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Abstract. We study the problem of executing parallel programs, in particular Cilk
programs, on a collection of processors of different speeds. We consider a model in
which each processor maintains an estimate of its own speed, where communication
between processors has a cost, and where all scheduling must be online. This problem
has been considered previously in the fields of asynchronous parallel computing
and scheduling theory. Our model is a bridge between the assumptions in these
fields. We provide a new more accurate analysis of an old scheduling algorithm
called the maximum utilization scheduler. Based on this analysis, we generalize
this scheduling policy and define the high utilization scheduler. We next focus on
the Cilk platform and introduce a new algorithm for scheduling Cilk multithreaded
parallel programs on heterogeneous processors. This scheduler is inspired by the
high utilization scheduler and is modified to fit in a Cilk context. A crucial aspect
of our algorithm is that it keeps the original spirit of the Cilk scheduler. In fact,
when our new algorithm runs on homogeneous processors, it exactly mimics the
dynamics of the original Cilk scheduler.
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1. Introduction

One of the basic problems in parallel computing is how to execute a parallel program
on a collection of heterogeneous processors, that is, processors of different and possibly
changing speeds. In this paper we focus on the scheduling issues that arise when pro-
cessors are heterogeneous. We develop scheduling algorithms that are designed to run
efficiently in parallel computing environments. We consider general parallel computing
environments, but with a particular focus on the Cilk platform [10].

One of the most important constraints of the parallel setting is that the schedulers
must make rapid decisions about how to assign tasks to processors; otherwise, the
time to run the scheduler may actually delay the execution of the parallel program.
These scheduling decisions must be made with only partial knowledge of the actual
scheduling problem because both the structure of the parallel program and the speeds of
the processors are only known online, that is, as the computation unfolds.1 Furthermore,
the entire state of the system is not automatically visible to any processor. Each processor
i is only aware of its own local state; in order to determine the state of another processor
j , processor i must explicitly communicate with j and this communication has a cost.
Consequently, a centralized scheduler, which repeatedly gathers all the information about
the states of the processors, may be too expensive. This paper describes a scheduling
algorithm that is distributed.

Our scheduler is optimized for the following pattern of speed changes, which seems
to be the common case in parallel computing environments.

1. Most of the time the processor speeds are fairly consistent, and therefore a pro-
cessor can maintain a good estimate of its own speed. This estimate naturally is
not completely accurate, but most of the time it will be mostly accurate.

2. Processor speeds may occasionally change dramatically, but these changes are
limited. The efficiency of our scheduler is allowed to degrade gradually as pro-
cessors become more erratic.

The model in this paper is a bridge between asynchronous parallel computing and
scheduling theory; these two fields attack the general problem of executing parallel
programs on processors of different speeds. However, both of these fields make assump-
tions that differ dramatically from the parallel setting described above. For example, in
asynchronous parallel computing the processor speeds are assumed to change arbitrarily
and adversarially. This worst-case assumption is often too pessimistic and may lead to
inefficient schedules. In scheduling theory the processor speeds are assumed to remain
constant, and the scheduler is provided with global knowledge of the state of the system,
a large amount of time to run, and offline knowledge of the structure of the computation.
Based on these assumptions, the system is unrealistically predictable and the scheduler
is unrealistically powerful.

1 In some special cases, such as numerical algorithms, the structure of the parallel program may be
known in advance. This paper considers general parallel computations (e.g., parallel chess programs) and does
not assume that the programmer provides the running times of the parallel tasks and a mapping from tasks to
processors.
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We further describe why it is useful to bridge these fields and then proceed to the
main results in this paper.

1.1. Asynchronous Parallel Computation

Executing parallel programs on heterogeneous processors is studied intensely in the area
of asynchronous parallel computation [20], [19], [34], [32], [28], [5], [3], [2a], [2b]. In
this field the goal is to run a parallel program that is written assuming synchronization
barriers, on a collection of asynchronous processors that do not have a synchronization
primitive.

Processors are assumed to be arbitrarily erratic. That is, a processor may initially
run so slowly that it is essentially stopped, change speed abruptly so that it runs extremely
(even infinitely) fast, and then stop once more. Correctness proofs typically assume that
processor speeds are determined by an adversary, whose goal is to prevent the parallel
program from executing correctly or efficiently. Because processors may change speeds
to an arbitrary degree, processors are not assumed to have knowledge of their own speed.

The machinery of asynchronous parallel computation is useful for mission critical
applications, in which a program must run correctly and steadily, regardless of the erratic
behaviors of the individual processors. On the other hand, it may not be worth paying
the overhead of these schemes if the application is not mission critical; similarly, it may
not be worth paying the overhead if the processors are not arbitrarily erratic, that is, if
they change speeds, but most of the time by too much.

1.2. Scheduling on Related Processors

Executing a parallel program on heterogeneous processors is a common problem in
scheduling theory. In this field there is an underlying assumption that processors may
have different speeds but that the speeds do not change. The goal is to schedule a parallel
program represented as a directed acyclic graph (dag) to minimize the makespan, that is,
the maximum completion time of the jobs. Using terminology from scheduling theory,
the problem is that of scheduling precedence-constrained tasks on related processors to
minimize the makespan.

Because this problem is NP-hard [35] even when all processors have the same speed,
the scheduling community has concentrated on developing approximation algorithms for
the makespan. Early papers introduce O(

√
p)-approximation algorithms [23], [24], and

more recent papers propose O(log p)-approximation algorithms [16], [17], [14], [15].
Unfortunately, some common assumptions from scheduling theory often do not apply to
parallel computing, and consequently many scheduling algorithms from this field are not
usable in our setting. For example, many of these scheduling algorithms run offline, that
is, after seeing the entire structure of the parallel program. In addition, the schedulers
usually have full knowledge about the state of the system and have the unlimited ability
to apply the scheduling decisions.

Finally the quality of many of the scheduling algorithms are measured using the
approximation ratio. Even in the homogeneous setting, i.e., when all processors run at
the same speed, it is known that the approximation ratio may be misleading [12] by a
factor as large as 2. The approximation ratio is dramatically less reliable when processors
are heterogeneous for several reasons that we describe shortly.
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1.3. The Heterogeneous Setting

To develop intuition about the heterogeneous setting, consider the natural class of greedy
schedules, in which no processor is allowed to stay idle if there is a task that can be
assigned to it. When processors are homogeneous, all greedy schedules have essentially
comparable makespans (within a factor of 2 of each other). However, when processors
are heterogeneous there may be an unbounded ratio between the makespan of the best
greedy schedule and the makespan of the worst greedy schedule. To obtain a schedule
having a good makespan, fast processors should be assigned to longer paths in the dag
and slower processors should be assigned to shorter paths. This assignment process is
computationally difficult because nodes in the dag may belong to many interleaving
paths of different lengths.

Thus, for any p homogeneous processors, consider p heterogeneous processors that
have the same average speed. The optimal makespan in the heterogeneous setting may
be much smaller than in the homogeneous setting. However, practical and computational
limitations usually prevent this elusive schedule from being found. On the other hand, it
is easy to encounter a poor schedule, especially when the processors’ speeds can change.
This is why users prefer homogeneous processors to heterogeneous ones, even though
in ideal conditions the heterogeneous processors may allow shorter schedulers. Thus, in
this paper the objective of an efficient scheduler is to use its heterogeneous processors
as efficiently as if they were homogeneous.

1.4. Results

We present the following results:

1. We provide a new analysis of an old scheduling algorithm called the maximum
utilization scheduler [23]. In particular, we prove a bound on the makespan and on
the number of preemptions. Based on this analysis, we generalize this scheduling
policy and define the high utilization scheduler. We explain why these scheduling
policies have close to optimal makespans on dags that represent most parallel
programs.

The algorithms presented so far are not directly implementable because the
schedulers require too much centralized control. However, they provide insight
into how to schedule parallel programs on heterogeneous systems.

2. We next focus on the Cilk platform and present the main result of the paper. We
introduce a new algorithm for scheduling Cilk multithreaded parallel programs
on heterogeneous processors. This scheduler is inspired by the high utilization
scheduler, modified to fit in a Cilk context. A crucial aspect of our algorithm
is that it retains the original spirit of the Cilk scheduler. In fact, when our new
algorithm runs on homogeneous processors, it exactly mimics the dynamics of
the original Cilk scheduler.

1.5. Definitions and Notation

There are p processors labeled 1, . . . , p where processor i has speed πi steps/time. For
the sake of convenience, we assume that π1 ≥ π2 ≥ · · · ≥ πp. In much of the paper
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we assume that the processor speeds do not change; later we mention how our solutions
behave when speeds change. Let πtot steps/time be the total computing power of all of
the processors, that is, πtot = ∑p

i=1 πi . Let πave steps/time be the average speed of the
processors, that is, πave = πtot/p.

A dag G = (V, E) describes the structure of a parallel program. The nodes of the dag
represent tasks that the processors must complete, and the edges represent dependencies
between the tasks. Thus, if there is an edge (u, v) ∈ E , then v cannot be executed until
after u completes. In this case we say that u is a parent of v. Tasks are grouped into
larger segments of code called threads; a thread is a path in the dag, where all nodes in
the thread, except possibly the first and the last, have outdegree and indegree of 1.

A series parallel dag G = (V, E) is a directed acyclic graph with two distinguished
vertices, a source s and a sink t . The family of series parallel graphs are described using
the following grammar. A series parallel dag G = (V, E) is one of the following: (1) A
single edge extending from s to t , that is, V = {s, t} and E = {(s, t)}. (2) Two series
parallel graphs G1 and G2 composed in parallel. The sources s1 and s2 of G1 and G2,
respectively, are merged into a single source s and the sinks t1 and t2 of G1 and G2 are
merged into a single sink t . (3) Two series parallel graphs G1 and G2 composed in series.
The sink t1 of G1 and the source s2 of G2 are merged into a single node.

Cilk parallel programs are modeled by fully strict dags. A fully strict dag is series
parallel, all of the nodes in the dag have outdegree at most 2, and there is one node with
indegree 0 and one node with outdegree 0. The root thread is a path extending from the
first node in the dag to the last node. A node in the root thread with outdegree 2 spawns
another thread, which continues until it joins the root thread once more. This thread may
spawn child threads, which may in turn spawn other child threads.

Let W1 represent the total work, that is the total number of nodes in the dag G. Let
W∞ represent the critical path length of the graph, that is, the number of nodes in the
longest chain in G. Consider a modified dag G ′ in which all nodes with indegree and
outdegree of 1 are removed, that is, all paths of such nodes are replaced by a single edge.
Let S1 represent the total number of edges in G ′, and let S∞ be the critical path in G ′.
Let Tp represent the time to execute G on p processors. A task or thread is ready if all
of its predecessors in G have been executed.

We say that a thread is preempted if it is interrupted and later resumed, possibly on
a different processor. We say that there is a migration whenever the state of the system
is moved from one processor to a different processor. Thus, there may be a migration if
a previously idle processor begins executing a thread because the processor may have
obtained the thread from another processor. There is not a migration if a processor
finished executing a thread and then executes a successor thread in the dag. Thus, there
may be a migration without a preemption, or a preemption without a migration. All
migrations entail an additional cost, which we take into account.

We say that an event E occurs with high probability if for any c > 0 there exists a
proper choice of constants such that Pr{E} ≥ 1 − n−c.

1.6. Related Work

Graham [21], [22] proved that a list schedule is a (2−1/p)-approximation to the optimal
makespan, and this result holds for any greedy schedule. (In a list schedule the jobs have
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fixed priorities and the processors execute the ready tasks in the system with the highest
priorities.) This results derives from the following theorem:

Theorem 1 [21], [22], [13]. A greedy schedule (or list schedule) has makespan

Tp ≤ W1

p
+

(
p − 1

p

)
W∞.

Jaffe [23] shows that the following preemptive scheduling policy, called a maximum
utilization schedule, is a O(

√
p)-approximation algorithm. At all times maintain the

following invariant: if there are i , i < p, ready threads, assign these threads to the i
fastest processors. Note that threads may be preempted; that is, in the middle of the
execution of a thread, a faster processor may take up the responsibility for executing
the thread. Jaffe [24] then showed that the following nonpreemptive is also a O(

√
p)-

approximation algorithm for the makespan. Consider the following two schedules and
select the one having the better makespan: (1) assign all jobs to the fastest processor, and
(2) assign all jobs greedily to processors having speed faster than half the average. More
recently, Chudak and Shmoys [16], [17] obtained a O(log p)-approximation by using a
linear programming relaxation to decide at which speed each task should run. Chekuri
and Bender [14], [15] developed a combinatorial approximation algorithm having the
same asymptotic approximation ratio.

Cilk Scheduler. Cilk is a parallel system with a scheduler that has provable performance
guarantees. The Cilk scheduling algorithm is entirely distributed and uses the idea of
work stealing. Namely, if a processor is idle, it randomly chooses another processor,
checks if the processor has extra work, and if so, steals some. The work is stolen in a
way that avoids a large increase in memory usage or in running time. The Cilk scheduler
works as follows. Each processor maintains a double-ended queue, which is called a
ready deque. Threads can be inserted and removed from either end of the ready deque.
If a processor has no local work to do, it begins work stealing. The processor uses its
own ready deque as a stack but other processors’ deques as queues. Each processor i
operates as shown in Figure 1. (For a more complete introduction to the Cilk scheduler
see for example [12] and [10].)

2. High Utilization Schedules

We now provide a new analysis of the maximum utilization scheduling policy. This
scheduler maintains the following invariant. During each time interval in which there
are exactly i ready threads, for each i < p, the fastest i processors execute these tasks.
If there are i ≥ p ready threads, then all of the processors work. Beyond this basic
restriction, any processor may execute any task. Note that in order to maintain this
invariant, the scheduling policy must allow preemptions.

The maximum utilization scheduling policy is a O(
√

p)-approximation algorithm,
but there are other scheduling algorithms that have comparable approximation ratios and
that do not even require preemption. Thus, the advantages of the maximum utilization
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CILK SCHEDULER

1. The processor chooses a victim processor j uniformly at random.
2. If the victim j’s ready deque is empty, processor i attempts to steal again.
3. Otherwise, it steals the thread T from the top of the deque and begins ex-

ecuting it. The processor begins working on thread T until one of three
situations:
(a) Thread T spawns a thread T ′. In this case the processor puts T on the

bottom of the ready deque and starts work on thread T ′.
(b) The thread T returns or terminates. If the deque is not empty, the pro-

cessor begins working on the bottom thread. If the deque is empty, it
tries to steal and execute thread T ’s parent. Otherwise, if the parent is
busy, the processor attempts to work steal.

(c) The thread reaches a synchronization point. In this case the processor
attempts to work steal. (Note that the deque is empty.)

Fig. 1. The Cilk scheduler.

scheduler are more subtle, and consequently this scheduling strategy has hardly been
revisited. However, many of the other scheduling strategies suffer from the following
drawbacks: either they are too complicated to be implemented efficiently, or they produce
schedules that are qualitatively unsatisfactory.

The maximum utilization scheduler has a straightforward generalization, which we
call a high utilization scheduler. In this scheduler we relax the invariant so that at all times:
if there are i , i < p, ready threads, the fastest idle processor is at most β times faster
than the slowest busy processor. Thus, when β = 1, we obtain a maximum utilization
schedule. This makespan of a high utilization schedule appears inferior to the makespan
of a maximum utilization schedule, but may have the advantage of fewer preemptions.

We demonstrate two advantages of high utilization schedules: (1) in the common
case in parallel computing, high utilization schedules are almost optimal, and (2) they
convey a straightforward message to practitioners, run your parallel program on the
fastest processors that you can find, and this may be all the optimization that is required.
On actual systems such as the Cilk platform, the unembellished high utilization schedule
may be too complicated to implement. However, the straightforward concept of using
the fastest available processors can be generalized. Thus, high utilization strategies are
important because of the guidance that they give in actual situations.

Theorem 2. Any maximum utilization schedule has makespan

Tp ≤ W1

p πave
+

(
π2

π1
+ π3

π2
+ · · · + πp

πp−1

)
W∞

p πave
≤ W1

p πave
+

(
p − 1

p

)
W∞
πave

.

Proof. We introduce an accounting tool. We postulate p − 1 disjoint shadow threads
ST2, ST3, . . . , STp. Each shadow thread is an imaginary chain of tasks. When a processor
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i is unable to do any work on an actual thread, we say that the processor begins working
on its shadow thread STi .

Consider any time interval in which processor i is idle and thus working on its shadow
thread STi . Since not all processors have actual work, we are assured that progress is
being made on the critical path at the rate of the slowest working processor. That is, since
only faster processors 1 · · · i − 1 may be working on the computation, the critical path
is advancing at a rate of at least πi−1 steps/time.

Because the critical path has length W∞, processor i can work on STi forπi/πi−1 W∞
time units. Processor 1 is never idle. Therefore the total amount of work the proces-
sors dedicate to actual and shadow threads is at most W1 + (π2/π1 + π3/π2 + · · · +
πp/πp−1) W∞. Because the processors operate at πtot steps/time we obtain the desired
bound.

Note that from Theorem 2, we obtain Theorem 1 as a corollary. The makespan can
be marginally improved by placing processors on threads more strategically. Namely,
put the i th fastest processor on the i th longest critical path. This policy guarantees that
the critical path progresses at least at the average speed of the working processors.

Claim 3. Suppose that the maximum utilization strategy additionally maintains the
invariant that the i th fastest processor executes the thread that is i th farthest from the
end of the dag. This amounts to putting the fastest processor on the critical path. Then
the computation has makespan

Tp ≤ W1

p πave
+

[
π2

π1
+ 2 π3

π1 + π2
+ 3 π4

π1 + π2 + π3
+ · · ·

+ (p − 1) πp

π1 + π2 + · · · + πp−1

]
W∞

p πave
.

Proof. As in Theorem 2, we introduce p−1 disjoint shadow threads ST2, ST3, . . . , STp,
where each shadow thread is an imaginary chain of tasks. When a processor i is unable
to do any work on an actual thread, we say that the processor works on its shadow thread
STi .

Consider any time interval in which processor i is idle and thus working on its
shadow thread STi . Since not all processors have actual work, progress is being made on
the critical path at least as fast as the average speed of the working processors. That is,
since only faster processors 1 · · · i − 1 may work on the computation, the critical path
advances at a rate of at least (π1 + π2 + · · · + πi−1)/(i − 1) steps/time.

Because the critical path has length W∞, processor i can work on STi for πi (i −
1)/(π1 + π2 + · · · + πi−1) W∞ time units. Processor 1 is never idle. Therefore the total
amount of work the processors dedicate to actual and shadow threads is at most

W1 +
[
π2

π1
+ 2 π3

π1 + π2
+ 3 π4

π1 + π2 + π3
+ · · · + (p − 1) πp

π1 + π2 + · · · + πp−1

]
W∞.

Because the processors operate at πtot steps/time we obtain the desired bound.
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Unfortunately, this gain in makespan seems small in comparison with the potentially
infinite number of additional preemptions that this policy entails.

The proof of Theorem 2 extends to prove the following theorem that provides a
bound on the makespan of a high utilization schedule.

Theorem 4. Any high utilization schedule has makespan

Tp ≤ W1

p πave
+

(
p − 1

p

)
β W∞
πave

.

We now provide a bound on the number of migrations in a high utilization schedule.

Theorem 5. Consider a high or maximum utilization schedule of an arbitrary dag. If
there are a total of S1 threads, then there are at most 2S1 migrations.

Proof. We divide the computation into phases, S1, S1 − 1, . . . , 2, 1, where in phase
� the computation has � (incomplete) threads. Within a phase, a computation has
no migrations at all. A phase begins when the number of active threads (e.g., threads
currently being executed by processors) changes.

Assume without loss of generality that at most one thread completes at any time.
(If two threads complete simultaneously, we break the tie arbitrarily.) There are two
cases for the dynamics of the schedule when a thread completes. (1) When a thread
Tα completes, no new threads active become active. Then the slowest currently active
processor k migrates to the idle pool, and the processor j on Tα migrates to k’s thread. (If
we are lucky, the slowest currently active processor k is already on thread Tα .) (2) When
a thread Tα completes, x new threads become active. Then x − 1 processors migrate
from the idle pool to a new active thread and one processor migrates from the completed
thread Tα to a new active thread.

If each migration requires an extra cost of M , then we have a bound on the increase in
makespan from Theorem 6 when migrations have a cost, namely 2MS1/p. The quantity
M may include the cost to send the system state from one processor to another or may
even include the cost to restart a thread from some previous checkpoint.

Theorem 2, Claim 3, and Theorem 4, which bound the makespan of maximum and
high utilization schedules, hold even when the speeds of processors change. Theorem 5,
however, no longer applies. Instead, the number of migrations increases as the processors
become more erratic. An open question is to choose the value of β that optimizes the
makespan while avoiding too many migrations.

2.1. Performance in the Common Case

Even though the high utilization schedule is a O(
√

p)-approximation algorithm for gen-
eral dags, on dags that represent most parallel programs, the algorithm has a substantially
better performance. In most parallel programs W1/p � W∞ [12]. An interpretation of
this inequality is that the parallel program has enough inherent parallelism to justify the
use of p processors. Observe that in Theorems 2 and 4, W1/πtot is a lower bound on
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the makespan, and when β > 1 is sufficiently close to 1, this quality dwarfs βW∞/πave.
Therefore, even though the high utilization schedule is a O(

√
p)-approximation for

general dags, in the case of dags representing typical parallel programs, it is almost op-
timal. This closeness to optimal is not true of the nonpreemptive O(

√
p)-approximation

algorithm.

3. An Enhanced Cilk Scheduler

Direct implementation of the the scheduling policies in the previous section are imprac-
tical because they rely on global control. However, the general design principle of high
utilization is critical, and we apply this concept in Cilk scheduling. In this section we
describe an enhanced Cilk scheduler that runs correctly and robustly even when proces-
sors have different speeds. Moreover, when the processors run at similar speeds, our new
schedule behaves identically to the standard Cilk scheduler. Thus, an important feature
of our scheduler is that it is extremely similar to the original scheduler at a small cost in
algorithmic complexity.

In this algorithm there are two kinds of migrations: steals and muggings. In a steal,
a processor begins working on a thread at the top of another processor’s ready deque. In
a mugging, there is no work on another processor’s ready deque, and so the processor
“mugs” a processor that is slower by at least a β factor and takes the thread that the
slower processor was working on. The pseudocode for the Enhanced Cilk Scheduler
appears in Figure 2.

ENHANCED CILK SCHEDULER

1. Processor i chooses a victim processor j uniformly at random.
2. If the victim j’s deque is not empty, it steals the thread T from the top of the

deque.
3. If the victim j’s deque is empty, but the victim is working on a thread T

and its speed is β times slower than processor i , then i mugs j , that is, i
interrupts j and takes the thread T .

4. If processor i has located a thread T , i works on T until one of four situations:
(a) Thread T spawns a thread T ′. In this case the processor puts T on the

bottom of the ready deque and starts work on thread T ′.
(b) The thread T returns or terminates. If the deque is not empty, the pro-

cessor begins working on the bottom thread. If the deque is empty, it
tries to steal and execute thread T ’s parent. Otherwise, if the parent is
busy, the processor attempts to work steal.

(c) The thread reaches a synchronization point. In this case the processor
attempts to work steal. (Note that the deque is empty.)

(d) Processor i is mugged and the thread T is migrated to another processor.
In this case processor i attempts to work steal.

5. Otherwise, there is a failed steal attempt; processor i tries to steal again.

Fig. 2. The Enhanced Cilk Scheduler.
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If all processors operate at speeds within a β factor of each other, then there are no
muggings and the scheduler behaves like the standard Cilk scheduler. The parameter β

can be tuned to optimize system performance.
Indeed, it is not even necessary to define a particular value of β. That is, our algorithm

still works for any β > 1, i.e., processor i mugs processor j only if πi > πj . The
advantage of introducing β is that it reduces the number of migrations. Optimizing the
value of β is a topic of future work.

3.1. Design Assumptions and Changing Speeds

We make the following additional assumptions: (1) Each processor steals at a rate propor-
tional to its speed. (2) Steals and steal attempts are completed in an amount of time that
is proportional to the speed of the processor doing the stealing/mugging. It is important
that the steal responses on the platform do not depend on the speed of the victim pro-
cessor because otherwise the slowest processor can delay the entire system.2 There are
several ways to ensure this design principle. For example, there might be a bound on the
ratio between the fastest and slowest processor. We could also require some mechanism
for communicating steal attempts, such as a shared memory, that allows one processor
to look directly into the deques of other processors.

The Enhanced Cilk Scheduler is designed to be efficient when speeds change. This
is because the scheduler relies on brief interactions between pairs of processors, rather
than global control. The processors do not have to store information about the speeds of
other processors, which might quickly become out of date. However, as the processors
become more erratic, there may be additional steals and muggings.

The following section bounds the running time and number of steals and muggings
in the case when the processors speeds do not change by too much. The performance
of the algorithm degrades gracefully as the speeds become more erratic. An important
open question is to optimize the value of β to remove unnecessary muggings.

3.2. Analysis

We now analyze the running time of the Enhanced Cilk Scheduler. We prove the following
performance guarantee.

Theorem 6. With high probability the execution time Tp of the enhanced Cilk Scheduler
is bounded as follows:

Tp ≤ W1

p πave
+ O

(
W∞
πave

)
.

We use an accounting argument to prove Theorem 6. Observe that at all times a processor
is either (1) executing an instruction, or (2) attempting to steal (and perhaps actually

2 If the steal attempts run at the speed of the victim processor, then the work-stealing approach cannot have
guaranteed good performance. This is because the root thread of the computation may reside on a processor
that is entirely stopped, and the computation cannot proceed.
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stealing or mugging). For simplicity of analysis, we assume that each of these operations
requires one unit of work. (In fact, executing an instruction is likely to be much faster
and so in our analysis we can group multiple instructions together.)

We postulate two buckets that we use for accounting, a work bucket and a steal
bucket. Each time a processor completes a unit of work on the dag it puts one dollar
into the work bucket; each time a processor completes a steal attempt (successful or not)
it puts one dollar into the steal bucket. (This approach was used in the original paper
of [12] and in much of the subsequent work on Cilk.) There are πtot dollars that enter
the buckets per unit of time. Therefore, if at the end of the computation, there are a total
of D dollars in both buckets, then the computation ran in time D/πtot.

Computing the number of dollars in the work bucket is straightforward, because
each time the processor completes one unit of work, it puts a dollar in the work
bucket.

Observation 1. At the end of the computation there are a total of exactly W1 dollars
in the work bucket.

We now use a potential-function argument to prove a bound on the number of dollars
in the steal bucket. This argument is an extension of the result in [1] and [9] and begins
with some definitions.

Definitions. For any (nonroot) node v, suppose that node u is the last of v’s parents
to be executed. Then we say that the execution of node u enables node v. Node u is
called the designated parent of v and edge (u, v) is called the enabling edge. The graph
composed of all the enabling edges is called the enabling tree. The node that is being
executed at time t by processor i is called the assigned node of processor i at time t .
We assign weights to all of the nodes, so that we can use these weights in a potential
function argument. Let d(u) denote the depth of node u in the dag, i.e., the distance to
the root node. Each node u has weight w(u) = W∞ − d(u), so that nodes closer to the
root have larger weight.

We now present the potential function from [1] and [9], which we will use. Let Rt

be the set of ready nodes at time t . Each node is either in some deque or assigned to and
executed on some processor. For each ready node v ∈ Rt , we define its potential ϕt (v)

as

ϕt (v) =
{

32·w(v)−1 if v is assigned;
32·w(v) otherwise.

We let �t (i) denote the sum of the potentials of the nodes on processor i at time t . We
let �t = ∑p

i=0 �t (i) be the value of the potential function at time t . Thus, the initial
potential is 32·W∞ because the root node has depth 0 and is initially unassigned. The final
potential is 0 because all nodes have been completed.

Now supplied with these definitions, we show that the Structural Lemma of the
deques from [1] and [9] still holds in the heterogeneous setting. This lemma guarantees
that for any deque at all times during the execution of the work-stealing algorithm, the
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designated parents of the nodes in the deque lie on the root-to-leaf path in the enabling
tree.

Lemma 7 [1], [9]. Let k be the number of (ready) nodes in a given deque at any time
t , and let v1, v2, . . . , vk denote these nodes ordered from bottom to top. Let v0 be the
assigned node. In addition, for i = 1 · · · k, let ui be the designated parent of vi . Then
for i = 1 · · · k, node ui is an ancestor of ui−1 in the enabling tree. Moreover, although it
may be that u0 = u1, for i = 2 · · · k, ui−1 �= ui . Thus, the weights of the nodes increase
from bottom to top, that is, w(v0) ≤ w(v1) < w(v2) < · · · < w(wk).

Proof. The proof is by induction on times in which the structure of the deque changes,
as in [1] and [9]. There are five possible ways that the deque may change: (S) the top
node of the deque is stolen; (E0) the assigned node enables 0 children; (E1) the assigned
node enables 1 child; (E2) the assigned node enables 2 children; (M) The processor is
mugged and the assigned node is moved to a faster processor. The first four cases are
described and analyzed in the proof in [1] and [9].

The case of muggings, which is unique to the heterogeneous setting, is trivially
integrated into the correctness proof. After a mugging, the mugged processor has no
assigned tasks and an empty deque, and the mugging processor has an assigned task but
an empty deque. Thus, the claim follows trivially in the case of muggings because there
is that most one node.

The Structural Lemma enables us to prove the following observation:

Observation 2 [1, Lemma 6]. For any processor at time t during the execution of the
scheduling algorithm, the potential of the topmost nodes in the deques contributes at
least three-quarters of the potential associated with the processors that have nonempty
deques.

We now divide the computation into phases, which are defined inductively by when
steal attempts occur. The first phase begins at time t = 0, the start of the computation,
and it ends after (β + 2)p steal attempts have occurred. (Recall the definition of β: in
order for a processor i to mug a processor j , it must be that πi > βπj .) The i th phase
begins at the end of the (i − 1)th phase and completes after (β + 2)p additional steal
attempts have been made.

Theorem 8. There is at least a constant probability that within each phase, the potential
drops by at least a constant factor. Therefore, there are at most O(log n) phases, both
expected and with high probability.

Proof. At any time t we partition the potential �t = Dt + St + Ft into three disjoint
components. The component Dt is associated with processors whose deque contains
nodes. The rest of the potential is associated with processors that have empty deques, but
which may have assigned nodes. We divide this remaining potential into components
associated with processors we define as slow and fast, respectively. A processor i is
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called slow in phase �, if, during phase �, the processor does not have time to finish
executing the node that it was working on when the phase began. A processor i is called
fast otherwise.

We first consider the potential Dt associated with the set of processors whose deques
are not empty. Recall that at least three-quarters of the potential from nodes in the deques
is exposed to steals at the top of the deques. Consequently, because there are (2 + β)p
steal attempts in any phase and the probability that a given steel attempt does not steal
from a given deque is (1 − 1/n), the probability that there is no steal attempt in a
deque is at most e−(2+β). When the node at the top of the deque is stolen, the potential
of this node decreases by a factor of two-thirds because the node is now assigned to a
processor.

Let value Q be the sum of the potentials of the nodes at the top of the deques.
Then the expected value of the remaining potential of these nodes after the phase ends
is at most e−(2+β) Q + (1 − e−(2+β)) 2Q/3. Therefore, by the Markov inequality, there
is at least a constant probability that the potential associated with these nodes decreases
by at least a constant factor. Consequently, by Observation 2, with at least a constant
probability the potential associated with all the nodes in those deques decreases by at
least a constant factor.

We now examine the component Ft of the potential, that is, the potential associated
with fast processors having empty deques at the start of phase �. For any such processor i ,
the completion of i’s assigned node causes the potential to decrease by at least a constant
factor because i’s original assigned node will be completed.

Finally, we examine the component St of the potential, that is, the potential associated
with slow processors having empty deques at the start of phase �. In order to reduce the
potential of a slow processor i that contributes to St , another processor j must (1)
choose to mug processor i , and (2) complete one node of the thread that it obtained
from processor i . In order to mug i , processor j must be more than β times faster than
processor i . How many steal attempts are there in phase � that satisfy these conditions?
Any processor that makes β + 2 steal attempts in the phase must be more than β times
faster than processor i , which does not even finish executing one node. Consequently,
in (β + 2)p steal attempts, there will be at least p steal attempts that satisfy all of these
conditions. Therefore, the probability that any given slow processor is not mugged is at
most 1/e. Let value Q′ be the sum of the potential of the nodes being executed by the
slow processors. Then the expected value of the remaining potential of these nodes after
the phase ends is at most Q′/e. Therefore, by the Markov inequality, there is at least a
constant probability that the potential associated with these nodes decreases by at least
a constant factor.

By considering all three cases, we conclude that there is at least a constant probability
that the total potential decreases by at least a constant factor. Therefore, an application
of Chernoff Bounds [33] demonstrates that after at most O(W∞) phases the potential
has decreased until it is zero, both expected and with high probability.

From Theorem 8, we conclude that there are at most O(βW∞ p) steal attempts and
consequently O(βW∞ p) dollars in the steal bucket. Therefore, the running time of the
algorithm is W1/(pπave) + O(βW∞πave), which finishes the proof of Theorem 6.
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