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Abstract. In 1977 Young proposed a voting scheme that extends the Condorcet
Principle based on the fewest possible number of voters whose removal yields a
Condorcet winner. We prove that both the winner and the ranking problem for
Young elections is complete for PNP

‖ , the class of problems solvable in polynomial
time by parallel access to NP. Analogous results for Lewis Carroll’s 1876 voting
scheme were recently established by Hemaspaandra et al. In contrast, we prove that
the winner and ranking problems in Fishburn’s homogeneous variant of Carroll’s
voting scheme can be solved efficiently by linear programming.

1. Introduction

More than a decade ago, Bartholdi et al. [BTT1]–[BTT3] initiated the study of elec-
toral systems with respect to their computational properties. In particular, they proved
NP hardness lower bounds [BTT2] for determining the winner in the voting schemes
proposed by Dodgson (more commonly known by his pen name, Lewis Carroll) and
by Kemeny, and they studied complexity issues related to the problem of manipulating
elections by strategic voting [BTT1], [BTT3]. Since then, a number of related results
and improvements of their results have been obtained. Hemaspaandra et al. [HHR]
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classified both the winner and the ranking problem for Dodgson elections by proving
them complete for PNP

‖ , the class of problems solvable in polynomial time by paral-
lel access to an NP oracle. E. Hemaspaandra (as cited in [HH]) and Spakowski and
Vogel [SV2] obtained the analogous result for Kemeny elections; a joint paper by E.
Hemaspaandra, Spakowski, and Vogel is in preparation. For many further results and the
state of the art regarding computational politics, we refer to the survey [HH].

In this paper we study complexity issues related to Young and Dodgson elections.
In 1977 Young proposed a voting scheme that extends the Condorcet Principle based
on the fewest possible number of voters whose removal makes a given candidate c the
Condorcet winner, i.e., c defeats all other candidates by a strict majority of the votes.
We prove that both the winner and the ranking problem for Young elections is complete
for PNP

‖ . To this end, we give a reduction from the problem Maximum Set Packing

Compare, which we also prove is PNP
‖ -complete.

In Section 3 we study a homogeneous variant of Dodgson elections that was in-
troduced by Fishburn [F]. In contrast to the above-mentioned result of Hemaspaandra
et al. [HHR], we show that both the winner and the ranking problem for Fishburn’s
homogeneous Dodgson elections can be solved efficiently by a linear program that is
based on an integer linear program of Bartholdi et al. [BTT2].

2. Complexity of the Winner Problem for Young Elections

2.1. Some Background from Social Choice Theory

We first give some background from social choice theory. Let C be the set of all candidates
(or alternatives). We assume that each voter has strict preferences over the candidates.
Formally, the preference order of each voter is strict (i.e., irreflexive and antisymmetric),
transitive, and complete (i.e., all candidates are ranked by each voter). An election is
given by a preference profile, a pair 〈C, V 〉 such that C is a set of candidates and V is
the multiset of the voters’ preference orders on C . Note that distinct voters may have the
same preferences over the candidates. A voting scheme (or social choice function, SCF
for short) is a rule for how to determine the winner(s) of an election; i.e., an SCF maps any
given preference profile to society’s aggregate choice set, the set of candidates who have
won the election. For any SCF f and any preference profile 〈C, V 〉, f (〈C, V 〉) denotes
the set of winning candidates. For example, the majority rule says that a candidate A
defeats a candidate B if and only if A is preferred to B by a strict majority of the voters.
According to the majority rule, an election is won by a candidate who defeats every other
candidate. Such a candidate is called the Condorcet winner.

In 1785 Marie-Jean-Antoine-Nicolas de Caritat, the Marquis de Condorcet, noted in
his seminal essay [C] that whenever there are at least three candidates, say A, B, and C ,
the majority rule may yield cycles. His example consists of the following three voters:

A > B > C,

B > C > A,

C > A > B.

Thus, A defeats B and B defeats C , and yet C defeats A. That is, even though each
individual voter has a rational (i.e., transitive or noncyclic) preference order, society
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may behave irrationally and Condorcet winners do not always exist. This observation is
known as the Condorcet Paradox. The Condorcet Principle says that for each preference
profile, the winner of the election is to be determined by the majority rule. An SCF is
said to be a Condorcet SCF if and only if it respects the Condorcet Principle in the sense
that the Condorcet winner is elected whenever one exists. Note that Condorcet winners
are uniquely determined if they exist.

Many Condorcet SCFs have been proposed in the social choice literature; for an
overview of the most central ones, we refer to the work of Fishburn [F]. They extend the
Condorcet Principle in a way that avoids the troubling feature of the majority rule. In
this paper we focus on only two such Condorcet SCFs, the Dodgson voting scheme [D]
and the Young voting scheme [Y].

In 1876 Charles L. Dodgson (better known by his pen name, Lewis Carroll) proposed
a voting scheme [D] that suggests that we remain most faithful to the Condorcet Principle
if the election is won by any candidate who is “closest” to being a Condorcet winner. To
define “closeness,” each candidate c in a given election 〈C, V 〉 is assigned a score, denoted
DodgsonScore(C, c, V ), which is the smallest number of sequential interchanges of
adjacent candidates in the voters’ preferences that are needed to make c a Condorcet
winner. Here, one interchange means that, in (any) one of the voters, two adjacent
candidates are switched. A Dodgson winner is any candidate with the minimum Dodgson
score. Using Dodgson scores, one can also tell who of two given candidates is ranked
better according to the Dodgson SCF.

Young’s approach to extending the Condorcet Principle is reminiscent of Dodgson’s
approach in that it is also based on altered profiles. Unlike Dodgson, however, Young [Y]
suggests that we remain most faithful to the Condorcet Principle if the election is won by
any candidate who is made a Condorcet winner by removing the fewest possible number of
voters, instead of doing the fewest possible number of switches in the voters’ preferences.
For each candidate c in a given preference profile 〈C, V 〉, define YoungScore(C, c, V )
to be the size of a largest submultiset of V for which c is a Condorcet winner. A Young
winner is any candidate with the maximum Young score.

Homogeneous variants of these voting schemes will be defined in Section 3.

2.2. Complexity Issues Related to Voting Schemes

To study computational complexity issues related to Dodgson’s voting scheme, Bartholdi
et al. [BTT2] defined the following decision problems:

Dodgson Winner

Instance: A preference profile 〈C, V 〉 and a designated candidate c ∈ C .
Question: Is c a Dodgson winner of the election? That is, is it true that for all d ∈ C ,

DodgsonScore(C, c, V ) ≤ DodgsonScore(C, d, V )?

Dodgson Ranking

Instance: A preference profile 〈C, V 〉 and two designated candidates c, d ∈ C .
Question: Does c tie-or-defeat d in the election? That is, is it true that

DodgsonScore(C, c, V ) ≤ DodgsonScore(C, d, V )?
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Bartholdi et al. [BTT2] established an NP-hardness lower bound for both these
problems. Their result was optimally improved by Hemaspaandra et al. [HHR] who
proved that Dodgson Winner and Dodgson Ranking are complete for PNP

‖ , the class
of problems solvable in polynomial time with parallel (i.e., truth-table) access to an NP
oracle.

As above, we define the corresponding decision problems for Young elections as
follows:

Young Winner

Instance: A preference profile 〈C, V 〉 and a designated candidate c ∈ C .
Question: Is c a Young winner of the election? That is, is it true that for all d ∈ C ,

YoungScore(C, c, V ) ≥ YoungScore(C, d, V )?

Young Ranking

Instance: A preference profile 〈C, V 〉 and two designated candidates c, d ∈ C .
Question: Does c tie-or-defeat d in the election? That is, is it true that

YoungScore(C, c, V ) ≥ YoungScore(C, d, V )?

2.3. Hardness of Determining Young Winners

The main result in this section is that the problemsYoungWinner andYoungRanking
are complete for PNP

‖ . In Theorem 2.3 below, we give a reduction from the problem
Maximum Set Packing Compare that is defined below. For a given collection S of
sets, let κ(S) be the maximum number of pairwise disjoint sets in S.

Maximum Set Packing Compare

Instance: Two sets B1 and B2 and two collections S1 and S2 of finite, nonempty sets
such that, for i ∈ {1, 2}, each S ∈ Si is a subset of Bi .
Question: Does it hold that κ(S1) ≥ κ(S2)?

To prove that Maximum Set Packing Compare is PNP
‖ -complete, we give a reduc-

tion from the problem Independence Number Compare, which has also been used
in [HRS]. To define the problem, let G be an undirected, simple graph. An independent
set of G is any subset I of the vertex set of G such that no two vertices in I are adjacent.
For any graph G, let α(G) be the independence number of G, i.e., the size of a maximum
independent set of G.

Independence Number Compare

Instance: Two graphs G1 and G2.
Question: Does it hold that α(G1) ≥ α(G2)?

Without loss of generality, we may assume that G1 and G2 contain no isolated
vertices.
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Using the techniques of Wagner [W], it can be shown that the problem Indepen−
dence Number Compare is PNP

‖ -complete; see Theorem 12 of [SV1] for an explicit
proof of this result.

Proposition 2.1 (see [W] and [SV1]). Independence Number Compare is PNP
‖ -

complete.

Lemma 2.2. Maximum Set Packing Compare is PNP
‖ -complete.

Proof. We give a polynomial-time many-one reduction from the problem Indepen−
dence Number Compare to the problem Maximum Set Packing Compare. Let G1

and G2 be two given graphs. For i ∈ {1, 2}, define Bi to be the set of edges of Gi , and
define Si so as to contain exactly ‖V (Gi )‖ sets: For each vertex v of Gi , add to Si the set
of edges incident to v. Thus, for each i ∈ {1, 2}, we have α(Gi ) = κ(Si ), which proves
the lemma.

Now, we prove the main result of this section.

Theorem 2.3. Young Ranking is PNP
‖ -complete.

Proof. It is easy to see that Young Ranking and Young Winner are in PNP
‖ . To

prove the PNP
‖ lower bound, we give a polynomial-time many-one reduction from the

problem Maximum Set Packing Compare. Let B1 = {x1, x2, . . . , xm} and B2 =
{y1, y2, . . . , yn} be two given sets, and let S1 and S2 be given collections of subsets of
B1 and B2, respectively. Recall that κ(Si ), for i ∈ {1, 2}, is the maximum number of
pairwise disjoint sets in Si ; without loss of generality, we may assume that κ(Si ) > 2.

We define a preference profile 〈C, V 〉 such that c and d are designated candidates
in C , and it holds that

YoungScore(C, c, V ) = 2 · κ(S1)+ 1; (2.1)

YoungScore(C, d, V ) = 2 · κ(S2)+ 1. (2.2)

Define the set C of candidates as follows:

• create the two designated candidates c and d;
• for each element xi of B1, create a candidate xi ;
• for each element yi of B2, create a candidate yi ;
• create two auxiliary candidates, a and b.

Define the set V of voters as follows:

• Voters representing S1: For each set E ∈ S1, create a single voter vE as
follows:
— Enumerate E as {e1, e2, . . . , e‖E‖} (renaming the candidates ei chosen from
{x1, x2, . . . , xm} for notational convenience), and enumerate its complement
Ē = B1 − E as {ē1, ē2, . . . , ēm−‖E‖}.
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— To make the preference orders easier to parse, we use

“
−→
E ” to represent the text string “e1 > e2 > · · · > e‖E‖”;

“
−→̄
E ” to represent the text string “ē1 > ē2 > · · · > ēm−‖E‖”;

“
−→
B1 ” to represent the text string “x1 > x2 > · · · > xm”;

“
−→
B2 ” to represent the text string “y1 > y2 > · · · > yn”.

— Create one voter vE with preference order

−→
E > a > c >

−→̄
E >

−→
B2 > b > d. (2.3)

• Additionally, create two voters with preference order

c >
−→
B1 > a >

−→
B2 > b > d, (2.4)

and create ‖S1‖ − 1 voters with preference order

−→
B1 > c > a >

−→
B2 > b > d. (2.5)

• Voters representing S2: The case of S2 is treated analogously with the roles
of respectively S1, B1, xi , c, a, E , ej , and ēk interchanged with S2, B2, yi , d, b,
F , f j , and f̄k . More precisely, for each set F ∈ S2, create a single voter vF as
follows:
— Enumerate F as { f1, f2, . . . , f‖F‖} (renaming the candidates f j chosen from
{y1, y2, . . . , yn} for notational convenience), and enumerate its complement
F̄ = B1 − F as { f̄1, f̄2, . . . , f̄n−‖F‖}.

— To make the preference orders easier to parse, we use

“
−→
F ” to represent the text string “ f1 > f2 > · · · > f‖F‖”;

“
−→̄
F ” to represent the text string “ f̄1 > f̄2 > · · · > f̄n−‖F‖”.

— Create one voter vF with preference order

−→
F > b > d >

−→̄
F >

−→
B1 > a > c. (2.6)

• Additionally, create two voters with preference order

d >
−→
B2 > b >

−→
B1 > a > c, (2.7)

and create ‖S2‖ − 1 voters with preference order

−→
B2 > d > b >

−→
B1 > a > c. (2.8)

We now prove (2.1): YoungScore(C, c, V ) = 2 · κ(S1)+ 1.
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Let E1, E2, . . . , Eκ(S1) ∈ S1 be κ(S1) pairwise disjoint subsets of B1. Consider the
following submultiset V̂ of the voters V . V̂ consists of:

• every voter vEi corresponding to the set Ei , where 1 ≤ i ≤ κ(S1);
• the two voters given in (2.4);
• κ(S1)− 1 voters of the form given in (2.5).

Then ‖V̂ ‖ = 2 · κ(S1) + 1. Note that a strict majority of the voters in V̂ prefer c
over any other candidate, and thus c is a Condorcet winner in 〈C, V̂ 〉. Hence,

YoungScore(C, c, V ) ≥ 2 · κ(S1)+ 1.

Conversely, to prove that YoungScore(C, c, V ) ≤ 2 · κ(S1) + 1, we need the fol-
lowing lemma.

Lemma 2.4. For any λ with 3 < λ ≤ ‖S1‖ + 1, let Vλ be any submultiset of V such
that Vλ contains exactly λ voters of the form (2.4) or (2.5) and c is a Condorcet winner
in 〈C, Vλ〉. Then Vλ contains exactly λ− 1 voters of the form (2.3) and no voters of the
form (2.6), (2.7), or (2.8). Moreover, the λ − 1 voters of the form (2.3) in Vλ represent
pairwise disjoint sets from S1.

Proof of Lemma 2.4. Let Vλ for fixed λ be given as above. Consider the submultiset of
Vλ that consists of the λ voters of the form (2.4) or (2.5). Every candidate xi , 1 ≤ i ≤ m,
is preferred to c by the at least λ − 2 voters of the form (2.5). Since c is a Condorcet
winner in 〈C, Vλ〉, there exist, for every xi , at least λ− 1 > 2 voters in Vλ who prefer c
to xi . By construction, these voters must be of the form (2.3) or (2.4). Since there are at
most two voters of the form (2.4), there exists at least one voter of the form (2.3), say ṽ.
Since the voters of the form (2.3) represent S1, which contains only nonempty sets, there
exists some candidate xj who is preferred to c by ṽ. In particular, c must outpoll xj in
〈C, Vλ〉 and thus needs more than (λ− 2)+ 1 votes of the form (2.3) or (2.4). There are
at most two voters of the form (2.4); hence, c must be preferred by at least λ− 2 voters
of the form (2.3) that are distinct from ṽ. Summing up, Vλ contains at least λ− 1 voters
of the form (2.3).

On the other hand, since c is a Condorcet winner in 〈C, Vλ〉, c must in particular
outpoll a, who is not preferred to c by the λ voters of the form (2.4) or (2.5) and who
is preferred to c by all other voters. Hence, Vλ may contain at most λ− 1 voters of the
form (2.3), (2.6), (2.7), or (2.8). It follows that Vλ contains exactly λ − 1 voters of the
form (2.3) and no voters of the form (2.6), (2.7), or (2.8).

For a contradiction, suppose that there is a candidate xj who is preferred to c by
more than one voter of the form (2.3) in Vλ. Then

• c is preferred to xj by at most two voters of the form (2.4) and by at most
(λ− 1)− 2 = λ− 3 voters of the form (2.3);
• xj is preferred to c by at least λ − 2 voters of the form (2.5) and by at least two

voters of the form (2.3).
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Since c thus has at most λ−1 votes and xj has at least λ votes in Vλ, c is not a Condorcet
winner in 〈C, Vλ〉, a contradiction. Thus, every candidate xi , 1 ≤ i ≤ m, is preferred to
c by at most one voter of the form (2.3) in Vλ, which means that the λ− 1 voters of the
form (2.3) in Vλ represent pairwise disjoint sets from S1.

To continue the proof of Theorem 2.3, let k = YoungScore(C, c, V ). Let V̂ ⊆ V
be a submultiset of size k such that c is a Condorcet winner in 〈C, V̂ 〉. Suppose that
there are exactly λ ≤ ‖S1‖ + 1 voters of the form (2.4) or (2.5) in V̂ . Since c, the
Condorcet winner of 〈C, V̂ 〉, must in particular outpoll a, we have λ ≥ �(k + 1)/2�. By
our assumption that κ(S1) > 2, it follows from k ≥ 2 ·κ(S1)+1 that λ > 3. Lemma 2.4
then implies that there are exactly λ− 1 voters of the form (2.3) in V̂ , which represent
pairwise disjoint sets from S1, and V̂ contains no voters of the form (2.6), (2.7), or (2.8).
Hence, k = 2 · λ− 1 is odd, and (k − 1)/2 = λ− 1 ≤ κ(S1), which proves (2.1).

Equation (2.2) can be proven analogously. Thus, we have

κ(S1) ≥ κ(S2) if and only if YoungScore(C, c, V ) ≥ YoungScore(C, d, V ).

This completes the proof of Theorem 2.3.

Theorem 2.5. Young Winner is PNP
‖ -complete.

Proof. To prove the theorem, we modify the reduction from Theorem 2.3 to a reduction
from the problem Maximum Set Packing Compare to the problem Young Winner
as follows. Let 〈C, V 〉 be the preference profile constructed in the proof of Theorem 2.3
with the designated candidates c and d. We alter this profile such that all other candidates
do worse than c and d .

From 〈C, V 〉, we construct a new preference profile 〈D,W 〉. To define the new set
D of candidates, replace every candidate g ∈ C except c and d by ‖V ‖ candidates
g1, g2, . . . , g‖V ‖.

To define the new voter set W , replace each occurrence of candidate g in the i th
voter of V by the text string

gi mod ‖V ‖ > gi+1 mod ‖V ‖ > gi+2 mod ‖V ‖ > · · · > gi+‖V ‖−1 mod ‖V ‖.

Let V ′ be any submultiset of V , and let W ′ be the submultiset of W corresponding to V ′.
It is easy to see that c is a Condorcet winner in V ′ if and only if c is a Condorcet winner
in W ′. Thus, the change from 〈C, V 〉 to 〈D,W 〉 does not alter the Young score of c
and d . On the other hand, the Young score of any other candidate now is at most 1.
Thus, there is no candidate h with YoungScore(C, h, V ) > YoungScore(C, c, V ) or
YoungScore(C, h, V ) > YoungScore(C, d, V ). Hence, κ(S1) ≥ κ(S2) if and only if c
is a winner of the election 〈D,W 〉.
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3. Homogeneous Young and Dodgson Voting Schemes

Social choice theorists have studied many “reasonable” properties that any “fair” election
procedure arguably should satisfy, including very natural properties such as nondicta-
torship, monotonicity, the Pareto Principle, and independence of irrelevant alternatives.
One of the most notable results in this regard is Arrow’s famous Impossibility Theo-
rem [A] stating that the just-mentioned four properties are logically inconsistent, and
thus no “fair” voting scheme can exist.

In this section we are concerned with another quite natural property, the homogeneity
of voting schemes (see [F] and [Y]).

Definition 3.1. A voting scheme f is said to be homogeneous if and only if for each
preference profile 〈C, V 〉 and for all positive integers q, it holds that

f (〈C, V 〉) = f (〈C, qV〉),

where qV denotes V replicated q times.

Homogeneity means that splitting each voter v ∈ V into q voters, each of whom has
the same preference order as v, yields exactly the same choice set of winning candidates.

Fishburn [F] showed that neither the Dodgson nor the Young voting schemes are
homogeneous. For the Dodgson SCF, he presented a counterexample with seven voters
and eight candidates; for the Young SCF, he modified a preference profile constructed by
Young with thirty-seven voters and five candidates. Fishburn [F] provided the following
limit device in order to define homogeneous variants of the Dodgson and Young SCFs. For
example, the Dodgson scheme can be made homogeneous by defining from the function
DodgsonScore for each preference profile 〈C, V 〉 and designated candidate c ∈ C the
function

DodgsonScore∗(C, c, V ) = lim
q→∞

DodgsonScore(C, c, qV )

q
.

The resulting SCF is denoted by Dodgson∗ SCF, and the corresponding winner and
ranking problems are denoted by Dodgson∗ Winner and Dodgson∗ Ranking.

Example 3.2 [F]. We provide here Fishburn’s example [F] showing that the original
Dodgson voting scheme is not homogeneous. Consider the preference profile 〈C, V 〉,
where C consists of the eight candidates a1, a2, . . . , a7, and c, and V consists of the
following preference orders:

a1 > a2 > a3 > a4 > c > a5 > a6 > a7,

a7 > a1 > a2 > a3 > c > a4 > a5 > a6,

a6 > a7 > a1 > a2 > c > a3 > a4 > a5,

a5 > a6 > a7 > a1 > c > a2 > a3 > a4,

a4 > a5 > a6 > a7 > c > a1 > a2 > a3,



384 J. Rothe, H. Spakowski, and J. Vogel

a3 > a4 > a5 > a6 > c > a7 > a1 > a2,

a2 > a3 > a4 > a5 > c > a6 > a7 > a1.

One can verify that DodgsonScore(C, c, V ) = 7 and DodgsonScore(C, ai , V ) = 6,
for each i . Thus, according to the original Dodgson scheme, the choice set of winning
candidates in 〈C, V 〉 is {ai | 1 ≤ i ≤ 7}. However, DodgsonScore∗(C, c, V ) = 3.5
and DodgsonScore∗(C, ai , V ) = 4.5, for each i , which implies that, according to the
original Dodgson scheme and for a large enough q, the choice set of winning candidates
in 〈C, qV 〉 is {c}. Hence, the original Dodgson voting scheme is not homogeneous.

Analogously, the Young voting scheme defined in Section 2.2 can be made homoge-
neous by defining YoungScore∗. Remarkably, Young [Y] showed that the corresponding
problemYoung∗ Winner can be solved by a linear program. Hence, the problemYoung∗

Winner is efficiently solvable, since the problem Linear Programming can be de-
cided in polynomial time [H], see also [K]. Inspired by Young’s work, we establish an
analogous result for the problems Dodgson∗ Winner and Dodgson∗ Ranking below.
Theorem 3.3 should be contrasted with the known result [HHR] that Dodgson Winner
and Dodgson Ranking are complete for PNP

‖ .

Theorem 3.3. Dodgson∗ Winner and Dodgson∗ Ranking can be solved in poly-
nomial time.

Proof. Bartholdi et al. [BTT2] provided an integer linear program for determining the
Dodgson score of a given candidate c. They noted that if the number of candidates is fixed,
then the winner problem for Dodgson elections (in the inhomogeneous case defined in
Section 2.2) can be solved in polynomial time using the algorithm of Lenstra [L].

Based on their integer linear program, we provide a linear program for computing
DodgsonScore∗(C, c, V ) for a given preference profile 〈C, V 〉 and a given candidate c.
Since Linear Programming is polynomial-time solvable [H], it follows that the prob-
lems Dodgson∗ Winner and Dodgson∗ Ranking can be solved in polynomial time,
even if the number of candidates is not prespecified.

Let a profile 〈C, V 〉 and a candidate c ∈ C be given, and let V = {v1, v2, . . . , vn}.
Our linear program has the variables xi, j , and constants ei, j,k , and wk , where 1 ≤ i ≤ n,
1 ≤ j ≤ ‖C‖ − 1, and k ∈ C − {c}. The constants are obtained from the profile 〈C, V 〉
as follows:

• For given i , j , and k, set ei, j,k = 1 if the result of moving c upwards by j
positions in the preference order of voter vi is that c gains one additional vote
against candidate k, and set ei, j,k = 0 otherwise.
• For any candidate k other than c, the constant wk gives the number of voters who

prefer c over k.

DodgsonScore∗(C, c, V ) is the value of the linear program

min
∑

i, j

j · xi, j (3.1)
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subject to the constraints:

(1)
∑

j xi, j = 1 for each voter vi ;
(2)

∑
i, j ei, j,k · xi, j + wk > n/2 for each candidate k ∈ C − {c};

(3) 0 ≤ xi, j ≤ 1 for each i and j .

The variables and constraints can be interpreted as follows:

1. For given i and j , the variable xi, j is a rational number in the interval [0, 1] (by
the set of constraints (3)) that gives the percentage vq

i, j/q, where q is the least
common multiple of the denominators in all xi, j , and vq

i, j is the number of voters
among the q replicants of voter vi in which c is moved upwards by j positions.

2. The set of constraints (2) ensures that c becomes a Condorcet winner.
3. The set of constraints (1) ensures that vq

i, j , summed over all possible positions j ,
equals the number q of all replicants of voter vi .

The objective is to minimize the number of switches needed to make c a Condorcet
winner. For the homogeneous case of Dodgson elections, the linear program (3.1) tells
us how many times we have to replicate each voter vi (namely, q times) and in how many
of the replicants of each voter vi the given candidate c has to be moved upwards by how
many positions in order to achieve this objective.

Acknowledgments

We thank Edith and Lane Hemaspaandra for introducing us to the fascinating topic of computational politics
(voting schemes and complexity issues related to them), and for many interesting discussions. We thank the
anonymous IFIP-TCS 2002 referee and two anonymous TOCS referees for their nice and helpful comments,
and we thank Mitsunori Ogihara for his guidance during the editorial process.

References

[A] K. Arrow. Social Choice and Individual Values. Wiley, New York, 1951 (revised edition 1963).
[B] D. Black. The Theory of Committees and Elections. Cambridge University Press, Cambridge, 1958.

[BTT1] J. Bartholdi III, C. Tovey, and M. Trick. The computational difficulty of manipulating an election.
Social Choice and Welfare, 6:227–241, 1989.

[BTT2] J. Bartholdi III, C. Tovey, and M. Trick. Voting schemes for which it can be difficult to tell who won
the election. Social Choice and Welfare, 6:157–165, 1989.

[BTT3] J. Bartholdi III, C. Tovey, and M. Trick. How hard is it to control an election? Mathematical Computer
Modelling, 16(8/9):27–40, 1992.

[C] M. J. A. N. de Caritat, Marquis de Condorcet. Essai sur l’application de l’analyse à la probabilité
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