, k + w), where all additions
are modulo p1/3.

A Note on N-Body Computations with Cutoffs 307

Algorithm 1

let A0 be the set of positions for atoms in a local cell
assert |A0| ≤ (1+ ε)n/p
for i := 1 to r do

Ai := Get ((−1, 0, 0), Ai−1)

od
for i := 1 to r do

A−i := Get ((1, 0, 0), A1−i)

od
assert A−r , . . . , Ar at processor (i, j, k) holds all atom positions from processors (i −

u, j, k),−r ≤ u ≤ r
let B0 = 〈A−r , . . . , Ar 〉
assert |B0| ≤ (1+ ε)(2r + 1)n/p
for i := 1 to r̃ − 1 do

Bi := Get ((0, 0, 1), Bi−1)

od
assert B0, . . . , Br̃−1 at processor (i, j, k) holds all atom positions from processors (i −

u, j, k + w),−r ≤ u ≤ r, 0 ≤ w ≤ r̃ − 1
for i := 1 to r do

Ai := Get ((0,−1, 0), Ai−1)

od
for i := 1 to r do

A−i := Get ((0, 1, 0), A1−i)

od
assert A−r , . . . , Ar at processor (i, j, k) holds all atom positions from processors (i, j−

v, k),−r ≤ v ≤ r
let C0 = 〈A−r , . . . , Ar 〉
assert |C0| ≤ (1+ ε)(2r + 1)n/p
for i := 1 to �r/r̃� do

Ci := Get ((0, 0,−r̃),Ci−1)

od
assert C0, . . . ,C�r/r̃� at processor (i, j, k) holds all atom positions from processors

(i, j − v, k − wr̃),−r ≤ v ≤ r, 0 ≤ w ≤ �r/r̃�
The communication complexity for this broadcast pattern is

�(4r + r̃ + �r/r̃� − 1)+ τ(1+ ε)(4r + (r̃ + �r/r̃� − 1)(2r + 1))n/p.

The reduction phase can be implemented be reversing the broadcast communication
pattern. The total communication complexity is

2�(4r + r̃ + �r/r̃� − 1)+ 2τ(1+ ε)(4r + (r̃ + �r/r̃� − 1)(2r + 1))n/p.

One can show, by induction, that

�√r + 1� + �r/�√r + 1�� = �√4r + 1�.

308 M. Snir

Thus, the communication complexity is

2�(4r + �√4r + 1� − 1)+ 2τ(1+ ε)(4r + (�√4r + 1� − 1)(2r + 1))n/p, (5)

where r = �(c/d)p1/3�.
There are two cases of interest:

Low parallelism, where the cutoff distance is smaller than the subcell size: c < d̃ =
d/p1/3, or p < (d/c)3. In a typical problem, where d = 70 Å and c = 7 Å, this means
p < 1000. This encompasses the large majority of current runs. In the low parallelism
case (p < (c/d)3) each cell interacts only with its 26 neighbors. We have r = 1 and the
communication complexity of the hybrid algorithm is

10�+ 14τ(1+ ε)n/p. (6)

In this case the hybrid algorithm generates as much communication, within a constant
factor, as the space decomposition algorithm (equation (2)).

High parallelism, where the cutoff distance is large, relative to the cell size: c ≥ d/p1/3,
or p ≥ (d/c)3. In such a case there are “long-distance” interactions between nonadjacent
cells. This is relevant for massively parallel systems such as Blue Gene or for simulations
that use a large cutoff distance.

In the high parallelism case (p ≥ (d/c)3), the communication complexity of the
hybrid algorithm can be estimated as

8�(c/d)p1/3 + 8τ(1+ ε)(c/d)3/2n/p1/2 + lower-order terms. (7)

In the extreme case where c = d (no cutoff) then we have the same communication
volume, within a constant factor, as for the force decomposition algorithm (equation (3)).

In the low parallelism case the communication can be further reduced by refraining
from transmitting the coordinates of atoms that are at least c apart from the cell bound-
aries; such atoms do not interact with atoms in other cells. This is illustrated, in two
dimensions, in Figure 6. The volume of the “shell” of points at most c apart from the
cell boundary is d̃3 −max(0, (d̃ − 2c)3); this volume contains at most

(1+ ε)n(d̃3 −max(0, (d̃ − 2c)3))/d3

= (1+ ε)(1−max(0, (1− 2p1/3(c/d))3))n/p

points. The communication complexity of the hybrid algorithm in the low parallelism
case becomes

10�+ 14τ(1+ ε)(1−max(0, (1− 2p1/3(c/d))3))n/p. (8)

The communication volume is �((c/d)n/p2/3).
A practical implementation of the hybrid algorithm described in this section needs

to address in detail several issues that are ignored in our analysis. This includes, in
particular:

A Note on N-Body Computations with Cutoffs 309

d

xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx

~

c

Fig. 6. Filtered communication. Only coordinates of atoms in shaded area are communicated by the cell in
the center.

Atom Pair Filtering. Each processor needs to compute forces only between pairs of
atoms that are less than c apart; this is a proper subset of the set of pairs of atoms received
in the broadcast phase. The filtering problem can be handled as for the force decom-
position algorithm, using precomputed lists and/or efficient computational geometry
algorithms for finding pairs of points at distance < c.

Computing Intramolecular Forces. A benefit of the proposed hybrid algorithm is
that it uses a volume decomposition of atoms, so that the two, three, and four body
intramolecular force terms involve atoms that are within the same cell or in adjacent
cells. Adjacent cells can exchange information on atom locations for bonds that cross
cell boundaries, and intramolecular forces that act on an atom can be computed by the
processor that “owns” that atom.

5. Lower Bounds

We prove in this section lower bounds on communication that show that the algorithm
described in the previous section is optimal, among algorithms that perform minimal
work. To simplify the (fairly tedious) derivations of this section we do not attempt to
derive the best possible constants, or use the weakest preconditions.

Consider an instance of the N-body problem with cutoffs to be solved with p pro-
cessors. We assume that n ≥ p.

We use the notation introduced in Sections 1.3 and 2.2, with the following additions:

ni = |A(i)| is the number of atoms updated by processor i .
fi = |F(i)| is the number of forces computed by processor i .
mi is the communication volume at processor i , i.e., the number of atom positions

sent or received plus the number of forces sent or received by processor i .

The following inequalities are satisfied:∑
i

ni ≥ n, (9)

310 M. Snir∑
i

fi ≥ (4/3)π(1− ε)(c/d)3n2, (10)

fi ≤ (ni + mi)
2. (11)

The first inequality is obvious. The second follows from (1). The third follows from
the fact that the number of atom positions available at processor i is at most ni +mi , so
that the number of forces that can be computed at this processor is bounded by

(
ni + mi

2

)
< (ni + mi)

2.

We say that a set L ⊂ A c-isolates set M ⊂ A if, whenever (a, b) ∈ F, a ∈ M, b /∈
M , then either a ∈ L or b ∈ L . We define the c-surface of set M , Sc(M), to be the least
size of a set that c-isolates M .

Theorem 1. mi ≥ Sc(A(i)).

Proof. Let L consist of all atoms a such that either processor i receives a force that
acts on a or processor i receives the position of a. Clearly, mi ≥ |L|. Let a and b be
two atoms such that (a, b) ∈ F , a ∈ A(i), b /∈ A(i). If processor i computes the force
between a and b, then it must receive the position of b. Otherwise, processor i must
receive from another processor a sum of forces acting on atom a that contains the
force fab. Thus either a ∈ L or b ∈ L . It follows that L c-isolates A(i), so that |L| ≥
Sc(A(i)).

We can thus prove lower bounds on communication by proving lower bounds on
the surface of the set of atoms maintained by each processor.

Theorem 2. Let δ and ε be the constants defined in the constant density assumption.
There exist positive constants k, η, and λ (that depend only on δ and ε) so that the
following holds. Let M be a set of m = |M | ≤ ηn atoms. If δ ≤ c/2k, then

Sc(M) ≥ λmin(m,m2/3n1/3c/d).

Before we prove this theorem, we show how it can be used to derive lower bounds
on communication. We restrict ourselves to algorithms that are load balanced:

∀i, fi ≤ 2(4
3)π(c/d)

3n2/p.

(The constant 2 is arbitrary—any constant > 1 will do.)

Theorem 3 (Low Parallelism). There exists a constant p0 such that if p0 < p <

(d/c)3, then

max
i

mi > λ(c/d)n/p2/3.

A Note on N-Body Computations with Cutoffs 311

Proof. Since
∑

i ni ≥ n, then ni ≥ n/p, for some i . There are two cases to consider.

Case A: ∃ i such that n/p ≤ ni ≤ ηn. Then, by Theorem 2,

mi ≥ λmin(n/p, (n/p)2/3n1/3(c/d)) = λ(c/d)n/p2/3.

Case B: ∃ i such that ni > ηn. As the algorithm is load balanced, then processor i
computes at most 2(4

3)π(c/d)
3n2/p forces. Since each atom interacts with at least

4
3π(1 − ε)(c/d)3n other atoms, processor i does not compute all forces acting on at
least

ηn − 2(4
3)π(c/d)

3n2/p
4
3π(1− ε)(c/d)3n

= n

(
η − 2

(1− ε)p
)

atoms in A(i). Thus

mi ≥ n

(
η − 2

(1− ε)p
)
≥ λn

p
≥ λ(c/d)n

p2/3
,

for large enough p.

The lower bound in the theorem above matches the upper bound of (8), within a
constant factor. Thus, the hybrid algorithm generates a minimal communication volume,
in the low parallelism case.

Theorem 4 (High Parallelism). There exist a positive constant α such that if p ≥
(d/c)3, then

max
i

mi > α(c/d)3/2n/p1/2.

Proof.

Case A: ∃ i such that ni ≥ (c/d)3/2n/p1/2. Then

mi ≥ λmin(ni , n2/3
i n1/3(c/d))

≥ λmin((c/d)3/2n/p1/2, (c/d)2n/p1/3).

However, (c/d)1/2 p1/6 ≥ 1, so that (c/d)2n/p1/3 ≥ (c/d)3/2/p1/2 and

mi ≥ λ(c/d)3/2n/p1/2.

Case B: ∀i , ni < (c/d)3/2n/p1/2. Then (10) and (11) imply that

max
i
(ni + mi)

2 ≥ max
i

fi ≥ 4
3π(1− ε)(c/d)3n2/p

312 M. Snir

so that

max
i

mi ≥ (4
3π(1− ε))1/2(c/d)3/2n/p1/2 − (c/d)3/2n/p1/2

= ((4
3π(1− ε))1/2 − 1)(c/d)3/2n/p1/2.

The claim follows, with α = min(λ, ((4
3π(1− ε))1/2 − 1)).

The lower bound given in the last theorem matches the upper bound given in (7),
within a constant factor. Thus, the hybrid algorithm generates a minimal communication
volume, in the high parallelism case.

We now turn to the proof of Theorem 2. We first prove a continuous version of this
theorem, for Euclidian spaces, and next derive from it the discrete theorem.

We first introduce several definitions. We denote by Vol(U) the volume (i.e.,
Lebesgue measure) of a set U ⊂ Rn . This is well defined when U is compact.

We denote by Bn
r the ball of radius r centered at the origin in Rn; the superscript n

will be suppressed when obvious from the context. We have Vol(Bn
r) = vnrn , where

vn = Vol(Bn
1) =

{
π/m! for n = 2m,
2(2π)m/(2m + 1)! for n = 2m + 1.

Given two sets A and B in Rn , we denote by A + B the set

A + B = {x+ y : x ∈ A, y ∈ B}.

Note that if A and B are compact, then A + B is compact.
We denote by B(U, r) the set U + Br . It is easy to see that if U is compact then

B(U, r) = {y ∈ Rn : D(U, y) ≤ r}.

We use the following inequality:

Theorem 5 (Brunn–Minkowski Inequality). Let A and B be two compact sets in Rn .
Then

Vol1/n(A + B) ≥ Vol1/n(A)+ Vol1/n(B).

Equality obtains only in the following three cases: (1) Vol(A + B) = 0; (2) A or B
consists of a single point; (3) A and B are similar.

The reader is referred to Chapter 2 of [5] for a proof to this theorem.

Corollary 1. Let U be a nonempty compact set inRn . Let r be the radius of a ball with
the same volume as U , i.e., Vol(U) = Vol(Br). Then, for any c > 0, Vol(B(U, c)) ≥
Vol(Br+c); equality obtains only if U is a ball.

A Note on N-Body Computations with Cutoffs 313

This corollary is analogous to the well-known isoperimetric theorem that states that a
ball has the minimum surface for a given volume. Here, we consider the volume of a
shell of a fixed thickness around a body of a given volume, and claim that the volume of
the shell is minimized when it encases a ball. The classical isoperimetric result can be
derived from this corollary by considering the limit when the thickness of the shell goes
to zero; see [5].

Proof. We have, by the Brunn–Minkowski inequality,

Vol1/n(B(U, c)) = Vol1/n(U + Bc) ≥ Vol1/n(U)+ Vol1/n(Bc)

= Vol1/n(Br)+ Vol1/n(Bc) = v1/n
n r + v1/n

n c = v1/n
n (r + c)

= Vol1/n(Br+c).

Equality obtains if and only if U is similar to Bc, i.e., if and only if U is a ball.

Let U, V be subsets of Rn . We say that V c-isolates U if

∀ x ∈ U, ∀ y /∈ U, D(x, y) < c→ x ∈ V ∨ y ∈ V .

We define the c-surface Sc(U) of a compact set U ⊂ Rn to be the least volume of a set
that c-isolates U .

Theorem 6. Let U be a compact set of volume Vol(U) = vnrn . Then

Sc(U) ≥ vn(r
n −max(0, (r − c)n)).

That is, the volume of a set V that c-isolates U is minimized when U is a ball and V is
a shell extending from the surface of the ball to a depth of c.

Proof. Let V be a set that c-isolates U . Since V c-isolates V ∪U we can assume without
loss of generality that V ⊆ U . Let U1 = {x ∈ U : ∀y /∈ U, D(x, y) ≥ c} be the set of
points in U that are at distance at least c from points outside U . If U1 = ∅, then each
point in U is at distance < c from U c, so that V = U , and Vol(V) = Vol(U) = vnrn .

Otherwise, if U1 �= ∅, let U2 = B(U1, c). Let Vol(U1) = vnrn
1 and let Vol(U2) =

vnrn
2 . By the previous corollary, r2 ≥ r1 + c. It is easy to see that V ⊇ U − U1 and

U ⊃ U2, so that r ≥ r2 ≥ r1 + c. Thus

Vol(V) ≥ Vol(U)− Vol(U1) = vn(r
n − rn

1) ≥ vn(r
n − (r − c)n).

We now return to the proof of Theorem 2

Proof. We need to prove that if L c-isolates M , |L| = �, and |M | = m ≤ ηn, then

� ≥ λmin(m,m2/3n1/3(c/d)). (12)

We prove the theorem for the special case where L ⊆ M ; this entails the general
case, with new constants η′ = 2

3η and λ′ = min(1
2 , λ). Indeed, if � > m/2, then the

314 M. Snir

claim follows directly. If, on the other hand, � < m/2, then L isolates L ∪ M and
|L ∪ M | < 3

2 m ≤ 3
2η
′n = ηn, so that the conditions of the special theorem apply.

We say that a setU ⊂ R3 isα-rectifiable if there is a disjoint set of cubes {Ĉ1, . . . , Ĉr }
such that U ⊆⋃

Ĉi and a disjoint set of cubes {C̆1, . . . , C̆s} such that U ⊇⋃
C̆i , where

all cubes are of dimension ≥ α, and

2
3∑

i=1

Vol(C̆i) ≥ Vol(U) ≥ 1

2

r∑
i=1

Vol(Ĉi).

(The constant 2 in the definition is arbitrary and can be replaced by any constant > 1.)
If U is a δ-rectifiable set, then the number of atoms with positions in U is at least

0.5(1− ε)nVol(U)/d3 and at most 2(1+ ε)nVol(U)/d3.
We first prove the corollary ignoring periodicity: we assume an unbounded system

of distinct atoms that fulfill the constant density assumption, and define F = {(a, b) :
D(a, b) < c}. Thus, if a ∈ M , b /∈ M , and D(a, b) < c, then a ∈ L .

Let

U =
⋃
a /∈M

B(x(a), kδ),

where k > 1 is a constant to be defined later. Let

V = B(U, c − kδ)−U.

One can verify that the sets U c (the complement of U) and V are bounded; they are
δ-rectifiable, for k large enough (independent of the atom numbers and locations) and
for c ≥ 2kδ. This defines k.

Let b be an atom such that x(b) ∈ V . By the definition of V , we have x(b) /∈ U .
This implies, by the definition of U , that b ∈ M .

By the definition of V , there exists a point y ∈ U such that D(x(b), y) < c − kδ.
However, if y ∈ U , then there exists an atom a /∈ M such that D(x(a), y) < kδ. Thus
D(x(a), x(b)) < c. It follows that b ∈ L . Thus all atoms with positions in V are in L . It
follows that

� ≥ 1
2 (1− ε)nVol(V)/d3. (13)

Let M1 = M − L and let m1 = m − � = |M1|. If a ∈ M1, then a /∈ L , so that
x(a) /∈ V . Since L c-isolates M1, then for any atom b /∈ M , D(a, b) > c > kδ. This
implies that x(a) /∈ U . Thus, U c contains the positions of all atoms in M1. It follows that

m − � ≤ 2(1+ ε)nVol(U c)/d3. (14)

By definition, V (c−kδ)-isolates U , hence (c−kδ)-isolates U c. It follows, by Theorem 6,
that

Vol(V) ≥ 4
3π(r

3 −max(0, (r − c + kδ)3)), (15)

A Note on N-Body Computations with Cutoffs 315

where Vol(U c) = 4
3πr3. The result now follows by putting (13), (14), and (15) together.

We have

� ≥ 1
2 (1− ε)n 4

3π(r
3 −max(0, (r − c + kδ)3))/d3

= 2
3 (1− ε)πn(r3 −max(0, (r − c + kδ)3))/d3

and

m − � ≤ 2(1+ ε)n 4
3πr3/d3 = 8

3 (1+ ε)πnr3/d3.

We consider three cases:

Case A: � ≥ m/2. Then (12) follows, if λ ≤ 1
2 .

Case B: � < m/2 and r ≤ 2(c − kδ). Then r − (c − kδ) ≤ r/2, so that

� ≥ 2
3 (1− ε)πn 7

8r3/d3 = 7
12 (1− ε)πnr3/d3.

Also,

m/2 < m − � ≤ 8
3 (1+ ε)πnr3/d3,

so that

nr3

d3
≥ m

16
3 (1+ ε)π

and

� ≥ 7
12 (1− ε)π

m
16
3 (1+ ε)π

= 7(1− ε)
64(1+ ε)m.

Equation (12) follows if

λ ≤ 7(1− ε)
64(1+ ε) .

Case C: � < m/2 and r > 2(c − kδ). Let f (x) = 3 − 3x + x2. Then f ′(x) = −3 +
2x < 0, if x < 1.5. Thus, f (x) is monotonically decreasing in the interval 0 < x < 1.5.
Thus, since 0 < (c − kδ)/r < 0.5, then

r3 − (r − (c − kδ))3 = r2(c − kδ)

(
3− 3

c − kδ

r
+

(
c − kδ

r

)2
)

> r2(c − kδ)(3− 3(0.5)+ (0.5)2) = 7
4r2(c − kδ) > 7

8r2c.

316 M. Snir

Thus,

� > 2
3 (1− ε)πn 7

8r2c/d3 = 7
12 (1− ε)πnr2c/d3

and

m/2 < m − � ≤ 8
3 (1+ ε)πnr3/d3

so that

r3 >
md3

16
3 (1+ ε)πn

and

� > 7
12 (1− ε)πn

(
md3

16
3 (1+ ε)πn

)2/3

c/d3 = 7(1− ε)π1/3

48(2
3 (1+ ε))2/3

(c/d)n1/3m2/3.

Equation (12) follows if

λ ≤ 7(1− ε)π1/3

48(2
3 (1+ ε))2/3

.

Thus, the theorem holds, in the aperiodic case, with

λ = min

(
1

2
,

7(1− ε)
64(1+ ε) ,

7(1− ε)π1/3

48(2
3 (1+ ε))2/3

)
.

We turn now to the cyclic case. We have L ⊂ M that c-separates M using the
original definition: if a ∈ M , b /∈ M , D̃(a, b) < c, then a ∈ L .

Let B ⊆ M be the set of atoms in M that are at distance < c from the boundaries
of the cell D. We assume, for the time being, that

b = |B| ≤ 6m(c/d). (16)

The set B ∪ L c-isolates M in the aperiodic space, where all atom copies are
considered to be distinct. It follows that

�+ b ≥ λmin(m,m2/3n1/3(c/d)). (17)

If

� ≥ (λ/2)min(m,m2/3n1/3(c/d)),

then we are done, with a constant λ′ = λ/2. Otherwise, we have

6m(c/d) ≥ b ≥ (λ/2)min(m,m2/3n1/3(c/d)).

A Note on N-Body Computations with Cutoffs 317

We consider two cases.

Case A: 6(c/d) < λ/2. Then

6m(c/d) ≥ (λ/2)m2/3n1/3(c/d)

which implies

m ≥ (λ/12)3n.

This case is ruled out if we pick η < (λ/12)3.

Case B: 6(c/d) > λ/2. Pick an atom a ∈ M − L (if there are none, then � = m, and
we are done). The ball Bc(x(a)) contains at least 4

3π(1− ε)(c/d)3n atoms; all of these
atoms are in M . Thus

m ≥ 4
3π(1− ε)(c/d)3n > 4

3π(1− ε)(λ/12)3n.

This case is ruled out if we pick

η < 4
3π(1− ε)(λ/12)3.

We assumed that |B| ≤ 6m(c/d). We now reduce the general case to a case where
this assumption holds. Since |M | ≤ m, there must be a horizontal slice of the cell D, of
thickness 2c, that contains no more than m(2c/d) atoms from M . We can cyclically shift
all atoms in cell D so that this slice is centered around the horizontal face of D, with no
change in the relative positions of the atoms. The same applies to each of the other two
dimensions. After the shifts, we have |B| ≤ 6m(c/d).

6. Conclusion

We have defined in this paper a new algorithm for a direct solution of the N-body problem
with cutoff, and have shown that this algorithm is optimal, if work is kept balanced.

The algorithm was defined for a parallel computer with a complete communication
graph, where each processor can communicate directly with each other. However, the
algorithm uses only communication along the axes of a three-dimensional mesh and
most communications are among nearest neighbors in a three-dimensional cyclic mesh.
Therefore, the hybrid algorithm can be implemented efficiently on mesh connected
computers. A detailed analysis of the algorithm for a computer with a three-dimensional
cyclic mesh topology is provided in [12].

The lower bound proofs assumed that the location(s) where each force is computed
and each atom coordinates are updated are fixed. We suspect that the bounds hold even
if these locations are allowed to change, but have no formal proof.

The lower bound on communication is not valid if work is not balanced—in par-
ticular, one can perform all the computation on one processor, with no communication.

318 M. Snir

It is likely that a tradeoff can be shown between computation and communication. It
would be nice to generalize the lower bound results so as to optimize this tradeoff, for
any particular value of � and τ .

The lower bounds were shown for a restricted computation model, that prohibits
methods such as the multipole algorithm. Indeed, the multipole algorithm has better
(asymptotic) communication complexity than implied by our lower bound. However, it
is likely that that the lower bound holds under weaker constraints. We conjecture that
it holds even if one allows arbitrary linear combinations of coordinates or forces in the
computation. The lower bounds on communication would then follow from dimension
arguments.

Acknowledgments

We thank Jose Castanos and Don Coppersmith for carefully reading an early version of this paper, and Miklos
Ajtai, Isaac Chavel, and especially Michael Schub for offering help with the geometric inequalities of Section 5.

References

[1] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford Science Publications, Oxford,
1987.

[2] G. S. Almasi, C. Caşcaval, J. G. Castaños, M. Denneau, W. Donath, M. Eleftheriou, M. Giampapa, H.
Ho, D. Lieber, J. E. Moreira, D. Newns, M. Snir, and Jr. H. S. Warren. Demonstrating the scalability of a
molecular dynamics application on a petaflop computer. International Journal of Parallel Programming,
30(4):317–351, 2002.

[3] A. Bar-Noy and S. Kipnis. Designing broadcasting algorithms in the postal model for message-passing
systems. In Proceedings of the 4th Annual Symposium on Parallel Algorithms and Architectures, pages
13–22, 1992.

[4] J. Board and K. Schulten. The fast multipole algorithm. IEEE Computational Science & Engineering,
2:56–59, 2000.

[5] Yu. D. Burago and V. A. Zalgaller. Geometric Inequalities. Springer-Verlag, Berlin, 1988.
[6] M. T. Dickerson and D. Eppstein. Algorithms for proximity problems in higher dimensions. Compu-

tational Geometry Theory and Applications, 5:277–291, 1996.
[7] P. Ewald. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der Physik, 64:253–

287, 1921.
[8] L. F. Greengard. The Rapid Evaluation of Potential Fields in Particle Systems. MIT Press, Cambridge,

MA, 1988.
[9] L. Greengard and V. Rokhlin. A fast algorithm for particle simulation. Journal of Computational

Physics, 73(2):325–348, 1987.
[10] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, Cambridge, 1995.
[11] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational

Physics, 117:1–19, 1995.
[12] M. Snir. A note on n-body computation with cutoffs. Technical Report RC22059, IBM T. J. Watson

Research Center, 2001.
[13] V. E. Taylor, R. Stevens, and K. Arnold. Parallel molecular dynamics: implications for massively parallel

machines. Journal on Parallel and Distributed Computing, 45(2):166–175, September 1997.

Received February 18, 2002, and in revised form July 14, 2003, and in final form July 31, 2003.
Online publication January 23, 2004.

