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Abstract. We present a user-level thread scheduler for shared-memory multi-
processors, and we analyze its performance under multiprogramming. We model
multiprogramming with two scheduling levels: our scheduler runs at user-level and
schedules threads onto a fixed collection of processes, while below this level, the
operating system kernel schedules processes onto a fixed collection of processors.
We consider the kernel to be an adversary, and our goal is to schedule threads onto
processes such that we make efficient use of whatever processor resources are pro-
vided by the kernel.

Our thread scheduler is a non-blocking implementation of the work-stealing al-
gorithm. For any multithreaded computation with workT1 and critical-path length
T∞, and for any numberP of processes, our scheduler executes the computation in
expected timeO(T1/PA+T∞P/PA), wherePA is the average number of processors
allocated to the computation by the kernel. This time bound is optimal to within
a constant factor, and achieves linear speedup wheneverP is small relative to the
parallelismT1/T∞.

1. Introduction

Operating systems for shared-memory multiprocessors support multiprogrammed work-
loads in which a mix of serial and parallel applications may execute concurrently. For
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example, on a multiprocessor workstation, a parallel design verifier may execute concur-
rently with other serial and parallel applications, such as the design tool’s user interface,
compilers, editors, and web clients. For parallel applications, operating systems provide
system calls for the creation and synchronization of multiple threads, and they provide
high-level multithreaded programming support with parallelizing compilers and threads
libraries. In addition, programming languages, such as Cilk [7], [21] and Java [3], sup-
port multithreading with linguistic abstractions. A major factor in the performance of
such multithreaded parallel applications is the operation of the thread scheduler.

Prior work on thread scheduling [4], [5], [8], [13], [14] has dealt exclusively with
non-multiprogrammed environments in which a multithreaded computation executes on
P dedicated processors. Such scheduling algorithms dynamically map threads onto the
processors with the goal of achievingP-fold speedup. Though such algorithms will
work in some multiprogrammed environments, in particular those that employ static
space partitioning [15], [30] or coscheduling [18], [30], [33], they do not work in the
multiprogrammed environments being supported by modern shared-memory multipro-
cessors and operating systems [9], [15], [17], [23]. The problem lies in the assumption
that a fixed collection of processors are fully available to perform a given computation.

In a multiprogrammed environment, a parallel computation runs on a collection of
processors that grows and shrinks over time. Initially the computation may be the only
one running, and it may use allP processors. A moment later, someone may launch
another computation, possibly a serial computation, that runs on some processor. In
this case the parallel computation gives up one processor and continues running on the
remainingP−1 processors. Later, if the serial computation terminates or waits for I/O,
the parallel computation can resume its use of all processors. In general, other serial and
parallel computations may use processors in a time-varying manner that is beyond our
control. Thus, we assume that an adversary controls the set of processors on which a
parallel computation runs.

Specifically, rather than mapping threads to processors, our thread scheduler maps
threads to a fixed collection ofP processes, and an adversary maps processes to proces-
sors. Throughout this paper we use the word “process” to denote a kernel-level thread
(also called a light-weight process), and we reserve the word “thread” to denote a user-
level thread. We model a multiprogrammed environment with two levels of scheduling.
A user-level scheduler—our scheduler—maps threads to processes, and below this level,
the kernel—an adversary—maps processes to processors. In this environment we cannot
expect to achieveP-fold speedups, because the kernel may run our computation on fewer
thanP processors. Rather, we letPA denote the time-average number of processors on
which the kernel executes our computation, and we strive to achieve aPA-fold speedup.

As with much previous work, we model a multithreaded computation as a directed
acyclic graph, ordag. An example is shown in Figure 1. Each node in the dag represents
a single instruction, and the edges represent ordering constraints. The nodes of a thread
are linked by edges that form a chain corresponding to the dynamic instruction execution
order of the thread. The example in Figure 1 has two threads indicated by the shaded
regions. When an instruction in one thread spawns a new child thread, then the dag has
an edge from the “spawning” node in the parent thread to the first node in the new child
thread. The edge(x2, x4) is such an edge. Likewise, whenever threads synchronize such
that an instruction in one thread cannot be executed until after some instruction in another
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Fig. 1. An example computation dag. This dag has 11 nodesx1, x2, . . . , x11 and two threads indicated by
the shading.

thread, then the dag contains an edge from the node representing the latter instruction
to the node representing the former instruction. For example, edge(x7, x10) represents
the joining of the two threads, and edge(x5, x8) represents a synchronization that could
arise from the use of semaphores [16]—nodex8 represents theP (wait) operation, and
nodex5 represents theV (signal) operation on a semaphore whose initial value is 0.

We make two assumptions related to the structure of the dag. First, we assume that
each node has out-degree at most 2. This assumption is consistent with our convention
that a node represents a single instruction. Second, we assume that the dag has exactly
oneroot nodewith in-degree 0 and onefinal nodewith out-degree 0. The root node is
the first node of theroot thread.

We characterize the computation with two measures: work and critical-path length.
Thework T1 of the computation is the number of nodes in the dag, and thecritical-path
lengthT∞ is the length of a longest (directed) path in the dag. The ratioT1/T∞ is called
theparallelism. The example computation of Figure 1 has workT1 = 11, critical-path
lengthT∞ = 8, and parallelismT1/T∞ = 11/8.

We present a non-blocking implementation of the work-stealing algorithm [8], and
we analyze the performance of this non-blocking work stealer in multiprogrammed
environments. In this implementation, all concurrent data structures are non-blocking
[25], [26] so that if the kernel preempts a process, it does not hinder other processes,
for example by holding locks. Moreover, this implementation makes use of “yield”
system calls that constrain the kernel adversary in a manner that models the behavior of
yield system calls found in current multiprocessor operating systems. When a process
calls yield , it informs the kernel that it wishes to yield the processor on which it is
running to another process. Our results demonstrate the surprising power ofyield as a
scheduling primitive. In particular, we show that for any multithreaded computation with
work T1 and critical-path lengthT∞, the non-blocking work stealer runs in expected time
O(T1/PA + T∞P/PA). This bound is optimal to within a constant factor and achieves
linear speedup—that is, execution timeO(T1/PA)—wheneverP = O(T1/T∞). We
also show that for anyε > 0, with probability at least 1− ε, the execution time is
O(T1/PA + (T∞ + lg(1/ε))P/PA).

This result improves on previous results [8] in two ways. First, we consider arbitrary
multithreaded computations as opposed to the special case of “fully strict” computations.
Second, we consider multiprogrammed environments as opposed to dedicated environ-
ments. A multiprogrammed environment is a generalization of a dedicated environment,
because we can view a dedicated environment as a multiprogrammed environment in
which the kernel executes the computation onP dedicated processors. Moreover, note
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that in this case, we havePA = P, and our bound for multiprogrammed environments
specializes to match theO(T1/P + T∞) bound established earlier for fully strict com-
putations executing in dedicated environments.

Our non-blocking work stealer has been implemented in a prototypeC++ threads
library calledHood [10], and numerous performance studies have been conducted [9],
[10]. These studies show that application performance conforms to theO(T1/PA +
T∞P/PA) bound and that the constant hidden in the big-Oh notation is small, roughly
1. Moreover, these studies show that non-blocking data structures and the use of yields
are essential in practice. If any of these implementation mechanisms are omitted, then
performance degrades dramatically forPA < P.

The remainder of this paper is organized as follows. In Section 2 we formalize our
model of multiprogrammed environments. We also prove a lower bound implying that the
performance of the non-blocking work stealer is optimal to within a constant factor. We
present the non-blocking work stealer in Section 3, and we prove an important structural
lemma that is needed for the analysis. In Section 4 we establish optimal upper bounds on
the performance of the work stealer under various assumptions with respect to the kernel.
In Section 5 we consider related work. In Section 6 we offer some concluding remarks.

2. Multiprogramming

We model a multiprogrammed environment with a kernel that behaves as an adversary.
Whereas a user-level scheduler maps threads onto a fixed collection ofP processes, the
kernel maps processes onto processors. In this section we define execution schedules, and
we prove upper and lower bounds on the length of execution schedules. These bounds
are straightforward and are included primarily to give the reader a better understanding
of the model of computation and the central issues that we intend to address. The lower
bound demonstrates the optimality of theO(T1/PA + T∞P/PA) upper bound that we
will establish for our non-blocking work stealer.

The kernel operates in discretesteps, numbered from 1, as follows. At each stepi ,
the kernel chooses any subset of theP processes, and then these chosen processes are
allowed to execute a single instruction. We letpi denote the number of chosen processes,
and we say that thesepi processes arescheduledat stepi . The kernel may choose to
schedule any number of processes between 0 andP, so 0≤ pi ≤ P. We can view the
kernel as producing akernel schedulethat maps each positive integer to a subset of the
processes. That is, a kernel schedule maps each stepi to the set of processes that are
scheduled at stepi , andpi is the size of that set. The first 10 steps of an example kernel
schedule forP = 3 processes are shown in Figure 2(a). (In general, kernel schedules
are infinite.) Theprocessor averagePA overT steps is defined as

PA = 1

T

T∑
i=1

pi . (1)

In the kernel schedule of Figure 2(a), the processor average over 10 steps isPA =
20/10= 2.

Though our analysis is based on this step-by-step, synchronous execution model,
our work stealer is asynchronous and does not depend on synchrony for correctness.
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Fig. 2. An example kernel schedule and an example execution schedule withP = 3 processes. (a) The first
10 steps of a kernel schedule. Each row represents a time step, and each column represents a process. A check
mark in rowi and columnj indicates that the processqj is scheduled at stepi . (b) An execution schedule for
the kernel schedule in (a) and the computation dag in Figure 1. The execution schedule shows the activity of
each process at each step for which it is scheduled. Each entry is either a nodexi in case the process executes
nodexi or “I” in case the process does not execute a node.

The synchronous model admits the possibility that at a stepi , two or more processes
may execute instructions that reference a common memory location. We assume that the
effect of stepi is equivalent to some serial execution of thepi instructions executed by
the pi scheduled processes, where the order of execution is determined in some arbitrary
manner by the kernel.

Given a kernel schedule and a computation dag, anexecution schedulespecifies,
for each stepi , the particular subset of at mostpi ready nodes to be executed by thepi

scheduled processes at stepi . We define thelength of an execution schedule to be the
number of steps in the schedule. Figure 2(b) shows an example execution schedule for
the kernel schedule in Figure 2(a) and the dag in Figure 1. This schedule has length 10.
An execution schedule observes the dependencies represented by the dag. That is, every
node is executed, and for every edge(u, v), nodeu is executed at a step prior to the step
at which nodev is executed.

The following theorem shows thatT1/PA andT∞P/PA are both lower bounds on
the length of any execution schedule. The lower bound ofT1/PA holds regardless of
the kernel schedule, while the lower bound ofT∞P/PA holds only for some kernel
schedules. That is, there exist kernel schedules such that any execution schedule has
length at leastT∞P/PA. Moreover, there exist such kernel schedules withPA ranging
from P down to values arbitrarily close to zero. These lower bounds imply corresponding
lower bounds on the performance of any user-level scheduler.

Theorem 1. Consider any multithreaded computation with work T1 and critical-path
length T∞,and any number P of processes.Then for any kernel schedule,every execution
schedule has length at least T1/PA, where PA is the processor average over the length
of the schedule. In addition, for any number P′A of the form T∞P/(k + T∞) where k is
a nonnegative integer, there exists a kernel schedule such that every execution schedule
has length at least T∞P/PA, where PA is the processor average over the length of the
schedule and is in the rangebP′Ac ≤ PA ≤ P′A.
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Proof. The processor average over the lengthT of the schedule is defined by (1), so
we have

T = 1

PA

T∑
i=1

pi . (2)

For both lower bounds, we boundT by bounding
∑T

i=1 pi . The lower bound ofT1/PA is
immediate from the lower bound

∑T
i=1 pi ≥ T1, which follows from the fact that any ex-

ecution schedule is required to execute all of the nodes in the multithreaded computation.
For the lower bound ofT∞P/PA, we prove the lower bound

∑T
i=1 pi ≥ T∞P.

We construct a kernel schedule that forces every execution schedule to satisfy this
bound as follows. Letk be as defined in the statement of the lemma. The kernel schedule
setspi = 0 for 1≤ i ≤ k, setspi = P for k + 1 ≤ i ≤ k + T∞, and setspi = bP′Ac
for k+ T∞ < i . Any execution schedule has lengthT ≥ k+ T∞, so we have the lower
bound

∑T
i=1 pi ≥ T∞P. It remains only to show thatPA is in the desired range. The

processor average for the firstk+ T∞ steps isT∞P/(k+ T∞) = P′A. For all subsequent
stepsi > k+ T∞, we havepi = bP′Ac. Thus,PA falls within the desired range.

In the off-line user-level scheduling problem, we are given a kernel schedule and a
computation dag, and the goal is to compute an execution schedule with the minimum
possible length. Though the related decision problem is NP-complete [37], a factor-of-
2 approximation algorithm is quite easy. In particular, for some kernel schedules, any
level-by-level (Brent [12]) execution schedule or any “greedy” execution schedule is
within a factor of 2 of optimal. In addition, though we shall not prove it, for any kernel
schedule, some greedy execution schedule is optimal. We say that an execution schedule
is greedyif at each stepi the number of ready nodes executed is equal to the minimum
of pi and the number of ready nodes. The execution schedule in Figure 2(b) is greedy.
The following theorem about greedy execution schedules also holds for level-by-level
execution schedules, with only trivial changes to the proof.

Theorem 2(Greedy Schedules).Consider any multithreaded computation with work
T1 and critical-path length T∞, any number P of processes, and any kernel schedule.
Any greedy execution schedule has length at most T1/PA + T∞(P − 1)/PA, where PA

is the processor average over the length of the schedule.

Proof. Consider any greedy execution schedule, and letT denote its length. As in the
proof of Theorem 1, we boundT by bounding

∑T
i=1 pi . For each stepi = 1, . . . , T , we

collect pi tokens, one from each process that is scheduled at stepi , and then we bound
the total number of tokens collected. Moreover, we collect the tokens in two buckets:
a work bucketand anidle bucket. Consider a stepi and a process that is scheduled at
stepi . If the process executes a node of the computation, then it puts its token into the
work bucket, and otherwise we say that the process is idle and it puts its token into the
idle bucket. After the last step, the work bucket contains exactlyT1 tokens—one token
for each node of the computation. It remains only to prove that the idle bucket contains
at mostT∞(P − 1) tokens.
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Consider a step during which some process places a token in the idle bucket. We refer
to such a step as anidle step. For example, the greedy execution schedule of Figure 2(b)
has seven idle steps. At an idle step we have an idle process and since the schedule is
greedy, it follows that every ready node is executed at an idle step. This observation leads
to two further observations. First, at every step there is at least one ready node, so of the
pi processes scheduled at an idle stepi , at mostpi − 1≤ P − 1 could be idle. Second,
for each stepi , let Gi denote the sub-dag of the computation consisting of just those
nodes that have not yet been executed after stepi . If step i is an idle step, then every
node with in-degree 0 inGi−1 gets executed at stepi , so a longest path inGi is one node
shorter than a longest path inGi−1. Since the longest path inG0 has lengthT∞, there
can be at mostT∞ idle steps. Putting these two observations together, we conclude that
after the last step, the idle bucket contains at mostT∞(P − 1) tokens.

The concern of this paper is on-line user-level scheduling, and an on-line user-level
scheduler cannot always produce greedy execution schedules. In the on-line user-level
scheduling problem, at each stepi , we know the kernel schedule only up through stepi ,
and we know of only those nodes in the dag that are ready or have previously been
executed. Moreover, in analyzing the performance of on-line user-level schedulers, we
need to account for scheduling overheads. Nevertheless, even though it is an on-line
scheduler, and even accounting for all of its overhead, the non-blocking work stealer
satisfies the same bound, to within a constant factor, as was shown in Theorem 2 for
greedy execution schedules.

3. Non-Blocking Work Stealing

In this section we describe our non-blocking implementation of the work-stealing al-
gorithm. We first review the work-stealing algorithm [8], and then we describe our
non-blocking implementation, which involves the use of a yield system call and a non-
blocking implementation of the concurrent data structures. We conclude this section with
an important “structural lemma” that is used in our analysis.

3.1. The Work-Stealing Algorithm

In the work-stealing algorithm, each process maintains its own pool of ready threads
from which it obtains work. A node in the computation dag isreadyif all of its ancestors
have been executed, and, correspondingly, a thread is ready if it contains a ready node.
Note that because all of the nodes in a thread are totally ordered, a thread can have at most
one ready node at a time. A ready thread’s ready node represents the next instruction to
be executed by that thread, as determined by the current value of that thread’s program
counter. Each pool of ready threads is maintained as a double-ended queue, ordeque,
which has a bottom and a top. A deque contains only ready threads. If the deque of a
process becomes empty, that process becomes a thief and steals a thread from the deque
of a victim process chosen at random.

To obtain work, a process pops the ready thread from the bottom of its deque and
commences executing that thread, starting with that thread’s ready node and continuing
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in sequence, as determined by the control flow of the code being executed by that thread.
We refer to the thread that a process is executing as the process’sassigned thread. The
process continues to execute nodes in its assigned thread until that thread invokes a
synchronization action (typically via a call into the threads library). The synchronization
actions fall into the following four categories, and they are handled as follows:

• Die: When the process executes its assigned thread’s last node, that thread dies.
In this case the process gets a new assigned thread by popping one off the bottom
of its deque.
• Block: If the process reaches a node in its assigned thread that is not ready, then

that thread blocks. For example, consider a process that is executing the root
thread of Figure 1. If the process executesx3 and then goes to executex8 before
nodex5 has been executed, then the root thread blocks. In this case, as in the case
of the thread dying, the process gets a new assigned thread by popping one off
the bottom of its deque.
• Enable: If the process executes a node in its assigned thread that causes another

thread—a thread that previously was blocked—to be ready, then, of the two ready
threads (the assigned thread and the newly ready thread), the process pushes one
onto the bottom of its deque and continues executing the other. That other thread
becomes the process’s assigned thread. For example, if the root thread of Figure 1
is blocked atx8, waiting forx5 to be executed, then when a process that is executing
the child thread finally executesx5, the root thread becomes ready and the process
performs one of the following two actions: either it pushes the root thread on the
bottom of its deque and continues executing the child thread atx6, or it pushes
the child thread on the bottom of its deque and starts executing the root thread
at x8. The bounds proven in this paper hold for either choice.
• Spawn:If the process executes a node in its assigned thread that spawns a child

thread, then, as in the enabling case, of the two ready threads (in this case the
assigned thread and its newly spawned child), the process pushes one onto the
bottom of its deque and continues executing the other. That other thread becomes
the process’s assigned thread. For example, when a process that is executing the
root thread of Figure 1 executesx2, the process performs one of the following two
actions: either it pushes the child thread on the bottom of its deque and continues
executing the root thread atx3, or it pushes the root thread on the bottom of its
deque and starts executing the child thread atx4. The bounds proven in this paper
hold for either choice. The latter choice is often used [21], [22], [31], because it
follows the natural depth-first single-processor execution order.

It is possible that a thread may enable another thread and die simultaneously. An example
is the join between the root thread and the child thread in Figure 1. If the root thread is
blocked atx10, then when a process executesx7 in the child, the child enables the root
and dies simultaneously. In this case the root thread becomes the process’s new assigned
thread, and the process commences executing the root thread atx10. Effectively, the
process performs the action for enabling followed by the action for dying.

When a process goes to get an assigned thread by popping one off the bottom
of its deque, if it finds that its deque is empty, then the process becomes athief. It
picks avictim process at random (using a uniform distribution) and attempts to steal
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a thread from the victim by popping a thread off the top of the victim’s deque. The
steal attempt will fail if the victim’s deque is empty. In addition, the steal attempt may
fail due to contention when multiple thieves attempt to steal from the same victim
simultaneously. The next two sections cover this issue in detail. If the steal attempt
fails, then the thief picks another victim process and tries again. The thief repeatedly
attempts to steal from randomly chosen victims until it succeeds, at which point the
thief “reforms” (i.e., ceases to be a thief). The stolen thread becomes the process’s
new assigned thread, and the process commences executing its new assigned thread, as
described above.

In our non-blocking implementation of the work-stealing algorithm, each process
performs a yield system call between every pair of consecutive steal attempts. We describe
the semantics of the yield system call later in Section 4.4. These system calls are not
needed for correctness, but as we shall see in Section 4.4, the yields are sometimes
needed in order to prevent the kernel from starving a process.

Execution begins with all deques empty and the root thread assigned to one process.
This one process begins by executing its assigned thread, starting with the root node. All
other processes begin as thieves. Execution ends when some process executes the final
node, which sets a global flag, thereby terminating the scheduling loop.

For our analysis, we ignore threads. We treat the deques as if they contain ready
nodes instead of ready threads, and we treat the scheduler as if it operates on nodes instead
of threads. In particular, we replace each ready thread in a deque with its currently ready
node. In addition, if a process has an assigned thread, then we define the process’s
assigned nodeto be the currently ready node of its assigned thread.

The scheduler operates as shown in Figure 3. The root node is assigned to one
process, and all other processes start with no assigned node (lines 1–3). These other
processes will become thieves. Each process executes the scheduling loop, which termi-
nates when some process executes the final node and sets a global flag (line 4). At each
iteration of the scheduling loop, each process performs as follows.

If the process has an assigned node, then it executes that assigned node (lines 5
and 6). The execution of the assigned node will enable—that is, make ready—none,
one, or two child nodes. Specifically, it will enable no children in case the assigned
thread dies or blocks; it will enable one child in case the assigned thread performs no
synchronization, merely advancing to the next node; and it will enable two children in
case the assigned thread enables another, previously blocked, thread or spawns a child
thread. If the execution of the assigned node enables no children, then the process pops
the ready node off the bottom of its deque, and this node becomes the process’s new
assigned node (lines 7 and 8). If the process’s deque is empty, then the pop invocation
returnsNIL , so the process does not get a new assigned node and becomes a thief. If the
execution of the assigned node enables one child, then this child becomes the process’s
new assigned node (lines 9 and 10). If the the execution of the assigned node enables
two children, then the process pushes one of the children onto the bottom of its deque,
and the other child becomes the process’s new assigned node (lines 11–13).

If a process has no assigned node, then its deque is empty, so it becomes a thief.
The thief picks a victim at random and attempts to pop a node off the top of the victim’s
deque, making that node its new assigned node (lines 16 and 17). If the steal attempt is
unsuccessful, then the pop invocation returnsNIL , so the thief does not get an assigned
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Fig. 3. The non-blocking work stealer. AllP processes execute this scheduling loop. Each process is rep-
resented by aProcess data structure, stored in shared memory, that contains the deque of the process, and
each process has a private variableself that refers to itsProcess structure. Initially, all deques are empty
and thecomputationDone flag, which is stored in shared memory, isFALSE. The root node is assigned to
an arbitrary process, designatedprocessZero , prior to entering the main scheduling loop. The scheduling
loop terminates when a process executes the final node and sets thecomputationDone flag.

node and continues to be a thief. If the steal attempt is successful, then the pop invocation
returns a node, so the thief gets an assigned node and reforms. Between consecutive steal
attempts, the thief callsyield (line 15).

3.2. Specification of the Deque Methods

In this section we develop a specification for the deque object, discussed informally
above. The deque supports three methods:pushBottom , popBottom , andpopTop .
A pushTop method is not supported, because it is not needed by the work-stealing
algorithm. A deque implementation is defined to beconstant-timeif and only if each
of the three methods terminates within a constant number of instructions. Below we
define the “ideal” semantics of these methods. Any constant-time deque implementation
meeting the ideal semantics is wait-free [26]. Unfortunately, we are not aware of any
constant-time wait-free deque implementation. For this reason, we go on to define a
“relaxed” semantics for the deque methods. Any constant-time deque implementation
meeting the relaxed semantics is non-blocking [25], [26] and is sufficient for us to prove
our performance bounds.
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We now define the ideal deque semantics. To do so, we first define whether a given
set of invocations of the deque methods meets the ideal semantics. We view an invocation
of a deque method as a 4-tuple specifying: (i) the name of the deque method invoked
(i.e.,pushBottom , popBottom , or popTop ), (ii) the initiation time, (iii) the comple-
tion time, and (iv) the argument (for the case ofpushBottom ) or the return value (for
popBottom andpopTop ). A set of invocations meets the ideal semantics if and only if
there exists alinearization timefor each invocation such that: (i) the linearization time
lies between the initiation time and the completion time, (ii) no two linearization times
coincide, and (iii) the return values are consistent with a serial execution of the method
invocations in the order given by the linearization times. A deque implementation meets
the ideal semantics if and only if, for any execution, the associated set of invocations
meets the ideal semantics. We remark that a deque implementation meets the ideal se-
mantics if and only if each of the three deque methods islinearizable, as defined in [27].

It is convenient to define a set of invocations to begood if and only if no two
pushBottom or popBottom invocations are concurrent. Note that any set of invoca-
tions associated with some execution of the work-stealing algorithm is good since the
(unique) owner of each deque is the only process to ever perform either apushBottom
or popBottom on that deque. Thus, for present purposes, it is sufficient to design a
constant-time wait-free deque implementation that meets the ideal semantics on any
good set of invocations. Unfortunately, we do not know how to do this. On the pos-
itive side, we are able to establish optimal performance bounds for the work-stealing
algorithm even if the deque implementation satisfies only a relaxed version of the ideal
semantics.

In the relaxed semantics, we allow apopTop invocation to returnNIL if at some
point during the invocation, either the deque is empty (this is the usual condition for
returningNIL ) or the topmost item is removed from the deque by another process. In
the next section we provide a constant-time non-blocking deque implementation that
meets the relaxed semantics on any good set of invocations. We do not consider our
implementation to be wait-free, because we do not view everypopTop invocation that
returnsNIL as having successfully completed. Specifically, we consider apopTop
invocation that returnsNIL to be successful if and only if the deque is empty at some
point during the invocation. Note that a successfulpopTop invocation is linearizable.

3.3. The Deque Implementation

The deques support concurrent method invocations, and we implement the deques using
non-blocking synchronization. Such an implementation requires the use of a univer-
sal primitive such as compare-and-swap or load-linked/store-conditional [26]. Almost
all modern microprocessors have such instructions. In our deque implementation we
employ a compare-and-swap instruction, but this instruction can be replaced with a
load-linked/store-conditional pair in a straightforward manner [32].

The compare-and-swap instructioncas operates as follows. It takes three operands:
a registeraddr that holds an address and two other registers,old andnew, holding
arbitrary values. The instructioncas (addr, old, new) compares the value stored
in memory locationaddr with old , and if they are equal, the value stored in memory
locationaddr is swapped withnew. In this case we say thecas succeeds. Otherwise,
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Fig. 4. A Deque object contains an arraydeq of ready nodes, a variablebot that is the index below the
bottom node, and a variableage that contains two fields:top , the index of the top node, andtag , a “uniquifier”
needed to ensure correct operation. The variableage fits in a single word of memory that can be operated on
with atomicload , store , andcas instructions.

it loads the value stored in memory locationaddr into new, without modifying the
memory locationaddr . In this case we say thecas fails. This whole operation—
comparing and then either swapping or loading—is performed atomically with respect
to all other memory operations. We can detect whether thecas fails or succeeds by
comparingold with new after thecas . If they are equal, then thecas succeeded;
otherwise, it failed.

In order to implement a deque of nodes (or threads) in a non-blocking manner using
cas , we employ an array of nodes (or pointers to threads), and we store the indices of the
top and bottom entries in the variablestop andbot , respectively, as shown in Figure 4.
An additional variabletag is required for correct operation, as described below. The
tag andtop variables are implemented as fields of a structureage , and this structure
is assumed to fit within a single word, which we define as the maximum number of
bits that can be transfered to and from memory atomically withload , store , and
cas instructions. Theage structure fits easily within either a 32-bit or a 64-bit word
size.

The tag field is needed to address the following potential problem. Suppose that a
thief process is preempted after executing line 5 but before executing line 8 ofpopTop .
Subsequent operations may empty the deque and then build it up again so that the top
index points to the same location. When the thief process resumes and executes line 8, the
cas will succeed because the top index has been restored to its previous value. However,
the node that the thief obtained at line 5 is no longer the correct node. The tag field elimi-
nates this problem, because every time the top index is reset (line 11 ofpopBottom ), the
tag is changed. This changing of the tag will cause the thief’scas to fail. For simplicity,
in Figure 5 we show the tag being manipulated as a counter, with a new tag being selected
by incrementing the old tag (line 12 ofpopBottom ). Such a tag might wrap around, so
in practice, we implement the tag by adapting the “bounded tags” algorithm [32].

We claim that the deque implementation presented above meets the relaxed seman-



Thread Scheduling for Multiprogrammed Multiprocessors 127

Fig. 5. The threeDeque methods. EachDeque object resides in shared memory along with its instance
variablesage , bot , anddeq ; the remaining variables in this code are private (registers). Theload , store ,
andcas instructions operate atomically. On a multiprocessor that does not support sequential consistency,
extra memory operation ordering instructions may be needed.

tics on any good set of invocations. Even though each of the deque methods is loop-free
and consists of a relatively small number of instructions, proving this claim is not entirely
trivial since we need to account for every possible interleaving of the executions of the
owner and thieves. Our current proof of correctness is somewhat lengthy as it reduces
the problem to establishing the correctness of a rather large number of sequential pro-
gram fragments. Because program verification is not the primary focus of the present
article, the proof of correctness is omitted. The reader interested in program verification
is referred to [11] for a detailed presentation of the correctness proof.

The fact that our deque implementation meets the relaxed semantics on any good
set of invocations greatly simplifies the performance analysis of the work-stealing al-
gorithm. For example, by ensuring the linearizability of all owner invocations and all
thief invocations that do not returnNIL , this fact allows us to view such invocations as
atomic. Under this view, the precise state of the deque at any given point in the execu-
tion has a clear definition in terms of the usual serial semantics of the deque methods
pushBottom , popBottom , andpopTop . (Here we rely on the observation that a thief
invocation returningNIL does not change the state of the shared memory, and hence
does not change the state of the deque.)

3.4. A Structural Lemma

In this section we establish a key lemma that is used in the performance analysis of our
work-stealing scheduler. Before stating the lemma, we provide a number of technical
definitions.



128 N. S. Arora, R. D. Blumofe, and C. G. Plaxton

To state the structural lemma, in addition to linearizing the deque method invoca-
tions as described in the previous section, we also need to linearize the assigned-node
executions. If the execution of the assigned node enables no children, then we view the
execution and subsequent updating of the assigned node as occurring atomically at the
linearization point of the ensuingpopBottom invocation. If the execution of the as-
signed node enables one child, then we view the execution and updating of the assigned
node as occurring atomically at the time the assigned node is executed. If the execution
of the assigned node enables two children, then we view the execution and updating
of the assigned node as occurring atomically at the linearization point of the ensuing
pushBottom invocation. In each of the above cases, the choice of linearization point is
justified by the following simple observation: the execution of any local instruction (i.e.,
an instruction that does not involve the shared memory) by some process commutes with
the execution of any instruction by another process.

If the execution of nodeu enables nodev, then we call the edge(u, v) anenabling
edge, and we callu thedesignated parentof v. Note that every node except the root node
has exactly one designated parent, so the subgraph of the dag consisting of only enabling
edges forms a rooted tree that we call theenabling tree. Note that each execution of the
computation may have a different enabling tree. Ifd(u) is the depth of a nodeu in the
enabling tree, then itsweightis defined asw(u) = T∞−d(u). The root of the dag, which
is also the root of the enabling tree, has weightT∞. Our analysis of Section 4 employs
a potential function based on the node weights.

As illustrated in Figure 6, the structural lemma states that for any deque, at all times
during the execution of the work-stealing algorithm, the designated parents of the nodes
in the deque lie on some root-to-leaf path in the enabling tree. Moreover, the ordering
of these designated parents along this path corresponds to the top-to-bottom ordering of
the nodes in the deque. As a corollary, we observe that the weights of the nodes in the
deque are strictly decreasing from top to bottom.

Lemma 3 (Structural Lemma). Let k be the number of nodes in a given deque at some
time in the(linearized) execution of the work-stealing algorithm, and let v1, . . . , vk

Fig. 6. The structure of the nodes in the deque of some process. Nodev0 is the assigned node. Nodesv1,
v2, andv3 are the nodes in the deque ordered from bottom to top. Fori = 0,1,2,3, nodeui is the designated
parent of nodevi . Then nodesu3, u2, u1, andu0 lie (in that order) on a root-to-leaf path in the enabling tree.
As indicated in the statement of Lemma 3, theui ’s are all distinct except it is possible thatu0 = u1.
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denote those nodes ordered from the bottom of the deque to the top. Let v0 denote the
assigned node if there is one. In addition, for i = 0, . . . , k, let ui denote the designated
parent ofvi . Then for i= 1, . . . , k, node ui is an ancestor of ui−1 in the enabling tree.
Moreover, though we may have u1 = u0, for i = 2,3, . . . , k, we have ui 6= ui−1—that
is, the ancestor relationship is proper.

Proof. Fix a particular deque. The deque state and assigned node change only when
either the owner executes its assigned node or a thief performs a successful steal. We
prove the claim by induction on the number of assigned-node executions and steals since
the deque was last empty. In the base case, if the deque is empty, then the claim holds
vacuously. We now assume that the claim holds before a given assigned-node execution
or successful steal, and we will show that it holds after. Specifically, before the assigned-
node execution or successful steal, letv0 denote the assigned node; letk denote the number
of nodes in the deque; letv1, . . . , vk denote the nodes in the deque ordered from bottom to
top; and fori = 0, . . . , k, letui denote the designated parent ofvi . We assume that either
k = 0, or for i = 1, . . . , k, nodeui is an ancestor ofui−1 in the enabling tree, with the
ancestor relationship being proper, except possibly for the casei = 1. After the assigned-
node execution or successful steal, letv′0 denote the assigned node; letk′ denote the
number of nodes in the deque; letv′1, . . . , v

′
k denote the nodes in the deque ordered from

bottom to top; and fori = 0, . . . , k′, let u′i denote the designated parent ofv′i . We now
show that eitherk′ = 0, or fori = 1, . . . , k′, nodeu′i is an ancestor ofu′i−1 in the enabling
tree, with the ancestor relationship being proper, except possibly for the casei = 1.

Consider the execution of the assigned nodev0 by the owner.
If the execution ofv0 enables no children, then the owner pops the bottommost node

off its deque and makes that node its new assigned node. Ifk = 0, then the deque is
empty; the owner does not get a new assigned node; andk′ = 0. If k > 0, then the
bottommost nodev1 is popped and becomes the new assigned node, andk′ = k − 1. If
k = 1, thenk′ = 0. Otherwise, the result is as illustrated in Figure 7. We now rename the
nodes as follows. Fori = 0, . . . , k′, we setv′i = vi+1 andu′i = ui+1. We now observe
that for i = 1, . . . , k′, nodeu′i is a proper ancestor ofu′i−1 in the enabling tree.

If the execution ofv0 enables one childx, then, as illustrated in Figure 8,x becomes

Fig. 7. The deque of a processor (a) before and (b) after the execution of the assigned nodev0 enables no
children.
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Fig. 8. The deque of a processor (a) before and (b) after the execution of the assigned nodev0 enables one
child x.

the new assigned node; the designated parent ofx isv0; andk′ = k. If k = 0, thenk′ = 0.
Otherwise, we can rename the nodes as follows. We setv′0 = x; we setu′0 = v0; and
for i = 1, . . . , k′, we setv′i = vi andu′i = ui . We now observe that fori = 1, . . . , k′,
nodeu′i is a proper ancestor ofu′i−1 in the enabling tree. Thatu′1 is a proper ancestor of
u′0 in the enabling tree follows from the fact that(u0, v0) is an enabling edge.

In the most interesting case, the execution of the assigned nodev0 enables two
childrenx andy, with x being pushed onto the bottom of the deque andy becoming the
new assigned node, as illustrated in Figure 9. In this case,(v0, x) and(v0, y) are both
enabling edges, andk′ = k + 1. We now rename the nodes as follows. We setv′0 = y;
we setu′0 = v0; we setv′1 = x; we setu′1 = v0; and fori = 2, . . . , k′, we setv′i = vi−1

Fig. 9. The deque of a processor (a) before and (b) after the execution of the assigned nodev0 enables two
childrenx andy.
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andu′i = ui−1. We now observe thatu′1 = u′0, and fori = 2, . . . , k′, nodeu′i is a proper
ancestor ofu′i−1 in the enabling tree. Thatu′2 is a proper ancestor ofu′1 in the enabling
tree follows from the fact that(u0, v0) is an enabling edge.

Finally, we consider a successful steal by a thief. In this case the thief pops the
topmost nodevk off the deque, sok′ = k− 1. If k = 1, thenk′ = 0. Otherwise, we can
rename the nodes as follows. Fori = 0, . . . , k′, we setv′i = vi andu′i = ui . We now
observe that fori = 1, . . . , k′, nodeu′i is an ancestor ofu′i−1 in the enabling tree, with
the ancestor relationship being proper, except possibly for the casei = 1.

Corollary 4. If v0, v1, . . . , vk are as defined in the statement of Lemma3, then we have
w(v0) ≤ w(v1) < · · · < w(vk−1) < w(vk).

4. Analysis of the Work Stealer

In this section we establish optimal bounds on the running time of the non-blocking
work stealer under various assumptions about the kernel. It should be emphasized that
the work stealer performs correctly for any kernel. We consider various restrictions on
kernel behavior in order to demonstrate environments in which the running time of the
work stealer is optimal.

The following definitions will prove to be useful in our analysis. An instruction
in the sequence executed by some processq is a milestoneif and only if one of the
following two conditions holds: (i) execution of a node by processq occurs at that
instruction, or (ii) apopTop invocation completes. From the scheduling loop of Figure 3,
we observe that a given process may execute at most some constant number of instructions
between successive milestones. Throughout this section we letC denote a sufficiently
large constant such that in any sequence ofC consecutive instructions executed by a
process, at least one is a milestone.

The remainder of this section is organized as follows. Section 4.1 reduces the analysis
to bounding the number of “throws.” Section 4.2 defines a potential function that is central
to all of our upper-bound arguments. Sections 4.3 and 4.4 present our upper bounds for
dedicated and multiprogrammed environments.

4.1. Throws

In this section we show that the execution time of our work stealer isO(T1/PA+S/PA),
whereS is the number of “throws,” that is, steal attempts satisfying a technical condition
stated below. This goal cannot be achieved without restricting the kernel, so in addition
to proving this bound on execution time, we state and justify certain kernel restrictions.

One fundamental obstacle prevents us from proving the desired performance bound
within the (unrestricted) multiprogramming model of Section 2. The problem is that
the kernel may bias the random steal attempts toward the empty deques. In particular,
consider the steal attempts initiated within some fixed interval of steps. The adver-
sary can bias these steal attempts toward the empty deques by delaying those steal at-
tempts that choose nonempty deques as victims so that they occur after the end of the
interval.
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To address this issue, we restrict the kernel to schedule inroundsrather than steps. A
process that is scheduled in a particular round executes between 2C and 3C instructions
during the round, whereC is the constant defined at the beginning of Section 4. The
precise number of instructions that a process executes during a round is determined by
the kernel in an arbitrary manner. We assume that the process executes these 2C to 3C
instructions in serial order, but we allow the instruction streams of different processes
to be interleaved arbitrarily, as determined by the kernel. We claim that our requirement
that processes be scheduled in rounds of 2C to 3C instructions is a reasonable one.
Because of the overhead associated with context-switching, practical kernels tend to
assign processes to processors for some nontrivial scheduling quantum. In fact, a typical
scheduling quantum is orders of magnitude higher than the modest value ofC needed
to achieve our performance bounds.

We identify the completion of a steal attempt with the completion of itspopTop
invocation (line 17 of the scheduling loop), and we define a steal attempt by a processq
to be athrow if it completes atq’s second milestone in a round. Thus a process performs
at most one throw in any round. Such a throw completes in the round in which the identity
of the associated random victim is determined. This property is useful because it ensures
that the random victim distribution cannot be biased by the kernel. The following lemma
bounds the execution time in terms of the number of throws.

Lemma 5. Consider any multithreaded computation with work T1 being executed by
the non-blocking work stealer. Then the execution time is at most O(T1/PA + S/PA),
where S denotes the number of throws.

Proof. As in the proof of Theorem 2, we bound the execution time by using (2) and
bounding

∑T
i=1 pi . At each round, we collect a token from each scheduled process. We

will show that the total number of tokens collected is at mostT1 + S. Since each round
consists of at most 3C steps, this bound on the number of tokens implies the desired
time bound.

When a processq is scheduled in a round, it executes at least two milestones, and the
process places its token in one of two buckets, as determined by the second milestone.
There are two types of milestones. Ifq’s second milestone marks the occurrence of a
node execution, thenq places its token in thework bucket. Clearly there are at mostT1

tokens in the work bucket. The second type of milestone marks the completion of a steal
attempt, and ifq’s second milestone is of this type, thenq places its token in thesteal
bucket. In this case, we observe that the steal attempt is a throw, so there are exactlyS
tokens in the steal bucket.

4.2. The Potential Function

As argued in the previous section, it remains only to analyze the number of throws. We
perform this analysis using an amortization argument based on a potential function that
decreases as the algorithm progresses. Our high-level strategy is to divide the execution
into phases and show that in each phase the potential decreases by at least a constant
fraction with constant probability.

We define the potential function in terms of node weights. Recall that each nodeu
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has a weightw(u) = T∞ − d(u), whered(u) is the depth of nodeu in the enabling tree.
At any given roundi , we define the potential by assigning a potential to each ready node.
Let Ri denote the set of ready nodes at the beginning of roundi . A ready node is either
assigned to a process or it is in the deque of some process. For each ready nodeu in Ri ,
we define the associated potentialϕi (u) as

ϕi (u) =
{

32w(u)−1 if u is assigned;
32w(u) otherwise.

Then the potential at roundi is defined as

8i =
∑
u∈Ri

ϕi (u).

When execution begins, the only ready node is the root node, which has weightT∞ and
is assigned to some process, so we start with80 = 32T∞−1. When execution terminates,
there are no ready nodes, so the final potential is 0.

Throughout the execution, the potential never increases. That is, for each roundi ,
we have8i+1 ≤ 8i . The work stealer performs only two actions that may change
the potential, and both of them decrease the potential. The first action that changes the
potential is the removal of a nodeu from a deque whenu is assigned to a process (lines 8
and 17 of the scheduling loop). In this case the potential decreases byϕi (u)−ϕi+1(u) =
32w(u) − 32w(u)−1 = 2

3ϕi (u), which is positive. The second action that changes the
potential is the execution of an assigned nodeu. If the execution ofu enables two
children, then one childx is placed in the deque and the othery becomes the assigned
node. Thus, the potential decreases by

ϕi (u)− ϕi+1(x)− ϕi+1(y) = 32w(u)−1− 32w(x) − 32w(y)−1

= 32w(u)−1− 32(w(u)−1) − 32(w(u)−1)−1

= 32w(u)−1(1− 1
3 − 1

9)

= 5
9ϕi (u),

which is positive. If the execution ofu enables fewer than two children, then the potential
decreases even more. Thus, the execution of a nodeu at roundi decreases the potential
by at least59ϕi (u).

To facilitate the analysis, we partition the potential among the processes, and we
separately consider the processes whose deque is empty and the processes whose deque
is nonempty. At the beginning of roundi , for any processq, let Ri (q) denote the set
of ready nodes that are inq’s deque along with the ready node, if any, that is assigned
to q. We say that each nodeu in Ri (q) belongsto processq. Then the potential that we
associate withq is

8i (q) =
∑

u∈Ri (q)

ϕi (u).

In addition, letAi denote the set of processes whose deque is empty at the beginning of
round i , and letDi denote the set of all other processes. We partition the potential8i

into two parts:

8i = 8i (Ai )+8i (Di ),
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where

8i (Ai ) =
∑
q∈Ai

8i (q) and 8i (Di ) =
∑
q∈Di

8i (q),

and we analyze the two parts separately.
We now wish to show that wheneverP or more throws take place over a sequence

of rounds, the potential decreases by a constant fraction with constant probability. We
prove this claim in two stages. First, we show that three-quarters of the potential8i (Di )

is sitting “exposed” at the top of the deques where it is accessible to steal attempts.
Second, we use a “balls and weighted bins” argument to show that half of this exposed
potential is stolen with 1/4 probability. The potential8i (Ai ) is considered separately.

Lemma 6 (Top-Heavy Deques). Consider any round i and any process q in Di . The
topmost node u in q’s deque contributes at least three-quarters of the potential associated
with q. That is, we haveϕi (u) ≥ 3

48i (q).

Proof. This lemma follows directly from the Structural Lemma (Lemma 3), and in
particular from Corollary 4. Suppose the topmost nodeu in q’s deque is also the only
node inq’s deque, and, in addition,u has the same designated parent as the nodey that
is assigned toq. In this case we have

8i (q) = ϕi (u)+ ϕi (y)

= 32w(u) + 32w(y)−1

= 32w(u) + 32w(u)−1

= 4
3ϕi (u).

In all other cases,u contributes an even larger fraction of the potential associated
with q.

Lemma 7 (Balls and Weighted Bins). Suppose that P balls are thrown independently
and uniformly at random into P bins, where for i= 1, . . . , P, bin i has a weight Wi .
The total weight is W=∑P

i=1 Wi . For each bin i, define the random variable Xi as

Xi =
{

Wi if some ball lands in bin i;
0 otherwise.

If X = ∑P
i=1 Xi , then for anyβ in the range0 < β < 1, we havePr{X ≥ βW} >

1− 1/((1− β)e).

Proof. For each bini , consider the random variableWi − Xi . It takes on the valueWi

when no ball lands in bini , and otherwise it is 0. Thus, we have

E[Wi − Xi ] = Wi

(
1− 1

P

)P

≤ Wi

e
.
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It follows that E[W − X] ≤ W/e. From Markov’s inequality we have that

Pr{W − X > (1− β)W} < E[W − X]

(1− β)W .

Thus, we conclude Pr{X < βW} < 1/((1− β)e).

We now show that wheneverP or more throws occur, the potential decreases by a
constant fraction of8i (Di ) with constant probability.

Lemma 8. Consider any round i and any later round j such that at least P throws
occur at rounds from i(inclusive) to j (exclusive). Then we have

Pr
{
8i −8j ≥ 1

48i (Di )
}
> 1

4.

Proof. We first use the Top-Heavy Deques Lemma to show that if a throw targets a
process with a nonempty deque as its victim, then the potential decreases by at least a half
of the potential associated with that victim process. We then consider theP throws as
ball tosses, and we use the Balls and Weighted Bins Lemma to show that with probability
more than 1/4, the total potential decreases by a quarter of the potential associated with
all processes with a nonempty deque.

Consider any processq in Di , and letu denote the node at the top ofq’s deque at
round i . From the Top-Heavy Deques Lemma (Lemma 6), we haveϕi (u) ≥ 3

48i (q).
Now, consider any throw that occurs at a roundk ≥ i , and suppose this throw targets
processq as the victim. We consider two cases. In the first case, the throw is successful
with popTop returning a node. If the returned node is nodeu, then after roundk,
nodeu has been assigned and possibly already executed. At the very least, nodeu has
been assigned, and the potential has decreased by at least2

3ϕi (u). If the returned node
is not nodeu, then nodeu has already been assigned and possibly already executed.
Again, the potential has decreased by at least2

3ϕi (u). In the other case, the throw is
unsuccessful withpopTop returningNIL at either line 4 or line 11. IfpopTop returns
NIL , then at some time during roundk either q’s deque was empty or some other
popTop or popBottom returned a topmost node. Either way, by the end of roundk,
nodeu has been assigned and possibly executed, so the potential has decreased by at
least2

3ϕi (u). In all cases, the potential has decreased by at least2
3ϕi (u). Thus, if a thief

targets processq as the victim at a roundk ≥ i , then the potential drops by at least
2
3ϕi (u) ≥ 2

3 · 3
48i (q) = 1

28i (q).
We now consider allP processes andP throws that occur at or after roundi . For

each processq in Di , if one or more of theP throws targetsq as the victim, then the
potential decreases by128i (q). If we think of each throw as a ball toss, then we have an
instance of the Balls and Weighted Bins Lemma (Lemma 7). For each processq in Di ,
we assign it a weightWq = 1

28i (q), and for each other processq in Ai , we assign it
a weightWq = 0. The weights sum toW = 1

28i (Di ). Usingβ = 1
2 in Lemma 7, we

conclude that the potential decreases by at leastβW = 1
48i (Di )with probability greater

than 1− 1/((1− β)e) > 1
4.
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4.3. Analysis for Dedicated Environments

In this section we analyze the performance of the non-blocking work stealer in dedicated
environments. In a dedicated (non-multiprogrammed) environment, allP processes are
scheduled in each round, so we havePA = P.

Theorem 9. Consider any multithreaded computation with work T1 and critical-path
length T∞ being executed by the non-blocking work stealer with P processes in a ded-
icated environment. The expected execution time is O(T1/P + T∞). Moreover, for any
ε > 0, the execution time is O(T1/P + T∞ + lg(1/ε)) with probability at least1− ε.

Proof. Lemma 5 bounds the execution time in terms of the number of throws. We shall
prove that the expected number of throws isO(T∞P), and that the number of throws is
O((T∞ + lg(1/ε))P) with probability at least 1− ε.

We analyze the number of throws by breaking the execution intophasesof 2(P)
throws. We show that with constant probability, a phase causes the potential to drop by
a constant factor, and since we know that the potential starts at80 = 32T∞−1 and ends
at zero, we can use this fact to analyze the number of phases. The first phase begins at
roundt1 = 1 and ends at the first roundt ′1 such that at leastP throws occur during the
interval of rounds [t1, t ′1]. The second phase begins at roundt2 = t ′1+ 1, and so on.

Consider a phase beginning at roundi , and let j be the round at which the next
phase begins. We will show that we have Pr

{
8j ≤ 3

48i
}
> 1

4. Recall that the potential
can be partitioned as8i = 8i (Ai )+8i (Di ). Since the phase contains at leastP throws,
Lemma 8 implies that Pr

{
8i −8j ≥ 1

48i (Di )
}
> 1

4. We need to show that the potential
also drops by a constant fraction of8i (Ai ). Consider a processq in Ai . If q does not have
an assigned node, then8i (q) = 0. If q has an assigned nodeu, then8i (q) = ϕi (u). In
this case, processq executes nodeu at roundi and the potential drops by at least5

9ϕi (u).
Summing over each processq in Ai , we have8i −8j ≥ 5

98i (Ai ). Thus, no matter how
8i is partitioned between8i (Ai ) and8i (Di ), we have Pr

{
8i −8j ≥ 1

48i
}
> 1

4.
We say that a phase issuccessfulif it causes the potential to drop by at least a quarter

fraction. A phase is successful with probability at least 1/4. Since the potential starts
at80 = 32T∞−1 and ends at zero (and is always an integer), the number of successful
phases is at most(2T∞ − 1) log4/3 3< 8T∞. The expected number of phases needed to
obtain 8T∞ successful phases is at most 32T∞. Thus, the expected number of phases is
O(T∞), and because each phase containsO(P) throws, the expected number of throws
is O(T∞P). We now turn to the high probability bound.

Suppose the execution takesn = 32T∞ + m phases. Each phase succeeds with
probability at leastp = 1

4, so the expected number of successes is at leastnp= 8T∞ +
m/4. We now compute the probability that the numberX of successes is less than 8T∞.
We use the Chernoff bound [2, Theorem A.13],

Pr{X < np− a} < e−a2/2np,

with a = m/4. Thus if we choosem= 32T∞ + 16 ln(1/ε), then we have

Pr{X < 8T∞} < e−(m/4)
2/(16T∞+m/2)
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≤ e−(m/4)
2/(m/2+m/2)

= e−m/16

≤ e−16 ln(1/ε)/16

= ε.
Thus, the probability that the execution takes 64T∞ + 16 ln(1/ε) phases or more is less
thanε. We conclude that the number of throws isO((T∞ + lg(1/ε))P) with probability
at least 1− ε.

4.4. Analysis for Multiprogrammed Environments

We now generalize the analysis of the previous section to bound the execution time of
the non-blocking work stealer in multiprogrammed environments. Recall that in a mul-
tiprogrammed environment, the kernel is an adversary that may choose not to schedule
some of the processes at some or all rounds. In particular, at each roundi , the kernel
schedulespi processes of its choosing. We consider three different classes of adversaries,
with each class being more powerful than the previous, and we consider increasingly
powerful forms of the yield system call. In all cases we find that the expected execution
time is O(T1/PA + T∞P/PA).

We prove our upper bounds for multiprogrammed environments using the results of
Section 4.2 and the same general approach as is used to prove Theorem 9. The only place
in which the proof of Theorem 9 depends on the assumption of a dedicated environment
is in the analysis of progress being made by those processes in the setAi . In particular,
in proving Theorem 9, we considered a roundi and any processq in Ai , and we showed
that at roundi , the potential decreases by at least5

98i (q), because processq executes its
assigned node, if any. This conclusion is not valid in a multiprogrammed environment,
because the kernel may choose not to schedule processq at roundi . For this reason, we
need the yield system calls.

The use of yield system calls never constrains the kernel in its choice of the number
pi of processes that it schedules at a stepi . Yield calls constrain the kernel only in its
choice ofwhich pi processes it schedules. We wish to avoid constraining the kernel in
its choice of the number of processes that it schedules, because doing so would admit
trivial solutions. For example, if we could force the kernel to schedule only one process,
then all we have to do is make efficient use of one processor, and we need not worry
about parallel execution or speedup. In general, whenever processors are available and
the kernel wishes to schedule our processes on those processors, our user-level scheduler
should be prepared to make efficient use of those processors.

4.4.1. Benign Adversary. A benign adversary is able to choose only the numberpi

of processes that are scheduled at each roundi . It cannot choose which processes are
scheduled. The processes are chosen at random. With a benign adversary, the yield
system calls are not needed, so line 15 of the scheduling loop (Figure 3) can be removed.

Theorem 10. Consider any multithreaded computation with work T1 and critical-path
length T∞ being executed by the non-blocking work stealer with P processes in a multi-
programmed environment. In addition, suppose the kernel is a benign adversary, and the
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yield system call does nothing. The expected execution time is O(T1/PA + T∞P/PA).
Moreover, for anyε > 0, the execution time is O(T1/PA + (T∞ + lg(1/ε))P/PA) with
probability at least1− ε.

Proof. As in the proof of Theorem 9, we bound the number of throws by showing that
in each phase, the potential decreases by a constant factor with constant probability. We
consider a phase that begins at roundi . The potential is8i = 8i (Ai )+8i (Di ). From
Lemma 8, we know that the potential decreases by at least1

48i (Di )with probability more
than 1/4. It remains to prove that with constant probability the potential also decreases
by a constant fraction of8i (Ai ).

Consider a processq in Ai . If q is scheduled at some round during the phase, then
the potential decreases by at least5

98i (q) as in Theorem 9. During the phase, at least
P throws occur, so at leastP processes are scheduled, with some processes possibly
being scheduled multiple times. These scheduled processes are chosen at random, so
we can treat them like random ball tosses and appeal to the Balls and Weighted Bins
Lemma (Lemma 7). In fact, this selection of processes at random does not correspond
to independent ball tosses, because a process cannot be scheduled more than once in a
given round, which introduces dependencies. But these dependencies only increases the
probability that a bin receives a ball. (Here each deque is a bin and a bin is said to receive
a ball if and only if the associated process is scheduled.) We assign each processq in Ai

a weightWq = 5
98i (q) and each processq in Di a weightWq = 0. The total weight is

W = 5
98i (Ai ), so usingβ = 1

2 in Lemma 7, we conclude that the potential decreases
by at leastβW = 5

188i (Ai ) with probability greater than 1/4.
The event that the potential decreases by5

188i (Ai ) is independent of the event that
the potential decreases by1

48i (Di ), because the random choices of which processes to
schedule are independent of the random choices of victims. Thus, both events occur with
probability greater than 1/16, and we conclude that the potential decreases by at least
1
48i with probability greater than 1/16. The remainder of the proof is the same as that
of Theorem 9, but with different constants.

4.4.2. Oblivious Adversary. An obliviousadversary is able to choose both the number
pi of processes and whichpi processes are scheduled at each roundi , but is required to
make these decisions in an off-line manner. Specifically, before the execution begins the
oblivious adversary commits itself to a complete kernel schedule.

To deal with an oblivious adversary, we employ a directed yield [1], [28] to a ran-
dom process; we call this operationyieldToRandom . If at round i processq calls
yieldToRandom , then a random processr is chosen and the kernel cannot sched-
ule processq again until it has scheduled processr . More precisely, the kernel cannot
schedule processq at a roundj > i unless there exists a roundk, i ≤ k ≤ j , such that
processr is scheduled at roundk. Of course, this requirement may be inconsistent with
the kernel schedule. Suppose processq is scheduled at roundsi and j , and processr
is not scheduled at any roundk = i, . . . , j . In this case, ifq calls yieldToRandom
at roundi , then becauseq cannot be scheduled at roundj as the schedule calls for, we
schedule processr instead. That is, we schedule processr in place ofq. Observe that
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this change in the schedule does not change the number of processes scheduled at any
round; it only changes which processes are scheduled.

The non-blocking work stealer usesyieldToRandom . Specifically, line 15 of the
scheduling loop (Figure 3) isyieldToRandom() .

Theorem 11. Consider any multithreaded computation with work T1 and critical-
path length T∞ being executed by the non-blocking work stealer with P processes
in a multiprogrammed environment. In addition, suppose that the kernel is an obliv-
ious adversary, and the yield system call isyieldToRandom . The expected execu-
tion time is O(T1/PA + T∞P/PA). Moreover, for any ε > 0, the execution time is
O(T1/PA + (T∞ + lg(1/ε))P/PA) with probability at least1− ε.

Proof. As in the proof of Theorem 10, it remains to prove that in each phase, the
potential decreases by a constant fraction of8i (Ai ) with constant probability. Again, if
q in Ai is scheduled at a round during the phase, then the potential decreases by at least
5
98i (q). Thus, if we can show that in each phase at leastP processes chosen at random
are scheduled, then we can appeal to the Balls and Weighted Bins Lemma.

Whereas previously we defined a phase to contain at leastP throws, we now define
a phase to contain at least 2P throws. With at least 2P throws, at leastP of these throws
have the following property: the throw was performed by a processq at a roundj during
the phase, and processq also performed another throw at a roundk > j , also during the
phase. We say that such a throw isfollowed. Observe that in this case, processq called
yieldToRandom at some round between roundsj andk. Since processq is scheduled
at roundk, the victim process is scheduled at some round betweenj andk. Thus, for
every throw that is followed, there is a randomly chosen victim process that is scheduled
during the phase.

Consider a phase that starts at roundi , and partition the steal attempts into two sets,
F andG, such that every throw inF is followed, and each set contains at leastP throws.
Because the phase contains at least 2P throws and at leastP of them are followed, such a
partition is possible. Lemma 8 tells us that the throws inG cause the potential to decrease
by at least148i (Di )with probability greater than 1/4. It remains to prove that the throws
in F cause the potential to decrease by a constant fraction of8i (Ai ).

The throws inF give rise to at leastP randomly chosen victim processes, each
of which is scheduled during the phase. Thus, we treat theseP random choices as ball
tosses, assigning each processq in Ai a weightWq = 5

98i (q), and each other process
q in Di a weightWq = 0. We then appeal to the Balls and Weighted Bins Lemma
with β = 1

2 to conclude that the throws inF cause the potential to decrease by at least
βW = 5

188i (Ai ) with probability greater than 1/4. Note that if the adversary is not
oblivious, then we cannot treat these randomly chosen victim processes as ball tosses,
because the adversary can bias the choices away from processes inAi . In particular, upon
seeing a throw by processq target a process inAi as the victim, an adaptive adversary
may stop scheduling processq. In this case the throw will not be followed, and, hence,
will not be in the setF . The oblivious adversary has no such power.

The victims targeted by throws inF are independent of the victims targeted by
throws inG, so we conclude that the potential decreases by at least1

48i with probability
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greater than 1/16. The remainder of the proof is the same as that of Theorem 9, but with
different constants.

4.4.3. Adaptive Adversary. An adaptiveadversary selects both the numberpi of pro-
cesses and which of thepi processes execute at each roundi , and it may do so in an
on-line fashion. The adaptive adversary is constrained only by the requirement to obey
yield system calls.

To deal with an adaptive adversary, we employ a powerful yield that we call
yieldToAll . If at roundi processq callsyieldToAll , then the kernel cannot sched-
ule processq again until it has scheduled every other process. More precisely, the kernel
cannot schedule processq at a roundj > i , unless, for every other processr , there exists
a roundkr in the rangei ≤ kr ≤ j , such that processr is scheduled at roundkr . Note that
yieldToAll does not constrain the adversary in its choice of the number of processes
scheduled at any round. It constrains the adversary only in its choice of which processes
it schedules.

The non-blocking work stealer callsyieldToAll before each steal attempt. Specif-
ically, line 15 of the scheduling loop (Figure 3) isyieldToAll() .

Theorem 12. Consider any multithreaded computation with work T1 and critical-
path length T∞ being executed by the non-blocking work stealer with P processes in
a multiprogrammed environment. In addition, suppose the kernel is an adaptive ad-
versary, and the yield system call isyieldToAll . The expected execution time is
O(T1/PA + T∞P/PA). Moreover, for any ε > 0, the execution time is O(T1/PA +
(T∞ + lg(1/ε))P/PA) with probability at least1− ε.

Proof. As in the proofs of Theorems 10 and 11, it remains to argue that in each phase
the potential decreases by a constant fraction of8i (Ai ) with constant probability. We
define a phase to contain at least 2P+ 1 throws. Consider a phase beginning at roundi .
Some processq executed at least three throws during the phase, so it calledyieldToAll
at some round before the third throw. Sinceq is scheduled at some round after its call
to yieldToAll , every process is scheduled at least once during the phase. Thus, the
potential decreases by at least5

98i (Ai ). The remainder of the proof is the same as that
of Theorem 9.

5. Related Work

Prior work on thread scheduling has not considered multiprogrammed environments, but
in addition to proving time bounds, some of this work has considered bounds on other
metrics of interest, such as space and communication. For the restricted class of “fully
strict” multithreaded computations, the work-stealing algorithm is efficient with respect
to both space and communication [8]. Moreover, when coupled with “dag-consistent”
distributed shared memory, work stealing is also efficient with respect to page faults [6].
For these reasons, work stealing is practical and variants have been implemented in many
systems [7], [19], [20], [24], [34], [38]. For general multithreaded computations, other
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scheduling algorithms have also been shown to be simultaneously efficient with respect
to time and space [4], [5], [13], [14]. Of particular interest here is the idea of deriving
parallel depth-first schedules from serial schedules [4], [5], which produces strong upper
bounds on time and space. The practical application and possible adaptation of this idea
to multiprogrammed environments is an open question.

Prior work that has considered multiprogrammed environments has focused on the
kernel-level scheduler. With coscheduling (also called gang scheduling) [18], [33], all of
the processes belonging to a computation are scheduled simultaneously, thereby giving
the computation the illusion of running on a dedicated machine. Interestingly, it has
recently been shown that in networks of workstations coscheduling can be achieved with
little or no modification to existing multiprocessor operating systems [17], [35]. Unfor-
tunately, for some job mixes, coscheduling is not appropriate. For example, a job mix
consisting of one parallel computation and one serial computation cannot be coscheduled
efficiently. With process control [36], processors are dynamically partitioned among the
running computations so that each computation runs on a set of processors that grows and
shrinks over time, and each computation creates and kills processes so that the number
of processes matches the number of processors. We are not aware of any commercial
operating system that supports process control.

6. Conclusion

Whereas traditional thread schedulers demonstrate poor performance in multipro-
grammed environments [9], [15], [17], [23], the non-blocking work stealer executes
with guaranteed high performance in such environments. By implementing the work-
stealing algorithm with non-blocking deques and judicious use of yield system calls, the
non-blocking work stealer executes any multithreaded computation with workT1 and
critical-path lengthT∞, using any numberP of processes, in expected timeO(T1/PA+
T∞P/PA), wherePA is the average number of processors on which the computation ex-
ecutes. Thus, it achieves linear speedup—that is, execution timeO(T1/PA)—whenever
the number of processes is small relative to the parallelismT1/T∞ of the computation.
Moreover, this bound holds even when the number of processes exceeds the number
of processors and even when the computation runs on a set of processors that grows
and shrinks over time. We prove this result under the assumption that the kernel, which
schedules processes on processors and determinesPA, is an adversary.

We have implemented the non-blocking work stealer in a prototypeC++ threads
library calledHood [10]. For UNIX platforms, Hood is built on top of POSIX threads
[29] that provide the abstraction of processes (known as “system-scope threads” or
“bound threads”). For performance, the deque methods are coded in assembly language.
For the yields, Hood employs a combination of the UNIXpriocntl (priority control)
andyield system calls to implement ayieldToAll . Using Hood, we have coded up
several applications, and we have run numerous experiments, the results of which attest
to the practical application of the non-blocking work stealer. These empirical results [9],
[10] show that application performance does conform to our analytical bound and that
the constant hidden inside the big-Oh notation is small—roughly 1.
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